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Abstract

The share of electric vehicles is planned to increase to more than 90% in the year 2045. Consequently, the capacity of the energy
grid must be accordingly extended. For predicting future loading needs in the cities of UIm / Neu-Ulm (Germany) and projecting
them onto the existing energy grid, a tool chain has been realized, described herein. The resulting simulation system computes
the charging needs and interactions between the grid and the vehicle fleet on a disaggregated level of single vehicles, their stops
— locations and durations —, and single lines from the cities’ energy grid. The results shall help the organization responsible for

the energy grid to plan necessary extensions.
1 Introduction

The project InterBDL works on the realization of bi-
directional charging addressing mainly the interoperability
between involved elements and systems as well as regulative
and legal issues. Bidirectional charging or vehicle-to-grid
technology (V2G) promises to contribute to the resilience of
the energy grid by offering a large battery capacity for storing
unconsumed energy and giving it back to the grid when
needed. Besides, this technology enables owners of electric
vehicles to trade energy. In either case, the electrical grid’s
capacity has to be increased to accommodate the additional
load. As such, a work item of the project is to predict the
additional demand — including both, retrieving and storing
energy — put on the energy grid by a higher share of electric
vehicles to be expected in the future.

Much of the academic work focusses on the allocation of new
charging stations. Different methods for predicting the
charging needs have been used for this purpose, see e.g. [1] for
an overview. So-called agent-based demand models (ABMs)
that replicate the mobility of the population are currently
assumed to be the best choice [2] for this purpose. The work
presented herein employs an established ABM named TAPAS
[3] and extends the obtained mobility patterns of the
population by heavy-duty vehicle trips extracted from a
commercial dataset. As ABMs model the behavior of single
persons, they deliver a representation of mobility that is
disaggregated both on the spatial as well as on the time scale.
The obtained interactions are projected onto a representation
of the real-world energy grid within the regarded area of the
cities Ulm / Neu-Ulm.

Following the long-term planning needs of grid suppliers, the
investigation looks at future shares of electric vehicles, namely
the year 2045. The German project Ariadne [4] assumes — in
dependence to the scenario — a share of electric vehicles of
about 25% for the year 2030 and about 90% to 95% for the
year 2045. This is in-line with the predictions given by the

network operators [5], being between 40% und 70% in the year
2037 and raising to 70% to 95% in 2045.

The remainder is structured as following. In the next section,
the used models and the data processing pipeline are presented,
first. Afterwards, in section 3, the results of applying it are
shown. Section 4 gives the conclusions, discussing the results
and the benefits and shortcomings of the used pipeline.

2. Methodology

The prediction of the additionally needed capacity in the cities
Ulm / Neu-Ulm posed by a full electric vehicle fleet is
computed using a chain of different models. In a first step, the
agent-based demand model TAPAS is used for determining
the daily activity patterns of the cities’ populations. The
resulting trip chains are then filtered for obtaining trips
performed using a private vehicle, which are then mapped onto
parking places assigned to the trips’ destinations. In addition,
a data set from INRIX is used to replicate the charging needs
of heavy-duty vehicles used for commercial transport.
Subsequently, charging decisions are simulated using the
model CHARGIN [6]. The obtained information about
interacting with the grid is mapped onto the representation of
the energy grid of the regarded area. The involved models and
the process of mapping the demand onto the grid are described
in a higher detail in the following subsections. The overall
workflow is depicted in Fig. 1.
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Fig. 1 The overall workflow of modelling future charging load
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2.1 TAPAS

TAPAS is an agent-based demand model (ABM) that
computes the daily mobility patterns for a given, disaggregated
synthetic population of a region under investigation. For each
modelled person, TAPAS selects a matching daily mobility
plan from a set of about 50,000 empirical day plans using a
probability distribution that gets the respective person’s socio-
demographic attributes as input. The plan consists of the
activities performed during a usual working day. For the
selected plan, the places at which the activities can be
performed are selected first, together with the mode(s) of
transport used to access them. The results of a TAPAS run
consist of a list of the trips performed by each simulated
individual during a usual working day. Each trip is described
by information such as the starting and ending locations, the
departure time and the duration of the trip, as well as the
chosen mode of transport.

Besides a representation of the population, disaggregated into
single persons and households, TAPAS needs the information
about the activity places as well as matrices that describe the
performance of the regarded modes of transport — walking,
using a bike, motorized individual transport as a driver or a co-
driver, and public transport. Collecting all the needed
information has been a time-consuming and partially
expensive process in the past. Available data sources had to be
collected, converted, and aligned, and often, commercial data
that covers working locations and their capacities had to be
bought. To omit these issues, a tool was built within the project
that automatically collects data from sources that cover the
complete area of Germany and converts them for being used
in TAPAS [7].

Given this tool, the region around the cities of UIm / Neu-Ulm
was prepared as input for TAPAS. While the population was
modelled for the area covered by the cities, activity locations
were generated for a bigger region, allowing the population to
visit locations outside of the cities as well. Fig. 2 shows the
modelled region. Overall, the simulation covers a population
of 275,543 individuals grouped into 136,786 households, and
171,268 private vehicles.
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Fig. 2 Left: the modelled area, distinguishing the one for which
the population has been modelled (green) and a surrounding
area with additional activity places (blue); right: the division
of the area into Regiostar 7 classes

The obtained simulation was calibrated using the trip distance
distributions obtained from the national survey “Mobilitdt in
Deutschland 2017 (MiD, [8]), segregating the modelled area

into so-called traffic analysis zones, which were assigned to
their respective Regiostar 7 region class. In a second step, the
resulting mode choice was validated, again using data from the
MiD. The results of the mode choice calibration for the
Regiostar 7 class 72 are given in Fig. 3.
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Fig. 3 Comparison of the modal split from the MiD survey
against the one obtained from TAPAS
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The 275,543 modelled persons perform 3.8 trips per day on
average. The major activities performed during a usual day
(see also Fig. 4) are working (28%), leisure activities (24%),
shopping (19%), and errands (17%).
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Fig. 4 The activities performed by the population of the
modelled area as delivered by TAPAS

The trip chain information generated by TAPAS for each
inhabitant of the region is mapped onto the halting positions
(see 2.3) and further processed by CHARGIN for obtaining the
charging load (see 2.4).

2.2 Commercial Transport

For including commercial transport in the forecast, an external
dataset was used. This dataset contains the information about
255,000 stops of heavy-duty vehicle in segments N2 and N3
within the considered region for the month March 2024. Each
data point names the vehicle type, as well as the assumed
distance driven before halting. The information about the
dwell time is given for about 50% of the described halts. Fig. 5
shows a heat map generated using this data.

As done for the trips obtained from TAPAS, the reported stops
of commercial rides were mapped onto the existing parking
places (see 2.3). For obtaining a data set that matches the one
generated by TAPAS, only halts during Tuesday, the 12™ of
March 2024 were selected.
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Fig. 5 Heat map of halting positions of commercial vehicles in

Ulm/Neu-Ulm.

In addition, a linear regression was used to predict the
development of the electrification of commercial fleets based
on data from the German Federal Motor Transport Authority
[9] and predictions about the development of the private
vehicle fleet following the “T-45 Strom” scenario from [10].
Table 1 shows the results for different vehicle segments of
commercial vehicles.

Table 1: Assumed development of the electrification of
commercial fleets by vehicle segment

Vehicle Segment 2024 2035 2045
N1 2.5% 93% 100%
N2 0.5% 67% 98%
N3/SzZM 0.05% 53% 95%
M3 2.5% 75% 100%

2.3 Determining Halting Positions

When reporting performed trips, TAPAS stores the locations
each trip starts and ends at. For projecting the destinations onto
the electricity grid, the respective parking positions must be
determined, first. As such, parking possibilities — both parking
places and on-street parking areas — were extracted from OSM.
For each activity place, the parking possibilities within a radius
of 500 m were then determined. In the given variation, the
parking place with the highest capacity to distance ratio is
selected for a regarded destination. This assignment can yet be
changed for replicating different parking choice patterns, what
has not been done, yet. The result is a mapping of the rides
performed by motorized individual transport onto the parking
infrastructure. The stops given in the INRIX dataset for
commercial vehicles were mapped onto the parking
infrastructure as well. Here, the nearest halt was selected.

2.4 CHARGIN

CHARGIN is a microscopic (vehicle-based) model of
charging behavior. It obtains the diaries of vehicles, including
the driven distances as well as stops, their durations and the
activity performed by the driver during the respective halt.
CHARGIN uses data derived from a survey among users of
electric vehicles [11] to replicate the according probabilities to
charge. Additional information needed consists of the
available charging power and the charging price at the stop.
The vehicle’s state-of-charge is computed by the model using

the information about the distances driven since the last
charging. CHARGIN relies on two assumptions: 1) that the
users of vehicles behave like the ones of combustion-engine
vehicles, meaning that the daily mobility patterns do not
change, and 2) that charging takes place at the locations the
vehicles are parked at. On-trip charging is assumed to be used
only if the state-of-charge falls below a certain threshold.

The model delivers single charging actions with a time
resolution of one hour for the course of a complete week. The
driving patterns are either generated from surveys like the MiD
or by models like TAPAS as presented herein. In case of using
TAPAS results, which model a single day only, the given day
is repeated to obtain the weekly driving patterns. The output
distinguishes between single vehicles and charging points,
allowing for according disaggregated evaluations.

In the scope of the project, CHARGIN is extended for
replicating bi-directional charging behavior. Currently, the
following assumptions are made: 1) the vehicle is charged,
first, for assuring spontaneous mobility, being set to 100 km
range, 2) a halting time of at least 15 minutes is necessary to
start charging, 3) for bi-directional charging, the halting time
must be above 60 minutes.

2.5 Mapping on the Electricity Grid

The project partner Stadtwerke Ulm/Neu-Ulm Netze GmbH
supplied a representation of the energy grid as geo-data. The
energy grid consists of low and medium voltage lines, both
being either underground or overhead lines. Additional data
includes the information about connections along the single
lines and connections to the transformers. For each parking
place, the nearest part of the energy grid was determined
distinguishing between low and medium voltage lines. The
information about connections to the transformers was used to
aggregate the charging needs from being mapped to single
halting positions to bigger spatial areas in the wish to reduce
the stochastic effects of the involved models (see also
3. Results). Two spatial aggregations were considered: one at
the level of switching cells, and one that aggregates these areas
at the level of transformers.

For each parking possibility, the respective next line of the low
and medium grid was determined. This information is used to
map the charging demand of electric vehicles to the respective
part of the energy grid, considering the aggregation levels
given above.

3 Results

In the following, preliminary results are presented. The
involved models are stochastic in nature and, while delivering
valid aggregated results for an area under investigation, they
are not capable to exactly represent an existing, real person. As
such, the simulation of the current number of electric vehicles
would deliver results that differ from the reality mainly in the
locations of inhabitance and the visited places. To avoid these
stochastic effects and because of the assumption, the vehicle
fleet will be electrified almost completely in 2045, all vehicles
were regarded as being electric in a first step. In addition,
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charging places are aggregated based on the built hierarchical
representation of the energy grid (see 2.5).

Fig. 7 shows the distributions of the distances driven during a
single trip and over a complete day by private, non-
commercial vehicles. Overall, the distances of the trips
undertaken by the simulated population using private vehicles
as a driver sum up to 18,930 km per day. Assuming an energy
consumption of 0.20 kWh/km (approximated via [12]),
approx. 3,800 kWh would be needed to recharge the vehicles
within the area on a usual working day.
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Fig. 7 Cumulative distribution of the distances of single trips
(top) and daily driven distances (bottom)

As confirmed by the national mobility survey MiD, vehicles
are parking for most of the time. The MiD states that there are
never more than 10% of the vehicle fleet in operation at the
same time [8]. This is reflected in the distribution of halting
durations given in Fig. 8. What is remarkable as well is the
high share of 37% of vehicles that are not used during a day at
all. Again, this is supported by the MiD, where the number of
40% is given.
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The vehicles are then mapped onto the parking infrastructure
and the onto the energy grid as described in 2.3 and 2.5,
respectively. Fig. 6 show the connection time — sum of the time
vehicles are connected to the grid — during a usual day
aggregated at the level of transformers. Big parking places can
accommodate a large number o vehicles and can as such be
used by their operators for facilitating different business
models. As such, a distinct evaluation for on-street parking and
big parking areas seems to be needed and will be performed in
the next project steps.
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Fig. 6 Connection time aggregated on the level of transformers
4  Conclusion

A system for estimating the additional load on the energy grid
generated by a fully electrical vehicle fleet was presented. The
system consists of multiple models and data processing steps.
It involves a model for computing the travel demand based on
per-person individual decisions about the activities performed
on a usual day and the respectively chosen modes of transport.
The information about trips performed using an own private
vehicle computed by this model are passed to a model that
resembles charging decisions. Further processing steps map
the results to parking positions and then to the energy grid. The
system was used to estimate the load on the energy grid within
the cities Ulm / Neu-Ulm. A complete electrification was
assumed for reducing the effects of stochasticity of the models.
In addition, the interactions between single vehicles and the
grid were spatially aggregated on the grid levels of switch cells
and transformers.

In the next project steps, different scenarios for the
development of electrification will be simulated. In addition,
scenarios with changes in the infrastructure — such as building
a new commercial center that changes mobility patterns —, will
be implemented and evaluated for obtaining a more robust
prediction.

The presented results show the case of maximum interaction
between the grid and the vehicle fleet. In subsequent steps,
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different business models for bi-directional charging, the
performance of charging stations related to the occurrence of
fast and over-night charging, and the potential of V2G for
increasing the grid’s resilience will be addressed. In parallel to
extending the evaluation, the tool chain is planned to be
extended, mainly by the possibility to simulate different times
of the year and the mobility along a week. As well, the
distinction between owned and public charging infrastructure
should be strengthen within the models as it highly influences
charging decisions.
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