

DLR-IB-FT-BS-2025-157

Versionskontrolle und
Kollaboration in MBSE:
Untersuchung der Git-
Integration mit SysML v2

Masterarbeit

Zohair Sheikh Suleiman

Deutsches Zentrum für Luft- und Raumfahrt

Institut für Flugsystemtechnik
Braunschweig

Interner Bericht

Institutsbericht
DLR-IB-FT-BS-2025-157

Versionskontrolle und Kollaboration in MBSE:
Untersuchung der Git-Integration mit SysML v2

Zohair Sheikh Suleiman

Institut für Flugsystemtechnik
Braunschweig

Deutsches Zentrum für Luft- und Raumfahrt e.V.
Institut für Flugsystemtechnik
Abteilung Sichere Systeme & Systems Engineering

Stufe der Zugänglichkeit: I, Allgemein zugänglich: Der Interne Bericht wird
elektronisch ohne Einschränkungen in ELIB abgelegt.

Braunschweig, den 10.10.2025

 Unterschriften:

Institutsleitung: Dr.-Ing. Andreas Bierig

Abteilungsleitung: Dr.-Ing. Andreas Bierig

Betreuer:in: Dr.-Ing. Oliver Bertram

Verfasser:in: Zohair Sheikh Suleiman, B.Eng.

Abstract

This thesis investigates the integration of Git with SysML v2 models to support version
control and collaborative model-based systems engineering (MBSE) in safety-critical do-
mains. Motivated by the increasing complexity of systems and the need for traceable,
team-oriented development processes, the work examines how principles from software
engineering – such as branching strategies, CI/CD pipelines, and text-based workflow –
can be transferred to MBSE practice. The research follows a Design Science Research
(DSR) approach and combines methodological analysis with practical implementation
and evaluation.

The findings demonstrate that the integration of Git and SysML v2 is both technically
feasible and methodologically beneficial. However, it requires clear organizational struc-
tures, role definitions, and tool configurations. The developed workflow provides a scal-
able foundation for collaborative modeling in interdisciplinary teams and highlights areas
for future research and tool improvement.

Zusammenfassung

Diese Arbeit untersucht die Integration von Git mit SysML v2-Modellen zur Versi-
onskontrolle und Kollaboration im modellbasierten Systems Engineering (MBSE) si-
cherheitskritischer Systeme. Ausgangspunkt ist die wachsende Komplexität techni-
scher Systeme sowie der Bedarf nach nachvollziehbaren und teamorientierten Ent-
wicklungsprozessen. Ziel war es, Prinzipien aus der Softwareentwicklung – etwa
Branching-Strategien, CI/CD-Pipelines und textbasierte Workflows – auf das MBSE
zu übertragen. Die Arbeit folgt dem Design Science Research (DSR)-Ansatz und kom-
biniert methodische Analyse mit praktischer Umsetzung und Evaluation.

Die Untersuchung belegt, dass die Kombination von Git und SysML v2 sowohl tech-
nisch umsetzbar als auch methodisch sinnvoll ist. Sie erfordert jedoch klare organisa-
torische Spielregeln. Der entwickelte Ansatz bietet eine skalierbare Grundlage für
kollaboratives Modellieren in interdisziplinären Teams und zeigt Perspektiven für
künftige Forschung und Werkzeugentwicklung auf.

Inhaltsverzeichnis Seite I

Inhaltsverzeichnis

1 Einleitung .. 1
1.1 Problemstellung .. 1
1.2 Zielsetzung und Forschungsfragen .. 2
1.3 Forschungsmethode ... 3
1.4 Struktur der Arbeit .. 4

2 Theoretische Grundlagen und Stand der Technik 6
2.1 Standards in der Flugsystementwicklung ... 6

2.1.1 ARP4754B und ARP4761A Prozesse ... 7
2.1.2 ISO/IEC 15288 Prozesse .. 11

2.2 Model-Based Systems Engineering .. 13
2.3 Systems Modeling Language ... 15

2.3.1 SysML v1 ... 16
2.3.2 SysML v2 ... 17
2.3.3 Weiterentwicklung der Terminologie und Struktur von SysML v1

zu SysML v2 .. 20
2.4 Cameo Systems Modeler mit SysML v2 ... 22
2.5 Kollaboration in MBSE .. 24

2.5.1 Herausforderungen der Kollaboration in MBSE 25
2.5.2 Agile MBSE ... 27
2.5.3 Git als Versionskontrollsystem ... 30

3 Umgebungsanalyse und Anforderungen an den Ansatz 32
3.1 Methodisches Vorgehen zur Umgebungsanalyse 32
3.2 Beschreibung der Forschungsumgebung ... 33
3.3 Analyse der Teamumfrage zur Zusammenarbeit.................................. 34

3.3.1 Methodik der Umfrage ... 34
3.3.2 Ergebnisse und Auswertung .. 34

3.4 Rollenzuweisung anhand ARP4754B & ISO/IEC 15288 37
3.4.1 Methodik des Rollenzuweisungsprozesses 38
3.4.2 Ergebnisse der RACI-Matrix .. 39

3.5 Herausforderungen der Zusammenarbeit ... 42

4 Entwicklung eines Git-basierten Kollaborationsprozesses 44
4.1 Methodisches Vorgehen zur Prozessentwicklung 44
4.2 Konfigurationsrichtlinien für CSM mit SysML v2 46
4.3 Konfigurationsrichtlinien für Git in GitLab ... 49

Inhaltsverzeichnis Seite II

4.4 Definition des Git-basierten Kollaborationsprozesses 53

5 Prozessdurchführung und Bewertung ... 56
5.1 Definition und Durchführung von Testszenarien 56

5.1.1 Testszenario #1: Export und Commit-Validierung 58
5.1.2 Testszenario #2: Anzeige und Bearbeitung im JN 61
5.1.3 Testszenario #3: Multi-Tool-Kompatibilität (CSM und JN) 63
5.1.4 Testszenario #4: Versionierung und Rollback 66
5.1.5 Testszenario #5: GitHub Flow Test (Kollaborationsworkflow).... 68
5.1.6 Testszenario #6: Automatisierte Konfigurationsprüfung 71
5.1.7 Testszenario #7: Automatisierte Syntaxprüfung 74
5.1.8 Testszenario #8: Automatisierte Dokumentenerstellung 77

5.2 Bewertung des Git-basierten Kollaborationsprozesses 80

6 Zusammenfassung und Ausblick ... 86

Literaturverzeichnis .. 90

Anhang .. 93

Verzeichnis der verwendeten Abkürzungen Seite III

Verzeichnis der verwendeten Abkürzungen

AFHA Aircraft Functional Hazard Assessment

AMBSE Agile Model-Based Systems Engineering

AMBSE Agile Model-Based Systems Engineering

AP Agreement Processes

API Application Programming Interface

ARP SAE Aerospace Recommended Practices

ASA Aircraft Safety Assessment

ASDP Aircraft and System Development Process

BDD Block-Definition-Diagramm

CD Continuous Deployment

CI Continuous Integration

CLI Command Line Interface

CMBSE Collaborative Model-Based Systems Engineering

CSM Cameo Systems Modeler

CVS Concurrent Versions System

D&D Data & Documentation

DAP Development Assurance Planning

DevOps Development and Operations

DLR Deutsches Zentrum für Luft- und Raumfahrt

DO RTCA Document

DSR Design Science Research

ED EUROCAE Document

EUROCAE European Organisation for Civil Aviation Equipment

FDD Feature Driven Development

Verzeichnis der verwendeten Abkürzungen Seite IV

FMEA Failure Modes and Effects Analysis

FTA Fault Tree Analysis

FT-SSY DLR Institut für Flugsystemtechnik, Abteilung Sichere Systeme & Systems
Engineering

IBD Internal-Block-Diagramme

IEC International Electrotechnical Commission

INCOSE International Council on Systems Engineering

IP Integral Processes

IPDT Integrated Product Development Team

ISO International Organization for Standardization

JN Jupyter Notebook

KerML Kernel Modeling Language

MBSA Model-Based Safety Analysis

MBSE Model-Based Systems Engineering

MR Merge Request

MTTR Mean Time to Recovery

OEM Original Equipment Manufacturer

OMG Object Management Group

OOSEM Object-Oriented Systems Engineering Method

OPEP Organizational Project-Enabling Processes

OWL Web Ontology Language

PASA Preliminary Aircraft Safety Assessment

PSSA Preliminary System Safety Assessment

RACI Responsible, Accountable, Consulted, and Informed

RFP Request for Proposal

RTCA Radio Technical Commission for Aeronautics

SAE Society of Automobile Engineers

SE Systems Engineering

 Seite V Verzeichnis der verwendeten Abkürzungen

SFHA System Functional Hazard Assessment

SoI System of Interest

SoS System of Systems

SSA System Safety Assessment

SST SysML v2 Submission Team

SysML Systems Modeling Language

SysML v1 Systems Modeling Language Version 1

SysML v2 Systems Modeling Language Version 2

TMP Technical Management Processes

TP Technical Processes

UAV Unmanned Aerial Vehicle

UI User Interface

UML Unified Modeling Language

V&V Verifizierung und Validierung

XP Extreme Programming

Abbildungsverzeichnis Seite VI

Abbildungsverzeichnis

Bild 1-1 Design Science Research-Methodologie (eigene Darstellung nach Hevner et al.,
(2004))

Bild 2-1 Grundsatzdokumente für die Entwicklungs- und die Betriebsphase (SAE Aeros-
pace Recommended Practice, 2023a)

Bild 2-2 Luftfahrzeug-/Systementwicklungsprozess nach ARP4754B (SAE Aerospace
Recommended Practice, 2023a)

Bild 2-3 Interaktion zwischen ARP4754B und ARP4761A Prozesse (SAE Aerospace
Recommended Practice, 2023a)

Bild 2-4 MBSE-Dreieck (Kaiser, 2013)

Bild 2-5 Die vier Säulen der SysML v1 mit Diagrammtypen (eigene Darstellung nach Frie-
denthal et al., (2009))

Bild 2-6 SysML v2 Sprachfähigkeiten (Friedenthal, 2024)

Bild 2-7 SysML v2 Spracharchitektur (OMG Systems Modeling Language, 2024)

Bild 2-8 CSM SysML v2-Plugin (eigener Screenshot aus CSM, SysML v2-Plugin)

Bild 2-9 Warnhinweis beim Start des SysML v2-Plugins in CSM (eigener Screenshot aus
CSM, Warnhinweis)

Bild 2-10 Beispiel für die Darstellung einer Teilzerlegung in SysML v2 (eigener Screenshot
aus CSM, grafische und textuelle Notation)

Bild 2-11 Agile Methodologie (exapp.ca, 2024)

Bild 2-12 Agiler Systementwicklungsprozess für die Flugzeugkonzeption nach Krupa,
(2019)

Bild 2-13 AMBSE Lieferprozess während der Konzeptionsphase nach Krupa, (2019)

Bild 3-1 Klarheit über Modellierungsverantwortlichkeiten (Frage 2.2)

Bild 3-2 Existenz eines definierten Modellierungsprozesses (Frage 3.3)

Bild 3-3 Herausforderungen bei der modellbasierten Zusammenarbeit (Frage 4.1)

Bild 3-4 Bewertung Git-basierter Versionskontrolle für MBSE (Frage 5.2)

Bild 3-5 Anwendung agiler Prinzipien im MBSE-Kontext (Frage 5.3)

Bild 3-6 Übersicht von Teamkompetenzen (Frage 2.1)

Bild 4-1 Werkzeuglandschaft im Git-basierten MBSE-Prozess (eigene Darstellung)

Abbildungsverzeichnis Seite VII

Bild 4-2 SysML v2 Aktionsdiagramm zur Darstellung der Definition- und Werkzeugkonfi-
gurationsphase (eigene Darstellung in CSM)

Bild 4-3 UAV-Paketstruktur gemäß SysML v2 Sprachfähigkeiten (eigene Darstellung)

Bild 4-4 Modellstruktur in CSM (eigener Screenshot, CSM)

Bild 4-5 „View“-Diagramm und „View“-Element in SysML v2-textueller Notation (eigener
Screenshot, CSM)

Bild 4-6 Export einer SysML v2-Datei in CSM (eigener Screenshot, CSM)

Bild 4-7 Import einer SysML v2-Datei in CSM (eigener Screenshot, CSM)

Bild 4-8 Erstellung eines neuen Projekts in GitLab über die Option „Create blank project“
(eigener Screenshot, GitLab)

Bild 4-9 Öffnen der Eingabeaufforderung direkt aus dem lokalen Verzeichnispfad über die
Adresszeile (eigener Screenshot, Windows Explorer)

Bild 4-10 Klonen des GitLab-Repository über die Eingabeaufforderung mit ´git clone´ (ei-
gener Screenshot, Git CLI)

Bild 4-11 Anzeige der geklonten README-Datei im lokalen Repository (eigener Screens-
hot, Windows Explorer)

Bild 4-12 GitHub Flow – vereinfachter kollaborativer Entwicklungsprozess (eigene Darstel-
lung)

Bild 5-1 Modellierung der Anforderungen in CSM (eigener Screenshot, CSM)

Bild 5-2 Exportdialog und Dateispeicherung in das lokale Repository (eigener Screens-
hot, CSM)

Bild 5-3 Darstellung der „Requirements.sysml“-Datei im GitLab nach Push-Vorgang (ei-
gener Screenshot, GitLab UI)

Bild 5-4 Textbasierte Anzeige der Datei „Requirements.sysml“ (eigener Screenshot, JN)

Bild 5-5 Visualisierung der modellierten Anforderungen im SysML-Kernel mittels „%viz“-
Befehl (eigener Screenshot, JN)

Bild 5-6 Modifikation der Anforderung „Customer Requirement <5_5>“ inkl. neuer Cons-
traints und Attribute (eigener Screenshot, JN)

Bild 5-7 Erfolgreicher Push der geänderten Dateien (Requirements.sysml,
UAV_JN.ipynb) auf GitLab (eigener Screenshot, GitLab UI)

Bild 5-8 Neuer namespace „Customer_Requirements“ nach dem Import der „Require-
ments.sysml“-Datei (eigener Screenshot, CSM)

Abbildungsverzeichnis Seite VIII

Bild 5-9 Vergleich der ursprünglichen (Links) und modifizierten (Rechts) Anforderung „Re-
quirement <5_5>“ im View-Diagramm „Req_New“ (eigener Screenshot, CSM)

Bild 5-10 Übersicht des ´git log´-Befehls (eigener Screenshot, Git CLI)

Bild 5-11 GitLab UI mit „Behavior.sysml“ (eigener Screenshot, GitLab UI)

Bild 5-12 GitLab UI ohne „Behavior.sysml“ (eigener Screenshot, GitLab UI)

Bild 5-13 Übersicht der Branches „main“ und „feature/add-new-uc“ (eigener Screenshot,
GitLab UI)

Bild 5-14 Merge Request-Erstellung (eigener Screenshot, GitLab UI)

Bild 5-15 Merge-Vorgang des Feature-Branch nach abgeschlossenem Review, Abschluss
des Vorgangs über „merge“ (eigener Screenshot, GitLab UI)

Bild 5-16 Links: Ursprüngliche Exportdatei mit fehlerhafter Formatierung; Rechts: Datei
nach automatischer Korrektur durch fix_config.ipynb (eigener Screenshot, Struc-
ture.sysml)

Bild 5-17 Ausschnitt aus .gitlab-ci.yml mit Definition des neuen Jobs zur automatisierten
Konfigurationsprüfung (eigener Screenshot, .gitlab-ci.yml)

Bild 5-18 Organisationsstruktur der SysML-Dateien für eine saubere und konsistente Ab-
lagestruktur im Repository (eigener Screenshot, GitLab UI)

Bild 5-19 Ausschnitt aus .gitlab-ci.yml mit Definition des neuen Jobs zur automatisierten
Syntaxprüfung (eigener Screenshot, .gitlab-ci.yml)

Bild 5-20 Manuell eingefügte Syntaxfehler in Structure.sysml (eigener Screenshot, Struc-
ture.sysml)

Bild 5-21 Konsolenausgabe des Syntaxprüfskripts (eigener Screenshot, Python 3-Kernel)

Bild 5-22 SysML-Reports als GitLab-Artefakte (eigener Screenshot, GitLab)

Bild 5-23 Generierter SysML-Report in JN, Teil 1 (eigener Screenshot, JN mit SysML-
Kernel)

Bild 5-24 Generierter SysML-Report in JN, Teil 2 (eigener Screenshot, JN mit SysML-
Kernel)

Bild 5-25 Übersicht über die finale Repository-Struktur (eigener Screenshot, GitLab UI)

Bild 5-26 Action-Diagramm mit den drei CI-Stufen im finalen Repository (eigene Darstel-
lung, SysML-Kernel in JN)

Bild 5-27 Swimlane-Diagramm zur Repository-Verwaltung (eigene Darstellung)

Bild 5-28 Änderungsübersicht in GitLab für .sysml-Dateien (eigener Screenshot, GitLab UI)

Tabellenverzeichnis Seite IX

Tabellenverzeichnis

Tabelle 2-1 Gesamtüberblick ARP4754B-Prozesse (SAE Aerospace Recommended
Practice, 2023a)

Tabelle 2-2 Beispiel für die grafischen und textuellen Notationen von SysML v2 (OMG Sys-
tems Modeling Language, 2024)

Tabelle 2-3 Vergleich der Terminologie zwischen SysML v2 und SysML v1 (Ausschnitt) (Frie-
denthal, 2024)

Tabelle 2-4 Übersicht der Herausforderungen in CMBSE mit Zuordnung zu Quellen und the-
matischen Kategorien

Tabelle 3-1 RACI-Matrix zur Rollenzuweisung der ARP4754B-Prozesse im DLR-Projektkon-
text

Tabelle 3-2 RACI-Matrix zur Rollenzuweisung der ISO/IEC 15288:2023 im DLR-Projektkon-
text

Tabelle 3-3 Zuordnung der teamintern identifizierten Herausforderungen zu den literaturba-
sierten Kategorien (vgl. Kapitel 2.5.1)

Tabelle 4-1 Übersicht der wichtigsten Git-Befehle

Tabelle 5-1 Übersicht der definierten Testszenarien und zugehöriger GitLab-Projektphasen

Einleitung Seite 1

1 Einleitung
Die Entwicklung sicherheitskritischer Flugzeugsysteme erfordert eine hohe Genau-
igkeit, Nachverfolgbarkeit sowie Konsistenz über den gesamten Entwicklungspro-
zess hinweg. Model-Based Systems Engineering (MBSE) adressiert diese Anforde-
rungen durch einen modellzentrierten Ansatz, der eine konsistente und strukturierte
Abbildung komplexer Systeme ermöglicht (Haberfellner et al., 2019).

Trotz dieser methodischen Vorteile bestehen weiterhin Herausforderungen in der
teamübergreifenden Zusammenarbeit, insbesondere hinsichtlich der Versionskon-
trolle und der Rückverfolgbarkeit von Modelländerungen (Li et al., 2024; Wouters
et al., 2017). Während in der Softwareentwicklung Versionskontrollsysteme wie
Git etabliert sind, ist deren Anwendung im modellbasierten Systementwurf bislang
nur begrenzt verbreitet.

Mit der Einführung der neuen Modellierungssprache Systems Modeling Language
(SysML) Version 2 ergeben sich neue Potenziale zur Verbesserung der Kollabora-
tion in MBSE-Projekten. Besonders die textuelle Notation von SysML v2 ermög-
licht eine tiefere Integration mit Versionskontrollsystemen wie Git und bietet damit
eine vielversprechende Grundlage für die Entwicklung kollaborativer, versionskon-
trollierter MBSE-Prozesse.

Die vorliegende Arbeit wurde im Rahmen einer Forschungsaktivität am Deutschen
Zentrum für Luft- und Raumfahrt (DLR), Institut für Flugsystemtechnik, durchge-
führt. Sie adressiert die Entwicklung und Bewertung eines Git-basierten Kollabo-
rationsprozesses für MBSE unter Einsatz von SysML v2.

1.1 Problemstellung

Die Verwaltung von Modellversionen sowie die Nachverfolgbarkeit von Änderun-
gen stellen zentrale Anforderungen in der Entwicklung sicherheitskritischer Sys-
teme dar. In der Softwareentwicklung sind Versionskontrollsysteme wie Git längst
etabliert und bilden dort eine essenzielle Grundlage für kollaborative, nachvollzieh-
bare Entwicklungsprozesse. Im Kontext des MBSE hingegen fehlt bislang eine
standardisierte, weit verbreitete Lösung zur strukturierten Versionsverwaltung von
Systemmodellen. Die mangelnde Integration entsprechender Mechanismen in gän-
gige MBSE-Werkzeuge erschwert die modellbasierte Zusammenarbeit und führt zu
Unsicherheiten hinsichtlich der Konsistenz und Gültigkeit von Modellversionen
(May & Zerwas, 2025).

Insbesondere bei der teamübergreifenden Zusammenarbeit über verteilte Entwick-
lungsgruppen hinweg entstehen zusätzliche Herausforderungen. Es ist häufig un-
klar, welche Version eines Systemmodells den aktuellen Stand der Entwicklung

Einleitung Seite 2

darstellt (Wouters et al., 2017). In der Praxis kann es vorkommen, dass ein veralte-
ter Modellstand bearbeitet oder weiterverwendet wird, obwohl bereits eine aktuali-
sierte Version existiert. Dies kann erhebliche Auswirkungen auf die Qualität und
Konsistenz der Systemdokumentation sowie auf die spätere Validierung haben.

Auch für externe Stakeholder besteht ein Bedarf an Transparenz und Nachvollzieh-
barkeit (prostep ivip Association, 2023). Beispielsweise müssen bei Audits oder
Meilensteinfreigaben stets aktuelle und konsistente Modellversionen des System of
Interest (SoI) zur Verfügung stehen. Darüber hinaus ist es entscheidend, dass der
gesamte Änderungsverlauf lückenlos dokumentiert und eindeutig nachvollziehbar
ist.

Erst durch die Veröffentlichung von SysML v2 mit ihrer textuellen Notation wird
die tiefere Integration bestehender Versionskontrollsysteme wie Git in modellba-
sierte Entwicklungsprozesse überhaupt technisch möglich. Da die Systemmodelle
nun als textbasierter „Quellcode“ behandelt werden können, bietet sich die Nutzung
von Git als bewährtem Werkzeug für Versionsverwaltung und kollaborative Ent-
wicklung besonders an.

1.2 Zielsetzung und Forschungsfragen

Ziel dieser Arbeit ist die Untersuchung der Integration von Git mit SysML v2-Mo-
dellen zur Versionskontrolle und Kollaboration im MBSE. Dabei sollen die Poten-
ziale und Herausforderungen einer Git-basierten Verwaltung von modellbasierten
Systementwürfen systematisch analysiert werden.

Damit sollen die folgenden vier Forschungsfragen beantwortet werden:

1. Wie lässt sich die bestehende Kollaborationsstruktur im MBSE unter Be-
rücksichtigung relevanter Luftfahrtstandards und Teamstrukturen analysie-
ren?

2. Welche Werkzeug-Konfigurationsrichtlinien sind erforderlich, um eine ef-
fiziente Nutzung von Git mit SysML v2 zu gewährleisten?

3. Wie kann ein Git-basierter Arbeitsablauf für SysML v2 gestaltet und imple-
mentiert werden?

4. Inwiefern ermöglicht dieser Arbeitsablauf eine verbesserte Nachverfolgbar-
keit und Effizienz in der modellbasierten Entwicklung sicherheitskritischer
Systeme?

Zur Beantwortung dieser Fragestellungen kommen im Rahmen der Arbeit folgende
Technologien zum Einsatz:

· Cameo Systems Modeler (CSM) mit SysML v2-Plugin zur Modellierung
eines Beispielsystems

Einleitung Seite 3

· Git in Kombination mit GitLab zur Versionsverwaltung der Modelle

· Jupyter Notebook (JN) zur Visualisierung und Bearbeitung der Modelle so-
wie zur Automatisierung von Aufgaben mittels Python

Die Ergebnisse der Arbeit sollen eine praxisorientierte Grundlage schaffen, um die
Einführung und Nutzung einer Git-basierten Versionskontrolle im MBSE zu er-
leichtern. Dabei steht insbesondere die Optimierung der Zusammenarbeit, Nach-
vollziehbarkeit und Effizienz in der modellbasierten Entwicklung sicherheitskriti-
scher Systeme im Fokus. Die Erkenntnisse tragen somit sowohl zur methodischen
Weiterentwicklung als auch zur direkten Anwendung im Kontext des DLR bei.

1.3 Forschungsmethode

Als Forschungsansatz wird die Design Science Research (DSR)-Methodologie
nach Hevner et al., (2004) verwendet. DSR kombiniert konstruktive Forschung mit
einer wissenschaftlichen Evaluierung des entwickelten Artefakts. Dabei werden
drei zentrale Forschungszyklen unterschieden: Der Relevance Cycle, der Rigor
Cycle und der Design Cycle. Diese Zyklen stehen in einer wechselseitigen Bezie-
hung zueinander und bilden den Rahmen für die iterative Entwicklung, Validierung
und Integration des Artefakts in die Praxis. Bild 1-1 stellt diese Zyklen und ihre
Interaktionen grafisch dar.

Der Relevance Cycle verbindet die Forschungsaktivitäten mit der praktischen An-
wendungsumgebung. Er stellt sicher, dass das entwickelte Artefakt reale Probleme
adressiert und einen Mehrwert für die Praxis bietet. Die Anforderungen für die For-
schung werden aus dem Anwendungskontext abgeleitet, während die Ergebnisse
des Forschungsprojekts in die Praxis zurückgeführt und evaluiert werden. Iteratio-
nen dieses Zyklus sind notwendig, wenn sich im Feldtest neue Anforderungen oder
Verbesserungspotenziale ergeben.

Der Rigor Cycle stellt die wissenschaftliche Fundierung sicher, indem er auf beste-
hende Theorien, Methoden und bewährte Praktiken zurückgreift. Die wissenschaft-
liche Wissensbasis liefert sowohl theoretische Grundlagen als auch bestehende Ar-
tefakte und Prozesse, die zur Entwicklung des neuen Artefakts herangezogen wer-
den. Gleichzeitig trägt die Forschung durch neue Erkenntnisse und Erweiterungen
der bestehenden Theorien zur Wissensbasis bei.

Der Design Cycle bildet das Herzstück der DSR. Er beschreibt die iterative Ent-
wicklung und Evaluation des Artefakts. Basierend auf den Anforderungen aus dem
Relevance Cycle und den wissenschaftlichen Grundlagen aus dem Rigor Cycle wer-
den Designalternativen entwickelt, getestet und optimiert. Dieser Prozess wieder-
holt sich, bis das Artefakt eine zufriedenstellende Lösung für das identifizierte
Problem darstellt. Eine umfassende Evaluierung des Artefakts ist essenziell, um die
Qualität und Anwendbarkeit der Lösung sicherzustellen.

Einleitung Seite 4

Bild 1-1 Design Science Research-Methodologie (eigene Darstellung nach
Hevner et al., (2004))

1.4 Struktur der Arbeit

Kapitel 1 stellt die grundlegende Motivation der Arbeit dar, indem die Problem-
stellung erläutert und die Forschungsfragen formuliert werden. Zudem wird die ge-
wählte Forschungsmethodik vorgestellt, um den wissenschaftlichen Rahmen der
Untersuchung abzustecken.

Kapitel 2 ist dem Rigor Cycle zugeordnet und analysiert den bestehenden Wissens-
stand, um eine fundierte theoretische Grundlage zu schaffen. Hierzu werden rele-
vante Normen und Standards für die Flugsystementwicklung betrachtet, darunter
ARP4754B, ARP4761A und ISO/IEC 15288. Darüber hinaus werden MBSE, die
SysML, sowie die Kollaborationsherausforderungen in MBSE untersucht, um eine
fundierte Basis für die weiteren Analysen zu schaffen.

Kapitel 3 widmet sich der Untersuchung der Forschungsumgebung und ordnet
diese in den Relevance Cycle der DSR-Methodologie ein. Basierend auf einer
Teamumfrage und einem Rollenzuweisungsprozess wird analysiert, welche Kom-
petenzen innerhalb des Teams bestehen und wie die Entwicklungsprozesse im Kon-
text der Flugsystementwicklung organisiert sind. Ein besonderer Fokus liegt dabei
auf der Identifikation der Herausforderungen in der Zusammenarbeit, die als Krite-
rien für die spätere Entwicklung eines Git-basierten Kollaborationsprozesses die-
nen. Zudem wird die Arbeitsweise innerhalb der Forschungsgruppe des DLR be-
schrieben und evaluiert.

Aufbauend auf den Erkenntnissen der vorherigen Kapitel wird in Kapitel 4 ein Ar-
tefakt entwickelt: ein Git-basierter Kollaborationsprozess für die Flugsystement-
wicklung mit SysML v2. Dieser Prozess wird so gestaltet, dass er den identifizierten
Anforderungen gerecht wird. Ergänzend werden Konfigurationsrichtlinien für

Einleitung Seite 5

CSM und Git definiert. Die Funktionsweise wird anhand eines UAV-Beispielsys-
tems demonstriert, das in SysML v2 modelliert und mit Git integriert wird.

Kapitel 5 behandelt die Validierung des entwickelten Prozesses als Teil des Design
Cycle der DSR-Methodologie anhand definierter Testszenarien. Diese Tests zielen
darauf ab, sowohl technische als auch methodische Aspekte des Kollaborationspro-
zesses zu überprüfen. Nach Durchführung der Tests werden die Ergebnisse ausge-
wertet, um eine abschließende Bewertung des Artefakts vorzunehmen.

Kapitel 6 fasst die zentralen Erkenntnisse der Arbeit zusammen und reflektiert die
gewonnenen Ergebnisse. Zudem werden mögliche Limitationen der Untersuchung
aufgezeigt und Perspektiven für zukünftige Forschung sowie Weiterentwicklungen
des Artefakts diskutiert.

Theoretische Grundlagen und Stand der Technik Seite 6

2 Theoretische Grundlagen und Stand der Technik
Dieses Kapitel ist dem Rigor Cycle der DSR-Methodik zugeordnet. Ziel ist es, die
theoretische und methodische Fundierung der Arbeit sicherzustellen, indem beste-
hende Standards, Methoden und Werkzeuge aus dem Bereich MBSE sowie der
Luftfahrttechnik systematisch aufgearbeitet und analysiert werden. Die hier erar-
beiteten Grundlagen bilden eine fundierte Wissensbasis für die Artefakt-Entwick-
lung im Design Cycle und tragen zugleich zum vertieften Verständnis der For-
schungsumgebung im Relevance Cycle bei.

Zunächst werden in Kapitel 2.1 zentrale Prozessstandards der Flugsystementwick-
lung vorgestellt, darunter ARP4754B, ARP4761A und ISO/IEC 15288. Diese Nor-
men definieren wesentliche Anforderungen an sicherheitskritische Entwicklungs-
prozesse und dienen als Referenzrahmen für die spätere Gestaltung des Git-basier-
ten Kollaborationsprozesses.

Kapitel 2.2 führt in das Konzept des MBSE ein, das als methodisches Fundament
der Arbeit fungiert. Darauf aufbauend werden in Kapitel 2.3 die beiden Versionen
der SysML miteinander verglichen, wobei der Fokus auf der Weiterentwicklung
von SysML v1 zu v2 liegt.

In Kapitel 2.4 wird CSM als in dieser Arbeit eingesetztes Modellierungswerkzeug
vorgestellt, inklusive seiner Unterstützung für SysML v2.

Anschließend widmet sich Kapitel 2.5 dem Thema Kollaboration in MBSE. Hier
werden bestehende Herausforderungen analysiert und Ansätze wie Agile MBSE
(AMBSE) beleuchtet. Abschließend wird das Versionskontrollsystem Git betrach-
tet, das als zentrales Werkzeug für den in dieser Arbeit entwickelten Kollaborati-
onsprozess dient.

2.1 Standards in der Flugsystementwicklung

Die Entwicklung moderner Flugsysteme unterliegt besonders hohen Anforderun-
gen an Struktur, Nachvollziehbarkeit und Systemsicherheit. Um diesen gerecht zu
werden, greift die zivile Luftfahrtindustrie auf bewährte Standards und empfohlene
Vorgehensweisen zurück, die fest in den Entwicklungsprozessen verankert sind. Im
Rahmen dieser Arbeit werden insbesondere die SAE Aerospace Recommended
Practices ARP4754B und ARP4761A sowie die internationale Norm ISO/IEC
15288 betrachtet.

Diese Regelwerke strukturieren die Systementwicklung und begleiten den gesam-
ten Lebenszyklus technischer Systeme – von der Anforderungsdefinition über Ent-
wicklung, Integration und Verifikation bis hin zu Betrieb, Wartung und

Theoretische Grundlagen und Stand der Technik Seite 7

Außerdienststellung. Ihre Anwendung ist zentral, um die funktionale Eignung, Si-
cherheit und Zulassungsfähigkeit eines Luftfahrtsystems nachweisbar sicherzustel-
len.

Da sich diese Arbeit auf die modellbasierte Systementwicklung konzentriert, die-
nen die genannten Standards als verbindlicher Rahmen für die Gestaltung konfor-
mer Entwicklungsprozesse. Sie legen Anforderungen an Rückverfolgbarkeit, Do-
kumentation und systematische Analyse fest, die auch bei der Gestaltung kollabo-
rativer MBSE-Ansätze mit SysML v2 und Git berücksichtigt werden müssen.

2.1.1 ARP4754B und ARP4761A Prozesse

Die SAE ARP4754B und ARP4761A bilden gemeinsam ein abgestimmtes Rah-
menwerk zur sicheren Entwicklung von Luftfahrtsystemen. Während ARP4754B
den allgemeinen Entwicklungsprozess für Luftfahrzeuge und deren Systeme be-
schreibt, ergänzt ARP4761A diesen durch spezifische Methoden zur Sicherheitsbe-
wertung (SAE Aerospace Recommended Practice, 2023a).

ARP4754B stellt Empfehlungen für die Entwicklung von Luftfahrzeugen und Sys-
temen bereit, wobei insbesondere die Luftfahrzeugfunktionen und deren Be-
triebsumgebung berücksichtigt werden. Es enthält Vorgehensweisen zur Sicherstel-
lung der Gesamtsicherheit des Entwurfs, zur Einhaltung behördlicher Vorgaben so-
wie zur Unterstützung firmeninterner Standards. Dabei umfasst es sowohl die Va-
lidierung der Anforderungen als auch die Verifikation der Umsetzung, insbeson-
dere in Bezug auf Sicherheit, Zertifizierbarkeit und Produktqualität.

Die Zielsetzung der ARP4754B besteht in der Bereitstellung bewährter industrieller
Praktiken zur strukturierten Entwicklung integrierter, oft von verschiedenen Orga-
nisationen entwickelter Systeme. Diese Systeme müssen diszipliniert und systema-
tisch entwickelt werden, um sicherzustellen, dass sicherheitsrelevante und funktio-
nale Anforderungen erfüllt und nachgewiesen werden können. Die Empfehlungen
sind nicht als regulatorische Anforderungen zu verstehen, sondern als industrieüb-
liche Vorgehensweisen. Abweichende Methoden können zulässig sein, sofern sie
eine gleichwertige Nachweisführung ermöglichen.

Die ARP4761A bietet ergänzend dazu Richtlinien zur Durchführung von Sicher-
heitsanalysen für zivile Luftfahrzeuge, Systeme und Ausrüstungen. Diese können
zur Einhaltung behördlicher Zertifizierungsanforderungen oder firmeninterner Si-
cherheitsstandards herangezogen werden. Auch wenn der Fokus auf Neuentwick-
lungen liegt, sind die Methoden ebenfalls für bestehende Systeme bei Änderungen
oder Derivatanwendungen anwendbar. Sicherheitsbewertungen von in Betrieb be-
findlichen Produkten sind hingegen nicht Gegenstand dieses Dokuments (SAE Ae-
rospace Recommended Practice, 2023b).

Theoretische Grundlagen und Stand der Technik Seite 8

Die Zielsetzung der ARP4761A besteht darin, ein akzeptiertes Verfahren zur Si-
cherheitsbewertung bereitzustellen. Es beinhaltet unter anderem die folgenden me-
thodischen Schritte:

· Aircraft Functional Hazard Assessment (AFHA)

· Preliminary Aircraft Safety Assessment (PASA)

· System Functional Hazard Assessment (SFHA)

· Preliminary System Safety Assessment (PSSA)

· System Safety Assessment (SSA)

· Aircraft Safety Assessment (ASA)

AFHA, PASA und ASA werden auf der Ebene des Flugzeugs durchgeführt, wäh-
rend SFHA, PSSA und SSA auf der Systemebene durchgeführt werden. Zur Durch-
führung dieser Bewertungen werden unterschiedliche Analysemethoden empfoh-
len, darunter Fault Tree Analysis (FTA), Failure Modes and Effects Analysis
(FMEA), Model-Based Safety Analysis (MBSA) und andere.

ARP4754B ist als Hauptstandard zu verstehen, während ARP4761A eine komple-
mentäre Funktion übernimmt. Die Beziehung zwischen ARP4754B und seinen un-
terstützenden Standards ist in Bild 2-1 dargestellt.

Bild 2-1 Grundsatzdokumente für die Entwicklungs- und die Betriebsphase
(SAE Aerospace Recommended Practice, 2023a)

Theoretische Grundlagen und Stand der Technik Seite 9

Ziel der Systementwicklungsphase ist die Bereitstellung eines funktionalen Sys-
tems, das in den Betrieb überführt werden kann. Um dies zu erreichen, müssen in-
nerhalb dieser Phase mindestens fünf verschiedene Standards bzw. Richtlinien be-
rücksichtigt werden. In dieser Arbeit werden ausschließlich die Standards
ARP4754B und ARP4761A behandelt.

Der Flugzeug-/Systementwicklungsprozess umfasst insgesamt 16 Teilprozesse,
welche in vier Hauptkategorien gegliedert sind:

· Development Assurance Planning (DAP) – 3 Prozesse

· Aircraft and System Development Process (ASDP) – 5 Prozesse

· Data & Documentation (D&D) – 1 Prozess

· Integral Processes (IP) – 7 Prozesse

Tabelle 2-1 zeigt die zentralen Prozesse gemäß ARP4754B, die im Rahmen dieser
Arbeit betrachtet werden. Die Spalte „ARP-ID #“ dient der schnellen Orientierung
innerhalb des Standards.

Tabelle 2-1 Gesamtüberblick ARP4754B-Prozesse (SAE Aerospace Recom-
mended Practice, 2023a)

Cat. ARP
ID # Prozess (Engl.)

DAP 3.1 Development Assurance Planning Process

DAP 3.2 Development Assurance Plan

DAP 3.3 Certification Authority Coordination

ASDP 4.2 Aircraft Function and Requirement Development

ASDP 4.3 Development of Aircraft Architecture and Allocation of Aircraft
Functions to Systems

ASDP 4.4 Development of System Functions and Requirements

ASDP 4.5 Development of System Architecture and Allocation of System
Requirements to Items

ASDP 4.6 Implementation

D&D 4.7 Summary of Development Assurance Process Outputs

IP 5.1 Safety Assessment (ARP4761A)

IP 5.2 Development Assurance Level Assignment

IP 5.3 Requirements Capture

IP 5.4 Requirements Validation

IP 5.5 Implementation Verification

IP 5.6 Configuration Management

IP 5.7 Process Assurance

Theoretische Grundlagen und Stand der Technik Seite 10

Die DAP definieren den Entwicklungsrahmen für alle nachgelagerten Prozesse –
ASDP, D&D und IP. Mit der Genehmigung des Development Assurance Plans be-
ginnt die eigentliche Entwicklungsphase.

Die ASDP stellen das Kernstück der Systementwicklung dar. Sie enthalten Richt-
linien zur Entwicklung ziviler Luftfahrzeuge und Systeme und orientieren sich am
klassischen V-Modell.

Der D&D-Prozess sorgt dafür, dass alle Ergebnisse gemäß den Vorgaben des DAP
dokumentiert werden. Abweichungen vom Plan müssen begründet und dokumen-
tiert werden.

Die IP werden iterativ innerhalb jedes ASDP-Schritts durchlaufen. Sie spiegeln die
Realität moderner Entwicklungsprozesse wider, in denen Tätigkeiten oft parallel
und zyklisch erfolgen. Der Einstiegspunkt in das Entwicklungsmodell kann variie-
ren, je nachdem, ob ein neues Funktionskonzept eingeführt oder eine bestehende
Funktion modifiziert wird. In jedem Fall ist eine Bewertung der Auswirkungen auf
andere Funktionen und Anforderungen erforderlich.

Bild 2-2 zeigt den vollständigen Flugzeug-/Systementwicklungsprozess nach
ARP4754B inklusive der Interaktionen zwischen den vier Prozesskategorien.

Bild 2-2 Luftfahrzeug-/Systementwicklungsprozess nach ARP4754B (SAE
Aerospace Recommended Practice, 2023a)

Für Systemingenieure sind insbesondere die ASDP-Prozesse relevant, da in diesen
der eigentliche Systementwicklungsprozess abgebildet wird. Das V-Modell in Bild
2-3 bildet den strukturellen Rahmen für die Entwicklung und Validierung sicher-
heitskritischer Systeme in der Luftfahrt. Der linke Ast des V-Modells repräsentiert
die Phase, in der die Anforderungen an das Luftfahrzeug bzw. Systeme sowie Funk-
tionen und Systemarchitekturen entwickelt und auf Subsysteme zugewiesen wer-
den.

Im unteren Bereich des V-Modells erfolgt die detaillierte Entwicklung und Verifi-
kation von Hardware und Software. Diese Aktivitäten werden gemäß den in der

Theoretische Grundlagen und Stand der Technik Seite 11

Luftfahrt etablierten Standards durchgeführt – insbesondere DO-178C / ED-12C
für Software sowie DO-254 / ED-80 für Hardware.

Der rechte Ast des V-Modells beschreibt die stufenweise Integration von Systemen
und Subsystemen sowie die zugehörigen Verifikations- und Validierungsaktivitä-
ten (V&V). Ziel dieser Phase ist es, nachzuweisen, dass die entwickelten Systeme
die gestellten Anforderungen erfüllen und für den vorgesehenen Betrieb geeignet
sind.

Die Interaktion zwischen den Prozessen der ARP4754B und ARP4761A erfolgt
insbesondere im Rahmen der Sicherheitsanalyse. Diese ist im IP der ARP4754B
unter der ARP-ID #5.1 „Safety Assessment“ verankert. In Bild 2-3 sind die ver-
schiedenen Arten von Sicherheitsanalysen dargestellt, die in den jeweiligen Phasen
des Entwicklungsprozesses durchzuführen sind. Dadurch wird verdeutlicht, wie si-
cherheitsrelevante Erkenntnisse systematisch in die funktionale und technische Ent-
wicklung einfließen.

Bild 2-3 Interaktion zwischen ARP4754B und ARP4761A Prozesse (SAE
Aerospace Recommended Practice, 2023a)

2.1.2 ISO/IEC 15288 Prozesse

Die Norm ISO/IEC 15288:2023 definiert einen einheitlichen Rahmen zur Beschrei-
bung des Lebenszyklus technischer Systeme. Ziel ist es, durch standardisierte Pro-
zesse und Begriffe die Kommunikation zwischen allen Beteiligten eines Projekts –
einschließlich Erwerber, Lieferant und weiterer Stakeholder – zu erleichtern
(ISO/IEC & IEEE, 2023). Diese Prozesse können auf jeder Ebene eines Systems

Theoretische Grundlagen und Stand der Technik Seite 12

angewendet werden und decken sämtliche Lebenszyklusphasen ab: von der Kon-
zeption über die Entwicklung und Nutzung bis hin zur Außerdienststellung. Dar-
über hinaus ermöglicht die Norm Organisationen die gezielte Definition, Steuerung
und Verbesserung ihrer Lebenszyklusprozesse. Die Anwendung erfolgt sowohl in
interner als auch externer Projektdurchführung und kann auf Einzelorganisationen
oder kooperierende Parteien ausgeweitet werden.

ISO/IEC 15288 adressiert eine Vielzahl an Systemen unterschiedlichster Komple-
xität, Größe, Zweckbestimmung oder Lebensdauer. Systeme können dabei aus be-
liebigen Kombinationen von Hardware, Software, Daten, Personen, Verfahren, An-
leitungen oder Einrichtungen bestehen. Für softwarebasierte Systemelemente ver-
weist ISO/IEC 15288 auf die ergänzende Norm ISO/IEC 12207, mit der sie harmo-
nisiert wurde (ISO/IEC & IEEE, 2023).

Kapitel 6 der Norm beschreibt ein Prozessreferenzmodell, das sich aus insgesamt
30 Prozessen zusammensetzt. Diese sind in vier Hauptkategorien gegliedert:

· Agreement Processes (AP) – 2 Prozesse

· Organizational Project-Enabling Processes (OPEP) – 6 Prozesse

· Technical Management Processes (TMP) – 8 Prozesse

· Technical Processes (TP) – 14 Prozesse

Eine vollständige Übersicht dieser Prozesse findet sich in Anhang A1.

Jeder Prozess wird in mehreren standardisierten Abschnitten beschrieben. Hierzu
gehören: Zweck (Purpose), Beschreibung (Description), Eingaben/Ausgaben (In-
puts/Outputs), Prozessaktivitäten (Process Activities) sowie Erläuterung (Elabora-
tion). Diese Struktur erleichtert sowohl die praktische Anwendung in Projekten als
auch die Bewertung im Sinne der Prozessreife, wie sie beispielsweise in ISO/IEC
15504 vorgesehen ist (Walden & International Council on Systems Engineering,
2023).

Die AP umfassen den Erwerbs- und den Lieferprozess. Sie beschreiben die Aktivi-
täten, die erforderlich sind, um Vereinbarungen zwischen internen und externen
Organisationseinheiten zu etablieren, etwa bei der Beschaffung oder Lieferung von
Produkten und Dienstleistungen.

Die OPEP stellen sicher, dass eine Organisation über die notwendigen Fähigkeiten,
Ressourcen und die Infrastruktur verfügt, um Projekte wirksam zu initiieren, zu un-
terstützen und zu kontrollieren. Diese Prozesse dienen nicht der umfassenden stra-
tegischen Unternehmensführung, sondern unterstützen gezielt projektbezogene Ak-
tivitäten.

Die TMP befassen sich mit der Planung, Durchführung, Bewertung und Steuerung
von Projekten. Sie können je nach Bedarf in unterschiedlichen Phasen und Ebenen

Theoretische Grundlagen und Stand der Technik Seite 13

eines Projekthierarchiebaums angewendet werden und werden abhängig von Risiko
und Komplexität unterschiedlich formalisiert.

Die TP definieren jene Aktivitäten, die notwendig sind, um Systemanforderungen
zu definieren, Produkte entsprechend umzusetzen und deren Nutzung, Wartung so-
wie Ausmusterung zu gewährleisten. Diese Prozesse fördern technische Entschei-
dungen, die die Produktqualität sowie die Einhaltung gesellschaftlicher Anforde-
rungen (z. B. Sicherheit, Umweltverträglichkeit) sicherstellen.

Im Vergleich zu den Prozessen der ARP4754B zeigt sich, dass die ISO/IEC 15288-
Prozesse deutlich umfassender sind. Während sich ARP4754B primär auf die Ent-
wicklungsphase konzentriert, deckt ISO/IEC 15288 den vollständigen Systemle-
benszyklus ab. Dies resultiert in einem erhöhten Planungsaufwand, zusätzlicher
Ressourcennutzung und einem erweiterten Kompetenzbedarf über Fachdisziplinen
hinweg.

Ein genauerer Vergleich der technische Prozessen (TP) verdeutlicht, dass drei spe-
zifische Prozesse – der Operation Process, der Maintenance Process sowie der Dis-
posal Process – in ARP4754B nicht abgebildet sind. Dies liegt daran, dass
ARP4754B die Betriebsphase nicht adressiert (siehe Bild 2‑1). Die in ARP4761A
definierten Sicherheitsprozesse sind hingegen nicht Bestandteil der ISO/IEC
15288, da sich letztere auf allgemeine Lebenszyklusprozesse konzentriert und keine
spezialisierte Sicherheitsanalyse bereitstellt.

2.2 Model-Based Systems Engineering

Das Model-Based Systems Engineering (MBSE) wurde 2007 im „Systems Engine-
ering Vision 2020“ des International Council on Systems Engineering (INCOSE)
als ein formalisierter Ansatz beschrieben, der die Modellierung zur Unterstützung
der Anforderungen, der Systemarchitektur, der Analyse sowie der Verifikation und
Validierung über den gesamten Lebenszyklus eines Systems hinweg einsetzt (In-
ternational Council on Systems Engineering, 2007). Ziel ist es, das bisher doku-
mentenzentrierte Vorgehen durch ein modellzentriertes Paradigma zu ersetzen, das
eine tiefere Integration in bestehende Systementwicklungsprozesse erlaubt. MBSE
ist Teil einer disziplinübergreifenden Entwicklung hin zu modellbasierten Vorge-
hensweisen, wie sie auch in der Mechanik, Elektronik und Softwareentwicklung zu
beobachten ist.

Durch den Einsatz modellbasierter Techniken wird erwartet, dass MBSE wesentli-
che Vorteile gegenüber der traditionellen Dokumentation bietet – darunter eine hö-
here Produktivität, verbesserte Qualität, reduzierte Entwicklungsrisiken sowie eine
effektivere Kommunikation im Entwicklerteam (Haberfellner et al., 2019).

Während Modelle seit jeher ein zentrales Hilfsmittel in der Systementwicklung dar-
stellen, zeichnet sich MBSE dadurch aus, dass das Systemmodell zur verbindlichen

Theoretische Grundlagen und Stand der Technik Seite 14

und durchgängigen Repräsentation („single source of truth“) wird. Es integriert
Informationen zu Anforderungen, Funktionen, Struktur, Verhalten sowie zur Veri-
fikation und Validierung in einer konsistenten, maschineninterpretierbaren Form
(Hick et al., 2019). Das Systemmodell dient somit nicht nur als technische Doku-
mentation, sondern als aktives Steuerungsinstrument des Entwicklungsprozesses.

Zentrale Prinzipien des MBSE umfassen die disziplinübergreifende Modellintegra-
tion, die Wiederverwendbarkeit von Modellelementen, die durchgängige Rückver-
folgbarkeit sowie die Nutzung formalisierter Sichten zur Reduktion von Komple-
xität. Letztere ergibt sich im Systementwurf nicht nur aus der Anzahl von Kompo-
nenten, sondern auch aus deren Interaktionen und der Dynamik über Systemgren-
zen hinweg. Madni et al., (2023) zeigen, dass durch Praktiken wie Abstraktion,
Trennung von Belangen und strukturbasierte Dekomposition verschiedene Kom-
plexitätsarten – z. B. funktionale, strukturelle oder emergente Komplexität – gezielt
beherrscht werden können.

Ein wesentliches Artefakt in diesem Kontext ist das Systemmodell selbst. Es fun-
giert als integratives Bindeglied zwischen unterschiedlichen Disziplinen und Ent-
wicklungsphasen. Gemäß Gräßler et al., (2022) sowie Hick et al., (2019) verbindet
das Modell Anforderungen, logische und physische Systemelemente sowie Verifi-
kations- und Validierungsaktivitäten. Damit wird es zu einem zentralen Kommuni-
kationsmittel für alle Beteiligten – sowohl innerhalb des Entwicklerteams als auch
gegenüber externen Stakeholdern.

Die Kopplung disziplinübergreifender Modelle unterstützt ein konsistentes und
ganzheitliches Systemverständnis, ohne die erforderliche Detailtiefe einzelner
Fachdomänen zu vernachlässigen. Gleichzeitig können durch die Reduktion auf
aufgabenspezifische Sichten sowie eine zielgerichtete Navigation durch die Mo-
dellhierarchie die Zugänglichkeit und Akzeptanz modellbasierter Methoden erhöht
werden.

Ein zentrales Element des MBSE ist das sogenannte MBSE-Dreieck (siehe Bild 2-
4), welches das Zusammenspiel von Modellierungssprache, Modellierungsmethode
und Werkzeug verdeutlicht. Zur Erstellung eines konsistenten und praxisrelevanten
Systemmodells reicht eine grafische Sprache allein nicht aus. Vielmehr bedarf es
einer abgestimmten Kombination aus Sprache, Methode und unterstützendem Soft-
warewerkzeug, um die Vorteile modellbasierter Systementwicklung in der indust-
riellen Praxis nutzbar zu machen (Kaiser, 2013).

Die Modellierungssprache stellt dabei lediglich das Ausdrucksmittel dar. Sie de-
finiert die formale Struktur, mit der Systeme beschrieben und analysiert werden
können. Erst durch die Modellierungsmethode wird festgelegt, wie und zu wel-
chem Zweck die Sprache angewendet wird. Die Methode definiert, welche Syste-
maspekte modelliert und in welcher Reihenfolge die Modellinhalte erzeugt werden

Theoretische Grundlagen und Stand der Technik Seite 15

sollen. Sie dient damit als Bindeglied zwischen Sprache und Werkzeug und stellt
sicher, dass das Modell den Anforderungen der jeweiligen Domäne entspricht.

Bild 2-4 MBSE-Dreieck (Kaiser, 2013)

Das verwendete Werkzeug wiederum bildet die technische Grundlage zur Anwen-
dung der Sprache und Methode. Es ermöglicht die Erstellung, Pflege und Analyse
komplexer Systemmodelle und stellt Funktionen wie Versionskontrolle, Modell-
validierung und Kollaborationsunterstützung bereit (Kaiser, 2013).

Im Rahmen dieser Arbeit wird SysML v2 als Modellierungssprache verwendet,
während der CSM als zentrales Modellierungswerkzeug zum Einsatz kommt. Einer
vordefinierten Modellierungsmethode wird dabei nicht gefolgt, da das Ziel dieser
Arbeit die Entwicklung eines Git-basierten Kollaborationsprozesses ist. Bei der
Modellierung des UAV-Beispielsystems werden daher werkzeugspezifische sowie
umgebungsspezifische Anforderungen berücksichtigt (siehe Kapitel 3.5). Ziel ist
es, auf Basis dieser Komponenten einen strukturierten Kollaborationsansatz zu
schaffen, der die Zusammenarbeit innerhalb von SE-Teams unterstützt.

2.3 Systems Modeling Language

Die Systems Modeling Language (SysML) ist eine von der Object Management
Group (OMG) entwickelte, domänenunabhängige Modellierungssprache für die
Spezifikation, Analyse, das Design und die Verifikation komplexer technischer
Systeme. Die Sprache basiert auf einer reduzierten und erweiterten Version der
Unified Modeling Language (UML) und wurde spezifisch entwickelt, um die An-
forderungen des Systems Engineerings zu adressieren. Die Modellierung mit
SysML ermöglicht die integrierte Darstellung von Anforderungen, Verhalten,
Struktur und Parametern eines Systems und schafft so eine gemeinsame Grundlage
für den interdisziplinären Austausch zwischen verschiedenen Ingenieurdisziplinen
(Friedenthal et al., 2009).

Die initiale Version SysML v1.0 wurde im September 2007 veröffentlicht. Die ak-
tuell veröffentliche stabile Version ist SysML v1.7 (Stand: Juni 2024). Parallel dazu

Theoretische Grundlagen und Stand der Technik Seite 16

verlagert sich der Fokus der OMG zunehmend auf die Entwicklung der nächsten
Sprachgeneration, SysML v2. Eine erste Demoversion von SysML v2 wurde im
April 2024 veröffentlicht (Friedenthal, 2024). Der letzte veröffentlichte Entwurf
stammt vom April 2025 und stellt den bislang aktuellsten Stand der Sprache dar
(OMG Systems Modeling Community, n.d.). Obwohl SysML v2 bereits öffentlich
zugänglich ist, befindet sich die Sprache weiterhin in der Finalisierungsphase. Die
grundlegenden Unterschiede zwischen den Versionen sowie der aktuelle Entwick-
lungsstand von SysML v2 werden im Folgenden näher erläutert.

2.3.1 SysML v1

Die erste Version der Systems Modeling Language (SysML v1) wurde als Erweite-
rung der UML für die Systementwicklung konzipiert und im Jahr 2007 von der
OMG standardisiert. Sie etablierte sich schnell als weit verbreiteter Standard zur
modellbasierten Beschreibung technischer Systeme. SysML v1 basiert konzeptuell
auf vier Modellkategorien – den sogenannten Vier Säulen von SysML: Struktur,
Verhalten, Anforderungen und Parametrik (Friedenthal et al., 2009).

Bild 2-5 veranschaulicht die vier zentralen Modellkategorien und ordnet ihnen spe-
zifische Diagrammtypen zu.

Bild 2-5 Die vier Säulen der SysML v1 mit Diagrammtypen (eigene Darstel-
lung nach Friedenthal et al., (2009))

Die erste Säule, Struktur, bildet die statische Organisation und Zusammensetzung
des Systems ab. Das zentrale Element dieser Kategorie ist der „Block“, der als Ba-
siseinheit sowohl physische als auch logische Systemelemente wie Hardware, Soft-
ware, Personen oder Einrichtungen darstellen kann. Die Struktur eines Systems
wird dabei mithilfe von Blockdefinitionsdiagrammen (BDD) modelliert, die die

Theoretische Grundlagen und Stand der Technik Seite 17

hierarchische Gliederung und Klassifizierung von Systemkomponenten beschrei-
ben. Die interne Struktur eines Blocks wird durch Interne Blockdiagramme (IBD)
dargestellt, welche die Zusammensetzung aus Teilen, Schnittstellen (Ports) und
Verbindungen zeigen. Zur strukturellen Organisation auf höherer Ebene dient zu-
dem das Paketdiagramm, mit dem Modellelemente logisch gruppiert werden kön-
nen.

Die zweite Säule, Verhalten, beschreibt die dynamischen Aspekte des Systems –
also, wie sich Systemelemente verhalten, interagieren und auf Ereignisse reagieren.
Hierfür stehen mehrere Diagrammtypen zur Verfügung: Use-Case-Diagramme ge-
ben eine abstrakte Übersicht über die Funktionalitäten des Systems und deren In-
teraktionen mit externen Akteuren. Aktivitätsdiagramme zeigen den Ablauf von
Aktionen und den Fluss von Daten und Kontrolle. Sequenzdiagramme stellen die
zeitliche Abfolge von Nachrichten zwischen interagierenden Systemteilen dar,
während Zustandsdiagramme das zustandsbasierte Verhalten eines Systems oder
Systemteils modellieren (Friedenthal et al., 2009).

Die dritte Säule, Anforderungen, ermöglicht die Modellierung textbasierter An-
forderungen sowie deren Verknüpfung mit anderen Modellelementen. Das Anfor-
derungsdiagramm erlaubt die Darstellung von Anforderungshierarchien und -ablei-
tungen und verknüpft Anforderungen über die Beziehungen „satisfy“ und „verify“
mit strukturellen oder verhaltensbezogenen Elementen. Dadurch wird eine konsis-
tente Nachverfolgbarkeit zwischen Anforderungen und Systementwurf sicherge-
stellt und eine Brücke zum klassischen Anforderungsmanagement geschaffen.

Die vierte Säule, Parametrik, erweitert die Modellierung um mathematische Rand-
bedingungen und Beziehungen zwischen physikalischen Eigenschaften. Para-
metrikdiagramme verwenden sogenannte „constraint blocks“, um beispielsweise
Leistung-, Masse- oder Zuverlässigkeitsanforderungen als Gleichungssysteme im
Modell zu verankern. Diese Diagramme ermöglichen die Integration von Analyse-
modellen in die Modellierungsumgebung und fördern so die Verbindung von Sys-
tementwurf und Simulation.

Ergänzend zu den genannten Diagrammen stellt SysML v1 das Allocation-Kon-
strukt bereit, um verschiedene Zuweisungsbeziehungen abzubilden – etwa zwi-
schen Funktionen und Komponenten, logischen und physischen Elementen oder
Software und Hardware (Friedenthal et al., 2009).

2.3.2 SysML v2

Die Systems Modeling Language Version 2 (SysML v2) wurde durch das SysML
v2 Submission Team (SST) als Antwort auf das im Dezember 2017 durch die OMG
veröffentlichte Request for Proposal (RFP) entwickelt. Die daraus resultierenden
Spezifikationen – bestehend aus der Kernel Modeling Language (KerML), der

Theoretische Grundlagen und Stand der Technik Seite 18

grafischen und textuellen Notation von SysML v2 sowie der Systems Modeling API
& Services – befinden sich derzeit in der Finalisierungsphase (Stand: April 2025).

Ziel von SysML v2 ist es, die Akzeptanz und Effektivität modellbasierter Syste-
mentwicklung durch Verbesserungen in mehreren Bereichen deutlich zu steigern
(Friedenthal, 2024):

· Präzision und Ausdrucksstärke der Sprache,

· Konsistenz und Integration zwischen Sprachkonzepten,

· Interoperabilität mit anderen Ingenieurmodellen und Werkzeugen,

· Benutzerfreundlichkeit für Modellentwickler:innen und -nutzer:innen,

· Erweiterbarkeit zur Unterstützung domänenspezifischer Anwendungen,

· sowie die Bereitstellung eines Migrationspfades für Anwender:innen und
Tool-Hersteller von SysML v1.

Trotz des noch laufenden Finalisierungsprozesses sind bereits öffentlich zugängli-
che Demonstrationsversionen verfügbar. Diese können über die OMG offizielle
GitHub-Seite (OMG Systems Modeling Community, n.d.) heruntergeladen und in
Umgebungen wie Jupyter Notebook oder Eclipse ausgeführt werden. Auch weiter-
führende Informationen und aktuelle Entwicklungen werden dort veröffentlicht.

Im Gegensatz zu SysML v1, das auf sogenannten Säulen (engl. pillars) beruht, ver-
folgt SysML v2 einen modulareren Ansatz. Die Sprache wurde entlang definierter
Fähigkeiten (engl. capabilities) strukturiert, die sich auf bestimmte Modellierungs-
aspekte konzentrieren. Diese Umstellung unterstützt die Erweiterbarkeit und mo-
dulare Weiterentwicklung der Sprache. Bild 2-6 zeigt einen Überblick über die
zentralen Sprachfähigkeiten von SysML v2.

Bild 2-6 SysML v2 Sprachfähigkeiten (Friedenthal, 2024)

Theoretische Grundlagen und Stand der Technik Seite 19

Drei der zentralen neuen Sprachfähigkeiten sind:

1. View- und Viewpoint: Diese ermöglicht die flexible Darstellung von Sys-
teminformationen aus unterschiedlichen Stakeholder-Perspektiven.

2. Analysefähigkeit: Erlaubt die Integration und Ausführung analytischer Mo-
delle zur Unterstützung von Systembewertungen und Entscheidungsprozes-
sen.

3. Verifikationsfähigkeit: Durch formale Verifikationsmechanismen kann si-
chergestellt werden, dass Systeme korrekt spezifiziert und die Anforderun-
gen erfüllt werden.

Die Architektur von SysML v2 basiert auf einer mehrschichtigen Sprachstruktur,
die in Bild 2-7 dargestellt ist.

Das zugrundeliegende KerML definiert die abstrakte Syntax, auf der SysML v2
aufbaut. Die Systems Library erweitert diese Basisspezifikation um Systembezo-
gene Konstrukte. Zusätzlich ermöglichen sogenannte Domain Libraries die Einbin-
dung domänenspezifischer Referenzmodelle, beispielsweise zur Modellierung von
physikalischen Größen oder Analysemodellen (OMG Systems Modeling Langu-
age, 2024).

Bild 2-7 SysML v2 Spracharchitektur (OMG Systems Modeling Language,
2024)

Theoretische Grundlagen und Stand der Technik Seite 20

2.3.3 Weiterentwicklung der Terminologie und Struktur von
SysML v1 zu SysML v2

SysML v2 wurde mit dem Ziel entwickelt, bestehende Schwächen von SysML v1
gezielt zu adressieren. Im Vergleich zur Vorgängerversion SysML v1 bringt SysML
v2 nicht nur strukturelle und terminologische Änderungen mit sich, sondern adres-
siert auch zentrale Schwächen und Herausforderungen der bisherigen Modellie-
rungspraxis (Friedenthal, 2024). Wesentliche Neuerungen bestehen in folgenden
Punkten:

· Einführung einer textuellen Notation, die parallel zur grafischen Notation
verwendet werden kann,

· Unterstützung von Systemvarianten, Analysefällen, Verifikationsfällen und
Sichten,

· Integration über eine standardisierte Application Programming Interface
(API) und ein zentrales Modellserver-Konzept,

· und die Möglichkeit zur domänenspezifischen Erweiterung durch Biblio-
thekskonzepte.

Ein zentrales Unterscheidungsmerkmal liegt in der technologischen Basis: Wäh-
rend SysML v1 auf UML aufbaut, basiert SysML v2 auf KerML, einer speziell
entwickelten Metamodellierungssprache. KerML selbst wurde auf Grundlage von
UML und der Web Ontology Language (OWL) konzipiert und bietet eine stärkere
formale Grundlage für die Modellierung. Diese Neuausrichtung zielt darauf ab, die
Semantik der Sprache zu vereinheitlichen und damit die Interpretierbarkeit von Mo-
dellen zu verbessern (Friedenthal, 2024).

Ein weiteres wesentliches Merkmal von SysML v2 ist die optionale textuelle Nota-
tion, die als Ergänzung zur grafischen Sichtweise dient. Beide Darstellungen beru-
hen auf demselben zugrunde liegenden Modell und sind vollständig synchronisier-
bar. Dadurch ergeben sich für Anwender flexible Möglichkeiten der Modellbear-
beitung und -dokumentation, angepasst an individuelle Präferenzen oder Werk-
zeugeinsatz (OMG Systems Modeling Language, 2024). Die neue Struktur von
SysML v2 erleichtert außerdem die Integration mit modernen Werkzeugketten und
Arbeitsweisen, wie beispielsweise Git-basierten Kollaborationsprozessen (Ahl-
brecht et al., 2024). Tabelle 2-2 umfasst ein Beispiel, das sowohl die grafischen als
auch die textuellen Notationen der SysML v2 verdeutlicht.

Die standardisierte API und das Modellserver-Konzept eröffnen neue Möglichkei-
ten zur Werkzeugintegration sowie zur Entwicklung spezialisierter MBSE-Tools –
auch durch kleinere Anbieter, akademische Einrichtungen oder gemeinschaftsba-
sierte Open-Source-Projekte. Die Unterstützung durch etablierte Toolhersteller
wird ebenfalls erwartet, da SysML v2 mit seinen erweiterten Fähigkeiten und

Theoretische Grundlagen und Stand der Technik Seite 22

Tabelle 2-3 Vergleich der Terminologie zwischen SysML v2 und SysML v1 (Aus-
schnitt) (Friedenthal, 2024)

SysML v2 SysML v1

part / part def part property / block

attribute / attribute def value property / value type

port / port def proxy port / interface block

action / action def action / activity

state / state def state / state machine

constraint / constraint def constraint property / constraint block

requirement / requirement def requirement

connection / connection def connector / association block

view / view def view

2.4 Cameo Systems Modeler mit SysML v2

Cameo Systems Modeler (CSM) ist eine plattformübergreifende Modellierungsum-
gebung für das MBSE. Sie wird von Dassault Systèmes (ehemals No Magic) ent-
wickelt und gilt als eines der führenden Werkzeuge in der MBSE-Praxis. Die Soft-
ware ermöglicht die standardkonforme Modellierung gemäß SysML und unterstützt
Ingenieurteams bei der Modellierung technischer Systeme (Dassault Systèmes,
2023). Laut Herstellerbeschreibung unterstützt CSM insbesondere:

· Die Durchführung von Analysen zur Bewertung von Entwurfsentscheidun-
gen und zur Verifikation von Anforderungen,

· die kontinuierliche Konsistenzprüfung von Modellen sowie

· die Fortschrittsüberwachung anhand definierter Metriken.

Zudem betont der Hersteller, dass CSM speziell auf hochkomplexe, regulierte In-
dustrien wie Luft- und Raumfahrt, Verteidigung oder Automobil ausgelegt ist. Es
unterstützt die Einhaltung strenger Normen und erleichtert die Dokumentation für
Projektmanagement und Zertifizierungsprozesse (Dassault Systèmes, 2023).

Die im Rahmen dieser Arbeit verwendete Version von CSM wurde vom DLR be-
reitgestellt und enthält das SysML v2-Plugin (Bild 2-8).

Theoretische Grundlagen und Stand der Technik Seite 23

Bild 2-8 CSM SysML v2-Plugin (eigener Screenshot aus CSM, SysML v2-
Plugin)

Dabei handelt es sich ausdrücklich um eine Vorabversion, die sich noch in der Ent-
wicklungsphase befindet. Nach dem Start der Software erscheint ein Warnhinweis
(Bild 2-9):

„Not for Use in Production:

The SysML v2 Plugins are pre-released version and cannot be used for produc-
tion. Please use them only for testing and evaluation purposes.

Note that this version does not support project migration, so projects created may
not be compatible with future releases.

While support through the official Dassault Systèmes Support channel is not
available, we welcome your feedback in the 3DSwym SysMLv2 community.”

Bild 2-9 Warnhinweis beim Start des SysML v2-Plugins in CSM (eigener
Screenshot aus CSM, Warnhinweis)

Theoretische Grundlagen und Stand der Technik Seite 24

Diese Einschränkungen machen deutlich, dass die aktuell verfügbare Version noch
nicht für produktive Zwecke vorgesehen ist. Die Unterstützung offizieller Support-
kanäle entfällt und eine Rückwärtskompatibilität zukünftiger Versionen ist nicht
gewährleistet. Dennoch bietet diese Vorabversion bereits die wesentlichen Funkti-
onen, um ein Beispielsystem zu modellieren und erste Erfahrungen mit SysML v2
zu sammeln.

Im Rahmen dieser Arbeit wird ein einfaches UAV-Beispielsystem in CSM model-
liert, wobei besonderes Augenmerk auf die Verwendung der textuellen Notation
gelegt wird. SysML v2 erlaubt die parallele Nutzung beider Darstellungsformen –
graphisch und textuell, was in der Benutzeroberfläche von CSM direkt sichtbar ist.

Bild 2-10 zeigt ein Beispiel, in dem die textuelle und grafische Darstellung eines
modellierten Teils nebeneinander angezeigt werden. Dieses Beispiel verdeutlicht
die synchrone Visualisierung beider Notationen im SysML v2-Plugin von CSM.
Weitere Details zur Projekterstellung und zu den spezifischen Einschränkungen der
SysML v2-Integration in CSM werden in Kapitel 4.2 beschrieben.

Bild 2-10 Beispiel für die Darstellung einer Teilzerlegung in SysML v2 (eige-
ner Screenshot aus CSM, grafische und textuelle Notation)

2.5 Kollaboration in MBSE

Die modellbasierte Systementwicklung erfordert die enge Zusammenarbeit inter-
disziplinärer Teams über den gesamten Systemlebenszyklus hinweg. Im Gegensatz
zu dokumentenbasierten Ansätzen bietet MBSE eine zentrale Wissensrepräsenta-
tion, die als Referenz für Anforderungen, Architektur, Verifikation und Validierung
dient (Haberfellner et al., 2019). Damit diese Vorteile jedoch wirksam werden,
müssen alle Beteiligten effizient und konsistent auf ein gemeinsames Modell zu-
greifen und daran mitarbeiten können (May & Zerwas, 2025).

In der Praxis zeigt sich, dass Kollaboration im MBSE mit einer Vielzahl von Her-
ausforderungen verbunden ist – sowohl organisatorischer als auch technischer

Theoretische Grundlagen und Stand der Technik Seite 25

Natur. Unterschiedliche Begriffsverständnisse, fehlende Synchronisation zwischen
Teilmodellen und unzureichende Versionskontrolle sind nur einige Beispiele. Diese
Problematik wird in Kapitel 2.5.1 detailliert betrachtet.

In Kapitel 2.5.2 wird anschließend aufgezeigt, wie agile Prinzipien und DevOps-
Ansätze (Development & Operations) in der Softwareentwicklung als Antwort auf
ähnliche Herausforderungen entstanden sind und wie diese Denkweise in Form von
Agile MBSE auf die modellbasierte Systementwicklung übertragen werden kann.
In Kapitel 2.5.3 wird Git als Versionsverwaltungssystem vorgestellt und darauf ein-
gegangen, weshalb es für die modellbasierte Kollaboration in diesem Kontext aus-
gewählt wurde und welche Vorteile sich daraus ergeben können.

2.5.1 Herausforderungen der Kollaboration in MBSE

Die kollaborative modellbasierte Systementwicklung (CMBSE) steht vor vielfälti-
gen Herausforderungen, die in der Fachliteratur umfangreich diskutiert werden. Auf
Basis einer systematischen Literaturrecherche lassen sich zehn wiederkehrende
Problemfelder identifizieren, die nachfolgend zusammengefasst werden.

Konsistenz und Aktualität im Informationsaustausch:

Ein zentrales Problem stellt die konsistente Versionierung und der Austausch von
Modellen dar. Insbesondere in verteilten Entwicklungsnetzwerken ist es erforder-
lich, dass Partner wie OEMs und Zulieferer modellbasierte Beschreibungen, An-
forderungen und Lösungen aufeinander abgestimmt und in nachvollziehbarer Ver-
sion austauschen (prostep ivip Association, 2023). Die hohe Dynamik in frühen
Entwicklungsphasen führt zudem zu ständigen Anpassungen der Modelle, die zeit-
nah mit allen Beteiligten synchronisiert werden müssen (Li et al., 2024).

Zugänglichkeit und Schutz sensibler Daten:

MBSE-Plattformen wie 3DX von Dassault Systèmes etablieren Modelle als Single
Point of Truth und verbessern dadurch die Zusammenarbeit über Domänengrenzen
hinweg. Dennoch bestehen Einschränkungen bei der Zugänglichkeit für externe
Stakeholder, da Schnittstellen nur innerhalb der Plattform aktiviert werden können
(May & Zerwas, 2025). Parallel dazu erfordert die Sensibilität der Entwicklungs-
daten eine selektive Offenlegung, bei der klar definiert ist, welche Informationen in
welchem Umfang zugänglich sind (Li et al., 2024; Wouters et al., 2017).

Semantische Interoperabilität und gemeinsame Sprache:

Ein häufig unterschätztes Hindernis ist die mangelnde semantische Konsistenz bei
der Verwendung zentraler Begriffe. Unterschiedliche Disziplinen interpretieren Be-
griffe wie „Funktion“ oder „System“ teils divergierend, was Missverständnisse bei
der Modellintegration begünstigt (Wouters et al., 2017).

Theoretische Grundlagen und Stand der Technik Seite 26

Koordination verteilter Modellierungsaktivitäten:

Die Orchestrierung von Modellierungsprozessen über Fach- und Organisations-
grenzen hinweg erfordert eine präzise Abstimmung. Dabei sollen sowohl Kohärenz
als auch individuelle Arbeitsweisen berücksichtigt werden (Wouters et al., 2017).
Unterstützt werden muss dies durch rollenbasierte Zugriffskonzepte, die sowohl
Datenschutz als auch Informationsrelevanz berücksichtigen (Wouters et al., 2017).

Modellvalidität und Regelkonformität:

Ein weiteres zentrales Thema betrifft die Einhaltung domänenspezifischer Regeln
und Normen innerhalb der Modelle. Diese müssen explizit formuliert und maschi-
nenlesbar validierbar gemacht werden, um Inkonsistenzen frühzeitig zu erkennen
(Wouters et al., 2017).

Rückverfolgbarkeit und Änderungsmanagement:

Die Nachvollziehbarkeit von Anforderungen, Entwurfsentscheidungen und Ände-
rungen über disziplinäre Grenzen hinweg ist essenziell für Qualität und Auditier-
barkeit. Dies setzt geeignete Mechanismen zur Dokumentation, Kommentierung
und Versionierung voraus (Wouters et al., 2017).

Systemisches Denken als kulturelle Herausforderung:

Abschließend sei auf ein übergreifendes Problem hingewiesen: Die Umstellung von
einer komponentenbasierten hin zu einer systemischen Denkweise. MBSE erfor-
dert, dass Beteiligte funktional und nutzerorientiert denken, anstatt sich auf vorhan-
dene Produktstrukturen zu stützen. Dies impliziert tiefgreifende organisatorische
Veränderungen sowie entsprechende Schulungs- und Transformationsprozesse
(prostep ivip Association, 2023).

Zur besseren Nachvollziehbarkeit werden in Tabelle 2‑4 zentrale Herausforderun-
gen der kollaborativen modellbasierten Systementwicklung (CMBSE) zusammen-
gefasst. Die dargestellten Problemfelder basieren auf einer systematischen Litera-
turrecherche, sind thematisch gruppiert und jeweils mit Quellenangaben versehen.

Die in diesem Abschnitt identifizierten Herausforderungen bilden eine zentrale
Grundlage für die Analyse der konkreten Umsetzung kollaborativer MBSE-Prakti-
ken im Rahmen dieser Arbeit. Sie dienen als Referenzrahmen, um die in der For-
schungsumgebung des DLR beobachteten Problemstellungen systematisch einord-
nen und bewerten zu können. Ein entsprechender Vergleich erfolgt in Kapitel 3.5,
das die Herausforderungen der Zusammenarbeit im Kontext der betrachteten For-
schungsumgebung beschreibt.

Theoretische Grundlagen und Stand der Technik Seite 27

Tabelle 2-4: Übersicht der Herausforderungen in CMBSE mit Zuordnung zu
Quellen und thematischen Kategorien

Herausforderung Kategorie Quelle

Dynamik & Aktualisierung Änderungsmanagement Li et al., (2024)

Rückverfolgbarkeit Änderungsmanagement Wouters et al., (2017)

Informationssicherheit Zugriff & Sicherheit Li et al., (2024)

Kontrollierte Offenlegung Zugriff & Sicherheit Wouters et al., (2017)

Konsistenter Austausch Informationsmanagement prostep ivip Associa-
tion, (2023)

Regelkonformität im Modell Domänenspezifische Validie-
rung

Wouters et al., (2017)

Zugriffsbeschränkung in 3DX Plattformtechnische Grenzen May & Zerwas, (2025)

Begriffsdivergenz Semantik & Interoperabilität Wouters et al., (2017)

Koordination über Rollen hin-
weg

Orchestrierung Wouters et al., (2017)

Systemisches Denken Organisation & Kultur prostep ivip Associa-
tion, (2023)

2.5.2 Agile MBSE

In der Softwareentwicklung haben sich agile Methoden als wirkungsvolle Antwort
auf Herausforderungen der Zusammenarbeit etabliert. Das Agile Manifest nach
Beck et al. (2001) betont Werte wie Zusammenarbeit, Reaktionsfähigkeit auf Ver-
änderung sowie funktionsfähige Ergebnisse statt umfassender Dokumentation.
Diese Prinzipien spiegeln sich in verschiedenen agilen Methoden wider, wie z. B.
Scrum, Extreme Programming (XP) oder Feature Driven Development (FDD), die
allesamt auf inkrementeller Entwicklung und iterativen Zyklen basieren (Alsaqqa
et al., 2020). Ein zentrales Element vieler agiler Methoden sind sogenannte Sprints
– kurze, festgelegte Iterationen, in denen Planung, Entwicklung und Überprüfung
stattfinden (Nyembe et al., 2023). Scrum, als eine der populärsten agilen Methoden,
definiert klare Rollen, Verantwortlichkeiten und Abläufe zur kontinuierlichen Ver-
besserung und Anpassung des Produkts (Schwaber & Sutherland, 2020).

Parallel zur agilen Bewegung entwickelte sich DevOps als erweiterter organisato-
rischer Ansatz, der insbesondere die Integration von Entwicklung und Betrieb fo-
kussiert. Ziel ist eine beschleunigte, zuverlässige und kontinuierliche

Theoretische Grundlagen und Stand der Technik Seite 28

Softwareauslieferung. Zentrale DevOps-Prinzipien wie Continuous Integration
(CI), Continuous Deployment (CD), automatisierte Prüfverfahren, Systemüberwa-
chung und Rückmeldezyklen tragen maßgeblich zur Effizienzsteigerung bei
(Jayaraman & Rastogi, 2025; Kim et al., 2016). Darüber hinaus fördert DevOps
eine Kultur geteilter Verantwortung, in der funktionsübergreifende Teams gemein-
sam für Qualität und Geschwindigkeit der Lieferung verantwortlich sind. Diese
Herangehensweise reduziert sowohl die mittlere Wiederherstellungszeit (MTTR)
als auch die Fehlerquote in Produktionsumgebungen und verbessert die Reaktions-
fähigkeit auf Marktveränderungen (Jayaraman & Rastogi, 2025).

Ein typischer agiler Entwicklungsprozess besteht aus den Schritten: Planung, Ent-
wurf, Entwicklung, Erprobung, Bereitstellung, Überprüfung und Veröffentlichung.
Diese Phasen werden zyklisch durchlaufen, sodass in jeder Iteration Feedback ein-
fließt und Anpassungen möglich sind. Bild 2-11 zeigt diesen iterativen Ablauf
exemplarisch (exapp.ca, 2024).

Bild 2-11 Agile Methodologie (exapp.ca, 2024)

Auch in der modellbasierten Systementwicklung hat sich inzwischen ein agiler
Denkansatz etabliert: Agile Model-Based Systems Engineering (AMBSE). AMBSE
kombiniert die Prinzipien agiler Softwareentwicklung mit modellbasierten Syste-
mentwicklungsprozessen. Im Bereich der Luftfahrtsystementwicklung zeigen Fall-
studien, wie agile Prinzipien erfolgreich auf frühe Phasen der Systementwicklung
angewendet werden können. Krupa (2019) beschreibt z. B. die Kombination von
OOSEM (Object-Oriented Systems Engineering Method) mit SysML v1 zur itera-
tiven Konzeptentwicklung (Bild 2-12). Dabei entsteht ein kontinuierlicher Ent-
wicklungsprozess, der Flexibilität in der Modellierung mit hoher Nachvollziehbar-
keit verbindet und gleichzeitig die Anforderungen regulatorischer Standards wie
ARP4754A und ARP4761 unterstützt.

Darüber hinaus wird der AMBSE-Prozess in Bild 2-13 als SysML-Aktivitätsdia-
gramm dargestellt. Die Aktivitäten innerhalb des Diagramms repräsentieren zent-
rale Aufgaben im Rahmen des MBSE. Nachdem eine konkrete System- bzw. Sub-
systemarchitektur entworfen wurde, erfolgt ein Vergleich mit alternativen Konzep-
ten. Sobald eine Architekturvariante als geeignet eingestuft wird, wird sie an die
integrierten Produktentwicklungsteams (IPDT) zur weiteren Ausarbeitung im

Theoretische Grundlagen und Stand der Technik Seite 29

Rahmen des vorläufigen Designs übergeben. Während des gesamten Entwicklungs-
prozesses dienen die Luftfahrtstandards ARP4754A und ARP4761 als Grundlage
zur sys-tematischen Anforderungserhebung und Sicherheitsanalyse (Krupa, 2019).

Bild 2-12 Agiler Systementwicklungsprozess für die Flugzeugkonzeption nach
Krupa, (2019)

Bild 2-13 AMBSE Lieferprozess während der Konzeptionsphase nach Krupa,
(2019)

Theoretische Grundlagen und Stand der Technik Seite 30

2.5.3 Git als Versionskontrollsystem

Git ist ein verteiltes Versionskontrollsystem, das ursprünglich zur Koordination der
Entwicklung des Linux-Kernels entwickelt wurde und sich seither als führendes
Werkzeug für die Verwaltung von Quellcodeänderungen etabliert hat (Spinellis,
2012). Im Gegensatz zu zentralisierten Systemen wie Subversion oder CVS erlaubt
Git es mehreren Entwicklern, parallel an lokalen Ablagen (engl. „Repository“ pl.
„Repositories“) zu arbeiten, die bei Bedarf mit einem zentralen entfernten Reposi-
tory synchronisiert werden. Jeder „Commit“ stellt dabei eine Momentaufnahme des
Projekts dar, die durch einen eindeutigen Hash identifiziert wird. Durch die Nut-
zung von sogenannten Zweigen (engl. „Branch“ pl. „Branches“) können Funktio-
nen, Fehlerbehebungen oder experimentelle Änderungen unabhängig voneinander
entwickelt und später selektiv zusammengeführt werden (Ghodke & Chavan,
2024).

Diese dezentrale Struktur ermöglicht nicht nur eine flexible Arbeitsweise, sondern
unterstützt auch komplexe Workflows, wie sie in modernen Softwareentwicklungs-
projekten üblich sind. Entwickler können lokale Änderungen vor dem Commit im
sogenannten „Staging“-Bereich vorbereiten und die Historie eines Projekts jeder-
zeit vollständig lokal nachvollziehen – selbst ohne Internetverbindung. Relevante
Git-Befehle – wie ´git init´, ´git add´, ´git commit´, ´git status´, ´git log´ oder ´git
push´ ermöglichen eine granulare Kontrolle über den Entwicklungsprozess (Gho-
dke & Chavan, 2024). Eine vollständige Übersicht zentraler Git-Befehle findet sich
in Anhang A2.

Im Kontext von DevOps spielt Git eine zentrale Rolle als verbindendes Element
zwischen Entwicklung und Betrieb. Als Teil einer integrierten Werkzeugkette lässt
sich Git nahtlos mit weiteren DevOps-Werkzeugen wie GitLab, Jenkins oder Do-
cker kombinieren, um CI/CD und automatisierte Testprozesse zu ermöglichen.
Diese Integration ist essenziell, um eine durchgängige Rückverfolgbarkeit, eine
konsistente Entwicklungsumgebung und eine hohe Automatisierung zu gewährleis-
ten (Jayaraman & Rastogi, 2025).

Neben der lokalen Nutzung von Git bieten Plattformen wie GitHub und GitLab
erweiterte Funktionen zur Verwaltung und Kollaboration von Git-Repositories.
Wie Spinellis (2012) beschreibt, übernimmt GitHub als Drittanbieter zentrale Auf-
gaben wie das Hosting, die Versionskontrolle, die Benutzerverwaltung sowie Si-
cherheits- und Zugriffsrichtlinien. Dadurch wird insbesondere die Zusammenarbeit
in Open-Source-Projekten erleichtert, etwa durch die Möglichkeit, Merge Requests
(MR) einzureichen oder Änderungen direkt über eine webbasierte Oberfläche vor-
zunehmen. GitHub fördert so die kollaborative Entwicklung durch ein integriertes
Ökosystem mit Funktionen wie der Nachverfolgung von Aufgaben, Projektdoku-
mentationen und Quellcodeüberprüfungen. GitLab bietet ähnliche Funktionalitäten
und integriert Werkzeuge für CI/CD direkt in die Plattform. Dadurch eignet sich

Theoretische Grundlagen und Stand der Technik Seite 31

GitLab besonders gut für die Umsetzung von DevOps-Prinzipien in einer konsoli-
dierten Entwicklungsumgebung. Beide Plattformen haben sich somit als zentrale
Bausteine in modernen Softwareentwicklungsprozessen etabliert und tragen we-
sentlich zur effizienten Anwendung von Git in verteilten Teams bei (Spinellis,
2012).

Im Gegensatz zu SysML v1, dessen Modelle primär in binären Formaten gespei-
chert werden, ermöglicht SysML v2 eine Serialisierung in menschenlesbaren Text-
dateien. Dadurch lassen sich Modelle mit Git auf dieselbe Weise versionieren wie
Quellcode in der Softwareentwicklung. Dies eröffnet neue Potenziale für verteilte
Zusammenarbeit, Modellnachverfolgbarkeit und Wiederverwendung von Model-
lartefakten – ohne auf proprietäre Datenformate angewiesen zu sein.

Im Rahmen dieser Arbeit wird Git in Verbindung mit GitLab als Versionskontroll-
system eingesetzt, um modellbasierte Systementwicklungsartefakte zu verwalten.
Dabei liegt ein besonderer Fokus auf der Integration der textuellen SysML v2-No-
tation, wie sie durch das CSM SysML v2-Plugin unterstützt wird. Die Möglichkeit
zur Nutzung einer klar strukturierten, textuellen Repräsentation der Modelle erlaubt
es, diese in Versionskontrollsysteme einzubinden, wie es bei Quellcode üblich ist.

Umgebungsanalyse und Anforderungen an den Ansatz Seite 32

3 Umgebungsanalyse und Anforderungen an den An-
satz

Dieses Kapitel widmet sich der Analyse der Forschungsumgebung und der Ablei-
tung relevanter Anforderungen an den zu entwickelnden Git-basierten Kollaborati-
onsprozess. Ziel ist es, die Relevanz und Anwendbarkeit des Ansatzes im Kontext
der modellbasierten Flugsystementwicklung zu fundieren. Methodisch ist dieses
Kapitel dem Relevance Cycle der DSR-Methodologie nach Hevner et al. (2004)
zuzuordnen. Dieser Zyklus betont die systematische Erfassung praxisrelevanter
Problemstellungen sowie die Ableitung von Anforderungen, die als Input für die
Gestaltung und Evaluation von Artefakten dienen.

Im ersten Schritt wird das methodische Vorgehen beschrieben, mit dem die For-
schungsumgebung erhoben und analysiert wurde (Kapitel 3.1). Darauf folgt eine
Beschreibung der organisatorischen Rahmenbedingungen des Projektteams am
DLR (Kapitel 3.2).

Kapitel 3.3 stellt die Ergebnisse einer teaminternen Umfrage vor, mit der beste-
hende Kompetenzen, Werkzeuge und Prozesse identifiziert wurden. Diese Ergeb-
nisse bilden die Grundlage für die Entwicklung einer Rollenzuweisung gemäß
ARP4754B und ISO/IEC 15288, die in Kapitel 3.4 behandelt wird. Kapitel 3.5
schließt die Analyse mit einer strukturierten Darstellung der zentralen Kollaborati-
onsherausforderungen ab. Diese bilden die Basis für die in Kapitel 4 zu entwickeln-
den Anforderungen an den Git-basierten Kollaborationsansatz.

3.1 Methodisches Vorgehen zur Umgebungsanalyse

Die Analyse der Forschungsumgebung basiert auf einer empirischen Untersuchung
innerhalb der Forschungsgruppe am DLR. Ziel war es, bestehende Strukturen, Pro-
zesse und Herausforderungen der modellbasierten Zusammenarbeit im Team sys-
tematisch zu erfassen.

Hierzu wurde eine standardisierte Umfrage mit 18 geschlossenen und offenen Fra-
gen entwickelt und durchgeführt. Elf Teammitglieder nahmen daran teil. Die Um-
frage zielte darauf ab, Kompetenzen, genutzte Werkzeuge, Rollenverständnisse so-
wie Probleme in der täglichen Zusammenarbeit zu identifizieren.

Ergänzend wurde ein strukturierter Rollenzuweisungsprozess durchgeführt. Grund-
lage bildete eine RACI-Matrix, in der die im Team identifizierten Rollen systema-
tisch den Aktivitäten der Systementwicklungsprozesse gemäß ARP4754B und
ISO/IEC 15288 zugeordnet wurden. Diese methodische Kopplung ermöglicht eine
fundierte Einordnung von Verantwortlichkeiten in Bezug auf etablierte Entwick-
lungsstandards.

Umgebungsanalyse und Anforderungen an den Ansatz Seite 33

Die identifizierten Herausforderungen aus Umfrage und Rollenanalyse dienen in
den nachfolgenden Kapiteln als Grundlage für die Ableitung funktionaler und
nicht-funktionaler Anforderungen an den Kollaborationsprozess.

3.2 Beschreibung der Forschungsumgebung

Die vorliegende Masterarbeit wurde im Rahmen einer Forschungsaktivität am DLR
Institut für Flugsystemtechnik, in der Abteilung „Sichere Systeme & Systems En-
gineering“ (FT-SSY) in Braunschweig durchgeführt. Die Abteilung beschäftigt
sich mit der Entwicklung sicherheitskritischer Systeme im Bereich der Flugsystem-
technik sowie mit der Anwendung und Weiterentwicklung modellbasierter Metho-
den des Systems Engineerings.

Die Forschungsgruppe besteht aus einem Gruppenleiter und zehn wissenschaftli-
chen Mitarbeitenden, von denen sich die Mehrheit in der Promotionsphase befindet.
Die Mitarbeitenden sind in verschiedene nationale und internationale Forschungs-
projekte eingebunden. Inhaltlich liegen die Arbeitsschwerpunkte überwiegend in
der frühen Phase der Systementwicklung, insbesondere in der Systemkonzeption,
dem Entwurf und der Analyse von Flugsystemen. Diese Tätigkeiten lassen sich im
V-Modell nach ARP4754B primär auf der linken Seite verorten, also im Bereich
der Anforderungsdefinition, Konzeptausarbeitung und Architekturentwicklung.
Darüber hinaus sind die Mitarbeitenden regelmäßig mit wissenschaftlichen Publi-
kationen und Konferenzbeiträgen aktiv.

Neben den wissenschaftlichen Mitarbeitenden betreuen die Teammitglieder auch
Bachelor- und Masterarbeiten. Die studentischen Hilfskräfte sowie Abschlussar-
beitsstudierende sind jedoch nicht Teil der systematischen Analyse in dieser Arbeit,
da der Fokus auf den dauerhaft im Projekt eingebundenen Fachkräften liegt.

In der täglichen Arbeit kommen verschiedene Softwarewerkzeuge zum Einsatz.
Dazu zählen unter anderem modellbasierte Entwicklungstools wie CSM, mit dem
auf Basis von SysML v1 modelliert wird. Darüber hinaus werden weitere Werk-
zeuge zur Dokumentation, Versionskontrolle, Simulation oder Kommunikation
verwendet. Eine einheitliche, integrierte Toollandschaft für die kollaborative Sys-
temmodellierung ist bislang jedoch nicht etabliert.

Ziel der im Rahmen dieser Arbeit durchgeführten Erhebung ist es daher, die beste-
hende Arbeitsweise hinsichtlich Kompetenzen, genutzter Werkzeuge und Formen
der Zusammenarbeit zu erfassen. Die daraus gewonnenen Erkenntnisse bilden die
Grundlage für die Ableitung von Anforderungen an einen Git-basierten Kollabora-
tionsprozess im modellbasierten Systems Engineering.

Umgebungsanalyse und Anforderungen an den Ansatz Seite 34

3.3 Analyse der Teamumfrage zur Zusammenarbeit

Zur Untersuchung der aktuellen Modellierungs- und Kollaborationspraxis inner-
halb der Forschungsgruppe wurde eine Teamumfrage durchgeführt. Ziel war es, ein
fundiertes Verständnis über die Rollenverteilung, eingesetzte Modellierungsmetho-
den, etablierte Kollaborationsprozesse sowie bestehende Herausforderungen und
Verbesserungspotenziale im Umgang mit Systemmodellen zu gewinnen.

3.3.1 Methodik der Umfrage

Die Umfrage wurde mithilfe von Microsoft Forms erstellt und im Rahmen eines
Online-Meetings mit dem Team durchgeführt. Insgesamt nahmen elf Personen teil
– acht davon während des Meetings und drei im Nachgang. Ein neues Teammitglied
konnte nicht alle Fragen beantworten, sodass einige Fragen nur zehn statt elf Ant-
worten aufweisen.

Der Fragebogen umfasste 18 Fragen, davon 17 geschlossene und eine offene Frage.
Die Formulierungen wurden so gewählt, dass sie gezielt auf die erwarteten Erkennt-
nisse ausgerichtet sind. Zur systematischen Auswertung wurden die Ergebnisse in
fünf thematische Kategorien eingeordnet:

1. Team- und Projektinformationen

2. Rollen und Verantwortlichkeiten in der Systementwicklung

3. Modellierungspraxis und SysML-Nutzung

4. Kollaboration und Versionskontrolle

5. Erwartungen und Verbesserungsideen

Die Auswertung der Ergebnisse erfolgte mithilfe von Microsoft Excel. Eine voll-
ständige Auflistung aller Fragen samt Antwortverteilungen ist im Anhang A3 do-
kumentiert. Im folgenden Abschnitt (3.3.2) werden ausgewählte Ergebnisse vorge-
stellt und interpretiert.

3.3.2 Ergebnisse und Auswertung

Team- und Projektinformationen

Die Mehrheit der Teilnehmenden arbeitet aktuell an zwei bis drei Projekten parallel.
Hinsichtlich der Zusammenarbeit zeigt sich ein heterogenes Bild: Während einige
Teammitglieder eigenständig agieren, findet bei anderen ein regelmäßiger Aus-
tausch in kleinen oder größeren Gruppen statt. Die Abstimmung zu Systemmodel-
len erfolgt überwiegend auf monatlicher Basis; ein täglicher Austausch findet der-
zeit nicht statt.

Umgebungsanalyse und Anforderungen an den Ansatz Seite 39

· A – Accountable: Eine Person oder ein Team ist übergeordnet verantwort-
lich für die Zielerreichung und Qualität der Aufgabe. In kleinen Teams kann
diese Rolle identisch mit der Rolle Responsible sein.

· C – Consulted: Personen oder Teams, die mit ihrer fachlichen Expertise be-
ratend in den Prozess eingebunden werden.

· I – Informed: Beteiligte, die über den Fortschritt oder die Ergebnisse infor-
miert werden müssen, aber nicht aktiv in die Durchführung eingebunden
sind.

Die konkrete Zuordnung der Normprozesse zu den Teams erfolgt in Kapitel 3.4.2
und basiert auf den in der Umfrage ermittelten Teamfähigkeiten sowie den in den
Normen geforderten Ergebnissen pro Prozess.

3.4.2 Ergebnisse der RACI-Matrix

Die in Tabelle 3‑1 und Tabelle 3‑2 dargestellten RACI-Matrizen bilden die erarbei-
teten Rollenzuweisungen für die Normprozesse der ARP4754B bzw. der ISO/IEC
15288 ab. Ziel dieser systematischen Zuordnung ist es, die funktionale Verantwor-
tungsverteilung innerhalb des DLR-Teams transparent darzustellen und aufzuzei-
gen, welche Rollen innerhalb des Teams welchen Prozessen der Standards zuge-
wiesen werden können. Die Zuordnung unterstützt dabei, einen strukturierten Über-
blick über die Zuständigkeiten in der Systementwicklung zu gewinnen und liefert
eine Orientierung für die praxisnahe Anwendung normativer Anforderungen im
MBSE-Kontext.

Die RACI-Matrix zur ARP4754B (vgl. Tabelle 3‑1) berücksichtigt sämtliche Pro-
zesse der Norm, einschließlich der Planungs-, Entwicklungs- und Integralprozesse.
Für jeden Hauptprozess wurde mindestens ein verantwortliches Team (Respon-
sible) definiert, wodurch eine klare funktionale Rollenzuweisung innerhalb des be-
trachteten DLR-Teams ermöglicht wird. In den Planungsprozessen (1.1–1.3) über-
nimmt das SE-Management-Team die federführende Verantwortung, insbesondere
hinsichtlich des Planungsumfangs und der Abstimmung mit externen Zertifizie-
rungsstellen. Die übrigen Teams sind als Consulted eingestuft, da sie mit ihrer fach-
lichen Expertise zur Plausibilitätsprüfung und Absicherung der Planinhalte beitra-
gen.

Der Prozess 3.1 (Summary of Development Assurance Process Outputs) wurde dem
SE-Management-Team als Responsible zugewiesen, da es die Nachweisdokumente
gemäß Normvorgaben zentral zusammenführt und verwaltet. Die technischen
Teams liefern fachliche Inhalte zu (Consulted), tragen aber nicht die Gesamtverant-
wortung. Dieses zentralisierte Modell sieht die inhaltliche Zuarbeit durch die Fach-
bereiche vor, während das SE-Management Koordination und Endverantwortung
übernimmt. In den operativen Entwicklungsprozessen ist das SE-Management

Umgebungsanalyse und Anforderungen an den Ansatz Seite 42

Die TMP (3.1–3.8) wurden vollständig dem SE-Management-Team als Respon-
sible zugewiesen, da diese Prozesse im Wesentlichen Aufgaben wie Planung, Steu-
erung, Entscheidungsfindung, Qualitätssicherung sowie projektübergreifendes
Konfigurations- und Informationsmanagement umfassen. Diese Tätigkeiten ent-
sprechen dem Rollenverständnis des SE-Management-Teams als koordinierende
Instanz innerhalb der Forschungsgruppe. Ergänzend wurden alle weiteren Teams
als Consulted eingetragen, um ihre fachliche Einbindung in die Prozessgestaltung
und -reflexion zu berücksichtigen. Diese beratende Beteiligung dient der Sicher-
stellung von Umsetzbarkeit, Transparenz und Plausibilität der Managementent-
scheidungen.

Für die TP (4.1–4.11) wurde jeweils ein fachlich zuständiges Team als Responsible
festgelegt, basierend auf den in der Teamumfrage identifizierten Kompetenzen so-
wie den typischen Arbeitsergebnissen der jeweiligen Prozesse. In Übereinstim-
mung mit den Grundprinzipien des MBSE wurde zudem berücksichtigt, dass viele
dieser Prozesse eine interdisziplinäre Zusammenarbeit erfordern. Dementspre-
chend wurden benachbarte Teams als Consulted eingetragen, wenn eine inhaltliche
Rückkopplung oder Mitwirkung zu erwarten ist, etwa bei der Erstellung und Vali-
dierung technischer Anforderungen oder bei der architektonischen Modellintegra-
tion. Teams, die lediglich über Zwischenergebnisse oder Statusinformationen in-
formiert werden müssen, erhielten die Rolle Informed. Eine übergreifende Beteili-
gung aller Teams an allen Prozessen wurde dabei vermieden, um die Matrix über-
sichtlich und aussagekräftig zu halten.

3.5 Herausforderungen der Zusammenarbeit

Die in Kapitel 2.5.1 identifizierten Herausforderungen der modellbasierten Kolla-
boration wurden auf Basis einer Literaturanalyse strukturiert und in acht überge-
ordnete Kategorien eingeordnet (vgl. Tabelle 2-4). Im Rahmen der Teamumfrage
(Frage 4.1, vgl. Bild 3‑3) konnten spezifische Hürden benannt werden, die inner-
halb der betrachteten Forschungsgruppe im Umgang mit modellbasierten Arbeits-
weisen auftreten. Diese wurden anschließend den bestehenden Kategorien zugeord-
net, um ein konsistentes Bild zwischen Theorie und Praxis zu erhalten. Die identi-
fizierten teaminternen Herausforderungen und deren systematische Zuordnung zu
den literaturbasierten Kategorien sind in Tabelle 3-3 dargestellt.

Die in Kapitel 3.4 entwickelte Rollenzuweisung nach ARP4754B und
ISO/IEC 15288 stellt einen ersten Ansatz zur Bewältigung der organisatorischen
Herausforderung „fehlende klare Prozesse“ dar. Durch den Einsatz der RACI-Mat-
rix konnte eine transparente Orchestrierung der Teamrollen erfolgen, wodurch Ver-
antwortlichkeiten und Schnittstellen klarer definiert wurden.

Auch die im Rahmen der Teamumfrage genannten Herausforderungen im Bereich
Änderungsmanagement und Informationsmanagement werden im weiteren Verlauf

Umgebungsanalyse und Anforderungen an den Ansatz Seite 43

adressiert. In Kapitel 4.4 wird ein Git-basierter Kollaborationsprozess spezifiziert,
der es erlaubt, Modellversionen nachvollziehbar zu verwalten, Änderungen trans-
parent zu dokumentieren und verteilte Zusammenarbeit effizient zu unterstützen.
Auf diese Weise können zentrale Defizite der bisherigen Arbeitsweise gezielt be-
hoben werden.

Tabelle 3-3 Zuordnung der teamintern identifizierten Herausforderungen zu den
literaturbasierten Kategorien (vgl. Kapitel 2.5.1)

Teaminterne Herausforderung Zuordnung zur Kategorie (vgl. Kap. 2.5.1)

Fehlende klare Prozesse Orchestrierung

Inkonsistente Änderungen Änderungsmanagement

Veraltete Modelle Informationsmanagement

Fehlende geeignete Tools Plattformtechnische Grenzen

Zeitlicher Mehraufwand im For-
schungsbereich

Organisation & Kultur

Ein weiteres Hindernis stellt die eingeschränkte Werkzeugunterstützung dar. Um
den Auswirkungen der plattformtechnischen Grenzen zu begegnen, wird ein proto-
typisches Anwendungsszenario entworfen, in dem ein SysML-v2-Modell, das in
CSM erstellt wurde, zusätzlich im Jupyter Notebook visualisiert und bearbeitet wer-
den kann. Diese Integration ermöglicht es, Modelle unabhängig vom proprietären
Modellierungswerkzeug zu betrachten und zu analysieren.

Die zuletzt genannte Herausforderung – der zeitliche Mehraufwand im Forschungs-
bereich – verweist auf strukturelle Gegebenheiten innerhalb der Organisation.
Diese sind durch projektbezogene Dynamiken, wechselnde Zuständigkeiten und
begrenzte Modellierungskapazitäten geprägt. Solche Rahmenbedingungen lassen
sich im Kontext dieser Arbeit nicht grundlegend verändern, können aber bei der
Gestaltung von Prozessen und Werkzeugen insofern berücksichtigt werden, dass
möglichst ressourcenschonende und intuitive Lösungen entwickelt werden.

Insgesamt zeigt sich, dass ein erheblicher Teil der identifizierten Herausforderun-
gen durch gezielte methodische und technische Gestaltung adressiert werden kann.
Die Erkenntnisse aus diesem Kapitel bilden somit eine wichtige Grundlage für den
in Kapitel 4 folgenden Design Cycle der DSR-Methodologie.

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 44

4 Entwicklung eines Git-basierten Kollaborationspro-
zesses

Basierend auf den in Kapitel 3 identifizierten Anforderungen und Herausforderun-
gen wird im vorliegenden Kapitel ein Git-basierter Kollaborationsprozess für die
modellbasierte Systementwicklung mit SysML v2 entwickelt. Dieses Kapitel mar-
kiert den Übergang in den Gestaltungszyklus (Design Cycle) des DSR-Ansatzes
und stellt somit den zentralen Konstruktionsanteil dieser Arbeit dar. Ziel ist es, ei-
nen nachvollziehbaren, reproduzierbaren und toolgestützten Arbeitsablauf zu ent-
werfen, der die gleichzeitige Bearbeitung von Systemmodellen durch verteilte
Teammitglieder ermöglicht und dabei Aspekte wie Nachvollziehbarkeit, Konsis-
tenz und Konfliktvermeidung adressiert.

Die Entwicklung des Prozesses erfolgt exemplarisch anhand eines UAV-Systems
unter Verwendung des CSM mit SysML v2-Plugin sowie GitLab als Plattform zur
verteilten Versionsverwaltung. Die Ausgestaltung orientiert sich an bewährten Vor-
gehensweisen aus der Softwareentwicklung, die gezielt auf die Anforderungen und
Besonderheiten der modellbasierten Systementwicklung (MBSE) übertragen und
angepasst werden.

Das folgende Kapitel gliedert sich in vier Abschnitte: Zunächst wird das methodi-
sche Vorgehen zur Prozessentwicklung erläutert (Kapitel 4.1). Anschließend wer-
den die erforderlichen Konfigurationen für die Modellierung in CSM (Kapitel 4.2)
und die Einrichtung der Versionsverwaltung mit GitLab (Kapitel 4.3) beschrieben.
Den Abschluss bildet die Integration beider Komponenten in einen durchgängigen
Kollaborationsprozess (Kapitel 4.4).

4.1 Methodisches Vorgehen zur Prozessentwicklung

Ziel dieses Kapitels ist die Entwicklung eines Git-basierten Prozesses zur verteilten
modellbasierten Systementwicklung, der auf die Anforderungen des Projektkon-
texts zugeschnitten ist. Zur methodischen Absicherung wurde ein durchgängiges
Beispielsystem verwendet, das den praktischen Einsatz und die Werkzeugintegra-
tion veranschaulicht.

Als Beispielsystem dient ein unbemanntes Luftfahrtsystem „UAV Civil Drone“,
das ursprünglich in SysML v1 modelliert und vom DLR bereitgestellt wurde. Im
Rahmen dieser Arbeit wurde dieses System manuell in SysML v2 überführt und
entsprechend der aktuellen Sprachspezifikation strukturiert. Die Modellierung er-
folgte in der Software CSM unter Verwendung des SysML v2-Plugins.

Zur zentralen Verwaltung des Modells wurde ein GitLab-Repository eingerichtet,
das sowohl der Versionskontrolle als auch der kollaborativen Entwicklung dient.

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 45

Die Modellversionen werden als .sysml-Dateien exportiert und über Git synchroni-
siert.

Zur textuellen Bearbeitung und Anzeige der .sysml-Dateien außerhalb von CSM
wird Jupyter Notebook (JN) mit dem offiziellen SysML-Kernel der OMG verwen-
det. Die Installation dieses Kernels erfolgte gemäß den im offiziellen GitHub-Repo-
sitory dokumentierten Anleitungen (OMG Systems Modeling Community, n.d.).

Die Anzeige und Analyse des Modells im JN erfolgt über spezifische Kommandos
des SysML-Kernels. Eine exemplarische Übersicht dieser Kernel-Kommandos ist
im Anhang A4 dokumentiert. Damit kann das Modell unabhängig von CSM in einer
offenen, textbasierten Umgebung analysiert, bearbeitet und visualisiert werden.
Eine detaillierte Konfiguration von JN wird in dieser Arbeit nicht behandelt, da das
Werkzeug ausschließlich in der Evaluationsphase (Kapitel 5) unterstützend zum
Einsatz kommt.

Bild 4‑1 veranschaulicht die eingesetzte Werkzeuglandschaft zur modellbasierten
Systementwicklung mit SysML v2.

Bild 4-1 Werkzeuglandschaft im Git-basierten MBSE-Prozess (eigene Dar-
stellung)

Die Entwicklung des Git-basierten Kollaborationsprozesses erfolgt entlang eines
strukturierten methodischen Vorgehens, das sowohl die Zieldefinition als auch die
Auswahl und Konfiguration geeigneter Werkzeuge umfasst. Die Konfigurations-
richtlinien betreffen ausschließlich die in der Definitions- und Implementierungs-
phase genutzten Hauptwerkzeuge: CSM und GitLab.

Das in Bild 4-2 dargestellte Aktionsdiagramm visualisiert die wesentlichen Schritte
der Definitions- und Werkzeugkonfigurationsphase im Rahmen der Prozessent-
wicklung. Aufgeteilt in zwei parallele Handlungsstränge werden zunächst die Kon-
figurationsrichtlinien für das GitLab-Repository sowie für das Systemmodell in
CSM festgelegt. Daraufhin erfolgt jeweils die konkrete Umsetzung: Das Repository
wird erstellt, mit Zugriffsbeschränkungen versehen und für die Zusammenarbeit
vorbereitet. Parallel dazu wird das Systemmodell in CSM neu aufgebaut, gemäß
den Richtlinien strukturiert und anschließend als .sysml-Datei exportiert. Abschlie-
ßend wird die exportierte Datei in das GitLab-Repository überführt und mit den
beteiligten Teammitgliedern geteilt. Das Diagramm verdeutlicht somit den engen

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 46

Zusammenhang zwischen Modellierungs- und Versionsverwaltungswerkzeugen
und legt die Grundlage für den in Abschnitt 4.4 beschriebenen Kollaborationspro-
zess.

Bild 4-2 SysML v2 Aktionsdiagramm zur Darstellung der Definition- und
Werkzeugkonfigurationsphase (eigene Darstellung in CSM)

Aufbauend auf dem in Bild 4-2 dargestellten Vorgehen konzentrieren sich die fol-
genden Abschnitte 4.2 und 4.3 auf die Konfigurationsrichtlinien für das Systemmo-
dell in CSM sowie für das GitLab-Repository.

4.2 Konfigurationsrichtlinien für CSM mit SysML v2

Zur modellbasierten Entwicklung des Beispielsystems UAV wurde der CSM mit
dem SysML v2-Plugin verwendet. Die Konfiguration des Systemmodells orientiert
sich an den grundlegenden Sprachfähigkeiten von SysML v2, wie sie in Bild 2-7
dargestellt sind. Für die Umsetzung im Rahmen dieser Arbeit wurden die Fähigkei-
ten Anforderungen, Verhalten, Struktur sowie View & Viewpoint berücksich-
tigt. Die Fähigkeiten Analyse und Verifikation bleiben im aktuellen Modellie-
rungsumfang unberücksichtigt, da sie für die Definitions- und Implementierungs-
phase nicht im Fokus stehen.

Die Umsetzung dieser Fähigkeiten erfolgt in CSM durch das Anlegen separater,
sogenannter namespaces, die den jeweiligen Modellierungsaspekten zugeordnet
sind. Bild 4-3 zeigt die initial konfigurierte Paketstruktur des UAV-Systems. Jedes
Paket repräsentiert dabei eine sprachspezifische Fähigkeit gemäß SysML v2 und
bildet eine klare Trennung der Modellinhalte. Diese Struktur unterstützt sowohl die

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 47

logische Ordnung innerhalb des Modells als auch die Wiederverwendbarkeit und
Erweiterbarkeit des Systems.

Bild 4-3 UAV-Paketstruktur gemäß SysML v2 Sprachfähigkeiten (eigene
Darstellung)

Ein detaillierter Einblick in das strukturierte Systemmodell wird in Bild 4-4 gege-
ben. Im namespace Anforderungen sind Kundenanforderungen, Anforderungen
auf System-of-Systems-Ebene (SoS) sowie Anforderungen für das System-of-Inte-
rest (SoI) enthalten. Der namespace Verhalten enthält modellierte Use Cases zur
Beschreibung funktionaler Abläufe. Im namespace Struktur wurde eine hierarchi-
sche Zerlegung des Systems realisiert – unter anderem mit einer Part-Dekomposi-
tion des SoS und SoI.

Bild 4-4 Modellstruktur in CSM (eigener Screenshot, CSM)

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 48

Besonderheiten ergeben sich beim Umgang mit der Fähigkeit View & Viewpoint.
In CSM ist diese Funktionalität direkt integriert und unterstützt die visuelle Aufbe-
reitung von Modellinhalten entsprechend der Bedürfnisse unterschiedlicher Stake-
holder. In der Modellierungsumgebung existiert lediglich nur ein Diagrammtyp,
das sogenannte View-Diagramm, das unterschiedliche Elemente aus dem Modell in
einem gemeinsamen Kontext darstellen kann.

Beim Export in die textuelle SysML v2-Notation – beispielsweise zur Weiterverar-
beitung oder Analyse in JN – wird jedoch nicht zwischen View-Diagramm und
View-Element unterschieden. Beide werden dort als reguläre View-Elemente dar-
gestellt, was zu Darstellungsabweichungen führen kann. Diese Diskrepanz ist
exemplarisch in Bild 4-5 erkennbar: Während CSM eine visuell konsolidierte Dar-
stellung bietet, erscheinen im textuellen Notation zwei separate Elementdefinitio-
nen für die „Views“.

Bild 4-5 „View“-Diagramm und „View“-Element in SysML v2-textueller
Notation (eigener Screenshot, CSM)

Zum Austausch des Modells in textueller Form stellt CSM eine Export- und Im-
portfunktion für die SysML v2-Notation bereit. Der Export erfolgt über das Menü
„Datei“ → „Export to“ → „Export SysML v2 textual notation“ (vgl. Bild 4-6). Um
ein bestehendes Modell im .sysml-Format zu importieren, wird per Rechtsklick auf
das Systemmodell im Containment-Baum die Option „Import SysML v2 from tex-
tual notation“ ausgewählt (vgl. Bild 4-7).

Diese Funktionen ermöglichen den Export und Import von .sysml-Dateien, also des
Modells in textueller Notation, was im Fokus dieses Git-basierten Ansatzes steht.
Dabei enthält jeder namespace die textuelle Repräsentation der darin beschriebenen
Pakete bzw. Modellelemente, welche auch einzeln exportiert werden können. Die
Funktionsweise und Zuverlässigkeit dieser Import- und Exportmechanismen wird
in Kapitel 5 im Rahmen der Testszenarien eingehender untersucht.

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 49

Bild 4-6 Export einer SysML v2-Datei in CSM (eigener Screenshot, CSM)

Bild 4-7 Import einer SysML v2-Datei in CSM (eigener Screenshot, CSM)

4.3 Konfigurationsrichtlinien für Git in GitLab

In diesem Abschnitt wird die Einrichtung eines Git-Repository in GitLab erläutert.
In GitLab werden Repositories als „Projekte“ bezeichnet. Grundsätzlich gibt es
zwei Möglichkeiten, ein Repository mit Git zu initialisieren:

1. Initialisierung lokal mit ´git init´ und anschließendes Hochladen in das Git-
Lab-Repository, oder

2. Erstellung eines neuen Projekts direkt in GitLab und anschließendes Klonen
in ein lokales Repository.

Für diese Arbeit wurde der zweite Weg gewählt, da er u.a. für Teamkollaboration
und spätere Integration mit GitLab CI/CD und Zugriffsverwaltung besser geeignet
ist.

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 50

Die Erstellung eines neuen Projekts erfolgt über die Schaltfläche „Create blank
project“, wie in Bild 4-8 dargestellt. Für das Projekt wurde der Name „UAV Civil
Drone“ gewählt. Der „Visibility Level“ wurde auf Private gesetzt, um unautorisier-
ten Zugriff zu vermeiden. Zusätzlich wurde unter „Project Configuration“ eine
README-Datei hinzugefügt. Diese Datei ist optional, wird hier jedoch eingefügt,
um die erfolgreiche Verbindung beim späteren „Klonen“ des Projekts auf das lokale
Repository sichtbar überprüfen zu können.

Bild 4-8 Erstellung eines neuen Projekts in GitLab über die Option „Create
blank project“ (eigener Screenshot, GitLab)

Bevor das Projekt geklont wird, ist ein Überblick über die wichtigsten Git-Befehle
hilfreich, die im Rahmen des später vorgestellten Git-basierten Kollaborationspro-
zesses (Kapitel 4.4) verwendet werden. Tabelle 4-1 enthält die zentralen Git-Kom-
mandos, die regelmäßig benötigt werden. Eine ausführlichere Befehlsübersicht ist
im Anhang A2 zu finden.

Die effektive Nutzung von Git als Versionskontrollsystem setzt ein grundlegendes
Verständnis der wichtigsten Kommandos voraus – insbesondere in modellbasierten
Entwicklungsprozessen, bei denen textuelle Inhalte wie SysML v2-Dateien versio-
niert werden. Die folgenden Git-Befehle dienen als Basis für den Git-basierten Kol-
laborationsprozess und kommen sowohl bei der lokalen Arbeit mit Branches als
auch bei der Synchronisation mit dem entfernten Repository regelmäßig zum Ein-
satz. Da Git ursprünglich für Quellcode entwickelt wurde, ist ein disziplinierter und
kontextbezogener Umgang mit den Befehlen erforderlich, um Modellversionen
konsistent und nachvollziehbar zu verwalten. Dies gilt insbesondere beim paralle-
len Arbeiten im Team, wo Klarheit über den Ablauf von Commit-, Pull- und Merge-
Vorgängen entscheidend ist.

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 51

Tabelle 4-1 Übersicht der wichtigsten Git-Befehle

Befehl Beschreibung

´git init´ Initialisiert ein neues Git-Repository im aktuellen Ver-
zeichnis

´git clone <URL>´ Klonen eines Remote-Repositories in ein lokales Ver-
zeichnis

´git branch´ Listet alle lokalen Branches auf

´git checkout -b
<branchname>´ Erstellen und Wechseln in einen neuen Branch

´git add .´ Stellt alle Änderungen im aktuellen Verzeichnis bereit

´git commit -m "<Nach-
richt>"´ Speichern der Änderungen mit einer Commit-Nachricht

´git push´ Überträgt lokale Commits zum entfernten Repository

´git push -u origin
<branchname>´ Hochladen des Branches in das entfernte Repository

´git pull´ Abrufen und Zusammenführen von Änderungen aus
dem entfernte Repository

´git merge <branchname>´ Zusammenführen eines Branches in den aktuellen
Branch

´git status´ Zeigt den Status der Dateien (staged, unstaged, untra-
cked)

Zum Klonen des GitLab-Projekts in ein lokales Repository wurde auf dem lokalen
Repository zunächst ein leerer Ordner erstellt – ebenfalls mit dem Namen „UAV
Civil Drone“. Um Git-Befehle in diesem Verzeichnis auszuführen, wurde im
Windows-Datei-Explorer die Adresszeile genutzt. Dort kann durch Eingabe von
„cmd“ (Command Prompt) direkt ein Eingabeaufforderungsfenster im entsprechen-
den Verzeichnispfad geöffnet werden. Dies ist in Bild 4-9 zu sehen.

Bild 4-9 Öffnen der Eingabeaufforderung direkt aus dem lokalen Verzeich-
nispfad über die Adresszeile (eigener Screenshot, Windows Explorer)

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 52

Anschließend wurde das Repository mithilfe des Befehls ´git clone <Repository-
URL>´ in das lokale Repository geklont. Bild 4-10 zeigt den Cloning-Vorgang im
cmd bzw. Git CLI (Command Line Interface).

Bild 4-10 Klonen des GitLab-Repository über die Eingabeaufforderung mit
´git clone´ (eigener Screenshot, Git CLI)

Nach erfolgreichem Klonen ist die zuvor in GitLab angelegte README-Datei nun
auch im lokalen Repository sichtbar, wie in Bild 4-11 dargestellt.

Bild 4-11 Anzeige der geklonten README-Datei im lokalen Repository (ei-
gener Screenshot, Windows Explorer)

Nach dem erfolgreichen Verbinden des lokalen Repository mit dem entfernten Git-
Lab-Repository besteht nun die Möglichkeit, Dateien lokal hinzuzufügen und an-
schließend in das entfernte Repository zu übertragen. Was bislang fehlt, ist eine

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 53

Definition eines Git-basierten Kollaborationsprozesses (Workflow), der als einheit-
liche Vorgehensweise von allen Beteiligten befolgt werden soll, um die Zusammen-
arbeit effizient und konsistent zu gestalten. Dieser Prozess wird im folgenden Ka-
pitel 4.4 eingeführt.

4.4 Definition des Git-basierten Kollaborationsprozesses

Ein Git-Workflow definiert die Struktur und die Regeln für die Zusammenarbeit
innerhalb eines Entwicklungsteams auf Basis von Git. Als verteiltes Versionskon-
trollsystem ermöglicht Git eine effiziente Nachverfolgbarkeit von Änderungen, pa-
rallele Entwicklungsstränge sowie eine verlässliche Verwaltung unterschiedlicher
Softwareversionen (Cui, 2024). Dies schafft die Grundlage für kollaborative Soft-
ware- und Systementwicklung in modernen, oft standortverteilten Projektteams.

Im Kontext dieser Arbeit bezieht sich der Git-Workflow nicht auf klassischen
Quellcode, sondern auf modellbasierte Entwicklungsartefakte, die in CSM mit
SysML v2 erstellt werden. Ziel ist es, Änderungen an Modellinhalten – etwa Pake-
ten, Anforderungen oder Strukturelementen – versionierbar, nachvollziehbar und
kollaborativ zu verwalten.

Zu den bekanntesten Workflows gehören Git Flow, GitHub Flow und GitLab Flow,
die jeweils unterschiedliche Anforderungen und Projektgrößen adressieren. Neben
der Organisation der Branch-Strukturen stehen auch moderne Praktiken der Soft-
warebereitstellung wie CI/CD sowie der kontrollierte Wechsel zwischen verschie-
denen Systemzuständen in engem Zusammenhang mit diesen Workflows (Gowda,
2022).

Ein Branch-Modell ist dabei eine essenzielle Strategie, um die Zusammenarbeit im
Team zu strukturieren. Es legt fest, wie neue Funktionen, Fehlerkorrekturen und
Veröffentlichungsversionen organisiert werden, reduziert Integrationskonflikte,
verbessert die Modellqualität und sorgt für eine stabile, auslieferbare Hauptversion
des Modells. Ohne ein solches Modell kann Git zwar genutzt werden, verliert aber
schnell an Übersichtlichkeit und Kontrolle – insbesondere bei mehreren beteiligten
Personen oder komplexeren Projekten.

Git Flow eignet sich besonders für Projekte mit stabilen Release-Zyklen. Es nutzt
zwei Hauptzweige (main und develop) und organisiert Entwicklung in Feature-,
Release- und Fehlerbehebungszweige. Dieses Modell ist strukturiert, jedoch relativ
komplex und für kontinuierliche Auslieferungen weniger geeignet.

GitHub Flow verfolgt hingegen einen sehr schlanken Ansatz. Für jede Änderung
wird ein neuer Branch aus dem Hauptzweig (main) erstellt, darin gearbeitet und
anschließend ein Merge Request (MR) geöffnet. Nach erfolgreicher Überprüfung
wird der Zweig direkt in den Hauptzweig integriert. Diese Methode ist besonders
für kontinuierliche Integration und kurze Iterationen geeignet.

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 54

GitLab Flow kombiniert Elemente aus Git Flow und GitHub Flow, um verschie-
dene Entwicklungs- und Bereitstellungsumgebungen zu unterstützen.

Die Wahl eines geeigneten Workflows hängt von mehreren Faktoren ab. Die meist
relevanten sind:

· Teamgröße: Kleine Teams profitieren oft von einfacheren Modellen wie
GitHub Flow.

· Projektkomplexität: Für umfangreiche Systeme mit mehreren parallelen
Entwicklungen kann Git Flow sinnvoll sein.

· Release-Zyklen: Bei kontinuierlicher Bereitstellung empfiehlt sich GitHub
Flow.

· Automatisierungsgrad: CI/CD-Verfahren harmonieren besonders gut mit
schlanken Workflows.

Für die vorliegende Arbeit wird der GitHub Flow als Kollaborationsprozess ge-
wählt. Ausschlaggebend dafür ist seine Einfachheit, die auf kurzen „Feature“-
Branches und einer klaren Struktur basiert. Diese erlaubt eine schnelle Integration
von Änderungen, reduziert Konfliktpotenziale und unterstützt einen kontinuierli-
chen Entwicklungsfluss. Obwohl GitHub Flow ursprünglich für GitHub entwickelt
wurde, lässt er sich problemlos auch in GitLab umsetzen. Funktionen wie MR,
Pipeline-Integration und Rechteverwaltung sind dort ebenfalls gegeben. Bild 4-12
zeigt schematisch den Ablauf des GitHub Flow.

Bild 4-12 GitHub Flow – vereinfachter kollaborativer Entwicklungsprozess
(eigene Darstellung)

Die Umsetzung des Workflows basiert auf dem Export von modellierten Inhalten
im SysML v2-Textformat aus CSM. Die so erzeugten .sysml-Dateien können als
Versionseinheiten über GitLab verwaltet und im Rahmen von Branches und MR
ausgetauscht werden.

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 55

Nach der Einführung in das Konzept des GitHub Flow wird im Folgenden erläutert,
wie dieser Workflow konkret im Rahmen dieser Arbeit umgesetzt wurde. Dabei
wurden insbesondere die im Kapitel 3 dargestellten Rahmenbedingungen berück-
sichtigt – darunter Teamgröße, Projektkomplexität, Release-Zyklen sowie die iden-
tifizierten Herausforderungen. Vor diesem Hintergrund erwies sich GitHub Flow
als geeigneter Ansatz für die modellbasierte Zusammenarbeit. Die Kollaborations-
strategie orientiert sich somit an den realen Gegebenheiten der Modellierungsum-
gebung mit CSM in Verbindung mit GitLab.

Im Sinne eines schlanken und zugleich qualitätsgesicherten Prozesses gelten für
den Umgang mit Branches und MR folgende teamübergreifende Regeln:

1. Branch-Erstellung: Jede modellierende Person erstellt für eine geplante
Änderung einen neuen Feature-Branch ausgehend vom Hauptentwicklungs-
zweig (main-Branch). Der Branch-Name folgt dem Schema feature/<kurze-
Beschreibung> – Beispiel: feature/add-new-uc, um eine klare Zuordnung
und spätere Nachverfolgung zu ermöglichen.

2. Merge Requests (MR): Nach Abschluss und erfolgreicher Prüfung der Än-
derung in der lokalen Modellierungsumgebung wird ein MR erstellt. Dieser
enthält eine kurze, präzise Beschreibung der Änderung sowie den Bezug zu
den betroffenen Systemfunktionen oder Anforderungen. Der MR dient der
Einleitung des Review-Prozesses.

3. Review-Prozess: Jeder MR wird von mindestens einer fachlich geeigneten
Person aus einem anderen Team überprüft. Dabei wird insbesondere auf Mo-
dellkonsistenz, Einhaltung der Modellierungsrichtlinien und Konfliktfreiheit
geachtet. Das SE-Management-Team nimmt nicht aktiv an der Modellierung
teil, beteiligt sich jedoch am Review-Prozess zur Koordination, Validierung
und finalen Entscheidung über die Integration in den Hauptzweig (main).

Durch die systematische Nutzung von Branches, Commit-Historien und MR kann
die Entwicklungshistorie der Modellartefakte revisionssicher dokumentiert werden.
Dies ermöglicht eine transparente Nachverfolgung aller Änderungen sowie die
Rückverfolgbarkeit zu Anforderungen und Systemfunktionen.

Diese Regeln ermöglichen eine koordinierte Zusammenarbeit zwischen den techni-
schen Teams, wobei gleichzeitig Transparenz und Modellqualität sichergestellt
werden. Die Branches dienen der parallelen Entwicklung, der Review-Prozess ver-
hindert unkontrollierte Änderungen, und die strukturierte Namensgebung unter-
stützt sowohl Nachvollziehbarkeit als auch Automatisierung.

Eine schrittweise Anleitung zur praktischen Durchführung dieses GitHub-Flow-
orientierten Prozesses – einschließlich aller benötigten Git-Befehle – wird in Kapi-
tel 5 unter Testszenario #5 detailliert beschrieben.

Prozessdurchführung und Bewertung Seite 56

5 Prozessdurchführung und Bewertung
Im Sinne des Design Cycle im DSR-Ansatz steht dieses Kapitel im Zeichen der
Umsetzung und Evaluation des in Kapitel 4 definierten Lösungsartefakts. Ziel ist
es, den Git-basierten Kollaborationsprozess praktisch anzuwenden, seine Funkti-
onsfähigkeit unter realitätsnahen Bedingungen zu überprüfen und daraus gewon-
nene Erkenntnisse systematisch zu analysieren. Die Evaluation erfolgt dabei ent-
lang konkreter Anwendungsszenarien und dient sowohl der Validierung der Pro-
zessdefinition als auch ihrer iterativen Verbesserung.

Dazu werden in Kapitel 5.1 insgesamt acht Testszenarien definiert und durchge-
führt, die zentrale Aspekte der Git-basierten Zusammenarbeit mit SysML v2 adres-
sieren. Jedes Szenario wird dabei einzeln betrachtet, dokumentiert und hinsichtlich
seines Ablaufs, der verwendeten Werkzeuge und der erzielten Ergebnisse beschrie-
ben.

In Kapitel 5.2 erfolgt anschließend eine strukturierte Bewertung des Git-basierten
Kollaborationsprozesses. Auf Grundlage der Testergebnisse werden Stärken und
Schwächen des gewählten Workflows identifiziert, zentrale Erkenntnisse herausge-
arbeitet und potenzielle Verbesserungspotenziale aufgezeigt. Die gewonnenen Er-
kenntnisse fließen in die Reflexion der Prozessgestaltung ein und unterstützen eine
fundierte Beurteilung der Eignung des Ansatzes für den Einsatz im MBSE-Kontext.

5.1 Definition und Durchführung von Testszenarien

In diesem Kapitel wird die praktische Durchführung von acht definierten Test-sze-
narien dokumentiert. Die Szenarien sind so gewählt, dass sie den Git-basierten Kol-
laborationsprozess im Kontext modellbasierter Systementwicklung sowohl in
Grundfunktionen als auch in fortgeschrittenen Anwendungsfällen wie der CI/CD-
Integration abdecken. Jedes Testszenario wird strukturiert dokumentiert und hin-
sichtlich seiner Wirksamkeit, Reproduzierbarkeit und Relevanz für die Kollabora-
tion im Team bewertet.

Die Testszenarien lassen sich in drei Gruppen gliedern: Die ersten vier Szenarien
überprüfen grundlegende Funktionen von Git sowie die Kompatibilität der verwen-
deten Werkzeuge (CSM, JN und GitLab). Testszenario #5 demonstriert die Anwen-
dung des in Kapitel 4.4 definierten GitHub-Flow-basierten Kollaborationsprozes-
ses. Die letzten drei Szenarien untersuchen die automatisierte Verarbeitung von
SysML-Modellen mithilfe von GitLab CI/CD – insbesondere Konfigurationsprü-
fungen, Syntaxanalysen und automatisierte Dokumentenerstellung. Diese Vielfalt
ermöglicht eine ganzheitliche Bewertung des entwickelten Prozesses über den ge-
samten Lebenszyklus eines MBSE-Projekts hinweg und berücksichtigt dabei auch
Aspekte der Automatisierung durch die CI/CD-Funktionalitäten von GitLab.

Prozessdurchführung und Bewertung Seite 57

CI/CD beschreibt einen automatisierten Ansatz zur Qualitätssicherung und Bereit-
stellung von Software-artefakten. In GitLab wird CI/CD über sogenannte Pipelines
umgesetzt, die in einer .gitlab-ci.yml-Datei definiert werden. In dieser Datei werden
einzelne Jobs beschrieben, die bestimmten Stufen (z. B. build, test, deploy) zuge-
ordnet sind. Jeder Job beschreibt einen spezifischen Schritt im Verarbeitungspro-
zess. Die automatisierte Ausführung dieser Jobs erfolgt bei definierten Triggern,
z. B. nach jedem Commit oder bei MR. Auf diese Weise wird sichergestellt, dass
Änderungen am Modell konsistent verarbeitet und validiert werden können, ohne
manuelle Zwischenschritte.

Zur besseren Übersicht sind die Testszenarien in Tabelle 5-1 zusammengefasst. Die
Tabelle gibt einen Überblick über die jeweiligen Zielsetzungen und ordnet jedes
Szenario einer bestimmten Projektphase innerhalb des GitLab-Prozesses zu. Die
Spalte „GitLab-Projektphase“ beschreibt dabei die logische Rolle, die das jeweilige
Testszenario im Verlauf eines modellbasierten Projekts einnimmt. Sie orientiert
sich an typischen Entwicklungsphasen – beginnend bei der Initialisierung des Repo-
sitories, über die Bearbeitung, Integration und Wartung der Inhalte bis hin zu spe-
zifischen Aspekten wie Konfiguration, Validierung und Dokumentation. Die Be-
zeichnungen der Phasen dienen dazu, die Einordnung des Szenarios im Lebenszyk-
lus des Projekts aus Sicht der GitLab-Nutzung zu verdeutlichen.

Tabelle 5-1 Übersicht der definierten Testszenarien und zugehöriger GitLab-
Projektphasen

Testszenario GitLab Projektphase

1. Export und Commit-Validierung Initialisierung

2. Anzeige und Bearbeitung im JN Bearbeitung

3. Multi-Tool-Kompatibilität (CSM und JN) Integration

4. Versionierung und Rollback Wartung

5. GitHub Flow Test (Kollaborationsworkflow) Kollaboration

6. Automatisierte Konfigurationsprüfung Konfiguration

7. Automatisierte Syntaxprüfung Validierung

8. Automatisierte Dokumentenerstellung Dokumentation

Für die Darstellung und Analyse jedes einzelnen Testszenarios wird in den folgen-
den Unterkapiteln ein einheitliches Gliederungsformat verwendet. Dies gewährleis-
tet eine klare Nachvollziehbarkeit der Durchführung, Ergebnisse und Bewertungen.
Jedes Testszenario wird in einer eigenen Untersektion dokumentiert (z. B. 5.1.1 Ex-
port und Commit-Validierung, usw.).

Prozessdurchführung und Bewertung Seite 58

Der strukturelle Aufbau jeder Testszenario-Untersektion folgt folgendem Schema:

1. Ziel des Testszenarios: Es wird erläutert, welche Funktionalität oder Ei-
genschaft des Git-basierten MBSE-Prozesses überprüft werden soll.

2. Testumgebung: Beschreibung der verwendeten Werkzeuge, Konfigura-
tionen und ggf. relevanter Branches oder Kernels.

3. Aktivitäten: Darstellung der konkreten Testschritte in nummerierter
Form.

4. Durchführung: Beschreibung der Durchführung der zuvor gelisteten
Aktivitäten in Fließtextform. Hierbei werden die technischen Abläufe erläu-
tert und bei Bedarf auf unterstützende Bilder verwiesen (z. B. Screenshots
oder Benutzeroberflächen).

5. Beobachtetes Ergebnis (Screenshots): Es werden ausgewählte Screens-
hots präsentiert, die die tatsächlichen Resultate dokumentieren. Alle rele-
vanten Screenshots sind zusätzlich im Anhang A5 bis A12 dokumentiert.

6. Diskussion: Reflexion des Testergebnisses im Kontext der Git-basierten
MBSE-Zielstellung. Hierbei werden positive Erkenntnisse, mögliche Ab-
weichungen und Verbesserungspotenziale identifiziert.

Diese strukturierte Herangehensweise erlaubt es, die einzelnen Testszenarien ver-
gleichbar darzustellen und ihren Beitrag zur Validierung des entwickelten Prozes-
ses transparent zu machen.

5.1.1 Testszenario #1: Export und Commit-Validierung

Ziel des Testszenarios

Ziel dieses Testszenarios ist die Überprüfung, ob ein in CSM erstelltes SysML v2-
Modell erfolgreich exportiert und im .sysml-Format über GitLab versioniert werden
kann. Dabei steht die Sicherstellung der grundsätzlichen Kompatibilität zwischen
Modellierungsumgebung und Versionsverwaltung im Vordergrund. Der Test vali-
diert, ob ein sauber strukturierter Export sowie ein vollständiger Commit-Vorgang
technisch möglich und für weitere Kollaborationsschritte reproduzierbar ist.

Testumgebung

· Modellierungsumgebung: CSM mit SysML v2-Plugin

· Versionskontrolle: Git CLI

· Versionsverwaltung: GitLab UI, main-Branch

Prozessdurchführung und Bewertung Seite 59

Aktivitäten

1. Systemmodell in CSM erstellen

2. .sysml-Datei exportieren

3. .sysml-Datei im lokalen Repository speichern – hier „UAV Civil Drone“

4. Änderungen in GitLab aktualisieren: ´git pull´ à ´git add .´ à ´git commit
-m “nachricht”´ à ´git push´

Durchführung

Zunächst wurden die Customer Requirements, SOS Requirements sowie System Re-
quirements in CSM modelliert (siehe Bild 5-1). Anschließend erfolgte der Export
ausschließlich der Datei „Requirements.sysml“, wobei weitere Modellbestandteile
wie Use Cases und Systemstruktur bewusst nicht exportiert wurden (siehe Bild 5-
2). Die exportierte Datei wurde in das lokale Git-Repository „UAV Civil Drone“
gespeichert. Anschließend wurden die in Schritt 4 beschriebenen Git-Befehle mit
der Commit-Nachricht „added requirements“ ausgeführt. Durch den erfolgreichen
Push-Vorgang wurde die Datei im GitLab-Interface (UI) sichtbar gemacht (siehe
Bild 5-3).

Beobachtetes Ergebnis (Screenshots)

Bild 5-1 Modellierung der Anforderungen in CSM (eigener Screenshot,
CSM)

Prozessdurchführung und Bewertung Seite 60

Bild 5-2 Exportdialog und Dateispeicherung in das lokale Repository (eige-
ner Screenshot, CSM)

Bild 5-3 Darstellung der „Requirements.sysml“-Datei im GitLab nach
Push-Vorgang (eigener Screenshot, GitLab UI)

Diskussion

Das Testszenario verlief erfolgreich und bestätigte die grundsätzliche technische
Machbarkeit des Exports und der Versionierung eines SysML v2-Modells über Git.
Die strukturierte Modellierung in CSM sowie der gezielte Export einzelner Modell-
teile funktionierten erwartungsgemäß. Ebenso konnte der Commit- und Push-Vor-
gang ohne Konflikte durchgeführt werden. Die Sichtbarkeit der Datei im GitLab UI
demonstriert die Reproduzierbarkeit und Nachvollziehbarkeit des Vorgangs. Für
zukünftige Kollaborationen bildet dieser Test die Grundlage, um weitere Modell-
bestandteile analog in den Versionsverwaltungsprozess zu integrieren.

Prozessdurchführung und Bewertung Seite 61

5.1.2 Testszenario #2: Anzeige und Bearbeitung im JN

Ziel des Testszenarios

Ziel dieses Tests ist es, das .sysml-Modell außerhalb der Modellierungsumgebung
zu laden, anzuzeigen und gezielt zu bearbeiten. Die Bearbeitung erfolgt direkt im
JN durch textuelle Modifikation der Modellstruktur. Dadurch wird geprüft, inwie-
weit Git-basierte Workflows mit einer leichten, skriptbasierten Modifikation des
Modells kombinierbar sind.

Testumgebung

· Ausführungsumgebung: JN mit SysML-Kernel

· Versionskontrolle: Git CLI

· Versionsverwaltung: GitLab UI, main-Branch

Aktivitäten

1. .sysml-Datei in JN öffnen – hier „Requirements.sysml“

2. In JN SysML-Kernel visualisieren und Änderungen vornehmen: ´%viz <Mo-
dellname>´

3. .sysml-Datei im lokalen Repository speichern – hier „UAV Civil Drone“

4. Änderungen in GitLab aktualisieren: ´git add <Dateiname>´ à ´git commit
-m “nachricht“´ à ´git push´

Durchführung

Beim Öffnen der Datei „Requirements.sysml“ in JN wurde diese zunächst als reiner
Textinhalt angezeigt. Um eine Visualisierung und Bearbeitung zu ermöglichen,
wurde der Inhalt in eine separate Notebook-Zelle innerhalb eines aktiven SysML-
Kernels eingefügt (siehe Bild 5-4). Nach dem Ausführen der entsprechenden Zellen
konnten die verfügbaren Requirement-Pakete geladen und mittels des Befehls ́ %viz
<Modellname>´ visualisiert werden (siehe Bild 5-5).

Im Anschluss wurde das Modell gezielt modifiziert. Konkret wurde die Anforde-
rung „Customer Requirement <5_5>“ erweitert, indem zusätzliche Attribute sowie
Constraints direkt in der textuellen Notation ergänzt wurden. Die Änderungen wur-
den innerhalb des Kernels erneut visualisiert und überprüft (siehe Bild 5-6). Ab-
schließend wurden sowohl die angepasste „Requirements.sysml“-Datei als auch
das zugehörige JN „UAV_JN.ipynb“ lokal gespeichert, in das Repository einge-
pflegt und per Git CLI auf GitLab mit der Nachricht „updated Req <5_5>“ hoch-
geladen (siehe Bild 5-7).

Prozessdurchführung und Bewertung Seite 62

Beobachtetes Ergebnis (Screenshots)

Bild 5-4 Textbasierte Anzeige der Datei „Requirements.sysml“ (eigener
Screenshot, JN)

Bild 5-5 Visualisierung der modellierten Anforderungen im SysML-Kernel
mittels „%viz“-Befehl (eigener Screenshot, JN)

Bild 5-6 Modifikation der Anforderung „Customer Requirement <5_5>“
inkl. neuer Constraints und Attribute (eigener Screenshot, JN)

Prozessdurchführung und Bewertung Seite 63

Bild 5-7 Erfolgreicher Push der geänderten Dateien (Requirements.sysml,
UAV_JN.ipynb) auf GitLab (eigener Screenshot, GitLab UI)

Diskussion

Das Testszenario konnte erfolgreich durchgeführt werden. Die aus CSM exportierte
„Requirements.sysml“-Datei wurde korrekt in JN geladen, visualisiert und an-
schließend textuell angepasst. Die vorgenommenen Änderungen konnten im Kernel
validiert und über GitLab versioniert werden, wodurch die prinzipielle Kombinier-
barkeit textbasierter Modellbearbeitung mit Git-basierten Workflows bestätigt
wurde.

Allerdings zeigte sich eine Einschränkung hinsichtlich der Handhabung: Da JN
.sysml-Dateien als reine Textdateien interpretieren, ist ein zusätzlicher Zwischen-
schritt erforderlich, bei dem die Inhalte manuell in eine Notebook-Zelle innerhalb
eines laufenden SysML-Kernels eingefügt werden müssen. Diese Notwendigkeit
der Zwischenspeicherung und Übertragung in ein .ipynb-Dateiformat erhöht den
manuellen Aufwand. Positiv hervorzuheben ist jedoch, dass GitLab .ipynb-Dateien
nativ unterstützt und deren Inhalte direkt im Webinterface angezeigt werden kön-
nen, was die Nachverfolgbarkeit von Änderungen erleichtert.

5.1.3 Testszenario #3: Multi-Tool-Kompatibilität (CSM und JN)

Ziel des Testszenarios

Das Ziel dieses Szenarios ist die Validierung der Werkzeugkompatibilität zwischen
CSM und JN. Es wird untersucht, ob textuelle Modelländerungen, die in JN vorge-
nommen und via GitLab versioniert wurden, anschließend erfolgreich in CSM im-
portiert und angezeigt werden können. Dieser Test stellt sicher, dass ein Toolwech-
sel im Kollaborationsprozess verlustfrei möglich ist und keine semantischen Inkon-
sistenzen im Modell entstehen.

Prozessdurchführung und Bewertung Seite 64

Testumgebung

· Versionskontrolle: Git CLI

· Modellierungsumgebung: CSM mit SysML v2-Plugin

Aktivitäten

1. Änderungen aus GitLab Repository lokal aktualisieren: ´git pull´

2. .sysml-Datei in CSM importieren – hier „Requirements.sysml“

3. Änderungen in CSM visualisieren

Durchführung

Nach dem Abrufen der aktuellen Repository-Inhalte mittels ́ git pull´ wurde die zu-
vor in JN modifizierte Datei „Requirements.sysml“ in CSM importiert. Der Import-
vorgang führte zur automatischen Erstellung eines neuen namespaces mit der Be-
zeichnung „Customer_Requirements“, welcher dem ersten Paketnamen in der Da-
tei entspricht (siehe Bild 5-8).

Infolgedessen waren im Modell zwei Anforderungs-namespaces vorhanden: der ur-
sprüngliche und der neu importierte. Zur gezielten Analyse wurde ein separates
SysML v2 View-Diagramm mit dem Namen „Req_New“ erstellt, in dem sowohl
die alte als auch die modifizierte Version der Anforderung „Requirement <5_5>“
nebeneinander dargestellt wurden (siehe Bild 5-9). Dies ermöglichte einen direkten
Vergleich der ursprünglichen und der textuell überarbeiteten Anforderungsversion.

Beobachtetes Ergebnis (Screenshots)

Bild 5-8 Neuer namespace „Customer_Requirements“ nach dem Import der
„Requirements.sysml“-Datei (eigener Screenshot, CSM)

Prozessdurchführung und Bewertung Seite 65

Bild 5-9 Vergleich der ursprünglichen (Links) und modifizierten (Rechts)
Anforderung „Requirement <5_5>“ im View-Diagramm „Req_New“ (eigener

Screenshot, CSM)

Diskussion

Das Szenario demonstriert grundsätzlich die Kompatibilität zwischen JN und CSM
hinsichtlich des Imports von textuell geänderten .sysml-Dateien. Die Änderungen,
die außerhalb von CSM vorgenommen wurden, konnten ohne technische Fehler
importiert und im Modell angezeigt werden. Damit wurde die prinzipielle Tool-
kompatibilität bestätigt.

Allerdings zeigten sich im Detail Einschränkungen: Der Import einer geänderten
Datei erzeugt in CSM automatisch einen neuen namespace, selbst wenn bereits ein
gleichnamiger Inhalt im Modell vorhanden ist. Dies kann zu redundanten Struktu-
ren führen. Um doppelte Inhalte zu vermeiden, sind zwei Alternativen denkbar:
entweder das Löschen des ursprünglichen namespaces nach erfolgreichem Import
oder das Anlegen eines neuen CSM-Projekts für den Importvorgang.

Ein weiterer Nachteil zeigt sich in der eingeschränkten Visualisierung der Mo-
dellelemente nach dem Import einer neuen .sysml-Datei: In CSM werden die beste-
henden View-Diagramme nicht automatisch aktualisiert. Stattdessen muss ein neues
View-Diagramm manuell erstellt und die relevanten Modellelemente erneut per
Drag-and-Drop eingefügt werden, um eine visuelle Repräsentation zu erhalten.
Dies erschwert die Nachvollziehbarkeit der Änderungen, insbesondere wenn zuvor
keine Kommunikation oder Dokumentation erfolgte – wie im Fall der geänderten
Anforderung „Requirement <5_5>“.

Prozessdurchführung und Bewertung Seite 66

5.1.4 Testszenario #4: Versionierung und Rollback

Ziel des Testszenarios

Dieses Testszenario zielt darauf ab, die Rückverfolgbarkeit und Wiederherstellbar-
keit von Modellzuständen innerhalb des Git-basierten Prozesses zu überprüfen. Es
wird getestet, ob inkrementelle Änderungen korrekt versioniert werden und ob mit
Hilfe von Git-Befehlen wie ´git log´ und ´git revert´ frühere Modellzustände zuver-
lässig wiederhergestellt werden können. Ziel ist es, die Robustheit des Versions-
kontrollmechanismus im Hinblick auf Fehlerbehandlung und iterative Entwicklung
zu bewerten.

Testumgebung

· Modellierungsumgebung: CSM mit SysML v2-Plugin

· Versionskontrolle: Git CLI

· Versionsverwaltung: GitLab UI, main-Branch

Aktivitäten

1. Änderungen in mehreren Commits vornehmen

2. Ein Commit auswählen und entfernen: ´git log´ à ´git revert <commit>´ à
´git add .´ à ´git commit -m “nachricht“´ à ´git push´

3. Modellkonsistenz überprüfen

Durchführung

Im Rahmen dieses Tests wurden schrittweise Änderungen am Modell vorgenom-
men, darunter das Hinzufügen von System Use Cases im Behavior-Paket. Diese
Änderung wurde unter dem Commit-Nachricht „added-behavior“ in das GitLab-
Repository hochgeladen.

Anschließend wurden über die Git-Befehle ´git log´ und ´git revert <commit>´ ge-
zielt frühere Modellzustände wiederhergestellt. Zunächst wurde mittels ´git log´ der
Commit-Verlauf eingesehen (siehe Bild 5-10). Daraufhin wurde der Commit „ad-
ded-behavior“ (Commit 89adfb82) identifiziert und über ´git revert 89adfb82´ zu-
rückgesetzt. Die Änderung wurde mit dem Commit-Kommentar „deleted last com-
mit“ erneut versioniert und in das zentrale Repository übertragen. In der GitLab-
Oberfläche war zunächst die Datei „Behavior.sysml“ sichtbar (siehe Bild 5-11),
nach dem Revert-Vorgang jedoch nicht mehr vorhanden (siehe Bild 5-12), was auf
eine erfolgreiche Wiederherstellung des vorherigen Modellzustands hinweist.

Prozessdurchführung und Bewertung Seite 67

Beobachtetes Ergebnis (Screenshots)

Bild 5-10 Übersicht des ´git log´-Befehls (eigener Screenshot, Git CLI)

Bild 5-11 GitLab UI mit „Behavior.sysml“ (eigener Screenshot, GitLab UI)

Bild 5-12 GitLab UI ohne „Behavior.sysml“ (eigener Screenshot, GitLab UI)

Prozessdurchführung und Bewertung Seite 68

Diskussion

Das Testszenario bestätigt die korrekte Funktionsweise der Git-basierten Versio-
nierung und die Möglichkeit zur Wiederherstellung früherer Modellzustände mit-
tels ´git revert´. Die erfolgreiche Entfernung der Datei „Behavior.sysml“ nach dem
Zurücksetzen des Commits verdeutlicht, dass Änderungen nicht nur versioniert,
sondern auch gezielt rückgängig gemacht werden können.

Im Kontext kollaborativer Arbeitsumgebungen ist jedoch Vorsicht geboten: Das
direkte Rückgängigmachen von Commits im main-Branch kann zu Inkonsistenzen
führen, wenn andere Teammitglieder parallel arbeiten. Daher ist es empfehlens-
wert, Änderungen über einen MR rückgängig zu machen. Dies ermöglicht eine Prü-
fung der Maßnahme durch andere Beteiligte und bietet eine zusätzliche Qualitäts-
sicherung, bevor Änderungen wirksam werden.

Zusammenfassend zeigt das Testszenario, dass Git ein robustes Werkzeug zur Ver-
waltung von Modellzuständen darstellt, jedoch organisatorische Maßnahmen wie
MRs notwendig sind, um Konflikte in Teamumgebungen zu vermeiden.

5.1.5 Testszenario #5: GitHub Flow Test (Kollaborationsworkflow)

Ziel des Testszenarios

Ziel dieses Tests ist es, den in Kapitel 4.4 beschriebenen GitHub-Flow-Prozess
exemplarisch anzuwenden. Der Fokus liegt dabei auf der Erstellung eines Feature-
Branch, dem Durchlaufen des Review-Prozesses und dem kontrollierten Merge in
den main“-Branch. Durch diesen Test wird überprüft, ob die definierten Kollabo-
rationsregeln im Teamkontext praktisch umsetzbar sind und ob typische Teamauf-
gaben wie Änderungsdokumentation, Review und Merge-Prozesse reibungslos
funktionieren.

Testumgebung

· Versionskontrolle: Git CLI

· Versionsverwaltung: GitLab UI, feature- und main-Branch

Aktivitäten

1. feature-Branch erstellen: ´git checkout -b feature´

2. Änderungen vornehmen: ´git add .´ à ´git commit -m “nachricht“´ à ´git
push -u origin feature´

3. MR in GitLab UI eröffnen

4. Review und Merge – In GitLab UI oder in Git CLI: ´git checkout main´ à
´git pull origin main´ à ´git merge feature´ à ´git push origin main´

Prozessdurchführung und Bewertung Seite 69

5. (Optional) feature-Branch lokal löschen: ´git branch -d feature´

Durchführung

Im Rahmen dieses Tests wurde ein typischer GitHub-Flow-Kollaborationsprozess
durchgeführt. Zunächst wurde lokal ein neuer feature-Branch mit dem Namen „fea-
ture/add-new-uc“ erstellt und darin Änderungen an der Datei „Behavior.sysml“
vorgenommen. Anschließend wurden nach Schritt 2 diese Änderungen in das ent-
fernte Repository übertragen.

Im nächsten Schritt wurde über die GitLab-Oberfläche ein MR eröffnet, um die
Änderungen vor dem Merge in den main-Branch zu überprüfen (siehe Bild 5-13
und 5-14). Der Review- und Freigabeprozess erfolgte ebenfalls vollständig in der
GitLab UI. Nach erfolgreicher Überprüfung wurde der feature-Branch in den main-
Branch zusammengeführt (siehe Bild 5-15). Abschließend wurde der lokale Fea-
ture-Branch mit ´git branch -d feature/add-new-uc´ gelöscht, um die lokale Ar-
beitsumgebung zu bereinigen, da er trotz Pull-Vorgang weiterhin lokal sichtbar
war.

Beobachtetes Ergebnis (Screenshots)

Bild 5-13 Übersicht der Branches „main“ und „feature/add-new-uc“ (eige-
ner Screenshot, GitLab UI)

Bild 5-14 Merge Request-Erstellung (eigener Screenshot, GitLab UI)

Prozessdurchführung und Bewertung Seite 70

Bild 5-15 Merge-Vorgang des Feature-Branch nach abgeschlossenem Re-
view, Abschluss des Vorgangs über „merge“ (eigener Screenshot, GitLab UI)

Diskussion

Dieses Testszenario bestätigt die erfolgreiche Umsetzung eines GitHub-Flow-Pro-
zesses im Rahmen einer GitLab-gestützten Modellierungsumgebung. Der gesamte
Ablauf – von der Erstellung eines Feature-Branch über die Änderungsübertragung
bis hin zum Merge nach abgeschlossenem Review – verlief reibungslos und erfüllte
alle definierten Anforderungen an kollaborative Entwicklungsprozesse.

Besonders hervorzuheben ist die Benutzerfreundlichkeit der GitLab UI, die den Re-
view- und Merge-Prozess visuell unterstützt und durch intuitive Funktionen wie
Reviewer-Zuweisung, Kommentierung und Änderungsverfolgung ergänzt. Die im
Git CLI verfügbaren Kommandos für den Merge-Prozess sind bei Verwendung der
GitLab UI nicht zwingend notwendig, bieten jedoch zusätzliche Flexibilität für fort-
geschrittene Nutzer:innen.

Ein wichtiger Hinweis aus diesem Test ist die Notwendigkeit, nach dem Merge ab-
geschlossener Feature-Branches lokal zu löschen, um die Arbeitsumgebung über-
sichtlich zu halten. Diese Praxis unterstützt die langfristige Wartbarkeit und ver-
meidet Konflikte durch veraltete lokale Branches.

Prozessdurchführung und Bewertung Seite 71

5.1.6 Testszenario #6: Automatisierte Konfigurationsprüfung

Ziel des Testszenarios

Das Ziel dieses Testszenarios besteht darin, eine automatisierte Prüfung und Kor-
rektur der Konfiguration von .sysml-Dateien zu etablieren, um syntaktische Inkon-
sistenzen zu beheben, die beim Export aus dem CSM auftreten. Insbesondere be-
trifft dies die fehlerhafte Behandlung von benutzerdefinierten Bezeichnern inner-
halb der textuellen SysML v2-Syntax, bei denen fälschlicherweise keine einfachen
Anführungszeichen gesetzt werden, wenn es sich um ein einzelnes Wort handelt
(Beispiel: einWort anstelle von 'einWort').

Diese Abweichung tritt systematisch dann auf, wenn das benutzerdefinierte Einga-
befeld nur aus einem einzigen, zusammenhängenden Wort besteht – während bei
mehrteiligen Werten (mit Leerzeichen) automatisch einfache Anführungszeichen
generiert werden (z. B. 'ein Wort').

Um die Lesbarkeit und die maschinelle Verarbeitbarkeit zu verbessern, soll eine
Korrektur dieser Fälle direkt im GitLab CI/CD-Pipelineprozess erfolgen. Ziel ist
es, fehlerhafte Stellen automatisiert zu erkennen, zu korrigieren und die aktuali-
sierte Datei bei Bedarf zurückzuschreiben.

Testumgebung

· Skriptausführung: JN mit Python 3-Kernel

· Modellierungsumgebung: CSM mit SysML v2-Plugin

· Versionskontrolle: Git CLI

· Automatisierung: GitLab CI/CD mit .gitlab-ci.yml

Aktivitäten

1. Erstellung einer .sysml-Datei mit einem absichtlich eingebauten Formatie-
rungsfehler

2. Implementierung eines Python-Skripts (fix_config.ipynb), das systematisch
alle benutzerdefinierten Eingaben analysiert und bei Bedarf korrekt forma-
tiert.

3. Integration des Skripts in die GitLab-CI-Pipeline durch Erweiterung der Da-
tei .gitlab-ci.yml mit einem neuen Job check_config

4. Ausführung des Skripts sowohl lokal als auch über GitLab CI zur Überprü-
fung der Funktionalität und automatischen Korrektur

5. Push der Änderungen ins zentrale GitLab-Repository über die Git-Befehle:
´git add .´ à ´git commit -m “nachricht“´ à ´git push´

Prozessdurchführung und Bewertung Seite 72

Durchführung

Für die Durchführung des Testszenarios wurde zunächst eine bewusst fehlerhafte
.sysml-Datei mit dem Namen Structure.sysml erstellt. Diese Datei enthält zwei Part-
Dekomposition-Pakete für die Subsysteme SOS und SOI. Nach dem Export aus
CSM zeigte sich, dass Benutzereingaben ohne Leerzeichen nicht in einfache An-
führungszeichen (' ') gesetzt wurden (siehe Bild 5-17, links). Betroffen waren u. a.
Begriffe wie SOI, SOS, Communication und Airframe.

Im Anschluss wurde das Python-Notebook fix_config.ipynb ausgeführt (siehe An-
hang A10). Dieses durchsucht alle .sysml-Dateien im Verzeichnis System_Models
und überprüft deren Inhalt zeilenweise auf eine korrekte Konfiguration. Das enthal-
tene Skript identifiziert mithilfe regulärer Ausdrücke fehlerhaft gesetzte oder feh-
lende Anführungszeichen im Bereich der Benutzereingaben und ersetzt diese durch
eine korrekt formatierte Version. Nach erfolgreicher Ausführung wird die korri-
gierte .sysml-Datei automatisch mit der fehlerhaften Ursprungsversion überschrie-
ben (Bild 5-17, rechts).

Nach dem erfolgreichen Test des Notebooks im lokalen JN-Umfeld wurde die Git-
Lab-CI-Konfigurationsdatei .gitlab-ci.yml um einen neuen Job erweitert, der
fix_config.ipynb automatisch ausführt, sobald .sysml-Dateien im Repository geän-
dert werden (Bild 5-16).

Im Zuge der Anpassung wurde außerdem die Verzeichnisstruktur im GitLab-Repo-
sitory optimiert: Alle .sysml-Dateien wurden in einen zentralen Ordner mit dem
Namen System_Models verschoben, um den Zugriff innerhalb der CI-Pipeline zu
vereinheitlichen und zukünftige Automatisierungsschritte zu erleichtern (Bild 5-
18).

Beobachtetes Ergebnis (Screenshots)

Bild 5-16 Ausschnitt aus .gitlab-ci.yml mit Definition des neuen Jobs zur au-
tomatisierten Konfigurationsprüfung (eigener Screenshot, .gitlab-ci.yml)

Prozessdurchführung und Bewertung Seite 73

Bild 5-17 Links: Ursprüngliche Exportdatei mit fehlerhafter Formatierung;
Rechts: Datei nach automatischer Korrektur durch fix_config.ipynb (eigener

Screenshot, Structure.sysml)

Bild 5-18 Organisationsstruktur der Repository für eine saubere und konsis-
tente Ablagestruktur (eigener Screenshot, GitLab UI)

Diskussion

Das Skript fix_config.ipynb erfüllte die erwartete Funktionalität und konnte die zu-
vor identifizierten Formatierungsprobleme in den .sysml-Dateien erfolgreich behe-
ben. Insbesondere wurden Benutzereingaben ohne Leerzeichen, die beim Export
aus CSM nicht korrekt mit einfachen Anführungszeichen versehen waren, automa-
tisiert korrigiert.

Prozessdurchführung und Bewertung Seite 74

Die Idee zur Aufnahme dieses Testszenarios entstand im Verlauf der Entwicklung
des Syntaxprüfskripts, das im folgenden Testszenario #7 beschrieben wird. Ur-
sprünglich war lediglich eine Syntaxprüfung geplant. Während der ersten Testläufe
zeigte sich jedoch, dass bestimmte Formatierungsfehler – insbesondere fehlende
Anführungszeichen bei bestimmten Texteingaben – zu Validierungsfehlern führten.
Daher wurde Testszenario #6 als notwendiger Zwischenschritt eingeführt, um die
zugrunde liegenden Probleme zunächst zu beheben. Wäre die von CSM erzeugte
Syntax an dieser Stelle korrekt, hätte dieser zusätzliche Schritt nicht implementiert
werden müssen.

Eine bekannte Einschränkung des aktuellen Skripts besteht darin, dass es nur ein-
mal ausgeführt werden sollte. Bei einer zweiten Ausführung werden bestimmte
Konnektoren der Form 'xx' :: 'yy' :: 'zz' fehlerhaft umformatiert, was zu Syntaxprob-
lemen führen kann. Bei einem dritten Durchlauf wird dieser Fehler jedoch wieder
korrigiert. Trotz mehrerer Anpassungsversuche konnte dieses Verhalten bislang
nicht behoben werden, ohne gleichzeitig funktionierende Teile des Codes zu beein-
trächtigen. Daher ist es essenziell, die Ausführung des Notebooks auf einen einma-
ligen Durchlauf pro Änderungszyklus zu beschränken.

Zur Validierung der Korrekturen wurden die modifizierten .sysml-Dateien erneut in
den CSM importiert. Der Import verlief fehlerfrei, sodass bestätigt werden konnte,
dass die vorgenommenen Anpassungen zu einer konsistenten und verarbeitbaren
SysML-Syntax führen.

5.1.7 Testszenario #7: Automatisierte Syntaxprüfung

Ziel des Testszenarios

Ziel dieses Testszenarios ist die automatisierte Prüfung der syntaktischen Korrekt-
heit von .sysml-Dateien im Verzeichnis System_Models. Der Fokus liegt auf der
Überprüfung standardisierter SysML-Begriffe wie part, requirement, action etc.,
die im ersten Teil der SysML-Textnotation vorkommen. Die Syntax in SysML ist
in zwei Bereiche gegliedert: die standardisierte Notation (z. B. Schlüsselwörter)
und die nutzergenerierten Inhalte, welche typischerweise in einfachen Anführungs-
zeichen gesetzt werden.

Das hier entwickelte Skript überprüft ausschließlich die standardisierten Begriffe
auf korrekte Schreibweise und Groß-/Kleinschreibung. Bei Abweichungen werden
diese erkannt und mit Angabe der entsprechenden Zeilennummer zur Korrektur ge-
meldet.

Testumgebung

· Skriptausführung: JN mit Python 3-Kernel

· Modellierungsumgebung: CSM mit SysML v2-Plugin

Prozessdurchführung und Bewertung Seite 75

· Versionskontrolle: Git CLI

· Automatisierung: GitLab CI/CD mit .gitlab-ci.yml

Aktivitäten

1. Manuelles Einfügen syntaktischer Fehler in eine .sysml-Datei

2. Entwicklung eines Python-Skripts (syntax_check.ipynb) zur automatisierten
Syntaxprüfung

3. Definition gültiger Begriffe basierend auf OMG SysML v2.0 Language Spe-
cification im Skript

4. Anpassung der .gitlab-ci.yml, um das Notebook im CI-Prozess automatisch
auszuführen

5. Durchführung des Tests lokal und in GitLab CI

6. Überprüfung und Dokumentation der Ausgaben

Durchführung

Für die Durchführung des Tests wurde das Notebook syntax_check.ipynb entwi-
ckelt (vgl. Anhang A11). Dieses analysiert .sysml-Dateien im Verzeichnis Sys-
tem_Models hinsichtlich der korrekten Verwendung standardisierter Begriffe aus
der SysML v2.0-Spezifikation (OMG Systems Modeling Language, 2024). Die
gleiche Liste an Schlüsselwörtern kam bereits im Skript fix_config.ipynb zum Ein-
satz.

Das Notebook durchläuft jede .sysml-Datei zeilenweise und prüft:

· ob gültige Schlüsselwörter korrekt geschrieben und kleingeschrieben sind,

· ob öffnende und schließende geschweifte Klammern {} korrekt verwendet
werden,

· ob Zeilen mit Semikolon ; abgeschlossen sind.

Zur Validierung wurde die Datei Structure.sysml gezielt mit zwei Fehlern versehen:
In Zeile 4 wurde part versehentlich als patt, in Zeile 13 als past geschrieben (vgl.
Bild 5-20). Nach dem Ausführen des Skripts wurden beide Fehler wie erwartet er-
kannt und mit korrekter Fehlermeldung ausgegeben (vgl. Bild 5-21).

Die Ausführung innerhalb der GitLab CI wurde über die .gitlab-ci.yml konfiguriert,
wobei die automatische Analyse bei jeder Änderung an Dateien im System_Models-
Verzeichnis erfolgt (vgl. Bild 5-19).

Prozessdurchführung und Bewertung Seite 76

Beobachtetes Ergebnis (Screenshots)

Bild 5-19 Ausschnitt aus .gitlab-ci.yml mit Definition des neuen Jobs zur au-
tomatisierten Syntaxprüfung (eigener Screenshot, .gitlab-ci.yml)

Bild 5-20 Manuell eingefügte Syntaxfehler in Structure.sysml (eigener
Screenshot, Structure.sysml)

Bild 5-21 Konsolenausgabe des Syntaxprüfskripts (eigener Screenshot, Py-
thon 3-Kernel)

Prozessdurchführung und Bewertung Seite 77

Diskussion

Der Test verlief erfolgreich. Das Skript konnte die fehlerhafte Schreibweise von
standardisierten SysML-Schlüsselwörtern zuverlässig erkennen und mit klaren
Fehlermeldungen kennzeichnen. Auch syntaktische Fehler wie fehlende Semiko-
lons oder nicht geschlossene Klammern wurden korrekt detektiert.

Im Unterschied zum vorherigen Test (5.1.6) greift dieses Skript nicht in die Datei
ein, sondern meldet ausschließlich die gefundenen Abweichungen. Eine automati-
sche Korrektur findet nicht statt, was aus Nachvollziehbarkeits- und Validierungs-
gründen im Rahmen eines Review-Prozesses von Vorteil ist.

Die Syntaxprüfung ist insbesondere dann hilfreich, wenn .sysml-Modelle manuell
im Texteditor oder durch Skripte angepasst werden. Durch die Integration in GitLab
CI kann eine kontinuierliche Überprüfung gewährleistet werden, ohne die Arbeits-
schritte der Modellierer zu beeinträchtigen.

5.1.8 Testszenario #8: Automatisierte Dokumentenerstellung

Ziel des Testszenarios

Ziel dieses Tests ist die automatisierte Erstellung eines aktuellen SysML-Reports,
sobald Änderungen an .sysml-Dateien im Verzeichnis System_Models festgestellt
werden. Der Report soll stets die aktuellste Version der modellierten Pakete enthal-
ten und automatisch im GitLab Repository bereitgestellt werden. Damit steht allen
Beteiligten jederzeit ein konsistenter Überblick über die Modellstruktur zur Verfü-
gung, ohne dass der Report manuell gepflegt werden muss.

Testumgebung

· Skriptausführung: JN mit Python 3-Kernel

· Ausführungsumgebung: JN mit SysML-Kernel

· Versionskontrolle: Git CLI

· Automatisierung: GitLab CI/CD mit .gitlab-ci.yml

Aktivitäten

1. Erstellung des Notebooks generate_render_notebook.ipynb zur Analyse und
Aufbereitung der .sysml-Dateien

2. Integration des Notebooks in den GitLab-CI-Prozess über .gitlab-ci.yml

3. Konfiguration von GitLab CI zur Speicherung des Berichts als Artefakt bei
Änderungen an den .sysml-Dateien

Prozessdurchführung und Bewertung Seite 78

4. Lokale Testläufe des Notebooks mit aktivem SysML-Kernel zur Verifikation
der Ergebnisdarstellung

5. Durchführung automatisierter Testläufe bei Dateiänderungen im Repository

Durchführung

Die initiale Idee bestand darin, automatisch einen visuell aufbereiteten SysML-Re-
port im HTML- oder PDF-Format zu erzeugen. Da GitLab CI jedoch keine Unter-
stützung für die Ausführung von Notebook-Zellen mit dem SysML-Kernel bietet,
musste ein alternativer Ansatz gewählt werden. Stattdessen wird ein JN erzeugt, das
die Struktur des Reports vorbereitet und später manuell im SysML-Kernel ausge-
führt werden kann.

Das Skript in generate_render_notebook.ipynb analysiert alle .sysml-Dateien im
Verzeichnis System_Models und extrahiert daraus die enthaltenen Pakete. Für jedes
erkannte Paket wird automatisch eine Notebook-Zelle generiert, die den %viz-Be-
fehl aufruft, um die grafische Darstellung im SysML-Kernel zu ermöglichen.
Dadurch lässt sich der Bericht manuell im Notebook ausführen und vollständig vi-
sualisieren (vgl. Bild 5-23 und Bild 5-24).

Die erzeugten Reports werden automatisch im GitLab CI-Prozess gespeichert – so-
wohl lokal im Ordner SysML_Reports als auch im GitLab-Projekt als Artefakt (vgl.
Bild 5-22). Zur besseren Nachverfolgbarkeit wird dabei eine semantische Versio-
nierung verwendet:

· Wird eine .sysml-Datei inhaltlich verändert, wird die Patch-Version erhöht
(z. B. v1.1.0 → v1.1.1).

· Werden .sysml-Dateien hinzugefügt oder gelöscht, wird die Minor-Version
erhöht (z. B. v1.1.1 → v1.2.0).

Eine Major-Version ist bislang nicht definiert, da der Report noch experimentell
eingesetzt wird – das Skript kann jedoch jederzeit an veränderte Anforderungen
angepasst werden.

Beobachtetes Ergebnis (Screenshots)

Bild 5-22 SysML-Reports als GitLab-Artefakte (eigener Screenshot, GitLab)

Prozessdurchführung und Bewertung Seite 79

Bild 5-23 Generierter SysML-Report in JN, Teil 1 (eigener Screenshot, JN
mit SysML-Kernel)

Bild 5-24 Generierter SysML-Report in JN, Teil 2 (eigener Screenshot, JN
mit SysML-Kernel)

Prozessdurchführung und Bewertung Seite 80

Diskussion

Die automatisierte Erstellung von SysML-Reports über GitLab CI konnte erfolg-
reich umgesetzt werden – wenngleich mit der Einschränkung, dass die eigentliche
Visualisierung der Modelle manuell im SysML-Kernel erfolgen muss. Eine voll-
ständige Automatisierung der grafischen Darstellung war nicht möglich, da GitLab
keine native Unterstützung für den SysML-Kernel bietet.

Dennoch stellt das Testskript einen wertvollen Beitrag zur Dokumentation dar: Es
bereitet die notwendigen Visualisierungsbefehle vor und ermöglicht es, die aktu-
ellsten Systemmodelle jederzeit strukturiert einzusehen. Besonders hilfreich ist der
Ansatz im kollaborativen Umfeld, da alle Teammitglieder auf einen stets aktuellen
Report zugreifen können.

Die Kombination aus lokalem Testlauf mit manuell ausführbarem Report und au-
tomatischer Speicherung als Artefakt bietet eine praktikable Lösung, um Modellän-
derungen nachvollziehbar zu dokumentieren. Optional kann der Report vor dem
Push-Vorgang lokal ausgeführt und überprüft werden. So wird nicht nur ein gülti-
ges Artefakt erzeugt, sondern auch eine nachvollziehbare Integration der Model-
länderungen im GitLab-Repository im Verzeichnis SysML_Reports gewährleistet.

5.2 Bewertung des Git-basierten Kollaborationsprozesses

Im Anschluss an die Durchführung der acht definierten Testszenarien konnte der
entwickelte Git-basierte Kollaborationsprozess im Hinblick auf Struktur, Verant-
wortlichkeiten, Integration sowie Vor- und Nachteile systematisch bewertet wer-
den. Im Folgenden werden zentrale Erkenntnisse und offene Fragen diskutiert, die
sich aus der praktischen Erprobung ergeben haben.

Die Bewertung erfolgt dabei auch in Bezug zu den in Kapitel 3.5 identifizierten
teaminternen Herausforderungen, welche in fünf zentrale Kategorien eingeordnet
wurden – darunter fehlende klare Prozesse, Änderungsmanagement, Informations-
management sowie plattformtechnische Grenzen. Ziel des Git-basierten Kollabora-
tionsprozesses war es unter anderem, diese Defizite durch methodische und techni-
sche Maßnahmen gezielt zu adressieren. Im Folgenden wird daher auch reflektiert,
inwieweit der entwickelte Ansatz zur Überwindung dieser Herausforderungen bei-
tragen konnte.

Finale Repository-Struktur und Funktionsweise der Pipeline

Die endgültige Struktur des GitLab-Repositories wurde im Laufe der Tests mehr-
fach angepasst und spiegelt nun eine klare Trennung der Systemmodelle (Verzeich-
nis System_Models), generierter Reports (SysML_Reports) sowie unterstützender
CI-Konfigurationen wider (siehe Bild 5-25). Dadurch ist gewährleistet, dass mo-
dellierte Inhalte, Konfigurationslogik und Auswertungen strukturell voneinander

Prozessdurchführung und Bewertung Seite 81

getrennt, aber funktional aufeinander abgestimmt sind. Die entwickelte .gitlab-
ci.yml-Konfiguration erkennt automatisch Änderungen in .sysml-Dateien und führt
je nach Änderungstyp unterschiedliche Pipelines aus – etwa Konfigurations- oder
Syntaxprüfungen oder die Erzeugung von Reports.

Bild 5-25 Übersicht über die finale Repository-Struktur (eigener Screenshot,
GitLab UI)

Die Gestaltung der Pipeline orientierte sich dabei nicht an einer Best Practice-Vor-
gabe, sondern diente der Erprobung möglicher CI/CD-Funktionen im MBSE-Kon-
text. Trotzdem wurde bewusst darauf geachtet, Konfigurationen zu wählen, die
übertragbar und erweiterbar sind. Einschränkungen zeigten sich insbesondere bei
den Notebooks fix_config.ipynb und generate_render_notebook.ipynb. Während
fix_config.ipynb zwar automatisch Syntax korrigiert, kann es in komplexeren Mo-
dellen zu Überschreibungsproblemen kommen. Das Notebook zur Reportgenerie-
rung wiederum hängt stark vom SysML-Kernel ab und lässt sich nicht vollständig
automatisieren, da GitLab CI keine SysML-Kernel-Ausführung unterstützt.

Herausforderung zu vieler Pipeline-Stufen

Die nach Abschluss der Testszenarien entstandene CI-Pipeline umfasst drei aufei-
nanderfolgende Stufen, die jeweils unterschiedliche Aufgaben übernehmen – von
der Konfigurationsprüfung bis zur automatisierten Berichtserzeugung. Die Struktur
der finalen CI-Pipeline wurde zur besseren Nachvollziehbarkeit in einem SysML
v2 Action-Diagramm modelliert und ist in Bild 5‑26 dargestellt.

Bild 5-26 Action-Diagramm mit den drei CI-Stufen im finalen Repository
(eigene Darstellung, JN mit SysML-Kernel)

Prozessdurchführung und Bewertung Seite 82

Diese Aufteilung ermöglicht eine saubere Trennung der Verarbeitungsschritte und
eine höhere Nachvollziehbarkeit des Ablaufs. Gleichzeitig sollte jedoch bedacht
werden, dass mit jeder zusätzlichen Stufe der Pflegeaufwand steigt und die Pipeline
komplexer wird. Dies kann insbesondere bei kleinen Teams oder bei häufigen, in-
krementellen Änderungen zu Mehraufwand führen und erfordert erhöhte Aufmerk-
samkeit bei der Pflege und Nutzung der CI-Infrastruktur.

Darüber hinaus ist es empfehlenswert, bereits vor der Implementierung einer
CI/CD-Pipeline bewusst zu entscheiden, welche Schritte tatsächlich als eigene Stu-
fen ausgeführt werden sollen. Nicht jeder Verarbeitungsschritt muss zwangsläufig
durch die GitLab-Pipeline automatisiert werden. Manche Aufgaben – etwa erste
Modellprüfungen oder Formatierungschecks – lassen sich lokal vor dem Commit
durchführen. Eine wohlüberlegte Balance zwischen lokalen Prüfungen und server-
seitigen Automatisierungen ist entscheidend, um die Pipeline handhabbar zu halten
und trotzdem eine verlässliche Qualitätssicherung zu gewährleisten

Ein praktikabler Lösungsansatz zur Reduktion dieses Aufwands besteht in der Ein-
führung strukturierter Checklisten innerhalb der MR. Diese könnten dazu genutzt
werden, typische Fehlerquellen vorab zu prüfen und sicherzustellen, dass alle rele-
vanten Anforderungen vor dem Merge erfüllt sind. In Verbindung mit der in Kapitel
3.4.2 vorgestellten RACI-Matrix kann dadurch zudem eine klare Abgrenzung der
Prüfverantwortlichkeiten zwischen SE-Management-Team und den technischen
Teams unterstützt werden.

Verantwortlichkeit für Branches

Ein wichtiger Aspekt betrifft die organisatorische Verantwortung für das Anlegen
und Verwalten von Branches. In der Praxis stellt sich die Frage, ob dieser Schritt
durch das SE-Management-Team zentral koordiniert oder durch die jeweiligen
Fachteams selbstständig übernommen werden sollte. Beide Optionen haben Vor-
und Nachteile: Eine zentrale Verwaltung kann Konsistenz und Nachverfolgbarkeit
sichern, erhöht jedoch den Koordinationsaufwand. Dezentrale Branch-Erstellung
durch die technischen Teams ist flexibler, birgt aber die Gefahr von Unübersicht-
lichkeit, da viele Akteure gleichzeitig Branches anlegen können. Um diesem Risiko
zu begegnen, ist es sinnvoll, vorab verbindliche Namenskonventionen, Rollenver-
teilungen und Qualitätskriterien für Branches festzulegen und teamübergreifend zu
kommunizieren.

In kleineren Projekten oder bei enger Abstimmung im Team ist die dezentrale Va-
riante häufig praktikabel. In größeren Teams oder bei gleichzeitiger Arbeit an meh-
reren Systemmodellen empfiehlt sich die zentrale Übernahme der Branch-Erstel-
lung durch das SE-Management-Team, da so eine einheitliche Struktur gewahrt und
die Kollaboration gezielter gesteuert werden kann.

Prozessdurchführung und Bewertung Seite 83

Bild 5‑27 zeigt ein solches Swimlane-Diagramm zur Repository-Verwaltung, das
den dezentralen Ablauf exemplarisch abbildet: Das SE-Management-Team über-
nimmt die Pflege und Strukturierung des GitLab-Repositories. Die technischen
Teams arbeiten eigenständig an Systemmodellen, indem sie nach Bedarf Feature-
Branches anlegen, Änderungen lokal in der .sysml-Datei im Verzeichnis Sys-
tem_Models vornehmen und ihre Arbeit anschließend in das zentrale Repository
hochladen. Sobald alle relevanten Änderungen implementiert sind, initiiert das SE-
Management-Team einen MR, um den Integrationsprozess zu starten. Im Review-
Prozess wird geprüft, ob die Modelländerungen den vereinbarten Qualitätskriterien
entsprechen. Bei positiver Bewertung werden die Änderungen in den main-Branch
übernommen. Bei Ablehnung werden die entsprechenden Fachteams benachrichtigt
und zur Überarbeitung aufgefordert.

Bild 5-27 Swimlane-Diagramm zur Repository-Verwaltung
(eigene Darstellung)

Prozessdurchführung und Bewertung Seite 84

Rolle zur Repository-Verwaltung

Im Verlauf der Testszenarien wurde deutlich, dass die Einrichtung, Pflege und Wei-
terentwicklung des Repositories sowie der zugehörigen CI/CD-Pipeline speziali-
siertes Wissen erfordert, das nicht bei allen Teammitgliedern vorausgesetzt werden
kann. Besonders in den initialen Phasen – etwa beim Aufsetzen der CI-Konfigura-
tion, der Anpassung der .gitlab-ci.yml-Datei sowie der Einrichtung einer sinnvollen
Projektstruktur – entsteht ein erheblicher Mehraufwand. Darüber hinaus ist eine
kontinuierliche Überwachung notwendig, um sicherzustellen, dass alle automati-
sierten Prozesse zuverlässig funktionieren.

Vor diesem Hintergrund erscheint es sinnvoll, eine dedizierte Rolle für die techni-
sche Betreuung von Git und CI/CD-Prozessen vorzusehen – beispielsweise in der
Funktion eines „Konfigurations-Managers“. Diese Person wäre nicht nur für die
Wartung der CI/CD-Konfigurationen und die Weiterentwicklung der Git-Struktur
verantwortlich, sondern könnte auch als zentrale Ansprechperson bei Fragen zur
Git-Nutzung dienen. Voraussetzung dafür ist ein solides Verständnis der Git-Kon-
zepte und -Workflows. Optional könnte diese Rolle auch Schulungen oder Onboar-
dings für neue Teammitglieder durchführen, um einen einheitlichen Wissensstand
im Umgang mit Git sicherzustellen.

Entscheidend ist dabei die Klärung folgender Fragen: Welche Aufgaben fallen re-
gelmäßig an, welche sind eher einmalig? Wie hoch ist der laufende Aufwand zur
Betreuung der Infrastruktur? Und wie lässt sich diese Rolle sinnvoll in die beste-
hende Teamstruktur integrieren, ohne unnötige Hierarchieebenen zu schaffen?

Integration in Toollandschaft und Rückverfolgbarkeit

Ein zentraler Vorteil des Git-basierten Ansatzes in Kombination mit der textuellen
Notation von SysML v2 besteht in der Möglichkeit, Änderungen an einzelnen Sys-
temelementen gezielt nachzuverfolgen. Bild 5‑28 zeigt exemplarisch, wie Modifi-
kationen an package- und part-Elementen im .sysml-Dateiformat über die GitLab-
Oberfläche differenziert dargestellt werden. Jede Änderung im Text – selbst auf
Zeilenebene – lässt sich so revisionssicher dokumentieren und dem jeweiligen Be-
arbeitungszeitpunkt sowie dem verantwortlichen Teammitglied zuordnen.

Auch die Integration des JN erweist sich im Rahmen der gewählten Toolkette als
sinnvoll. Die Möglichkeit, Markdown-Zellen zur strukturierten Dokumentation zu
nutzen und gleichzeitig durch den SysML-Kernel systemtechnische Inhalte darzu-
stellen, schafft eine leistungsfähige Umgebung für die Modellvisualisierung und
Berichtserstellung. Dies fördert nicht nur die Lesbarkeit, sondern ermöglicht auch
eine bessere Trennung zwischen Beschreibung, Code und generierten Ergebnissen.

Prozessdurchführung und Bewertung Seite 85

Bild 5-28 Änderungsübersicht in GitLab für .sysml-Dateien
(eigener Screenshot, GitLab UI)

Die Einführung und Etablierung eines Git-basierten Workflows in der modellba-
sierten Systementwicklung bringt zunächst gewisse Herausforderungen mit sich –
insbesondere im Hinblick auf die Einrichtung der Toolkette, die CI/CD-Konfigura-
tion und die Schulung der Beteiligten im Umgang mit Git und der textuellen Nota-
tion. Langfristig jedoch zeigt sich, dass diese Investitionen zu einem robusten,
nachvollziehbaren und effizient wartbaren Entwicklungsprozess führen. Sobald die
Abläufe etabliert und die Rollen geklärt sind, sinkt der operative Aufwand deutlich,
und die Vorteile eines versionierbaren Systemmodells treten deutlich hervor.

Zusammenfassung und Ausblick Seite 86

6 Zusammenfassung und Ausblick
Ziel dieser Arbeit war die Untersuchung der Integration von Git mit SysML v2-
Modellen zur Versionskontrolle und Kollaboration im modellbasierten Systems En-
gineering (MBSE). Im Fokus standen insbesondere die Potenziale und Herausfor-
derungen einer Git-basierten Verwaltung von Systemmodellen im Kontext sicher-
heitskritischer Systeme. Die Arbeit orientierte sich am Design Science Research
(DSR)-Ansatz und kombinierte methodische Analyse mit praktischer Gestaltung
und Evaluation.

Zur Beantwortung der Forschungsfragen wurde ein exemplarisches UAV-Modell
mit dem Cameo Systems Modeler (CSM) und dem SysML v2-Plugin entwickelt.
Dieses wurde über GitLab in Kombination mit Jupyter Notebook (inkl. SysML-
Kernel) versioniert, automatisiert geprüft und kollaborativ weiterentwickelt. Die
technische Umsetzung erfolgte iterativ anhand von acht Testszenarien, die eine pra-
xisnahe Bewertung des gewählten Workflows ermöglichten.

Die im Rahmen dieser Arbeit aufgeworfenen Forschungsfragen lassen sich auf
Grundlage der durchgeführten Analysen, Implementierungen und Testszenarien
wie folgt beantworten:

1. Wie lässt sich die bestehende Kollaborationsstruktur im MBSE unter Be-
rücksichtigung relevanter Luftfahrtstandards und Teamstrukturen analysie-
ren?

Die Analyse der Forschungsumgebung zeigte, dass Kollaboration im MBSE stark
durch organisatorische und regulatorische Rahmenbedingungen geprägt ist. Insbe-
sondere in sicherheitskritischen Domänen wie der Luftfahrt müssen Standards wie
ARP4754B, ARP4761A und ISO/IEC 15288 berücksichtigt werden, die klare Ver-
antwortlichkeits- und Dokumentationsstrukturen verlangen. Die durchgeführten
Umfragen und RACI-Analysen zeigten zudem, dass eine effektive Kollaboration
eine eindeutige Rollenverteilung, eine abgestimmte Methodik sowie eine geeignete
technische Infrastruktur voraussetzt.

Die in Kapitel 3.5 identifizierten teaminternen Herausforderungen bestätigten die
Relevanz dieser Analyse. Sie wurden systematisch den in der Literatur beschriebe-
nen Problemfeldern zugeordnet und bildeten eine zentrale Grundlage für die Ge-
staltung des Git-basierten Kollaborationsprozesses. Die Arbeit zeigt exemplarisch,
wie sich solche praktischen Herausforderungen durch gezielte methodische und
technische Maßnahmen adressieren lassen – etwa durch die Definition klarer Rollen
(vgl. RACI-Matrix), eine strukturierte Repository-Organisation oder den Einsatz
CI-gestützter Prüfroutinen.

Zusammenfassung und Ausblick Seite 87

2. Welche Werkzeug-Konfigurationsrichtlinien sind erforderlich, um eine ef-
fiziente Nutzung von Git mit SysML v2 zu gewährleisten?

Die Integration von Git mit SysML v2 erfordert spezifische Konfigurationsrichtli-
nien, um eine effiziente und skalierbare Zusammenarbeit zu ermöglichen. Dazu
zählen:

· Eine modulare Strukturierung des Repositories zur besseren Trennung von
Verantwortlichkeiten,

· eine konsistente Branch-Strategie zur Steuerung von Entwicklungsaktivitä-
ten,

· die Nutzung standardisierter Merge-Request-Vorlagen mit technischen und
inhaltlichen Prüfkriterien,

· sowie die Definition von Konventionen zur textuellen Modellierung.

Die textuelle Notation von SysML v2 ermöglicht eine quellcodeähnliche Handha-
bung von Systemmodellen, wodurch sich Modelländerungen strukturiert verwalten,
nachverfolgen und automatisiert verarbeiten lassen. Dieser Ansatz erlaubt es, Prin-
zipien aus dem DevOps-Umfeld in das MBSE zu integrieren – etwa durch CI/CD,
automatisierte Prüfprozesse und die verlässliche Generierung einheitlicher Modell-
stände.

3. Wie kann ein Git-basierter Arbeitsablauf für SysML v2 gestaltet und imple-
mentiert werden?

Der entworfene Kollaborationsprozess orientiert sich am GitHub Flow und wurde
um MBSE-spezifische Erweiterungen ergänzt. Die finale Repository-Struktur, die
in Kapitel 5 dokumentierte CI/CD-Pipeline sowie das Swimlane-Diagramm zur
Verantwortlichkeitsverteilung ermöglichen eine nachvollziehbare, skalierbare Ar-
beitsweise. Besondere Aufmerksamkeit erhielt die Rolle eines potenziellen „Kon-
figuration Managers“, der für Wartung, technische Unterstützung und Schulung zu-
ständig sein könnte.

4. Inwiefern ermöglicht dieser Arbeitsablauf eine verbesserte Nachverfolgbar-
keit und Effizienz in der modellbasierten Entwicklung sicherheitskritischer
Systeme?

Die Git-basierte Verwaltung von SysML v2-Modellen erlaubt eine detaillierte und
transparente Nachverfolgung aller Änderungen auf Elementebene. Änderungen an
Packages, Parts oder anderen Modellkomponenten sind versioniert, vergleichbar
und im GitLab-UI visuell nachvollziehbar (vgl. Bild 5‑28). Dies fördert nicht nur
die Rückverfolgbarkeit, sondern erleichtert auch die Kommunikation zwischen
Fachteams. Zudem ermöglicht die Integration von GitLab, Jupyter Notebook und
dem SysML-Kernel eine nahtlose Verbindung zwischen Modellierung,

Zusammenfassung und Ausblick Seite 88

Dokumentation und Automatisierung. Dies verbessert die Effizienz insbesondere
bei repetitiven Aufgaben, bei der Analyse von Modellständen sowie beim Review
technischer Inhalte.

Die im Rahmen dieser Arbeit gewonnenen Erkenntnisse zeigen, dass die Integra-
tion von Git in die modellbasierte Systementwicklung mit SysML v2 nicht nur tech-
nisch möglich, sondern auch methodisch sinnvoll ist. Insbesondere die Nutzung der
textuellen Notation von SysML v2 bietet neue Gestaltungsmöglichkeiten für die
Verwaltung, Nachverfolgbarkeit und Automatisierung von Systemmodellen. Der
modellierte Git-basierte Arbeitsablauf zeigt, wie Prinzipien aus der Softwareent-
wicklung, wie beispielsweise CI/CD, strukturiert in das MBSE übertragen werden
können, um nachvollziehbare und wartbare Modellstände zu erzeugen.

Ein zentrales Ergebnis ist die Erkenntnis, dass die Offenheit der SysML v2-Text-
notation in Kombination mit Git die technische Grundlage schafft, um Systemmo-
delle ähnlich wie Quellcode zu versionieren. Damit wird eine effizientere Zusam-
menarbeit über Teamgrenzen hinweg möglich – sowohl innerhalb eines Projekts als
auch perspektivisch in interorganisationalen Konstellationen. Zugleich wird deut-
lich, dass diese Offenheit auch eine stärkere methodische und organisatorische Or-
chestrierung erfordert. Eine Git-basierte Kollaboration setzt voraus, dass klare
Spielregeln zur Branch-Nutzung, zu Verantwortlichkeiten und zur Toolverwen-
dung etabliert sind. Die in dieser Arbeit entwickelte RACI-Matrix, das Swimlane-
Diagramm zur Rollenverteilung und die CI-Pipeline zeigen exemplarisch, wie ein
solcher Rahmen gestaltet werden kann.

Die Erfahrungen aus den Testszenarien belegen zudem, dass insbesondere in der
Einführungsphase ein erheblicher Konfigurations- und Betreuungsaufwand ent-
steht. Die Einrichtung der CI/CD-Pipeline, die Pflege der GitLab-Struktur sowie
die Tool-Integration erfordern spezifisches Wissen und technisches Verständnis.
Dieser initiale Aufwand sollte jedoch nicht als Hürde, sondern als Investition in
eine langfristig skalierbare und transparente Modellierungskultur betrachtet wer-
den. In einem interdisziplinären Umfeld wie dem DLR kann eine solche Infrastruk-
tur die Zusammenarbeit zwischen SE-Management und technischen Teams deut-
lich strukturieren und beschleunigen – insbesondere, wenn sie auf konkrete, zuvor
identifizierte Herausforderungen reagiert, wie sie in Kapitel 3.5 erhoben wurden.

Gleichzeitig sind einige Limitationen zu berücksichtigen. Die grafische Darstellung
von Anforderungen in SysML v2 ist aktuell noch nicht auf dem Niveau von
SysML v1 – insbesondere, wenn es um Matrixansichten oder die übersichtliche Na-
vigation großer Anforderungsbäume geht. Eine hybride Lösung, etwa durch die
Kopplung mit einem externen Anforderungsmanagement-Werkzeug wie Jira oder
DOORS, erscheint gegenwärtig sinnvoll. Auch die Plattformabhängigkeit einzelner
Tools (etwa des Cameo Systems Modelers) und Einschränkungen in der Jupyter-
Notebook-Integration stellen technische Herausforderungen dar, die den Einsatz im

Zusammenfassung und Ausblick Seite 89

Alltag erschweren können. Zudem ist die Kollaboration in dieser Arbeit nur inner-
halb eines Teams betrachtet worden. Die Erweiterung auf externe Partner oder Zu-
lieferer bringt weitere organisatorische und sicherheitstechnische Fragestellungen
mit sich, die in zukünftigen Arbeiten untersucht werden sollten.

Vor diesem Hintergrund ergeben sich mehrere Anschlussfragen für die weitere For-
schung:

· Wie lassen sich Git-basierte Modellierungsprozesse in größeren Organisa-
tionen oder zwischen verschiedenen Unternehmen skalieren?

· Welche Rolle können API und Services von SysML v2 spielen, um eine
modellzentrierte Integration über Toolgrenzen hinweg zu ermöglichen?

· Wie muss ein Organisationskonzept für modellbasierte Entwicklungsinfra-
strukturen aussehen, das sowohl methodische Leitlinien als auch technische
Unterstützung (z. B. in Form eines Konfigurationsmanagers) umfasst?

Auch die Weiterentwicklung der Toollandschaft – insbesondere hinsichtlich der
Benutzerfreundlichkeit von SysML v2-Werkzeugen und der Interoperabilität zwi-
schen Modellierungsumgebungen – bleibt ein zentrales Forschungsthema.

Insgesamt zeigen die Ergebnisse, dass die Kombination von Git und SysML v2 in
der Lage ist, bestehende Lücken in der Nachvollziehbarkeit und Versionskontrolle
in MBSE-Prozessen zu schließen. Die methodische Gestaltung solcher Prozesse
bleibt jedoch ein kritischer Erfolgsfaktor. Die hier erarbeiteten Strukturen bieten
dafür einen praxisnahen Ausgangspunkt – sowohl für die interne Optimierung im
DLR als auch für die Weiterentwicklung von Best Practices in der modellbasierten
Entwicklung sicherheitskritischer Systeme.

Literaturverzeichnis Seite 90

Literaturverzeichnis
Ahlbrecht, A., Lukić, B., Zaeske, W., & Durak, U. (2024). Exploring SysML v2 for
Model-Based Engineering of Safety-Critical Avionics Systems. 2024 AIAA DATC/IEEE
43rd Digital Avionics Systems Conference (DASC), 1–8.
https://doi.org/10.1109/DASC62030.2024.10749311

Alsaqqa, S., Sawalha, S., & Abdel-Nabi, H. (2020). Agile Software Development: Meth-
odologies and Trends. International Journal of Interactive Mobile Technologies (iJIM),
14(11), 246. https://doi.org/10.3991/ijim.v14i11.13269

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., & Cunningham, W. (2001).
Manifesto for Agile Software Development. https://agilemanifesto.org/

Costello, T. (2012). RACI—Getting Projects “Unstuck.” IT Professional, 14(2), 64–63.
https://doi.org/10.1109/MITP.2012.41

Cui, J. (2024). Research on DevOps Architecture Design and Git Flow Code Workflow
Architecture Design: A case study. https://doi.org/10.13140/RG.2.2.20367.60327

Dassault Systèmes. (2023, May 22). Cameo Systems Modeler. Dassault Systèmes.
https://www.3ds.com/products/catia/no-magic/cameo-systems-modeler

exapp.ca. (2024, March 25). Agile software development: Everything you need to know.
https://www.nexapp.ca/en/blog/agile-software-development

Friedenthal, S. (2024, January). INCOSE IW SysML v1 to SysML v2 Transition Infor-
mation Session January 28, 2024.

Friedenthal, S., Moore, A., & Steiner, R. (2009). OMG Systems Modeling Language
(OMG SysMLTM) Tutorial September, 2009.

Ghodke, G. M., & Chavan, T. (2024). An Overview of Git. International Journal of Sci-
entific Research in Modern Science and Technology, 3(6), 17–23.
https://doi.org/10.59828/ijsrmst.v3i6.216

Gowda, P. G. A. N. (2022). Git branching and release strategies.
https://doi.org/10.5281/ZENODO.14221771

Gräßler, I., Thiele, H., Grewe, B., & Hieb, M. (2022). Responsibility Assignment in Sys-
tems Engineering. Proceedings of the Design Society, 2, 1875–1884.
https://doi.org/10.1017/pds.2022.190

Haberfellner, R., De Weck, O., Fricke, E., & Vössner, S. (2019). Systems Engineering:
Fundamentals and Applications. Springer International Publishing.
https://doi.org/10.1007/978-3-030-13431-0

Literaturverzeichnis Seite 91

Hevner, March, Park, & Ram. (2004). Design Science in Information Systems Research.
MIS Quarterly, 28(1), 75. https://doi.org/10.2307/25148625

Hick, H., Bajzek, M., & Faustmann, C. (2019). Definition of a system model for model-
based development. SN Applied Sciences, 1(9). https://doi.org/10.1007/s42452-019-
1069-0

International Council on Systems Engineering. (2007, September). SYSTEMS ENGI-
NEERING VISION 2020. International Council on Systems Engineering (INCOSE).
https://sdincose.org/wp-content/uploads/2011/12/SEVision2020_20071003_v2_03.pdf

ISO/IEC & IEEE. (2023). ISO/IEC/IEEE 15288:2023(en), Systems and software engi-
neering—System life cycle processes. https://www.iso.org/obp/ui/en/#iso:std:iso-iec-
ieee:15288:ed-2:v1:en

Jayaraman, K. D., & Rastogi, D. (2025). Best Practices for DevOps Integration in Enter-
prise Software Development. https://doi.org/10.5281/ZENODO.14769328

Kaiser. (2013). Kaiser—Rahmenwerk zur Modellierung plausibler Systemstrukturen.pdf.

Kim, G., Humble, J., Debois, P., & Willis, J. (2016). The devOps handbook: How to cre-
ate world-class agility, reliability, & security in technology organizations. IT Revolution
Press, LLC.

Krupa, G. P. (2019). Application of Agile Model-Based Systems Engineering in aircraft
conceptual design—Full. The Aeronautical Journal, 123(1268), 1561–1601.
https://doi.org/10.1017/aer.2019.53

Li, Z., Faheem, F., & Husung, S. (2024). Collaborative Model-Based Systems Engineer-
ing Using Dataspaces and SysML v2. Systems, 12(1), 18. https://doi.org/10.3390/sys-
tems12010018

Madni, A. M., Augustine, N., & Sievers, M. (Eds.). (2023). Handbook of Model-Based
Systems Engineering. Springer International Publishing. https://doi.org/10.1007/978-3-
030-93582-5

May, M., & Zerwas, T. (2025). Enabling broader access to MBSE system models using
collaborative engineering platforms and SysMLv2.

Nyembe, F. H., Van Der Poll, J. A., & Lotriet, H. H. (2023). Formal Methods for an Agile
Scrum Software Development Methodology. Proceedings of the International Confer-
ence on Advanced Technologies, ICAT23. https://doi.org/10.58190/icat.2023.35

OMG Systems Modeling Community. (n.d.). Systems-Modeling/SysML-v2-Release: The
latest incremental release of SysML v2. Start here. Retrieved April 21, 2025, from
https://github.com/Systems-Modeling/SysML-v2-Release

Literaturverzeichnis Seite 92

OMG Systems Modeling Language. (2024). SysML v2.0, Part 1: Language Specification
(Version Version 2.0 Beta 2). https://www.omg.org/spec/SysML/2.0/Beta2/Lan-
guage/PDF

prostep ivip Association. (2023). Recommendation_SysML_WF-IF. https://www.ps-ent-
2023.de/fileadmin/prod-download/Recommendation_SysML_WF-IF.pdf

SAE Aerospace Recommended Practice. (2023a). ARP4754B - Guidelines for Develop-
ment of Civil Aircraft and Systems.

SAE Aerospace Recommended Practice. (2023b). ARP4761A - Guidelines for Conduct-
ing the Safety Assessment Process on Civil Aircraft, Systems, and Equipment. SAE Inter-
national.

Schwaber, K., & Sutherland, J. (2020, November). Der Scrum Guide—Der gültige Leit-
faden für Scrum: Die Spielregeln. https://scrumguides.org/docs/scrumguide/v2020/2020-
Scrum-Guide-German.pdf

Spinellis, D. (2012). Git. IEEE Software, 29(3), 100–101.
https://doi.org/10.1109/MS.2012.61

Walden, D. D. & International Council on Systems Engineering (Eds.). (2023). INCOSE
systems engineering handbook (Fifth edition). John Wiley & Sons Ltd.

Wouters, L., Creff, S., Bella, E. E., & Koudri, A. (2017). Collaborative systems engineer-
ing: Issues & challenges. 2017 IEEE 21st International Conference on Computer Sup-
ported Cooperative Work in Design (CSCWD), 486–491.
https://doi.org/10.1109/CSCWD.2017.8066742

Anhang Seite 93

Anhang

Inhaltsverzeichnis Seite

A1 – Gesamtüberblick ISO/IEC 15288:2023-Prozesse ………………… 94

A2 – Übersicht verschiedener Git-Befehle ……………………………… 95

A3 – Ergebnisse der Teamumfrage ………………………………………. 97

A4 – Übersicht der SysML-Kernel-Kommandos in Jupyter Notebook 103

A5 – Screenshots zu Testszenario #1 – Export und Commit-Validie-
rung …………………………………………………………………………….. 104

A6 – Screenshots zu Testszenario #2 – Anzeige und Bearbeitung im
JN ……………………………………………………………………………….. 107

A7 – Screenshots zu Testszenario #3 – Multi-Tool-Kompatibilität …. 111

A8 – Screenshots zu Testszenario #4 – Versionierung und Roll-
back …………………………………………………………………………….. 113

A9 – Screenshots zu Testszenario #5 – GitHub Flow Test …………… 116

A10 – Screenshots und Python-Skript zu Testszenario #6 – Auto-
matisierte Konfigurationsprüfung ………………………………………… 118

A11 – Screenshots und Python-Skript zu Testszenario #7 – Auto-
matisierte Syntaxprüfung …………………………………………………... 123

A12 – Screenshots und Python-Skript zu Testszenario #8 – Au-to-
matisierte Dokumentenerstellung ………………………………………… 128

A1 Gesamtüberblick ISO/IEC 15288:2023-Prozesse

Cat. ISO ID # Prozess (Engl.)

AP 6.1.1 Acquisition Process

AP 6.1.2 Supply Process

OPEP 6.2.1 Life Cycle Model Management Process

OPEP 6.2.2 Infrastructure Management Process

OPEP 6.2.3 Project Portfolio Management Process

OPEP 6.2.4 Human Resource Management Process

OPEP 6.2.5 Quality Management Process

OPEP 6.2.6 Knowledge Management Process

TMP 6.3.1 Project Planning Process

TMP 6.3.2 Project Assessment and Control Process

TMP 6.3.3 Decision Management Process

TMP 6.3.4 Risk Management Process

TMP 6.3.5 Configuration Management Process

TMP 6.3.6 Information Management Process

TMP 6.3.7 Measurement Process

TMP 6.3.8 Quality Assurance Process

TP 6.4.1 Business or Mission Analysis Process

TP 6.4.2 Stakeholder Needs and Requirements Definition Process

TP 6.4.3 System Requirements Definition Process

TP 6.4.4 System Architecture Definition Process

TP 6.4.5 Design Definition Process

TP 6.4.6 System Analysis Process

TP 6.4.7 Implementation Process

TP 6.4.8 Integration Process

TP 6.4.9 Verification Process

TP 6.4.10 Transition Process

TP 6.4.11 Validation Process

TP 6.4.12 Operation Process

TP 6.4.13 Maintenance Process

TP 6.4.14 Disposal Process

A2 Übersicht verschiedener Git-Befehle

Git-Befehl Funktionsbeschreibung

git init Initialisiert ein neues Git-Repository im aktuellen Verzeichnis

´git clone <repo
URL>´

Klont ein entferntes Repository lokal

´git status´ Zeigt den aktuellen Status des Repositories / Zeigt den Status der Dateien
(staged, unstaged, untracked)

´git add <file>´ Stellt eine bestimmte Datei für den nächsten Commit bereit

´git add .´ Stellt alle Änderungen im aktuellen Verzeichnis bereit

´git commit -m
"msg"´

Commit der vorgemerkten Änderungen mit einer Nachricht

´git log´ Zeigt die Historie der Commits an

´git diff´ Zeigt Änderungen zwischen Arbeitsverzeichnis und Index oder Commits

´git branch´ Listet alle lokalen Branches auf

´git branch
<name>´

Erstellt einen neuen Branch mit dem angegebenen Namen

´git checkout
<branch>´

Wechselt zu einem anderen Branch

´git checkout -b
<name>´

Erstellt und wechselt zu einem neuen Branch

´`git merge
<branch>´

Führt den angegebenen Branch in den aktuellen zusammen

´git pull´ Holt und integriert Änderungen vom Remote-Repository

´git push´ Überträgt lokale Commits zum Remote-Repository

´git remote -v´ Zeigt die URLs der konfigurierten Remotes an

´git fetch´ Holt Änderungen vom Remote-Repository ohne zu mergen

´git reset <file>´ Entfernt eine Datei aus dem Staging-Bereich

´git reset --
hard´

Setzt den Stand auf den letzten Commit zurück (Vorsicht: destruktiv)

´git rm <file>´ Entfernt eine Datei und merkt die Löschung für den nächsten Commit vor

´git stash´ Speichert temporär nicht committete Änderungen

´git stash pop´ Wendet die zuletzt gespeicherten Änderungen wieder an und entfernt sie

´git tag´ Zeigt alle Tags im Repository an

´git tag
<name>´

Erstellt einen neuen Tag

´git config´ Zeigt oder ändert die Git-Konfiguration (z. B. Benutzername, E-Mail)

A4 Übersicht der SysML-Kernel-Kommandos in Jupyter Note-
book

Befehl Funktionsbeschreibung

%eval Eine gegebene Expression auswerten

%export Eine Datei mit der JSON-Repräsentation des abstrakten Syntaxbaums ei-
nes benannten Elements speichern

%help Eine Liste verfügbarer Befehle anzeigen oder Hilfe zu einem bestimmten
Befehl aufrufen

%list Geladene Bibliothekspakete oder die Ergebnisse einer Abfrage auflisten

%show Den abstrakten Syntaxbaum eines benannten Elements ausgeben

%publish Die Modellelemente, die in einem benannten Element verwurzelt sind, in
das Repository veröffentlichen

%view Die durch die benannte View Usage definierte Ansicht rendern

%viz Die benannten Modellelemente visualisieren

A5 Screenshots zu Testszenario #1 – Export und Commit-Va-
lidierung
CSM mit SysML v2-Plugin:

Bild A5-1 Customer Requirements

Bild A5-2 SOS Requirements

Bild A5-3 System Requirements

Git CLI:

Bild A5-4 Git CLI (1)

Bild A5-5 Git CLI (2)

GitLab UI:

Bild A5-6 GitLab UI nach Testabschluss

A6 Screenshots zu Testszenario #2 – Anzeige und Bearbei-
tung im JN
JN SysML-Kernel:

Bild A6-1 SysML-Kernel in JN

Bild A6-2 UAV Requirements in JN (1)

Bild A6-3 UAV Requirements in JN (2)

Bild A6-4 Manuelle Eingaabe der Constraints und Attribute für „requirement
<5_5> (Zeile 86-89)“

Bild A6-5 Ergebnis nach der manuellen Anpassung von „requirement <5_5>“

Git CLI:

Bild A6-6 Git CLI (1)

Bild A6-7 Git CLI (2)

GitLab UI:

Bild A6-8 Versionierung der Änderungen von „requirement <5_5>“ in GitLab

Bild A6-9 GitLab UI nach Testabschluss

A7 Screenshots zu Testszenario #3 – Multi-Tool-Kompatibili-
tät (CSM und JN)
CSM mit SysML v2-Plugin:

Bild A7-1 Containment-Baum nach import der „Requirements.sysml“-Datei

Bild A7-2 Vergleich der ursprünglichen (Links) und modifizierten (Rechts) Anfor-
derung „Requirement <5_5>“ im View-Diagramm „Req_New“

Bild A7-3 Importierte „Requirements.sysml“-Datei als textuelle Notation in CSM

A8 Screenshots zu Testszenario #4 – Versionierung und Roll-
back
CSM mit SysML v2-Plugin:

Bild A8-1 SOI Use Cases in Behavior.sysml

Git CLI:

Bild A8-2 `git log`-Befehl

GitLab UI:

Bild A8-3 Commit-Verlauf nach Testabschluss

Bild A8-4 GitLab UI vor ´git revert´

Bild A8-5 GitLab UI nach ´git revert´

A9 Screenshots zu Testszenario #5 – GitHub Flow Test (Kol-
laborationsworkflow)
GitLab UI:

Bild A9-1 Branches-Übersicht in GitLab Repository

Bild A9-2 GitLab Merge Request (1)

Bild A9-3 GitLab Merge Request (2)

Bild A9-4 GitLab Merge Request (3)

Bild A9-5 Commit-Verlauf nach Testabschluss

A10 Screenshots und Python-Skript zu Testszenario #6 – Auto-
matisierte Konfigurationsprüfung
CSM mit SysML v2-Plugin:

Bild A10-1 SOS und SOI aus Structure.sysml in CSM mit SysML v2-Plugin

JN mit Python 3-Kernel:

Bild A10-2 Ergebnisse nach lokaler Ausführung von fix_config.ipynb in JN

GitLab CI/CD mit .gitlab-ci.yml:

Bild A10-3 Ausschnitt aus .gitlab-ci.yml

GitLab UI:

Bild A10-4 Screenshot nach erfolgreicher CI-Pipeline Funktion

Python-Skript fix_config.ipynb:

Python-Skript `fix_config.ipynb` zur automatischen Formatierung der SysML-Dateien
import os
import re
Pfad zum Verzeichnis, das die zu überprüfenden SysML-Modelldateien
enthält
FOLDER_PATH = "./System_Models"
Gültige Schlüsselwörter (SysML-spezifisch), die ohne Anführungs-
zeichen verwendet werden dürfen
VALID_TERMS = {
 'part', 'block', 'requirement', 'constraint', 'package', 'im-
port', 'diagram', 'property', 'flow', 'port', 'interface', 'associa-
tion', 'value', 'type', 'connector', 'relationship', 'actor', 'sig-
nal', 'state', 'transition', 'event', 'operation', 'input', 'out-
put', 'use', 'case', 'subject', 'include', 'first', 'then', 'requi-
re', 'attribute', 'def', 'doc', 'view', 'private', 'in', 'out',
'library', 'item', 'action', 'inout', 'allocation', 'ref', 'end',
'analysis', 'objective', 'loop', 'assert', 'calc', 'stakeholder',
'assume', 'concern', 'connection', 'do', 'exit', 'enum', 'occur-
rence', 'time', 'timeslice', 'exhibit', 'metadata', 'perform', 'as-
sign', 'self', 'send', 'null', 'if', 'while', 'true', 'false',

'join', 'done', 'start', 'fork', 'merge', 'decide', 'verification',
'to', 'accept', 'satisfy', 'connect', 'bind', 'frame', 'for', 'i',
'ISQ', 'dependency', 'comment', 'locale', 'rep', 'language',
'about', 'alias', 'abstract', 'variation', 'variant', 'subsets',
'redefines', 'specializes', 'references', 'ordered', 'nonunique',
'individual', 'snapshot', 'message', 'succession', 'via', 'from',
'entry', 'parallel', 'verify', 'filter', 'render', 'expo-
se','viewpoint'
}
Regulärer Ausdruck zum Erkennen korrekt gesetzter Anführungszei-
chen
QUOTE_REGEX = re.compile(r"'[^']*'")
def quote_identifier_if_needed(token):
 # Prüft, ob ein Begriff in Anführungszeichen gesetzt werden muss
 if token in VALID_TERMS or QUOTE_REGEX.fullmatch(token):
 return token
 return f"'{token}'"
def fix_colon_arrow_line(line): # Korrigiert fehlerhafte Zeilen mit
dem Operator ':>', wobei Einrückungen beibehalten und doppelte Kor-
rekturen vermieden werden.
 if ':>' not in line or ';' not in line:
 return line # Zeilen ohne ':>' werden übersprungen
 # Einrückung ermitteln
 indent_match = re.match(r"^(\s*)", line)
 indentation = indent_match.group(1) if indent_match else ""
 # Regulärer Ausdruck für korrekte Syntax
 valid_term_pattern = '|'.join(re.escape(term) for term in
VALID_TERMS)
 correct_pattern = rf"^\s*({valid_term_pat-
tern})\s+'[^']+'\s+:>\s+'[^']+'(?:::'[^']+')*;\s*$"
 if re.match(correct_pattern, line.strip(), re.IGNORECASE):
 return line # Format bereits korrekt
 # Struktur extrahieren und neu zusammensetzen
 match = re.match(r"^\s*(\w+)\s+([^:]+)\s*:>\s*([^;]+);",
line.strip())
 if not match:
 return line # Zeile passt nicht zum erwarteten Muster
 keyword = match.group(1).strip()
 lhs = match.group(2).strip().replace("'", "")

 rhs = match.group(3).strip().replace("'", "")
 lhs_quoted = f"'{lhs}'"
 rhs_quoted = "::".join(f"'{seg.strip()}'" for seg in
rhs.split("::"))
 return f"{indentation}{keyword} {lhs_quoted} :> {rhs_quoted};\n"
def fix_line(line):
 # Hauptfunktion zur Zeilenkorrektur
 stripped = line.strip()
 if stripped.startswith("doc /*") or "doc /*" in stripped:
 return line # Kommentare bleiben unverändert
 # Ignoriere bestimmte "first ... then ...;" Konstrukte
 if stripped.startswith("first '") and " then " in stripped and
stripped.endswith("';"):
 return line
 # Versuche zuerst die ':>'-Struktur zu korrigieren
 fixed = fix_colon_arrow_line(line)
 if fixed != line:
 return fixed
 # Korrektur von falsch geschriebenen 'include use case'
 line = re.sub(r"include\s+'use'\s+case", "include use case",
line)

 # Quoting von Namespace-Elementen (z. B. package::element)
 def replace_namespaced(match):
 parts = match.group().split("::")
 return "::".join(quote_identifier_if_needed(p) for p in
parts)
 line = re.sub(r"\b(?:[A-Za-z_][\w\-]*::)+[A-Za-z_][\w\-]*\b",
replace_namespaced, line)
 # Setzt Anführungszeichen für unbekannte Begriffe nach bekannten
Schlüsselwörtern
 def keyword_replacer(match):
 keyword, token = match.group(1), match.group(2)
 if token in VALID_TERMS or QUOTE_REGEX.fullmatch(token):
 return f"{keyword} {token}"
 return f"{keyword} '{token}'"

 pattern = r"\b(" + "|".join(sorted(VALID_TERMS, key=len, re-
verse=True)) + r")\s+([^\s';{}\[\]:]+)"
 line = re.sub(pattern, keyword_replacer, line)
 # Verschachtelte Anführungszeichen korrigieren
 line = re.sub(r"'([^']*)'([^']*)'([^']*)'", lambda m:
f"'{m.group(1)}{m.group(2)}{m.group(3)}'", line)
 return line
def process_file(file_path):
 # Führt die Zeilenkorrektur für eine einzelne Datei durch
 with open(file_path, "r", encoding="utf-8") as f:
 lines = f.readlines()
 fixed_lines = []
 changed = False
 fix_count = 0
 for line in lines:
 fixed_line = fix_line(line)
 fixed_lines.append(fixed_line)
 if fixed_line != line:
 changed = True
 fix_count += 1
 if changed:
 # Überschreibt die Datei mit den korrigierten Zeilen
 with open(file_path, "w", encoding="utf-8") as f:
 f.writelines(fixed_lines)
 print(f"Fixed {fix_count} issues in: {os.path.base-
name(file_path)}")
 else:
 print(f"No changes in: {os.path.basename(file_path)}")
def run_fix():
 # Durchläuft das Modellverzeichnis und verarbeitet alle .sysml-
Dateien
 for filename in os.listdir(FOLDER_PATH):
 if filename.endswith(".sysml"):
 process_file(os.path.join(FOLDER_PATH, filename))
run_fix()# Start der automatisierten Korrektur

A11 Screenshots und Python-Skript zu Testszenario #7 – Auto-
matisierte Syntaxprüfung
JN mit Python 3-Kernel:

Bild A11-1 Konsolenausgabe des Syntaxprüfskripts

GitLab CI/CD mit .gitlab-ci.yml:

Bild A11-2 Ausschnitt aus .gitlab-ci.yml

Bild A11-3 Ausschnitt Pipeline-Skript aus GitLab CI

Python-Skript syntax_check.ipynb:

Python-Skript `syntax_check.ipynb` zur automatischen Qualitätsprüfung der SysML-Dateien

import os
import re
import sys
Definierte Liste aller gültigen Begriffe in SysML v2 (Referenz für
Syntaxprüfung)
VALID_TERMS = {
 'part', 'block', 'requirement', 'constraint', 'package', 'im-
port', 'diagram', 'property', 'flow', 'port', 'interface',
'association', 'value', 'type', 'connector', 'relationship', 'ac-
tor', 'signal', 'state', 'transition', 'event', 'operation', 'in-
put', 'output', 'use', 'case', 'subject', 'include', 'first',
'then', 'require', 'attribute', 'def', 'doc', 'view', 'private',
'in', 'out', 'library', 'item', 'action', 'inout', 'allocation',
'ref', 'end', 'analysis', 'objective', 'loop', 'assert', 'calc',
'stakeholder', 'assume', 'concern', 'connection', 'do', 'exit',
'enum', 'occurrence', 'time', 'timeslice', 'exhibit', 'metadata',
'perform', 'assign', 'self', 'send', 'null', 'if', 'while',
'true','false', 'join', 'done', 'start', 'fork', 'merge', 'de-
cide', 'verification', 'to', 'accept', 'satisfy', 'connect', 'bind',
'frame', 'for', 'i', 'ISQ', 'dependency', 'comment', 'locale',
'rep', 'language', 'about', 'alias', 'abstract', 'variation', 'vari-
ant', 'subsets', 'redefines', 'specializes', 'references', 'or-
dered', 'nonunique', 'individual', 'snapshot', 'message', 'successi-
on', 'via', 'from', 'entry', 'parallel', 'verify', 'filter', 'ren-
der', 'expose', 'viewpoint'
}
Funktion zum Entfernen von Text innerhalb von doc-Kommentarblöcken
oder Anführungszeichen
def remove_ignored_sections(line, in_doc_block):
 if 'doc /*' in line:
 in_doc_block = True
 if in_doc_block:
 if '*/' in line:
 in_doc_block = False
 return '', in_doc_block # Inhalt wird ignoriert
 line = re.sub(r"'[^']*'", '', line) # Inhalte in einfachen An-
führungszeichen werden entfernt
 return line, in_doc_block

Funktion zur Identifikation unbekannter oder falsch geschriebener
Begriffe
def find_unknown_terms(file_path, valid_terms):
 unknown_terms = []
 in_doc_block = False
 with open(file_path, 'r') as f:
 lines = f.readlines()
 for i, line in enumerate(lines, 1):
 clean_line, in_doc_block = remove_ignored_sections(line,
in_doc_block)
 if not clean_line.strip():
 continue
 # Zerlege Zeile in einzelne Wörter
 words = re.findall(r'\b\w+\b', clean_line)
 for word in words:
 word_lower = word.lower()
 if word_lower in valid_terms:
 # Groß-/Kleinschreibungsfehler erkennen
 if word != word_lower:
 unknown_terms.append((i, f"Capitalization
error: '{word}' should be lowercase", line.strip()))
 elif word_lower.isalpha():
 # Unbekannter Begriff
 unknown_terms.append((i, f"Unknown term:
'{word}'", line.strip()))
 return unknown_terms
Funktion zur Überprüfung auf Klammernfehler und fehlende Semiko-
lons
def check_braces_and_semicolons(file_path):
 issues = []
 brace_stack = [] # Stack zur Überprüfung von geschachtelten
Klammern
 in_doc_block = False

 with open(file_path, 'r') as f:
 lines = f.readlines()

 for i, line in enumerate(lines, 1):
 raw_line = line.strip()
 clean_line, in_doc_block = remove_ignored_sections(line,
in_doc_block)
 if not clean_line.strip():
 continue
 # Überprüfung auf geschlossene/geöffnete Klammern
 for char in clean_line:
 if char == '{':
 brace_stack.append((i, '{'))
 elif char == '}':
 if brace_stack:
 brace_stack.pop()
 else:
 issues.append((i, "Unmatched closing brace
'}'", raw_line))
 # Überprüfung auf fehlende Semikolons bei bestimmten
Schlüsselwörtern
 if re.match(r'\s*(actor|subject|include)\b', clean_line,
re.IGNORECASE):
 if not clean_line.strip().endswith(';'):
 issues.append((i, "Missing semicolon",
raw_line))
 # Noch offene geschweifte Klammern melden
 for brace in brace_stack:
 issues.append((brace[0], "Unmatched opening brace '{'",
lines[brace[0]-1].strip()))
 return issues
Flag zur Kennzeichnung, ob ein Fehler gefunden wurde
any_issues_found = False
Hauptfunktion zur Durchsuchung aller .sysml-Dateien im angegebenen
Verzeichnis
def scan_sysml_files(folder):
 global any_issues_found # Ermöglicht globale Änderung des Feh-
ler-Flags
 for filename in os.listdir(folder):
 if filename.endswith(".sysml"):

 file_path = os.path.join(folder, filename)
 print(f"\nScanning '{filename}'...")
 # Durchführung der Prüfungen
 unknown_term_issues = find_unknown_terms(file_path,
VALID_TERMS)
 syntax_issues = check_braces_and_semicolons(file_path)
 # Auswertung der Ergebnisse
 if unknown_term_issues or syntax_issues:
 any_issues_found = True # Fehler gefunden
 for line_num, word, line in unknown_term_issues:
 print(f"Line {line_num}: unknown term '{word}'")
 print(f" → {line}")
 for line_num, msg, line in syntax_issues:
 print(f"Line {line_num}: {msg}")
 print(f" → {line}")
 else:
 print("No issues found.")
Ordner mit den SysML-Modellen
FOLDER_PATH = "./System_Models"
Start der Analyse
scan_sysml_files(FOLDER_PATH)
Abbruch der Pipeline mit Fehlercode, falls Probleme gefunden wur-
den
if any_issues_found:
 sys.exit(1)

A12 Screenshots und Python-Skript zu Testszenario #8 – Auto-
matisierte Dokumentenerstellung
GitLab CI/CD mit .gitlab-ci.yml:

Bild A12-1 Ausschnitt aus .gitlab-ci.yml (1)

Bild A12-2 Ausschnitt aus .gitlab-ci.yml (2)

GitLab UI:

Bild A12-3 Die drei Pipelinestufen nach erfolgreichem CI-Durchlauf

Bild A12-4 Aufbau des Repositories nach der Testdurchführung

Python-Skript generate_render_notebook.ipynb:

Python-Skript `generate_render_notebook.ipynb` zur automatischen Berichterstellung der
SysML-Dateien in Jupyter Notebook
import os
import re
import nbformat
import hashlib
import json
from nbformat.v4 import new_notebook, new_markdown_cell,
new_code_cell
=== KONFIGURATION ===
model_dir = "System_Models" # Eingabeverzeichnis mit .sysml-
Modellen
output_dir = "SysML_Reports" # Ausgabeverzeichnis für gene-
rierte Notebooks
os.makedirs(output_dir, exist_ok=True) # Erstelle das Ausgabever-
zeichnis, falls nicht vorhanden
version_file = os.path.join(output_dir, "version_metadata.json") #
Datei mit Versionsinformationen
base_output = os.path.join(output_dir, "sysml_report") # Basisname
für generierte Reports
Funktion zur Erzeugung eines Hash-Werts für den Inhalt einer Datei
def hash_file_content(content):
 return hashlib.sha256(content.encode("utf-8")).hexdigest()
=== VORHERIGE VERSION LADEN (falls vorhanden) ===

if os.path.exists(version_file):
 with open(version_file, "r") as f:
 prev_state = json.load(f)
 prev_version = prev_state["version"]
 prev_files = prev_state["files"]
else:
 prev_version = "v1.0.0" # Initiale Version, wenn keine vor-
handen
 prev_files = {}
=== AKTUELLE .sysml-DATEIEN EINLESEN UND HASHEN ===
current_files = {} # Datei-Hashs zur Änderungserken-
nung
sysml_models = [] # Gesammelte Inhalte aller SysML-
Dateien
for filename in os.listdir(model_dir):
 if filename.endswith(".sysml"):
 path = os.path.join(model_dir, filename)
 with open(path, "r", encoding="utf-8") as f:
 content = f.read()
 sysml_models.append(content)
 current_files[filename] = hash_file_content(content)
=== ÄNDERUNGEN ZWISCHEN VERSIONEN DETEKTIEREN ===
added = set(current_files) - set(prev_files) # Neue Da-
teien
deleted = set(prev_files) - set(current_files) # Gelöschte
Dateien
modified = {f for f in current_files if f in prev_files and cur-
rent_files[f] != prev_files[f]} # Geänderte Dateien
=== NEUE VERSION BESTIMMEN (Semantische Versionierung) ===
major, minor, patch = map(int, prev_version.lstrip("v").split("."))
if added or deleted:
 minor += 1 # Änderung in Struktur → Minor-Bump
 patch = 0
elif modified:
 patch += 1 # Nur inhaltliche Änderung → Patch-Bump
new_version = f"v{major}.{minor}.{patch}"

print(f"Version updated: {prev_version} → {new_version}")
=== NOTEBOOK ZUSAMMENSTELLEN ===
nb = new_notebook()
nb.cells.append(new_markdown_cell(f"# SysML Report\nVersion:
{new_version}")) # Titelseite
joined_models = "\n\n".join(sysml_models) # Alle Modelle in eine
Code-Zelle einfügen
nb.cells.append(new_code_cell(joined_models))
nb.cells.append(new_markdown_cell("## Visualized Models")) # Trenn-
überschrift für Visualisierungen
=== PAKETNAMEN AUS MODELLEN EXTRAHIEREN ===
package_pattern = re.compile(r"package\s+(?:'([^']+)'|(\w+))",
re.IGNORECASE)
package_names = set()
for model_text in sysml_models:
 matches = package_pattern.findall(model_text)
 for quoted, plain in matches:
 package_names.add(quoted or plain) # Entweder der in Anfüh-
rungszeichen oder der einfache Name
Für jedes Paket eine Visualisierungszelle (%viz)
for package in sorted(package_names):
 nb.cells.append(new_code_cell(f"%viz --view=DEFAULT --style=DE-
FAULT {package}"))
=== NOTEBOOK MIT VERSIONSNUMMER SPEICHERN ===
output_notebook = f"{base_output}_{new_version}.ipynb"
with open(output_notebook, "w", encoding="utf-8") as f:
 nbformat.write(nb, f)
print(f"Saved: {output_notebook}")
=== AKTUALISIERTEN ZUSTAND DER VERSION SPEICHERN ===
with open(version_file, "w") as f:
 json.dump({
 "version": new_version,
 "files": current_files
 }, f, indent=2)

