Interner Bericht

DLR-IB-FT-BS-2025-157

Versionskontrolle und
Kollaboration in MBSE:
Untersuchung der Git-
Integration mit SysML v2

Masterarbeit

Zohair Sheikh Suleiman
Deutsches Zentrum fur Luft- und Raumfahrt

Institut fir Flugsystemtechnik
Braunschweig

Deutsches Zentrum
DLR fiir Luft- und Raumfahrt

Institutsbericht
DLR-IB-FT-BS-2025-157

Versionskontrolle und Kollaboration in MBSE:
Untersuchung der Git-Integration mit SysML v2

Zohair Sheikh Suleiman

Institut fir Flugsystemtechnik
Braunschweig

Deutsches Zentrum fur Luft- und Raumfahrt e.V.
Institut fur Flugsystemtechnik
Abteilung Sichere Systeme & Systems Engineering

Stufe der Zuganglichkeit: I, Allgemein zugénglich: Der Interne Bericht wird
elektronisch ohne Einschrankungen in ELIB abgelegt.

Braunschweig, den 10.10.2025

Unterschriften:

Institutsleitung: Dr.-Ing. Andreas Bierig
Abteilungsleitung: Dr.-Ing. Andreas Bierig
Betreuer:in: Dr.-Ing. Oliver Bertram

Verfasser:in: Zohair Sheikh Suleiman, B.Eng.

Technische '
Universitat

Berlin

Masterarbeit

zur Erlangung des akademischen Grades Master of Science an der
Technischen Universitét Berlin im Studiengang
Luft- und Raumfahrttechnik

Versionskontrolle und Kollaboration in MBSE:
Untersuchung der Git-Integration mit SysML v2

vorgelegt von

Zohair Sheikh Suleiman, B.Eng.
Matr.-Nr. 476167

Erstpriifer:in

Prof. Dr.-Ing. Lydia Kaiser
Zweitpriifer:in

Dr.-Ing. Oliver Bertram

Betreuer:in
Dr.-Ing. Oliver Bertram Berlin, den 17.07.25

Technische Universitit Berlin
Institut fiir Werkzeugmaschinen und
Fabrikbetrieb (IWF)

Fachgebiet Digitales Engineering 4.0 (DE4)
Prof. Dr.-Ing. Lydia Kaiser

Pascalstralle 8-9
10587 Berlin

DLR

Deutsches Zentrum fir Luft- und Raumfahrt e.V. (DLR)
Institut fiir Flugsystemtechnik

Abteilung Sichere Systeme & Systems Engineering
Dr.-Ing. Oliver Bertram

Lilienthalplatz 7
38108 Braunschweig

Masterarbeit Nr. MA-0035

Versionskontrolle und Kollaboration in MBSE:
Untersuchung der Git-Integration mit SysML v2

am 17.07.25

Eidesstattliche Erkldrung nach § 60 Abs. 8 AllgStuPO

Hiermit versichere ich, dass ich die vorliegende Arbeit eigenstandig ohne Hilfe
Dritter und ausschlieRlich unter Verwendung der aufgefiihrten Quellen und Hilfs-
mittel angefertigt habe. Alle Stellen die den benutzten Quellen und Hilfsmitteln
unveréndert oder sinngemaf entnommen sind, habe ich als solche kenntlich ge-
macht.

Sofern generative Kl-Tools verwendet wurden, habe ich Produktnamen, Herstel-
ler, die jeweils verwendete Softwareversion und die jeweiligen Einsatzzwecke
(z.B. sprachliche Uberpriifung und Verbesserung der Texte, systematische Re-
cherche) benannt. Ich verantworte die Auswahl, die Ubernahme und samtliche
Ergebnisse des von mir verwendeten Kl-generierten Outputs vollumfanglich
selbst.

Die Satzung zur Sicherung guter wissenschaftlicher Praxis an der TU Berlin vom
15. Februar 2023. https:/iwww.static.tu.berlinffileadmin/www/10002457/K3-
AMBI/Amtsblatt_2023/Amtliches_Mitteilungsblatt_Nr._16_vom_30.05.2023.pdf
habe ich zur Kenntnis genommen.

Ich erklare weiterhin, dass ich die Arbeit in gleicher oder ahnlicher Form noch
keiner ’ . t habe.

Berlin, den 17.07.25

Abstract

This thesis investigates the integration of Git with SysML v2 models to support version
control and collaborative model-based systems engineering (MBSE) in safety-critical do-
mains. Motivated by the increasing complexity of systems and the need for traceable,
team-oriented development processes, the work examines how principles from software
engineering — such as branching strategies, CI/CD pipelines, and text-based workflow —
can be transferred to MBSE practice. The research follows a Design Science Research
(DSR) approach and combines methodological analysis with practical implementation
and evaluation.

The findings demonstrate that the integration of Git and SysML v2 is both technically
feasible and methodologically beneficial. However, it requires clear organizational struc-
tures, role definitions, and tool configurations. The developed workflow provides a scal-
able foundation for collaborative modeling in interdisciplinary teams and highlights areas
for future research and tool improvement.

Zusammenfassung

Diese Arbeit untersucht die Integration von Git mit SysML v2-Modellen zur Versi-
onskontrolle und Kollaboration im modellbasierten Systems Engineering (MBSE) si-
cherheitskritischer Systeme. Ausgangspunkt ist die wachsende Komplexitit techni-
scher Systeme sowie der Bedarf nach nachvollziehbaren und teamorientierten Ent-
wicklungsprozessen. Ziel war es, Prinzipien aus der Softwareentwicklung — etwa
Branching-Strategien, CI/CD-Pipelines und textbasierte Workflows — auf das MBSE
zu iibertragen. Die Arbeit folgt dem Design Science Research (DSR)-Ansatz und kom-
biniert methodische Analyse mit praktischer Umsetzung und Evaluation.

Die Untersuchung belegt, dass die Kombination von Git und SysML v2 sowohl tech-
nisch umsetzbar als auch methodisch sinnvoll ist. Sie erfordert jedoch klare organisa-
torische Spielregeln. Der entwickelte Ansatz bietet eine skalierbare Grundlage fiir
kollaboratives Modellieren in interdisziplindren Teams und zeigt Perspektiven fiir
kiinftige Forschung und Werkzeugentwicklung auf.

Inhaltsverzeichnis Seite |

Inhaltsverzeichnis

O =TT 41 = 10T 3 T 1
1.1 Problemstellung........cooooiiiiiiiii e e 1
1.2 Zielsetzung und Forschungsfragenccccvviviiiiiiiii e 2
1.3 Forschungsmethode............oiiiiiiiiiiie e e 3
1.4 Struktur der Arbeitoeeeiie 4
2 Theoretische Grundlagen und Stand der Technikcccoivniiennnnnnss 6
2.1 Standards in der Flugsystementwicklungcccccccooevi. 6
2.1.1 ARP4754B und ARP4761A Prozesseccccccccvveveeeiiieiiiieaeaeaee. 7
2.1.2 ISO/IEC 15288 Prozessecccceeeiieeeeiiiiiiiieeee e eeeeeee e e 11
2.2 Model-Based Systems ENgiN€ering.........cccovvvvviiiiiiiiiiiiiieiiiiiieeieeeeeee 13
2.3 Systems Modeling Languagec.covovviiiiiiiiiiiiiiiieee e, 15
231 SYSML Ve 16
2.3.2 SYSML V2.t 17

2.3.3 Weiterentwicklung der Terminologie und Struktur von SysML v1
ZUSYSML V2 .. 20
2.4 Cameo Systems Modeler mit SysML V2.........coovviiiiiiiiiiiiiii. 22
2.5 Kollaboration in MBSE............cooo i 24
2.5.1 Herausforderungen der Kollaboration in MBSE......................... 25
2.5.2 AQIle MBSEoooiiieeee et 27
2.5.3 Git als VersionskontrollSystem............ccooouiiiiiiiiiiiiiiiiiieeen e 30
3 Umgebungsanalyse und Anforderungen an den Ansatz................... 32
3.1 Methodisches Vorgehen zur Umgebungsanalyseccccccevvvvvnnnnn. 32
3.2 Beschreibung der Forschungsumgebung...........ccccooviiiiiieiiiiiiiiiiiieeenn. 33
3.3 Analyse der Teamumfrage zur Zusammenarbeit.................................. 34
3.3.1 Methodik derUmfragec.ccooveiiiiiiiiiiiiiiie 34
3.3.2 Ergebnisse und AUSWEIUNG.......ccceriiiiiiiiiiieieieeee e 34
3.4 Rollenzuweisung anhand ARP4754B & ISO/IEC 15288 37
3.4.1 Methodik des Rollenzuweisungsprozesses...........cccuuvveeeeeennnnne 38
3.4.2 Ergebnisse der RACI-MatrixX...........cccccoeeii e, 39
3.5 Herausforderungen der Zusammenarbeit.........................co, 42
4 Entwicklung eines Git-basierten Kollaborationsprozesses............... 44
4.1 Methodisches Vorgehen zur Prozessentwicklungcccccceeeiinnnee. 44
4.2 Konfigurationsrichtlinien fr CSM mit SysML v2 ..o, 46

4.3 Konfigurationsrichtlinien fur Gitin GitLab 49

Inhaltsverzeichnis Seite |l

4.4 Definition des Git-basierten Kollaborationsprozesses 53

5 Prozessdurchfihrung und Bewertungccccooimmuiiiiminiiinencninnninnnes 56
5.1 Definition und Durchflihrung von Testszenarien.................................. 56
5.1.1 Testszenario #1: Export und Commit-Validierung 58

5.1.2 Testszenario #2: Anzeige und Bearbeitung im JN..................... 61

5.1.3 Testszenario #3: Multi-Tool-Kompatibilitat (CSM und JN)......... 63

5.1.4 Testszenario #4: Versionierung und Rollbackcccccooeee 66

5.1.5 Testszenario #5: GitHub Flow Test (Kollaborationsworkflow).... 68

5.1.6 Testszenario #6: Automatisierte Konfigurationsprifung............ 71

5.1.7 Testszenario #7: Automatisierte Syntaxprifung.........ccccccoeenneee 74

5.1.8 Testszenario #8: Automatisierte Dokumentenerstellung 77

5.2 Bewertung des Git-basierten Kollaborationsprozesses 80

6 Zusammenfassung und AusblicKccccoviminiiiiiiin 86
LiteraturverzeiCchnisccuiiiiieiiiiiii 90

Verzeichnis der verwendeten Abkirzungen

Seite Il

Verzeichnis der verwendeten Abkiirzungen

AFHA
AMBSE
AMBSE
AP

API
ARP
ASA
ASDP
BDD
CD

Cl

CLl
CMBSE
CSM
CVs
D&D
DAP
DevOps
DLR
DO
DSR
ED
EUROCAE

FDD

Aircraft Functional Hazard Assessment
Agile Model-Based Systems Engineering
Agile Model-Based Systems Engineering
Agreement Processes

Application Programming Interface

SAE Aerospace Recommended Practices
Aircraft Safety Assessment

Aircraft and System Development Process
Block-Definition-Diagramm

Continuous Deployment

Continuous Integration

Command Line Interface

Collaborative Model-Based Systems Engineering
Cameo Systems Modeler

Concurrent Versions System

Data & Documentation

Development Assurance Planning
Development and Operations

Deutsches Zentrum fur Luft- und Raumfahrt
RTCA Document

Design Science Research

EUROCAE Document

European Organisation for Civil Aviation Equipment

Feature Driven Development

Verzeichnis der verwendeten Abkirzungen Seite IV

FMEA Failure Modes and Effects Analysis

FTA Fault Tree Analysis

FT-SSY DLR Institut fur Flugsystemtechnik, Abteilung Sichere Systeme & Systems
Engineering

IBD Internal-Block-Diagramme

IEC International Electrotechnical Commission

INCOSE International Council on Systems Engineering

IP Integral Processes

IPDT Integrated Product Development Team

ISO International Organization for Standardization

JN Jupyter Notebook

KerML Kernel Modeling Language

MBSA Model-Based Safety Analysis

MBSE Model-Based Systems Engineering

MR Merge Request

MTTR Mean Time to Recovery

OEM Original Equipment Manufacturer

OMG Object Management Group

OOSEM Object-Oriented Systems Engineering Method

OPEP Organizational Project-Enabling Processes

OWL Web Ontology Language

PASA Preliminary Aircraft Safety Assessment

PSSA Preliminary System Safety Assessment

RACI Responsible, Accountable, Consulted, and Informed

RFP Request for Proposal

RTCA Radio Technical Commission for Aeronautics

SAE Society of Automobile Engineers

SE Systems Engineering

Verzeichnis der verwendeten Abklrzungen

Seite V

SFHA
Sol

SoS

SSA

SST
SysML
SysML v1
SysML v2
TMP

TP

UAV

ul

UML
V&V

XP

System Functional Hazard Assessment
System of Interest

System of Systems

System Safety Assessment

SysML v2 Submission Team

Systems Modeling Language

Systems Modeling Language Version 1
Systems Modeling Language Version 2
Technical Management Processes
Technical Processes

Unmanned Aerial Vehicle

User Interface

Unified Modeling Language
Verifizierung und Validierung

Extreme Programming

Abbildungsverzeichnis Seite VI

Abbildungsverzeichnis

Bild 1-1

Bild 2-1

Bild 2-2

Bild 2-3

Bild 2-4

Bild 2-5

Bild 2-6

Bild 2-7

Bild 2-8

Bild 2-9

Bild 2-10

Bild 2-11

Bild 2-12

Bild 2-13

Bild 3-1

Bild 3-2

Bild 3-3

Bild 3-4

Bild 3-5

Bild 3-6

Bild 4-1

Design Science Research-Methodologie (eigene Darstellung nach Hevner et al.,
(2004))

Grundsatzdokumente fur die Entwicklungs- und die Betriebsphase (SAE Aeros-
pace Recommended Practice, 2023a)

Luftfahrzeug-/Systementwicklungsprozess nach ARP4754B (SAE Aerospace
Recommended Practice, 2023a)

Interaktion zwischen ARP4754B und ARP4761A Prozesse (SAE Aerospace
Recommended Practice, 2023a)

MBSE-Dreieck (Kaiser, 2013)

Die vier Saulen der SysML v1 mit Diagrammtypen (eigene Darstellung nach Frie-
denthal et al., (2009))

SysML v2 Sprachfahigkeiten (Friedenthal, 2024)
SysML v2 Spracharchitektur (OMG Systems Modeling Language, 2024)
CSM SysML v2-Plugin (eigener Screenshot aus CSM, SysML v2-Plugin)

Warnhinweis beim Start des SysML v2-Plugins in CSM (eigener Screenshot aus
CSM, Warnhinweis)

Beispiel fur die Darstellung einer Teilzerlegung in SysML v2 (eigener Screenshot
aus CSM, grafische und textuelle Notation)

Agile Methodologie (exapp.ca, 2024)

Agiler Systementwicklungsprozess flir die Flugzeugkonzeption nach Krupa,
(2019)

AMBSE Lieferprozess wahrend der Konzeptionsphase nach Krupa, (2019)
Klarheit Gber Modellierungsverantwortlichkeiten (Frage 2.2)

Existenz eines definierten Modellierungsprozesses (Frage 3.3)
Herausforderungen bei der modellbasierten Zusammenarbeit (Frage 4.1)
Bewertung Git-basierter Versionskontrolle fur MBSE (Frage 5.2)
Anwendung agiler Prinzipien im MBSE-Kontext (Frage 5.3)

Ubersicht von Teamkompetenzen (Frage 2.1)

Werkzeuglandschaft im Git-basierten MBSE-Prozess (eigene Darstellung)

Abbildungsverzeichnis Seite VII

Bild 4-2

Bild 4-3

Bild 4-4

Bild 4-5

Bild 4-6

Bild 4-7

Bild 4-8

Bild 4-9

Bild 4-10

Bild 4-11

Bild 4-12

Bild 5-1

Bild 5-2

Bild 5-3

Bild 5-4

Bild 5-5

Bild 5-6

Bild 5-7

Bild 5-8

SysML v2 Aktionsdiagramm zur Darstellung der Definition- und Werkzeugkonfi-
gurationsphase (eigene Darstellung in CSM)

UAV-Paketstruktur gemaf SysML v2 Sprachfahigkeiten (eigene Darstellung)
Modellstruktur in CSM (eigener Screenshot, CSM)

»View“-Diagramm und ,View“-Element in SysML v2-textueller Notation (eigener
Screenshot, CSM)

Export einer SysML v2-Datei in CSM (eigener Screenshot, CSM)
Import einer SysML v2-Datei in CSM (eigener Screenshot, CSM)

Erstellung eines neuen Projekts in GitLab tiber die Option ,Create blank project*
(eigener Screenshot, GitLab)

Offnen der Eingabeaufforderung direkt aus dem lokalen Verzeichnispfad tiber die
Adresszeile (eigener Screenshot, Windows Explorer)

Klonen des GitLab-Repository uber die Eingabeaufforderung mit ‘git clone” (ei-
gener Screenshot, Git CLI)

Anzeige der geklonten README-Datei im lokalen Repository (eigener Screens-
hot, Windows Explorer)

GitHub Flow — vereinfachter kollaborativer Entwicklungsprozess (eigene Darstel-
lung)

Modellierung der Anforderungen in CSM (eigener Screenshot, CSM)

Exportdialog und Dateispeicherung in das lokale Repository (eigener Screens-
hot, CSM)

Darstellung der ,Requirements.sysml“-Datei im GitLab nach Push-Vorgang (ei-
gener Screenshot, GitLab Ul)

Textbasierte Anzeige der Datei ,Requirements.sysml“ (eigener Screenshot, JN)

Visualisierung der modellierten Anforderungen im SysML-Kernel mittels ,%viz"-
Befehl (eigener Screenshot, JN)

Modifikation der Anforderung ,Customer Requirement <5_5>* inkl. neuer Cons-
traints und Attribute (eigener Screenshot, JN)

Erfolgreicher Push der geanderten Dateien (Requirements.sysml,
UAV_JN.ipynb) auf GitLab (eigener Screenshot, GitLab Ul)

Neuer namespace ,Customer_Requirements“ nach dem Import der ,Require-
ments.sysml“-Datei (eigener Screenshot, CSM)

Abbildungsverzeichnis Seite VIII

Bild 5-9

Bild 5-10

Bild 5-11

Bild 5-12

Bild 5-13

Bild 5-14

Bild 5-15

Bild 5-16

Bild 5-17

Bild 5-18

Bild 5-19

Bild 5-20

Bild 5-21

Bild 5-22

Bild 5-23

Bild 5-24

Bild 5-25

Bild 5-26

Bild 5-27

Bild 5-28

Vergleich der urspriinglichen (Links) und modifizierten (Rechts) Anforderung ,Re-
quirement <5_5>" im View-Diagramm ,Req_New" (eigener Screenshot, CSM)

Ubersicht des “git log’-Befehls (eigener Screenshot, Git CLI)
GitLab Ul mit ,Behavior.sysml“ (eigener Screenshot, GitLab Ul)
GitLab Ul ohne ,Behavior.sysml“ (eigener Screenshot, GitLab Ul)

Ubersicht der Branches ,main“ und ,feature/add-new-uc* (eigener Screenshot,
GitLab UI)

Merge Request-Erstellung (eigener Screenshot, GitLab Ul)

Merge-Vorgang des Feature-Branch nach abgeschlossenem Review, Abschluss
des Vorgangs uber ,merge” (eigener Screenshot, GitLab Ul)

Links: Urspriingliche Exportdatei mit fehlerhafter Formatierung; Rechts: Datei
nach automatischer Korrektur durch fix_config.ipynb (eigener Screenshot, Struc-
ture.sysml)

Ausschnitt aus .gitlab-ci.yml mit Definition des neuen Jobs zur automatisierten
Konfigurationsprifung (eigener Screenshot, .gitlab-ci.yml)

Organisationsstruktur der SysML-Dateien fur eine saubere und konsistente Ab-
lagestruktur im Repository (eigener Screenshot, GitLab Ul)

Ausschnitt aus .gitlab-ci.yml mit Definition des neuen Jobs zur automatisierten
Syntaxprufung (eigener Screenshot, .gitlab-ci.yml)

Manuell eingefiigte Syntaxfehler in Structure.sysml (eigener Screenshot, Struc-
ture.sysml)

Konsolenausgabe des Syntaxprufskripts (eigener Screenshot, Python 3-Kernel)
SysML-Reports als GitLab-Artefakte (eigener Screenshot, GitLab)

Generierter SysML-Report in JN, Teil 1 (eigener Screenshot, JN mit SysML-
Kernel)

Generierter SysML-Report in JN, Teil 2 (eigener Screenshot, JN mit SysML-
Kernel)

Ubersicht Uber die finale Repository-Struktur (eigener Screenshot, GitLab Ul)

Action-Diagramm mit den drei CI-Stufen im finalen Repository (eigene Darstel-
lung, SysML-Kernel in JN)

Swimlane-Diagramm zur Repository-Verwaltung (eigene Darstellung)

Anderungslbersicht in GitLab fir .sysml-Dateien (eigener Screenshot, GitLab Ul)

Tabellenverzeichnis Seite IX

Tabellenverzeichnis

Tabelle 2-1

Tabelle 2-2

Tabelle 2-3

Tabelle 2-4

Tabelle 3-1

Tabelle 3-2

Tabelle 3-3

Tabelle 4-1

Tabelle 5-1

Gesamtiberblick ARP4754B-Prozesse (SAE Aerospace Recommended
Practice, 2023a)

Beispiel fur die grafischen und textuellen Notationen von SysML v2 (OMG Sys-
tems Modeling Language, 2024)

Vergleich der Terminologie zwischen SysML v2 und SysML v1 (Ausschnitt) (Frie-
denthal, 2024)

Ubersicht der Herausforderungen in CMBSE mit Zuordnung zu Quellen und the-

matischen Kategorien

RACI-Matrix zur Rollenzuweisung der ARP4754B-Prozesse im DLR-Projektkon-
text

RACI-Matrix zur Rollenzuweisung der ISO/IEC 15288:2023 im DLR-Projektkon-
text

Zuordnung der teamintern identifizierten Herausforderungen zu den literaturba-
sierten Kategorien (vgl. Kapitel 2.5.1)

Ubersicht der wichtigsten Git-Befehle

Ubersicht der definierten Testszenarien und zugehériger GitLab-Projektphasen

Einleitung Seite 1

1 Einleitung

Die Entwicklung sicherheitskritischer Flugzeugsysteme erfordert eine hohe Genau-
igkeit, Nachverfolgbarkeit sowie Konsistenz iiber den gesamten Entwicklungspro-
zess hinweg. Model-Based Systems Engineering (MBSE) adressiert diese Anforde-
rungen durch einen modellzentrierten Ansatz, der eine konsistente und strukturierte
Abbildung komplexer Systeme ermdglicht (Haberfellner et al., 2019).

Trotz dieser methodischen Vorteile bestehen weiterhin Herausforderungen in der
teamiibergreifenden Zusammenarbeit, insbesondere hinsichtlich der Versionskon-
trolle und der Riickverfolgbarkeit von Modelldnderungen (Li et al., 2024; Wouters
et al., 2017). Wihrend in der Softwareentwicklung Versionskontrollsysteme wie
Git etabliert sind, ist deren Anwendung im modellbasierten Systementwurf bislang
nur begrenzt verbreitet.

Mit der Einfiihrung der neuen Modellierungssprache Systems Modeling Language
(SysML) Version 2 ergeben sich neue Potenziale zur Verbesserung der Kollabora-
tion in MBSE-Projekten. Besonders die textuelle Notation von SysML v2 ermdg-
licht eine tiefere Integration mit Versionskontrollsystemen wie Git und bietet damit
eine vielversprechende Grundlage fiir die Entwicklung kollaborativer, versionskon-
trollierter MBSE-Prozesse.

Die vorliegende Arbeit wurde im Rahmen einer Forschungsaktivitdt am Deutschen
Zentrum fiir Luft- und Raumfahrt (DLR), Institut fiir Flugsystemtechnik, durchge-
fiihrt. Sie adressiert die Entwicklung und Bewertung eines Git-basierten Kollabo-
rationsprozesses fiir MBSE unter Einsatz von SysML v2.

1.1 Problemstellung

Die Verwaltung von Modellversionen sowie die Nachverfolgbarkeit von Anderun-
gen stellen zentrale Anforderungen in der Entwicklung sicherheitskritischer Sys-
teme dar. In der Softwareentwicklung sind Versionskontrollsysteme wie Git langst
etabliert und bilden dort eine essenzielle Grundlage fiir kollaborative, nachvollzieh-
bare Entwicklungsprozesse. Im Kontext des MBSE hingegen fehlt bislang eine
standardisierte, weit verbreitete Losung zur strukturierten Versionsverwaltung von
Systemmodellen. Die mangelnde Integration entsprechender Mechanismen in gén-
gige MBSE-Werkzeuge erschwert die modellbasierte Zusammenarbeit und fiihrt zu
Unsicherheiten hinsichtlich der Konsistenz und Giiltigkeit von Modellversionen
(May & Zerwas, 2025).

Insbesondere bei der teamiibergreifenden Zusammenarbeit {iber verteilte Entwick-
lungsgruppen hinweg entstehen zusitzliche Herausforderungen. Es ist hdufig un-
klar, welche Version eines Systemmodells den aktuellen Stand der Entwicklung

Einleitung Seite 2

darstellt (Wouters et al., 2017). In der Praxis kann es vorkommen, dass ein veralte-
ter Modellstand bearbeitet oder weiterverwendet wird, obwohl bereits eine aktuali-
sierte Version existiert. Dies kann erhebliche Auswirkungen auf die Qualitdt und
Konsistenz der Systemdokumentation sowie auf die spitere Validierung haben.

Auch fiir externe Stakeholder besteht ein Bedarf an Transparenz und Nachvollzieh-
barkeit (prostep ivip Association, 2023). Beispielsweise miissen bei Audits oder
Meilensteinfreigaben stets aktuelle und konsistente Modellversionen des System of
Interest (Sol) zur Verfiigung stehen. Dariiber hinaus ist es entscheidend, dass der
gesamte Anderungsverlauf liickenlos dokumentiert und eindeutig nachvollziehbar
ist.

Erst durch die Veroffentlichung von SysML v2 mit ihrer textuellen Notation wird
die tiefere Integration bestehender Versionskontrollsysteme wie Git in modellba-
sierte Entwicklungsprozesse liberhaupt technisch moglich. Da die Systemmodelle
nun als textbasierter ,,Quellcode behandelt werden konnen, bietet sich die Nutzung
von Git als bewihrtem Werkzeug fiir Versionsverwaltung und kollaborative Ent-
wicklung besonders an.

1.2 Zielsetzung und Forschungsfragen

Ziel dieser Arbeit ist die Untersuchung der Integration von Git mit SysML v2-Mo-
dellen zur Versionskontrolle und Kollaboration im MBSE. Dabei sollen die Poten-
ziale und Herausforderungen einer Git-basierten Verwaltung von modellbasierten
Systementwiirfen systematisch analysiert werden.

Damit sollen die folgenden vier Forschungsfragen beantwortet werden:

1. Wie lasst sich die bestehende Kollaborationsstruktur im MBSE unter Be-
riicksichtigung relevanter Luftfahrtstandards und Teamstrukturen analysie-
ren?

2. Welche Werkzeug-Konfigurationsrichtlinien sind erforderlich, um eine ef-
fiziente Nutzung von Git mit SysML v2 zu gewéhrleisten?

3. Wie kann ein Git-basierter Arbeitsablauf fiir SysML v2 gestaltet und imple-
mentiert werden?

4. Inwiefern ermdglicht dieser Arbeitsablauf eine verbesserte Nachverfolgbar-
keit und Effizienz in der modellbasierten Entwicklung sicherheitskritischer
Systeme?

Zur Beantwortung dieser Fragestellungen kommen im Rahmen der Arbeit folgende
Technologien zum Einsatz:

o Cameo Systems Modeler (CSM) mit SysML v2-Plugin zur Modellierung
eines Beispielsystems

Einleitung Seite 3

e Git in Kombination mit GitLab zur Versionsverwaltung der Modelle

o Jupyter Notebook (JN) zur Visualisierung und Bearbeitung der Modelle so-
wie zur Automatisierung von Aufgaben mittels Python

Die Ergebnisse der Arbeit sollen eine praxisorientierte Grundlage schaffen, um die
Einfilhrung und Nutzung einer Git-basierten Versionskontrolle im MBSE zu er-
leichtern. Dabei steht insbesondere die Optimierung der Zusammenarbeit, Nach-
vollziehbarkeit und Effizienz in der modellbasierten Entwicklung sicherheitskriti-
scher Systeme im Fokus. Die Erkenntnisse tragen somit sowohl zur methodischen
Weiterentwicklung als auch zur direkten Anwendung im Kontext des DLR bei.

1.3 Forschungsmethode

Als Forschungsansatz wird die Design Science Research (DSR)-Methodologie
nach Hevner et al., (2004) verwendet. DSR kombiniert konstruktive Forschung mit
einer wissenschaftlichen Evaluierung des entwickelten Artefakts. Dabei werden
drei zentrale Forschungszyklen unterschieden: Der Relevance Cycle, der Rigor
Cycle und der Design Cycle. Diese Zyklen stehen in einer wechselseitigen Bezie-
hung zueinander und bilden den Rahmen fiir die iterative Entwicklung, Validierung
und Integration des Artefakts in die Praxis. Bild 1-1 stellt diese Zyklen und ihre
Interaktionen grafisch dar.

Der Relevance Cycle verbindet die Forschungsaktivititen mit der praktischen An-
wendungsumgebung. Er stellt sicher, dass das entwickelte Artefakt reale Probleme
adressiert und einen Mehrwert fiir die Praxis bietet. Die Anforderungen fiir die For-
schung werden aus dem Anwendungskontext abgeleitet, wiahrend die Ergebnisse
des Forschungsprojekts in die Praxis zuriickgefiihrt und evaluiert werden. Iteratio-
nen dieses Zyklus sind notwendig, wenn sich im Feldtest neue Anforderungen oder
Verbesserungspotenziale ergeben.

Der Rigor Cycle stellt die wissenschaftliche Fundierung sicher, indem er auf beste-
hende Theorien, Methoden und bewéhrte Praktiken zuriickgreift. Die wissenschaft-
liche Wissensbasis liefert sowohl theoretische Grundlagen als auch bestehende Ar-
tefakte und Prozesse, die zur Entwicklung des neuen Artefakts herangezogen wer-
den. Gleichzeitig tragt die Forschung durch neue Erkenntnisse und Erweiterungen
der bestehenden Theorien zur Wissensbasis bei.

Der Design Cycle bildet das Herzstiick der DSR. Er beschreibt die iterative Ent-
wicklung und Evaluation des Artefakts. Basierend auf den Anforderungen aus dem
Relevance Cycle und den wissenschaftlichen Grundlagen aus dem Rigor Cycle wer-
den Designalternativen entwickelt, getestet und optimiert. Dieser Prozess wieder-
holt sich, bis das Artefakt eine zufriedenstellende Losung fiir das identifizierte
Problem darstellt. Eine umfassende Evaluierung des Artefakts ist essenziell, um die
Qualitdt und Anwendbarkeit der Losung sicherzustellen.

Einleitung Seite 4

DLR FT-SSY Design Science Research Wissensbasis

)

Problemstellung:
Synch__ronlsatlon und Verwaltung

Artefakt entwickeln:

von Anderungen bei verteilter Relevance Rigor
Modellierung uber verschiedene Cycle Git-basierter Cycle
Entwicklungsgruppen Kollaborationsprozess mit Methoden:
Akteure: SysMLv2 Literaturrecherche zu:
Ermittlung der Stakeholder die)
das Artefakt benutzen - Standards in vder
Flugsystementwicklung
Strukturen: Design - SysML v2 gg. SysML v1
IST-Prozess zur Cycle - Kollaboration in MBSE
Anforderungserhebung im - Git als Versionskontrollsystem

Unternehmen analysieren

Anforderungen: Artefakt bewerten:

Anforderungen an das Artefakt

erheben Demonstration und

Bewertung des Artefakts

Methoden:
Teamumfrage und
Rollenzuweisungsprozess

Bild 1-1 Design Science Research-Methodologie (eigene Darstellung nach
Hevner et al., (2004))

1.4 Struktur der Arbeit

Kapitel 1 stellt die grundlegende Motivation der Arbeit dar, indem die Problem-
stellung erldutert und die Forschungsfragen formuliert werden. Zudem wird die ge-
wihlte Forschungsmethodik vorgestellt, um den wissenschaftlichen Rahmen der
Untersuchung abzustecken.

Kapitel 2 ist dem Rigor Cycle zugeordnet und analysiert den bestehenden Wissens-
stand, um eine fundierte theoretische Grundlage zu schaffen. Hierzu werden rele-
vante Normen und Standards fiir die Flugsystementwicklung betrachtet, darunter
ARP4754B, ARP4761A und ISO/IEC 15288. Dariiber hinaus werden MBSE, die
SysML, sowie die Kollaborationsherausforderungen in MBSE untersucht, um eine
fundierte Basis fiir die weiteren Analysen zu schaffen.

Kapitel 3 widmet sich der Untersuchung der Forschungsumgebung und ordnet
diese in den Relevance Cycle der DSR-Methodologie ein. Basierend auf einer
Teamumfrage und einem Rollenzuweisungsprozess wird analysiert, welche Kom-
petenzen innerhalb des Teams bestehen und wie die Entwicklungsprozesse im Kon-
text der Flugsystementwicklung organisiert sind. Ein besonderer Fokus liegt dabei
auf der Identifikation der Herausforderungen in der Zusammenarbeit, die als Krite-
rien flir die spétere Entwicklung eines Git-basierten Kollaborationsprozesses die-
nen. Zudem wird die Arbeitsweise innerhalb der Forschungsgruppe des DLR be-
schrieben und evaluiert.

Aufbauend auf den Erkenntnissen der vorherigen Kapitel wird in Kapitel 4 ein Ar-
tefakt entwickelt: ein Git-basierter Kollaborationsprozess fiir die Flugsystement-
wicklung mit SysML v2. Dieser Prozess wird so gestaltet, dass er den identifizierten
Anforderungen gerecht wird. Ergidnzend werden Konfigurationsrichtlinien fiir

Einleitung Seite 5

CSM und Git definiert. Die Funktionsweise wird anhand eines UAV-Beispielsys-
tems demonstriert, das in SysML v2 modelliert und mit Git integriert wird.

Kapitel 5 behandelt die Validierung des entwickelten Prozesses als Teil des Design
Cycle der DSR-Methodologie anhand definierter Testszenarien. Diese Tests zielen
darauf ab, sowohl technische als auch methodische Aspekte des Kollaborationspro-
zesses zu iiberpriifen. Nach Durchfiihrung der Tests werden die Ergebnisse ausge-
wertet, um eine abschlieBende Bewertung des Artefakts vorzunehmen.

Kapitel 6 fasst die zentralen Erkenntnisse der Arbeit zusammen und reflektiert die
gewonnenen Ergebnisse. Zudem werden mdgliche Limitationen der Untersuchung
aufgezeigt und Perspektiven fiir zukiinftige Forschung sowie Weiterentwicklungen
des Artefakts diskutiert.

Theoretische Grundlagen und Stand der Technik Seite 6

2 Theoretische Grundlagen und Stand der Technik

Dieses Kapitel ist dem Rigor Cycle der DSR-Methodik zugeordnet. Ziel ist es, die
theoretische und methodische Fundierung der Arbeit sicherzustellen, indem beste-
hende Standards, Methoden und Werkzeuge aus dem Bereich MBSE sowie der
Luftfahrttechnik systematisch aufgearbeitet und analysiert werden. Die hier erar-
beiteten Grundlagen bilden eine fundierte Wissensbasis fiir die Artefakt-Entwick-
lung im Design Cycle und tragen zugleich zum vertieften Verstindnis der For-
schungsumgebung im Relevance Cycle bei.

Zunachst werden in Kapitel 2.1 zentrale Prozessstandards der Flugsystementwick-
lung vorgestellt, darunter ARP4754B, ARP4761A und ISO/IEC 15288. Diese Nor-
men definieren wesentliche Anforderungen an sicherheitskritische Entwicklungs-
prozesse und dienen als Referenzrahmen fiir die spitere Gestaltung des Git-basier-
ten Kollaborationsprozesses.

Kapitel 2.2 fiihrt in das Konzept des MBSE ein, das als methodisches Fundament
der Arbeit fungiert. Darauf aufbauend werden in Kapitel 2.3 die beiden Versionen
der SysML miteinander verglichen, wobei der Fokus auf der Weiterentwicklung
von SysML v1 zu v2 liegt.

In Kapitel 2.4 wird CSM als in dieser Arbeit eingesetztes Modellierungswerkzeug
vorgestellt, inklusive seiner Unterstiitzung fiir SysML v2.

Anschlieflend widmet sich Kapitel 2.5 dem Thema Kollaboration in MBSE. Hier
werden bestehende Herausforderungen analysiert und Ansitze wie Agile MBSE
(AMBSE) beleuchtet. Abschlieend wird das Versionskontrollsystem Git betrach-
tet, das als zentrales Werkzeug fiir den in dieser Arbeit entwickelten Kollaborati-
onsprozess dient.

2.1 Standards in der Flugsystementwicklung

Die Entwicklung moderner Flugsysteme unterliegt besonders hohen Anforderun-
gen an Struktur, Nachvollziehbarkeit und Systemsicherheit. Um diesen gerecht zu
werden, greift die zivile Luftfahrtindustrie auf bewéhrte Standards und empfohlene
Vorgehensweisen zuriick, die fest in den Entwicklungsprozessen verankert sind. Im
Rahmen dieser Arbeit werden insbesondere die SAE Aerospace Recommended
Practices ARP4754B und ARP4761A sowie die internationale Norm ISO/IEC
15288 betrachtet.

Diese Regelwerke strukturieren die Systementwicklung und begleiten den gesam-
ten Lebenszyklus technischer Systeme — von der Anforderungsdefinition {iber Ent-
wicklung, Integration und Verifikation bis hin zu Betrieb, Wartung und

Theoretische Grundlagen und Stand der Technik Seite 7

AuBerdienststellung. Thre Anwendung ist zentral, um die funktionale Eignung, Si-
cherheit und Zulassungsfiahigkeit eines Luftfahrtsystems nachweisbar sicherzustel-
len.

Da sich diese Arbeit auf die modellbasierte Systementwicklung konzentriert, die-
nen die genannten Standards als verbindlicher Rahmen fiir die Gestaltung konfor-
mer Entwicklungsprozesse. Sie legen Anforderungen an Riickverfolgbarkeit, Do-
kumentation und systematische Analyse fest, die auch bei der Gestaltung kollabo-
rativer MBSE-Ansdtze mit SysML v2 und Git beriicksichtigt werden miissen.

2.1.1 ARP4754B und ARP4761A Prozesse

Die SAE ARP4754B und ARP4761A bilden gemeinsam ein abgestimmtes Rah-
menwerk zur sicheren Entwicklung von Luftfahrtsystemen. Wiahrend ARP4754B
den allgemeinen Entwicklungsprozess fiir Luftfahrzeuge und deren Systeme be-
schreibt, ergéinzt ARP4761A diesen durch spezifische Methoden zur Sicherheitsbe-
wertung (SAE Aerospace Recommended Practice, 2023a).

ARP4754B stellt Empfehlungen fiir die Entwicklung von Luftfahrzeugen und Sys-
temen bereit, wobei insbesondere die Luftfahrzeugfunktionen und deren Be-
triecbsumgebung beriicksichtigt werden. Es enthélt Vorgehensweisen zur Sicherstel-
lung der Gesamtsicherheit des Entwurfs, zur Einhaltung behordlicher Vorgaben so-
wie zur Unterstiitzung firmeninterner Standards. Dabei umfasst es sowohl die Va-
lidierung der Anforderungen als auch die Verifikation der Umsetzung, insbeson-
dere in Bezug auf Sicherheit, Zertifizierbarkeit und Produktqualitit.

Die Zielsetzung der ARP4754B besteht in der Bereitstellung bewédhrter industrieller
Praktiken zur strukturierten Entwicklung integrierter, oft von verschiedenen Orga-
nisationen entwickelter Systeme. Diese Systeme miissen diszipliniert und systema-
tisch entwickelt werden, um sicherzustellen, dass sicherheitsrelevante und funktio-
nale Anforderungen erfiillt und nachgewiesen werden kénnen. Die Empfehlungen
sind nicht als regulatorische Anforderungen zu verstehen, sondern als industrietib-
liche Vorgehensweisen. Abweichende Methoden kénnen zuldssig sein, sofern sie
eine gleichwertige Nachweisfithrung ermdglichen.

Die ARP4761A bietet erginzend dazu Richtlinien zur Durchfithrung von Sicher-
heitsanalysen fiir zivile Luftfahrzeuge, Systeme und Ausriistungen. Diese konnen
zur Einhaltung behdrdlicher Zertifizierungsanforderungen oder firmeninterner Si-
cherheitsstandards herangezogen werden. Auch wenn der Fokus auf Neuentwick-
lungen liegt, sind die Methoden ebenfalls fiir bestehende Systeme bei Anderungen
oder Derivatanwendungen anwendbar. Sicherheitsbewertungen von in Betrieb be-
findlichen Produkten sind hingegen nicht Gegenstand dieses Dokuments (SAE Ae-
rospace Recommended Practice, 2023b).

Theoretische Grundlagen und Stand der Technik Seite 8

Die Zielsetzung der ARP4761A besteht darin, ein akzeptiertes Verfahren zur Si-
cherheitsbewertung bereitzustellen. Es beinhaltet unter anderem die folgenden me-
thodischen Schritte:

o Aircraft Functional Hazard Assessment (AFHA)
o Preliminary Aircraft Safety Assessment (PASA)
o System Functional Hazard Assessment (SFHA)
o Preliminary System Safety Assessment (PSSA)

o System Safety Assessment (SSA)

o Aircraft Safety Assessment (ASA)

AFHA, PASA und ASA werden auf der Ebene des Flugzeugs durchgefiihrt, wéh-
rend SFHA, PSSA und SSA auf der Systemebene durchgefiihrt werden. Zur Durch-
filhrung dieser Bewertungen werden unterschiedliche Analysemethoden empfoh-
len, darunter Fault Tree Analysis (FTA), Failure Modes and Effects Analysis
(FMEA), Model-Based Safety Analysis (MBSA) und andere.

ARP4754B ist als Hauptstandard zu verstehen, wahrend ARP4761A eine komple-
mentéire Funktion tibernimmt. Die Beziehung zwischen ARP4754B und seinen un-
terstiitzenden Standards ist in Bild 2-1 dargestellt.

Safety Assessment of Aircraft in
Commercial Service
(ARP5150 / 5151)

A

Safety Assessment Process
Guidelines & Methods
(ARP4761 / ED-135)

Intended

Aircraft & Failure System
System & Safety Design
Functions Information Information

Functional

L Aircraft & System Development System

Processes
(ARP4754 | ED-79)

A

> Operation

Y

Guidelines for Integrated
Modular Avionics
(DO-297 / ED-124)

A 4

Y Y y 4

Electronic Hardware Software Development
Development Life Cycle Life Cycle
(DO-254 | ED-80) (DO-178 / ED-12)

|
I
|
|
I
|
I
I
|
|
|
I
I
I
I
I
|
|
|
T
|
I
I
|
|
I
|
I
I
I
|
I
I
I
I
I
|
|
|
1
I
I
I
I
|
|
I
I
I
I
I
|
|
I
I
I
1

Development Phase In-Service/Operational Phase

Bild 2-1 Grundsatzdokumente fiir die Entwicklungs- und die Betriebsphase
(SAE Aerospace Recommended Practice, 2023a)

Theoretische Grundlagen und Stand der Technik Seite 9

Ziel der Systementwicklungsphase ist die Bereitstellung eines funktionalen Sys-
tems, das in den Betrieb iiberfiihrt werden kann. Um dies zu erreichen, miissen in-
nerhalb dieser Phase mindestens fiinf verschiedene Standards bzw. Richtlinien be-
riicksichtigt werden. In dieser Arbeit werden ausschlieBlich die Standards
ARP4754B und ARP4761A behandelt.

Der Flugzeug-/Systementwicklungsprozess umfasst insgesamt 16 Teilprozesse,
welche in vier Hauptkategorien gegliedert sind:

e Development Assurance Planning (DAP) — 3 Prozesse

o Aircraft and System Development Process (ASDP) — 5 Prozesse
e Data & Documentation (D&D) — 1 Prozess

e Integral Processes (IP)— 7 Prozesse

Tabelle 2-1 zeigt die zentralen Prozesse gemifl ARP4754B, die im Rahmen dieser
Arbeit betrachtet werden. Die Spalte ,,ARP-ID #“ dient der schnellen Orientierung
innerhalb des Standards.

Tabelle 2-1 Gesamtiiberblick ARP4754B-Prozesse (SAE Aerospace Recom-
mended Practice, 2023a)

ARP
Cat. ID # Prozess (Engl.)

DAP | 3.1 Development Assurance Planning Process

DAP |3.2 Development Assurance Plan
DAP |3.3 Certification Authority Coordination

ASDP | 4.2 Aircraft Function and Requirement Development

Development of Aircraft Architecture and Allocation of Aircraft
ASDP | 4.3)
Functions to Systems

ASDP | 4.4 Development of System Functions and Requirements

Development of System Architecture and Allocation of System
Requirements to ltems

ASDP | 4.6 Implementation

ASDP | 45

D&D | 4.7 Summary of Development Assurance Process Outputs

P 5.1 Safety Assessment (ARP4761A)

IP 5.2 Development Assurance Level Assignment
IP 5.3 Requirements Capture

IP 5.4 Requirements Validation

IP 5.5 Implementation Verification

IP 5.6 Configuration Management

IP 57 Process Assurance

Theoretische Grundlagen und Stand der Technik Seite 10

Die DAP definieren den Entwicklungsrahmen fiir alle nachgelagerten Prozesse —
ASDP, D&D und IP. Mit der Genehmigung des Development Assurance Plans be-
ginnt die eigentliche Entwicklungsphase.

Die ASDP stellen das Kernstiick der Systementwicklung dar. Sie enthalten Richt-
linien zur Entwicklung ziviler Luftfahrzeuge und Systeme und orientieren sich am
klassischen V-Modell.

Der D&D-Prozess sorgt dafiir, dass alle Ergebnisse geméf den Vorgaben des DAP
dokumentiert werden. Abweichungen vom Plan miissen begriindet und dokumen-
tiert werden.

Die IP werden iterativ innerhalb jedes ASDP-Schritts durchlaufen. Sie spiegeln die
Realitdt moderner Entwicklungsprozesse wider, in denen Tétigkeiten oft parallel
und zyklisch erfolgen. Der Einstiegspunkt in das Entwicklungsmodell kann variie-
ren, je nachdem, ob ein neues Funktionskonzept eingefiihrt oder eine bestehende
Funktion modifiziert wird. In jedem Fall ist eine Bewertung der Auswirkungen auf
andere Funktionen und Anforderungen erforderlich.

Bild 2-2 zeigt den vollstindigen Flugzeug-/Systementwicklungsprozess nach
ARP4754B inklusive der Interaktionen zwischen den vier Prozesskategorien.

- 5.1 SAFETY ASSESSMENT
- 5.2 DEVELOPMENT ASSURANCE LEVEL ASSIGNMENT

I

| - 5.3 REQUIREMENTS CAPTURE
DEVELOPMENT _.J - 5.4 REQUIREMENTS VALIDATION

|

I

I

|

|

PLANNING - 5.6 CONFIGURATION MANAGEMENT I
- 5.7 PROCESS ASSURANCE |
|

I

I545 IMPLEMENTATION VERIFICATION]

L _____ I — o — o (o ——— ———; —o— (— o——
e o o s — .] —_——— e e — g
I DEVELOPMENT DEVELOPMENT 4 |
OF AIRCRAFT OF SYSTEM I
| FU:‘?TCISQF:ND > ey > oFevetent | |—» A —| mpLEMENTATION |—F DATA S
REQUIREMENT ALLOCATION OF REQUIREMENTS ALLOCATION OF T | DOCUMENTATION
DEVELOPMENT AIRCRAFT SYSTEM |
| 2] FUNCTIONS TO . REQUIREMENTS a8 a7
SYSTEMS | TOITEMS , |

Bild 2-2 Luftfahrzeug-/Systementwicklungsprozess nach ARP4754B (SAE
Aerospace Recommended Practice, 2023a)

Fiir Systemingenieure sind insbesondere die ASDP-Prozesse relevant, da in diesen
der eigentliche Systementwicklungsprozess abgebildet wird. Das V-Modell in Bild
2-3 bildet den strukturellen Rahmen fiir die Entwicklung und Validierung sicher-
heitskritischer Systeme in der Luftfahrt. Der linke Ast des V-Modells reprisentiert
die Phase, in der die Anforderungen an das Luftfahrzeug bzw. Systeme sowie Funk-
tionen und Systemarchitekturen entwickelt und auf Subsysteme zugewiesen wer-
den.

Im unteren Bereich des V-Modells erfolgt die detaillierte Entwicklung und Verifi-
kation von Hardware und Software. Diese Aktivititen werden gemill den in der

Theoretische Grundlagen und Stand der Technik Seite 11

Luftfahrt etablierten Standards durchgefiihrt — insbesondere DO-178C / ED-12C
fiir Software sowie DO-254 / ED-80 fiir Hardware.

Der rechte Ast des V-Modells beschreibt die stufenweise Integration von Systemen
und Subsystemen sowie die zugehorigen Verifikations- und Validierungsaktivita-
ten (V&V). Ziel dieser Phase ist es, nachzuweisen, dass die entwickelten Systeme
die gestellten Anforderungen erfiillen und fiir den vorgesehenen Betrieb geeignet
sind.

Die Interaktion zwischen den Prozessen der ARP4754B und ARP4761A erfolgt
insbesondere im Rahmen der Sicherheitsanalyse. Diese ist im IP der ARP4754B
unter der ARP-ID #5.1 ,,Safety Assessment” verankert. In Bild 2-3 sind die ver-
schiedenen Arten von Sicherheitsanalysen dargestellt, die in den jeweiligen Phasen
des Entwicklungsprozesses durchzufiihren sind. Dadurch wird verdeutlicht, wie si-
cherheitsrelevante Erkenntnisse systematisch in die funktionale und technische Ent-
wicklung einflieen.

AIRCRAFT

FUNCTION/
REQUIREMENT
DEVELOF'MEN‘I; E

AIRCRAFT SYSTEM

]

H HWISW
ARCHITECTURE & | | REQUIREMENTS

]

1

IMPLEMENTATION
IVERIFICATION

4628463

SUBSYSTEM
VERIFICATION

SYSTEM
VERIFICATION

AIRCRAFT
VERIFICATION

SYSTEM
FLINCHOSI;& i

1

1

]

AND 1
ARCHITECEI.QIE% o *:"

464 A64

AFHA

Top-Down
Safety
Reguirements
Development &

Validation

Software Design
& Verification

Hardware Design
Verification

1
1
I
I
I
1
I
I
I
1
1
1
I
|
I
I
I
1
I
I
1
I
I
I
I
I
i
I
I
1
l
I
I
1
I
1
I
1
I
1
1
I
I &
I

DO-178C/DO-254 Process
ED-12C/ED-80 Process

Bild 2-3 Interaktion zwischen ARP4754B und ARP4761A4 Prozesse (SAE
Aerospace Recommended Practice, 2023a)

2.1.2 ISOJ/IEC 15288 Prozesse

Die Norm ISO/IEC 15288:2023 definiert einen einheitlichen Rahmen zur Beschrei-
bung des Lebenszyklus technischer Systeme. Ziel ist es, durch standardisierte Pro-
zesse und Begriffe die Kommunikation zwischen allen Beteiligten eines Projekts —
einschlieBlich Erwerber, Lieferant und weiterer Stakeholder — zu erleichtern
(ISO/IEC & IEEE, 2023). Diese Prozesse konnen auf jeder Ebene eines Systems

Theoretische Grundlagen und Stand der Technik Seite 12

angewendet werden und decken sdmtliche Lebenszyklusphasen ab: von der Kon-
zeption Uber die Entwicklung und Nutzung bis hin zur Auflerdienststellung. Dar-
iiber hinaus ermoglicht die Norm Organisationen die gezielte Definition, Steuerung
und Verbesserung ihrer Lebenszyklusprozesse. Die Anwendung erfolgt sowohl in
interner als auch extemner Projektdurchfiihrung und kann auf Einzelorganisationen
oder kooperierende Parteien ausgeweitet werden.

ISO/IEC 15288 adressiert eine Vielzahl an Systemen unterschiedlichster Komple-
xitdt, Grofe, Zweckbestimmung oder Lebensdauer. Systeme konnen dabei aus be-
liebigen Kombinationen von Hardware, Software, Daten, Personen, Verfahren, An-
leitungen oder Einrichtungen bestehen. Fiir softwarebasierte Systemelemente ver-
weist ISO/IEC 15288 auf die ergédnzende Norm ISO/IEC 12207, mit der sie harmo-
nisiert wurde (ISO/IEC & IEEE, 2023).

Kapitel 6 der Norm beschreibt ein Prozessreferenzmodell, das sich aus insgesamt
30 Prozessen zusammensetzt. Diese sind in vier Hauptkategorien gegliedert:

o Agreement Processes (AP)— 2 Prozesse
e Organizational Project-Enabling Processes (OPEP) — 6 Prozesse
o Technical Management Processes (TMP) — 8 Prozesse
o Technical Processes (TP) — 14 Prozesse
Eine vollstindige Ubersicht dieser Prozesse findet sich in Anhang Al.

Jeder Prozess wird in mehreren standardisierten Abschnitten beschrieben. Hierzu
gehoren: Zweck (Purpose), Beschreibung (Description), Eingaben/Ausgaben (/n-
puts/Outputs), Prozessaktivititen (Process Activities) sowie Erlauterung (Elabora-
tion). Diese Struktur erleichtert sowohl die praktische Anwendung in Projekten als
auch die Bewertung im Sinne der Prozessreife, wie sie beispielsweise in ISO/IEC
15504 vorgesehen ist (Walden & International Council on Systems Engineering,
2023).

Die AP umfassen den Erwerbs- und den Lieferprozess. Sie beschreiben die Aktivi-
taten, die erforderlich sind, um Vereinbarungen zwischen internen und externen
Organisationseinheiten zu etablieren, etwa bei der Beschaffung oder Lieferung von
Produkten und Dienstleistungen.

Die OPEP stellen sicher, dass eine Organisation {iber die notwendigen Fahigkeiten,
Ressourcen und die Infrastruktur verfiigt, um Projekte wirksam zu initiieren, zu un-
terstlitzen und zu kontrollieren. Diese Prozesse dienen nicht der umfassenden stra-
tegischen Unternehmensfithrung, sondern unterstiitzen gezielt projektbezogene Ak-
tivititen.

Die TMP befassen sich mit der Planung, Durchfiihrung, Bewertung und Steuerung
von Projekten. Sie kdnnen je nach Bedarf in unterschiedlichen Phasen und Ebenen

Theoretische Grundlagen und Stand der Technik Seite 13

eines Projekthierarchiebaums angewendet werden und werden abhédngig von Risiko
und Komplexitét unterschiedlich formalisiert.

Die TP definieren jene Aktivitdten, die notwendig sind, um Systemanforderungen
zu definieren, Produkte entsprechend umzusetzen und deren Nutzung, Wartung so-
wie Ausmusterung zu gewéhrleisten. Diese Prozesse fordern technische Entschei-
dungen, die die Produktqualitit sowie die Einhaltung gesellschaftlicher Anforde-
rungen (z. B. Sicherheit, Umweltvertriglichkeit) sicherstellen.

Im Vergleich zu den Prozessen der ARP4754B zeigt sich, dass die ISO/IEC 15288-
Prozesse deutlich umfassender sind. Wéahrend sich ARP4754B primér auf die Ent-
wicklungsphase konzentriert, deckt ISO/IEC 15288 den vollstindigen Systemle-
benszyklus ab. Dies resultiert in einem erhohten Planungsaufwand, zuséitzlicher
Ressourcennutzung und einem erweiterten Kompetenzbedarf iiber Fachdisziplinen
hinweg.

Ein genauerer Vergleich der technische Prozessen (TP) verdeutlicht, dass drei spe-
zifische Prozesse — der Operation Process, der Maintenance Process sowie der Dis-
posal Process — in ARP4754B nicht abgebildet sind. Dies liegt daran, dass
ARP4754B die Betriebsphase nicht adressiert (siche Bild 2-1). Die in ARP4761A
definierten Sicherheitsprozesse sind hingegen nicht Bestandteil der ISO/IEC
15288, da sich letztere auf allgemeine Lebenszyklusprozesse konzentriert und keine
spezialisierte Sicherheitsanalyse bereitstellt.

2.2 Model-Based Systems Engineering

Das Model-Based Systems Engineering (MBSE) wurde 2007 im ,, Systems Engine-
ering Vision 2020 des International Council on Systems Engineering (INCOSE)
als ein formalisierter Ansatz beschrieben, der die Modellierung zur Unterstiitzung
der Anforderungen, der Systemarchitektur, der Analyse sowie der Verifikation und
Validierung iiber den gesamten Lebenszyklus eines Systems hinweg einsetzt (In-
ternational Council on Systems Engineering, 2007). Ziel ist es, das bisher doku-
mentenzentrierte Vorgehen durch ein modellzentriertes Paradigma zu ersetzen, das
eine tiefere Integration in bestehende Systementwicklungsprozesse erlaubt. MBSE
ist Teil einer diszipliniibergreifenden Entwicklung hin zu modellbasierten Vorge-
hensweisen, wie sie auch in der Mechanik, Elektronik und Softwareentwicklung zu
beobachten ist.

Durch den Einsatz modellbasierter Techniken wird erwartet, dass MBSE wesentli-
che Vorteile gegeniiber der traditionellen Dokumentation bietet — darunter eine ho-
here Produktivitdt, verbesserte Qualitit, reduzierte Entwicklungsrisiken sowie eine
effektivere Kommunikation im Entwicklerteam (Haberfellner et al., 2019).

Wahrend Modelle seit jeher ein zentrales Hilfsmittel in der Systementwicklung dar-
stellen, zeichnet sich MBSE dadurch aus, dass das Systemmodell zur verbindlichen

Theoretische Grundlagen und Stand der Technik Seite 14

und durchgéngigen Représentation (,,single source of truth*) wird. Es integriert
Informationen zu Anforderungen, Funktionen, Struktur, Verhalten sowie zur Veri-
fikation und Validierung in einer konsistenten, maschineninterpretierbaren Form
(Hick et al., 2019). Das Systemmodell dient somit nicht nur als technische Doku-
mentation, sondern als aktives Steuerungsinstrument des Entwicklungsprozesses.

Zentrale Prinzipien des MBSE umfassen die diszipliniibergreifende Modellintegra-
tion, die Wiederverwendbarkeit von Modellelementen, die durchgéngige Riickver-
folgbarkeit sowie die Nutzung formalisierter Sichten zur Reduktion von Komple-
xitét. Letztere ergibt sich im Systementwurf nicht nur aus der Anzahl von Kompo-
nenten, sondern auch aus deren Interaktionen und der Dynamik iiber Systemgren-
zen hinweg. Madni et al., (2023) zeigen, dass durch Praktiken wie Abstraktion,
Trennung von Belangen und strukturbasierte Dekomposition verschiedene Kom-
plexititsarten — z. B. funktionale, strukturelle oder emergente Komplexitit — gezielt
beherrscht werden kdnnen.

Ein wesentliches Artefakt in diesem Kontext ist das Systemmodell selbst. Es fun-
giert als integratives Bindeglied zwischen unterschiedlichen Disziplinen und Ent-
wicklungsphasen. Gemal GraBler et al., (2022) sowie Hick et al., (2019) verbindet
das Modell Anforderungen, logische und physische Systemelemente sowie Verifi-
kations- und Validierungsaktivitdten. Damit wird es zu einem zentralen Kommuni-
kationsmittel fiir alle Beteiligten — sowohl innerhalb des Entwicklerteams als auch
gegeniiber externen Stakeholdern.

Die Kopplung diszipliniibergreifender Modelle unterstiitzt ein konsistentes und
ganzheitliches Systemverstdndnis, ohne die erforderliche Detailtiefe einzelner
Fachdominen zu vernachléssigen. Gleichzeitig konnen durch die Reduktion auf
aufgabenspezifische Sichten sowie eine zielgerichtete Navigation durch die Mo-
dellhierarchie die Zugénglichkeit und Akzeptanz modellbasierter Methoden erhoht
werden.

Ein zentrales Element des MBSE ist das sogenannte MBSE-Dreieck (sieche Bild 2-
4), welches das Zusammenspiel von Modellierungssprache, Modellierungsmethode
und Werkzeug verdeutlicht. Zur Erstellung eines konsistenten und praxisrelevanten
Systemmodells reicht eine grafische Sprache allein nicht aus. Vielmehr bedarf es
einer abgestimmten Kombination aus Sprache, Methode und unterstiitzendem Soft-
warewerkzeug, um die Vorteile modellbasierter Systementwicklung in der indust-
riellen Praxis nutzbar zu machen (Kaiser, 2013).

Die Modellierungssprache stellt dabei lediglich das Ausdrucksmittel dar. Sie de-
finiert die formale Struktur, mit der Systeme beschrieben und analysiert werden
konnen. Erst durch die Modellierungsmethode wird festgelegt, wie und zu wel-
chem Zweck die Sprache angewendet wird. Die Methode definiert, welche Syste-
maspekte modelliert und in welcher Reihenfolge die Modellinhalte erzeugt werden

Theoretische Grundlagen und Stand der Technik Seite 15

sollen. Sie dient damit als Bindeglied zwischen Sprache und Werkzeug und stellt
sicher, dass das Modell den Anforderungen der jeweiligen Doméne entspricht.

System-
modell

Sprache

Bild 2-4 MBSE-Dreieck (Kaiser, 2013)

Das verwendete Werkzeug wiederum bildet die technische Grundlage zur Anwen-
dung der Sprache und Methode. Es ermoglicht die Erstellung, Pflege und Analyse
komplexer Systemmodelle und stellt Funktionen wie Versionskontrolle, Modell-
validierung und Kollaborationsunterstiitzung bereit (Kaiser, 2013).

Im Rahmen dieser Arbeit wird SysML v2 als Modellierungssprache verwendet,
wiahrend der CSM als zentrales Modellierungswerkzeug zum Einsatz kommt. Einer
vordefinierten Modellierungsmethode wird dabei nicht gefolgt, da das Ziel dieser
Arbeit die Entwicklung eines Git-basierten Kollaborationsprozesses ist. Bei der
Modellierung des UAV-Beispielsystems werden daher werkzeugspezifische sowie
umgebungsspezifische Anforderungen beriicksichtigt (siche Kapitel 3.5). Ziel ist
es, auf Basis dieser Komponenten einen strukturierten Kollaborationsansatz zu
schaffen, der die Zusammenarbeit innerhalb von SE-Teams unterstiitzt.

2.3 Systems Modeling Language

Die Systems Modeling Language (SysML) ist eine von der Object Management
Group (OMG) entwickelte, domédnenunabhingige Modellierungssprache fiir die
Spezifikation, Analyse, das Design und die Verifikation komplexer technischer
Systeme. Die Sprache basiert auf einer reduzierten und erweiterten Version der
Unified Modeling Language (UML) und wurde spezifisch entwickelt, um die An-
forderungen des Systems Engineerings zu adressieren. Die Modellierung mit
SysML ermoglicht die integrierte Darstellung von Anforderungen, Verhalten,
Struktur und Parametern eines Systems und schafft so eine gemeinsame Grundlage
fiir den interdisziplindren Austausch zwischen verschiedenen Ingenieurdisziplinen
(Friedenthal et al., 2009).

Die initiale Version SysML v1.0 wurde im September 2007 verdffentlicht. Die ak-
tuell veréffentliche stabile Version ist SysML v1.7 (Stand: Juni 2024). Parallel dazu

Theoretische Grundlagen und Stand der Technik Seite 16

verlagert sich der Fokus der OMG zunehmend auf die Entwicklung der néchsten
Sprachgeneration, SysML v2. Eine erste Demoversion von SysML v2 wurde im
April 2024 verdffentlicht (Friedenthal, 2024). Der letzte verdffentlichte Entwurf
stammt vom April 2025 und stellt den bislang aktuellsten Stand der Sprache dar
(OMG Systems Modeling Community, n.d.). Obwohl SysML v2 bereits 6ffentlich
zuganglich ist, befindet sich die Sprache weiterhin in der Finalisierungsphase. Die
grundlegenden Unterschiede zwischen den Versionen sowie der aktuelle Entwick-
lungsstand von SysML v2 werden im Folgenden néher erléutert.

2.3.1 SysML v1

Die erste Version der Systems Modeling Language (SysML v1) wurde als Erweite-
rung der UML fiir die Systementwicklung konzipiert und im Jahr 2007 von der
OMG standardisiert. Sie etablierte sich schnell als weit verbreiteter Standard zur
modellbasierten Beschreibung technischer Systeme. SysML v1 basiert konzeptuell
auf vier Modellkategorien — den sogenannten Vier Sédulen von SysML: Struktur,
Verhalten, Anforderungen und Parametrik (Friedenthal et al., 2009).

Bild 2-5 veranschaulicht die vier zentralen Modellkategorien und ordnet ihnen spe-
zifische Diagrammtypen zu.

SysML-
Diagramm
Verhalten- | Anforderung- : Struktur-
Diagramm : Diagramm | Diagramm
Aktivitats- Block-
Diagramm Definition-
Diagramm
T
Sequenz- I
Diagramm Paket-
Diagramm
\ > I
Diagramm b S] 3 . i
i Pafamemk Intel:nal Block: ‘:] Aus UML 2 ibernommen
Diagramm | Diagramm

e
Use-Case- D Aus UML 2 modifiziert
Diagramm

r--
__ _: Neuer Diagrammtyp

El SysML v1 Saulen

Bild 2-5 Die vier Sdulen der SysML vI mit Diagrammtypen (eigene Darstel-
lung nach Friedenthal et al., (2009))

Die erste Saule, Struktur, bildet die statische Organisation und Zusammensetzung
des Systems ab. Das zentrale Element dieser Kategorie ist der ,,Block®, der als Ba-
siseinheit sowohl physische als auch logische Systemelemente wie Hardware, Soft-
ware, Personen oder Einrichtungen darstellen kann. Die Struktur eines Systems
wird dabei mithilfe von Blockdefinitionsdiagrammen (BDD) modelliert, die die

Theoretische Grundlagen und Stand der Technik Seite 17

hierarchische Gliederung und Klassifizierung von Systemkomponenten beschrei-
ben. Die interne Struktur eines Blocks wird durch Interne Blockdiagramme (IBD)
dargestellt, welche die Zusammensetzung aus Teilen, Schnittstellen (Ports) und
Verbindungen zeigen. Zur strukturellen Organisation auf hoherer Ebene dient zu-
dem das Paketdiagramm, mit dem Modellelemente logisch gruppiert werden kon-
nen.

Die zweite Saule, Verhalten, beschreibt die dynamischen Aspekte des Systems —
also, wie sich Systemelemente verhalten, interagieren und auf Ereignisse reagieren.
Hierfiir stehen mehrere Diagrammtypen zur Verfligung: Use-Case-Diagramme ge-
ben eine abstrakte Ubersicht iiber die Funktionalititen des Systems und deren In-
teraktionen mit externen Akteuren. Aktivitdtsdiagramme zeigen den Ablauf von
Aktionen und den Fluss von Daten und Kontrolle. Sequenzdiagramme stellen die
zeitliche Abfolge von Nachrichten zwischen interagierenden Systemteilen dar,
wiéhrend Zustandsdiagramme das zustandsbasierte Verhalten eines Systems oder
Systemteils modellieren (Friedenthal et al., 2009).

Die dritte Saule, Anforderungen, ermoglicht die Modellierung textbasierter An-
forderungen sowie deren Verkniipfung mit anderen Modellelementen. Das Anfor-
derungsdiagramm erlaubt die Darstellung von Anforderungshierarchien und -ablei-
tungen und verkniipft Anforderungen iiber die Beziehungen ,, satisfy “ und ,, verify “
mit strukturellen oder verhaltensbezogenen Elementen. Dadurch wird eine konsis-
tente Nachverfolgbarkeit zwischen Anforderungen und Systementwurf sicherge-
stellt und eine Briicke zum klassischen Anforderungsmanagement geschaffen.

Die vierte Saule, Parametrik, erweitert die Modellierung um mathematische Rand-
bedingungen und Beziehungen zwischen physikalischen Eigenschaften. Para-
metrikdiagramme verwenden sogenannte ,, constraint blocks “, um beispielsweise
Leistung-, Masse- oder Zuverlassigkeitsanforderungen als Gleichungssysteme im
Modell zu verankern. Diese Diagramme ermdglichen die Integration von Analyse-
modellen in die Modellierungsumgebung und fordern so die Verbindung von Sys-
tementwurf und Simulation.

Erginzend zu den genannten Diagrammen stellt SysML v1 das Allocation-Kon-
strukt bereit, um verschiedene Zuweisungsbeziechungen abzubilden — etwa zwi-
schen Funktionen und Komponenten, logischen und physischen Elementen oder
Software und Hardware (Friedenthal et al., 2009).

2.3.2 SysML v2

Die Systems Modeling Language Version 2 (SysML v2) wurde durch das SysML
v2 Submission Team (SST) als Antwort auf das im Dezember 2017 durch die OMG
veroffentlichte Request for Proposal (RFP) entwickelt. Die daraus resultierenden
Spezifikationen — bestehend aus der Kernel Modeling Language (KerML), der

Theoretische Grundlagen und Stand der Technik Seite 18

grafischen und textuellen Notation von SysML v2 sowie der Systems Modeling API
& Services — befinden sich derzeit in der Finalisierungsphase (Stand: April 2025).

Ziel von SysML v2 ist es, die Akzeptanz und Effektivitdt modellbasierter Syste-
mentwicklung durch Verbesserungen in mehreren Bereichen deutlich zu steigern
(Friedenthal, 2024):

e Prizision und Ausdrucksstirke der Sprache,

e Konsistenz und Integration zwischen Sprachkonzepten,

e Interoperabilitit mit anderen Ingenieurmodellen und Werkzeugen,

e Benutzerfreundlichkeit fiir Modellentwickler:innen und -nutzer:innen,
o Erweiterbarkeit zur Unterstiitzung doménenspezifischer Anwendungen,

e sowie die Bereitstellung eines Migrationspfades fiir Anwender:innen und
Tool-Hersteller von SysML v1.

Trotz des noch laufenden Finalisierungsprozesses sind bereits 6ffentlich zugingli-
che Demonstrationsversionen verfligbar. Diese konnen iiber die OMG offizielle
GitHub-Seite (OMG Systems Modeling Community, n.d.) heruntergeladen und in
Umgebungen wie Jupyter Notebook oder Eclipse ausgefiihrt werden. Auch weiter-
filhrende Informationen und aktuelle Entwicklungen werden dort ver6ffentlicht.

Im Gegensatz zu SysML v1, das auf sogenannten Sdulen (engl. pillars) beruht, ver-
folgt SysML v2 einen modulareren Ansatz. Die Sprache wurde entlang definierter
Fahigkeiten (engl. capabilities) strukturiert, die sich auf bestimmte Modellierungs-
aspekte konzentrieren. Diese Umstellung unterstiitzt die Erweiterbarkeit und mo-
dulare Weiterentwicklung der Sprache. Bild 2-6 zeigt einen Uberblick iiber die
zentralen Sprachfahigkeiten von SysML v2.

Requirements

Behavior .
- function-based ’ Analysis

- state-based . S analy5|s_cases
- sequence-based - expression language

- use cases SysML v2
Structure Language ~
- decomposition - Verification
- interconnection ’ - verification cases

- classification

View & Viewpoint

Bild 2-6 SysML v2 Sprachfihigkeiten (Friedenthal, 2024)

Theoretische Grundlagen und Stand der Technik

Seite 19

Drei der zentralen neuen Sprachfiahigkeiten sind:

1. View- und Viewpoint: Diese ermoglicht die flexible Darstellung von Sys-

teminformationen aus unterschiedlichen Stakeholder-Perspektiven.

2. Analysefihigkeit: Erlaubt die Integration und Ausfiihrung analytischer Mo-

delle zur Unterstiitzung von Systembewertungen und Entscheidungsprozes-

sen.

3. Verifikationsfahigkeit: Durch formale Verifikationsmechanismen kann si-
chergestellt werden, dass Systeme korrekt spezifiziert und die Anforderun-
gen erfiillt werden.

Die Architektur von SysML v2 basiert auf einer mehrschichtigen Sprachstruktur,
die in Bild 2-7 dargestellt ist.

Das zugrundeliegende KerML definiert die abstrakte Syntax, auf der SysML v2
aufbaut. Die Systems Library erweitert diese Basisspezifikation um Systembezo-
gene Konstrukte. Zusétzlich ermoglichen sogenannte Domain Libraries die Einbin-

dung doménenspezifischer Referenzmodelle, beispielsweise zur Modellierung von
physikalischen Grofien oder Analysemodellen (OMG Systems Modeling Langu-

age, 2024).

Bild 2-7

1

Systems
[DefinitionAndUsage
[Attributes
3 Enumerations
£3 Occurrences

7 Items
£ Parts
1 Ports
3 Connections
3 Interfaces
[Allocations —
% g:;:::s k- — — — — < Domain
{3 Calculations Libraries
3 Constraints T
[3J Requirements |
(3 Cases ltimpom
(3 AnalysisCases [
[VerificationCases
(3 UseCases e TS model | N\
3 Views Systems
3 Metadata semantic nbrary9 Library
| |
| |«import»
l«irmon» |
1 " _l %
Kernel e — — — — — — KernetlI
Semantic
ticl !
B Ry

2024)

SysML v2 Spracharchitektur (OMG Systems Modeling Language,

Theoretische Grundlagen und Stand der Technik Seite 20

2.3.3 Weiterentwicklung der Terminologie und Struktur von
SysML v1 zu SysML v2

SysML v2 wurde mit dem Ziel entwickelt, bestehende Schwéchen von SysML v1
gezielt zu adressieren. Im Vergleich zur Vorgédngerversion SysML v1 bringt SysML
v2 nicht nur strukturelle und terminologische Anderungen mit sich, sondern adres-
siert auch zentrale Schwichen und Herausforderungen der bisherigen Modellie-
rungspraxis (Friedenthal, 2024). Wesentliche Neuerungen bestehen in folgenden
Punkten:

e Einfithrung einer textuellen Notation, die parallel zur grafischen Notation
verwendet werden kann,

e Unterstiitzung von Systemvarianten, Analyseféllen, Verifikationsféllen und
Sichten,

e Integration iiber eine standardisierte Application Programming Interface
(API) und ein zentrales Modellserver-Konzept,

e und die Moglichkeit zur doménenspezifischen Erweiterung durch Biblio-
thekskonzepte.

Ein zentrales Unterscheidungsmerkmal liegt in der technologischen Basis: Wéh-
rend SysML vl auf UML aufbaut, basiert SysML v2 auf KerML, einer speziell
entwickelten Metamodellierungssprache. KerML selbst wurde auf Grundlage von
UML und der Web Ontology Language (OWL) konzipiert und bietet eine stirkere
formale Grundlage fiir die Modellierung. Diese Neuausrichtung zielt darauf ab, die
Semantik der Sprache zu vereinheitlichen und damit die Interpretierbarkeit von Mo-
dellen zu verbessern (Friedenthal, 2024).

Ein weiteres wesentliches Merkmal von SysML v2 ist die optionale textuelle Nota-
tion, die als Ergidnzung zur grafischen Sichtweise dient. Beide Darstellungen beru-
hen auf demselben zugrunde liegenden Modell und sind vollstdndig synchronisier-
bar. Dadurch ergeben sich fiir Anwender flexible Moglichkeiten der Modellbear-
beitung und -dokumentation, angepasst an individuelle Priferenzen oder Werk-
zeugeinsatz (OMG Systems Modeling Language, 2024). Die neue Struktur von
SysML v2 erleichtert auBerdem die Integration mit modernen Werkzeugketten und
Arbeitsweisen, wie beispielsweise Git-basierten Kollaborationsprozessen (Ahl-
brecht et al., 2024). Tabelle 2-2 umfasst ein Beispiel, das sowohl die grafischen als
auch die textuellen Notationen der SysML v2 verdeutlicht.

Die standardisierte API und das Modellserver-Konzept eréffnen neue Moglichkei-
ten zur Werkzeugintegration sowie zur Entwicklung spezialisierter MBSE-Tools —
auch durch kleinere Anbieter, akademische Einrichtungen oder gemeinschaftsba-
sierte Open-Source-Projekte. Die Unterstiitzung durch etablierte Toolhersteller
wird ebenfalls erwartet, da SysML v2 mit seinen erweiterten Féahigkeiten und

Theoretische Grundlagen und Stand der Technik

Seite 21

Interoperabilititsansdtzen einen zukunftsfihigen Standard darstellt (Ahlbrecht et

al., 2024).

Tabelle 2-2: Beispiel fiir die grafischen und textuellen Notationen von SysML v2
(OMG Systems Modeling Language, 2024)

Elementname

Grafische Notation

Textuelle Notation

«requirements requizrement
requirement! : RequirementDef1 reguirementl :
e RequirementDefl {
doc /* ... */
Al subject redefines sl
Requirement Siject = mysubject;

redefines s1 = mySubject require require2;

assume constraintl;

require consiraints
require2 }

assume consiraints

consliraint1

A

«part» part partl : PartDefl:;

part1 : PariDef1
part partl : PartDefl {

Part wpart» /* members */
part1 : PartDef1 }

compartment stack

«part» requirement
. reguirementl :
SaﬂSfy artl q Baut] Requirementl;

part partl : Partl {
satisfy requirementl;

[«satisfy»]
}

requirement1

Die sprachliche Vereinfachung spielt ebenfalls eine zentrale Rolle in SysML v2.
Wie in Tabelle 2-3 dargestellt, wurden Begriffe wie ,, part property* oder ,, block*
durch klarere und intuitivere Bezeichnungen wie ,,part” und ,, part def* ersetzt.
Diese sprachliche Konsistenz erleichtert nicht nur das Erlernen der Sprache, son-
dern verbessert auch die Verstindlichkeit und Anwendbarkeit im praktischen Ein-
satz (Friedenthal, 2024).

Die textuelle Notation von SysML v2 wird in dieser Arbeit bevorzugt betrachtet,
da sie eng mit dem in den nachfolgenden Kapiteln entwickelten methodischen An-
satz verkniipft ist.

Theoretische Grundlagen und Stand der Technik Seite 22

Tabelle 2-3 Vergleich der Terminologie zwischen SysML v2 und SysML vi (Aus-
schnitt) (Friedenthal, 2024)

SysML v2 SysML v1
part / part def part property / block
attribute / attribute def value property / value type
port / port def proxy port / interface block
action / action def action / activity
state / state def state / state machine
constraint / constraint def constraint property / constraint block
requirement / requirement def requirement
connection / connection def connector / association block
view / view def view

2.4 Cameo Systems Modeler mit SysML v2

Cameo Systems Modeler (CSM) ist eine plattformiibergreifende Modellierungsum-
gebung fiir das MBSE. Sie wird von Dassault Systéemes (ehemals No Magic) ent-
wickelt und gilt als eines der filhrenden Werkzeuge in der MBSE-Praxis. Die Soft-
ware ermdglicht die standardkonforme Modellierung geméf SysML und unterstiitzt
Ingenieurteams bei der Modellierung technischer Systeme (Dassault Systémes,
2023). Laut Herstellerbeschreibung unterstiitzt CSM insbesondere:

e Die Durchfiihrung von Analysen zur Bewertung von Entwurfsentscheidun-
gen und zur Verifikation von Anforderungen,

e die kontinuierliche Konsistenzpriifung von Modellen sowie
e die Fortschrittsilberwachung anhand definierter Metriken.

Zudem betont der Hersteller, dass CSM speziell auf hochkomplexe, regulierte In-
dustrien wie Luft- und Raumfahrt, Verteidigung oder Automobil ausgelegt ist. Es
unterstiitzt die Einhaltung strenger Normen und erleichtert die Dokumentation fiir
Projektmanagement und Zertifizierungsprozesse (Dassault Systémes, 2023).

Die im Rahmen dieser Arbeit verwendete Version von CSM wurde vom DLR be-
reitgestellt und enthélt das SysML v2-Plugin (Bild 2-8).

Theoretische Grundlagen und Stand der Technik Seite 23

SX Neuer Projekttitel X
Create a new SysML v2 project \
Create a new SysML v2 project
]
Systementwicklung 4 | Name: |SysMLv2 Test Project
i & Speicherort des Projekts: |C:\Users\shei_zo\Desktop\MA-SysMLv2_Files
SysMLv2 MagicGrid v2
Project Quickstart O Erzeuge Ordner fiir Projekt und zugehdrige Daten
SysML MagicGrid
Project Blank
&
MagicGrid MagicGrid v2
QuickStart Blank

Aligemeine Modellierung
Unternehmensmodellierung
Software Engineering
Business Process Modeling

Simulation

R I TR TS

{ Andere

oK Abbrechen Hilfe

Bild 2-8 CSM SysML v2-Plugin (eigener Screenshot aus CSM, SysML v2-
Plugin)

Dabei handelt es sich ausdriicklich um eine Vorabversion, die sich noch in der Ent-
wicklungsphase befindet. Nach dem Start der Software erscheint ein Warnhinweis
(Bild 2-9):

,,Not for Use in Production:

The SysML v2 Plugins are pre-released version and cannot be used for produc-
tion. Please use them only for testing and evaluation purposes.

Note that this version does not support project migration, so projects created may
not be compatible with future releases.

While support through the official Dassault Systemes Support channel is not
available, we welcome your feedback in the 3DSwym SysMLv2 community.”

A X

Not for Use in Production

The SysML v2 Plugins are a pre-release version and cannot
be used for production. Please use them only for testing
and evaluation purposes.

Note that this version does not support project migration,
so projects created may not be compatible with future
releases.

While support through the official Dassault Systémes
Support channel is not available, we welcome your
feedback in the 3DSwym SysML v2 community .

Bild 2-9 Warnhinweis beim Start des SysML v2-Plugins in CSM (eigener
Screenshot aus CSM, Warnhinweis)

Theoretische Grundlagen und Stand der Technik Seite 24

Diese Einschrankungen machen deutlich, dass die aktuell verfiigbare Version noch
nicht fiir produktive Zwecke vorgesehen ist. Die Unterstiitzung offizieller Support-
kanéle entféllt und eine Riickwirtskompatibilitdt zukiinftiger Versionen ist nicht
gewdhrleistet. Dennoch bietet diese Vorabversion bereits die wesentlichen Funkti-
onen, um ein Beispielsystem zu modellieren und erste Erfahrungen mit SysML v2
zu sammeln.

Im Rahmen dieser Arbeit wird ein einfaches UAV-Beispielsystem in CSM model-
liert, wobei besonderes Augenmerk auf die Verwendung der textuellen Notation
gelegt wird. SysML v2 erlaubt die parallele Nutzung beider Darstellungsformen —
graphisch und textuell, was in der Benutzeroberflache von CSM direkt sichtbar ist.

Bild 2-10 zeigt ein Beispiel, in dem die textuelle und grafische Darstellung eines
modellierten Teils nebeneinander angezeigt werden. Dieses Beispiel verdeutlicht
die synchrone Visualisierung beider Notationen im SysML v2-Plugin von CSM.
Weitere Details zur Projekterstellung und zu den spezifischen Einschrankungen der
SysML v2-Integration in CSM werden in Kapitel 4.2 beschrieben.

Part_Decomposition X 4 > B stw) Part_Decomposition X
i -) - ko~ = B

Se—lecvﬁcnv = 1 view Part_Decomposition;
hol % &5 - 2 part Part_1 {
Iools 3 part 'Sub-Part_1';
L& X s 4 part 'Sub-Part_2';
Common Sub-Part_1 5 part ‘Sub-Part_3';
Items/Ports/Attributes 6 | part Sub-Part_4';
m 7
part def - s -)
B port - Sub-Part_2
O item ~
(2) attribute v «part»
(=] timeslice -~ Sub-Part_3
ref

«part»
[€] enum def Sub-Part_4

Connectors

Bild 2-10 Beispiel fiir die Darstellung einer Teilzerlegung in SysML v2 (eige-
ner Screenshot aus CSM, grafische und textuelle Notation)

2.5 Kollaboration in MBSE

Die modellbasierte Systementwicklung erfordert die enge Zusammenarbeit inter-
disziplindrer Teams iiber den gesamten Systemlebenszyklus hinweg. Im Gegensatz
zu dokumentenbasierten Ansétzen bietet MBSE eine zentrale Wissensreprasenta-
tion, die als Referenz fiir Anforderungen, Architektur, Verifikation und Validierung
dient (Haberfellner et al., 2019). Damit diese Vorteile jedoch wirksam werden,
miissen alle Beteiligten effizient und konsistent auf ein gemeinsames Modell zu-
greifen und daran mitarbeiten konnen (May & Zerwas, 2025).

In der Praxis zeigt sich, dass Kollaboration im MBSE mit einer Vielzahl von Her-
ausforderungen verbunden ist — sowohl organisatorischer als auch technischer

Theoretische Grundlagen und Stand der Technik Seite 25

Natur. Unterschiedliche Begriffsverstandnisse, fehlende Synchronisation zwischen
Teilmodellen und unzureichende Versionskontrolle sind nur einige Beispiele. Diese
Problematik wird in Kapitel 2.5.1 detailliert betrachtet.

In Kapitel 2.5.2 wird anschlieend aufgezeigt, wie agile Prinzipien und DevOps-
Ansétze (Development & Operations) in der Softwareentwicklung als Antwort auf
dhnliche Herausforderungen entstanden sind und wie diese Denkweise in Form von
Agile MBSE auf die modellbasierte Systementwicklung iibertragen werden kann.
In Kapitel 2.5.3 wird Git als Versionsverwaltungssystem vorgestellt und darauf ein-
gegangen, weshalb es fiir die modellbasierte Kollaboration in diesem Kontext aus-
gewahlt wurde und welche Vorteile sich daraus ergeben konnen.

2.5.1 Herausforderungen der Kollaboration in MBSE

Die kollaborative modellbasierte Systementwicklung (CMBSE) steht vor vielfalti-
gen Herausforderungen, die in der Fachliteratur umfangreich diskutiert werden. Auf
Basis einer systematischen Literaturrecherche lassen sich zehn wiederkehrende
Problemfelder identifizieren, die nachfolgend zusammengefasst werden.

Konsistenz und Aktualitit im Informationsaustausch:

Ein zentrales Problem stellt die konsistente Versionierung und der Austausch von
Modellen dar. Insbesondere in verteilten Entwicklungsnetzwerken ist es erforder-
lich, dass Partner wie OEMs und Zulieferer modellbasierte Beschreibungen, An-
forderungen und Losungen aufeinander abgestimmt und in nachvollziehbarer Ver-
sion austauschen (prostep ivip Association, 2023). Die hohe Dynamik in frithen
Entwicklungsphasen fiihrt zudem zu stéindigen Anpassungen der Modelle, die zeit-
nah mit allen Beteiligten synchronisiert werden miissen (Li et al., 2024).

Zugianglichkeit und Schutz sensibler Daten:

MBSE-Plattformen wie 3DX von Dassault Systéemes etablieren Modelle als Single
Point of Truth und verbessern dadurch die Zusammenarbeit {iber Doméanengrenzen
hinweg. Dennoch bestehen Einschridnkungen bei der Zuginglichkeit fiir externe
Stakeholder, da Schnittstellen nur innerhalb der Plattform aktiviert werden kénnen
(May & Zerwas, 2025). Parallel dazu erfordert die Sensibilitit der Entwicklungs-
daten eine selektive Offenlegung, bei der klar definiert ist, welche Informationen in
welchem Umfang zugénglich sind (Li et al., 2024; Wouters et al., 2017).

Semantische Interoperabilitit und gemeinsame Sprache:

Ein haufig unterschitztes Hindernis ist die mangelnde semantische Konsistenz bei
der Verwendung zentraler Begriffe. Unterschiedliche Disziplinen interpretieren Be-
griffe wie ,,Funktion“ oder ,,System* teils divergierend, was Missverstindnisse bei
der Modellintegration begiinstigt (Wouters et al., 2017).

Theoretische Grundlagen und Stand der Technik Seite 26

Koordination verteilter Modellierungsaktivititen:

Die Orchestrierung von Modellierungsprozessen iiber Fach- und Organisations-
grenzen hinweg erfordert eine priazise Abstimmung. Dabei sollen sowohl Kohérenz
als auch individuelle Arbeitsweisen beriicksichtigt werden (Wouters et al., 2017).
Unterstiitzt werden muss dies durch rollenbasierte Zugriffskonzepte, die sowohl
Datenschutz als auch Informationsrelevanz beriicksichtigen (Wouters et al., 2017).

Modellvaliditit und Regelkonformitit:

Ein weiteres zentrales Thema betrifft die Einhaltung doménenspezifischer Regeln
und Normen innerhalb der Modelle. Diese miissen explizit formuliert und maschi-
nenlesbar validierbar gemacht werden, um Inkonsistenzen frithzeitig zu erkennen
(Wouters et al., 2017).

Riickverfolgbarkeit und Anderungsmanagement:

Die Nachvollziehbarkeit von Anforderungen, Entwurfsentscheidungen und Ande-
rungen {iber disziplindre Grenzen hinweg ist essenziell fiir Qualitdt und Auditier-
barkeit. Dies setzt geeignete Mechanismen zur Dokumentation, Kommentierung
und Versionierung voraus (Wouters et al., 2017).

Systemisches Denken als kulturelle Herausforderung:

Abschlieflend sei auf ein iibergreifendes Problem hingewiesen: Die Umstellung von
einer komponentenbasierten hin zu einer systemischen Denkweise. MBSE erfor-
dert, dass Beteiligte funktional und nutzerorientiert denken, anstatt sich auf vorhan-
dene Produktstrukturen zu stiitzen. Dies impliziert tiefgreifende organisatorische
Verdnderungen sowie entsprechende Schulungs- und Transformationsprozesse
(prostep ivip Association, 2023).

Zur besseren Nachvollziehbarkeit werden in Tabelle 2-4 zentrale Herausforderun-
gen der kollaborativen modellbasierten Systementwicklung (CMBSE) zusammen-
gefasst. Die dargestellten Problemfelder basieren auf einer systematischen Litera-
turrecherche, sind thematisch gruppiert und jeweils mit Quellenangaben versehen.

Die in diesem Abschnitt identifizierten Herausforderungen bilden eine zentrale
Grundlage fiir die Analyse der konkreten Umsetzung kollaborativer MBSE-Prakti-
ken im Rahmen dieser Arbeit. Sie dienen als Referenzrahmen, um die in der For-
schungsumgebung des DLR beobachteten Problemstellungen systematisch einord-
nen und bewerten zu kdnnen. Ein entsprechender Vergleich erfolgt in Kapitel 3.5,
das die Herausforderungen der Zusammenarbeit im Kontext der betrachteten For-
schungsumgebung beschreibt.

Theoretische Grundlagen und Stand der Technik

Seite 27

Tabelle 2-4:

Quellen und thematischen Kategorien

Ubersicht der Herausforderungen in CMBSE mit Zuordnung zu

Herausforderung Kategorie Quelle
Dynamik & Aktualisierung Anderungsmanagement Li et al., (2024)
Ruckverfolgbarkeit Anderungsmanagement Wouters et al., (2017)

Informationssicherheit

Zugriff & Sicherheit

Li et al., (2024)

Kontrollierte Offenlegung

Zugriff & Sicherheit

Wouters et al., (2017)

Konsistenter Austausch

Informationsmanagement

prostep ivip Associa-
tion, (2023)

Regelkonformitat im Modell

Doménenspezifische Validie-
rung

Wouters et al., (2017)

Zugriffsbeschrankung in 3DX

Plattformtechnische Grenzen

May & Zerwas, (2025)

Begriffsdivergenz

Semantik & Interoperabilitat

Wouters et al., (2017)

Koordination tber Rollen hin-
weg

Orchestrierung

Wouters et al., (2017)

Systemisches Denken

Organisation & Kultur

prostep ivip Associa-

tion, (2023)

2.5.2 Agile MBSE

In der Softwareentwicklung haben sich agile Methoden als wirkungsvolle Antwort
auf Herausforderungen der Zusammenarbeit etabliert. Das Agile Manifest nach
Beck et al. (2001) betont Werte wie Zusammenarbeit, Reaktionsfahigkeit auf Ver-
dnderung sowie funktionsfdhige Ergebnisse statt umfassender Dokumentation.
Diese Prinzipien spiegeln sich in verschiedenen agilen Methoden wider, wie z. B.
Scrum, Extreme Programming (XP) oder Feature Driven Development (FDD), die
allesamt auf inkrementeller Entwicklung und iterativen Zyklen basieren (Alsagqa
et al., 2020). Ein zentrales Element vieler agiler Methoden sind sogenannte Sprints
— kurze, festgelegte Iterationen, in denen Planung, Entwicklung und Uberpriifung
stattfinden (Nyembe et al., 2023). Scrum, als eine der populdrsten agilen Methoden,
definiert klare Rollen, Verantwortlichkeiten und Abldufe zur kontinuierlichen Ver-
besserung und Anpassung des Produkts (Schwaber & Sutherland, 2020).

Parallel zur agilen Bewegung entwickelte sich DevOps als erweiterter organisato-
rischer Ansatz, der insbesondere die Integration von Entwicklung und Betrieb fo-

kussiert. Ziel 1ist eine beschleunigte, zuverldssige und kontinuierliche

Theoretische Grundlagen und Stand der Technik Seite 28

Softwareauslieferung. Zentrale DevOps-Prinzipien wie Continuous Integration
(CI), Continuous Deployment (CD), automatisierte Priifverfahren, Systemiiberwa-
chung und Riickmeldezyklen tragen maligeblich zur Effizienzsteigerung bei
(Jayaraman & Rastogi, 2025; Kim et al., 2016). Dariiber hinaus fordert DevOps
eine Kultur geteilter Verantwortung, in der funktionsiibergreifende Teams gemein-
sam fiir Qualitdt und Geschwindigkeit der Lieferung verantwortlich sind. Diese
Herangehensweise reduziert sowohl die mittlere Wiederherstellungszeit (MTTR)
als auch die Fehlerquote in Produktionsumgebungen und verbessert die Reaktions-
fahigkeit auf Marktverdnderungen (Jayaraman & Rastogi, 2025).

Ein typischer agiler Entwicklungsprozess besteht aus den Schritten: Planung, Ent-
wurf, Entwicklung, Erprobung, Bereitstellung, Uberpriifung und Verdffentlichung.
Diese Phasen werden zyklisch durchlaufen, sodass in jeder Iteration Feedback ein-
flieft und Anpassungen moglich sind. Bild 2-11 zeigt diesen iterativen Ablauf
exemplarisch (exapp.ca, 2024).

oY _
>
& N
S AGILE N
i METHODOLOGY g
PLAN . DESIGN

Bild 2-11 Agile Methodologie (exapp.ca, 2024)

Auch in der modellbasierten Systementwicklung hat sich inzwischen ein agiler
Denkansatz etabliert: Agile Model-Based Systems Engineering (AMBSE). AMBSE
kombiniert die Prinzipien agiler Softwareentwicklung mit modellbasierten Syste-
mentwicklungsprozessen. Im Bereich der Luftfahrtsystementwicklung zeigen Fall-
studien, wie agile Prinzipien erfolgreich auf frithe Phasen der Systementwicklung
angewendet werden konnen. Krupa (2019) beschreibt z. B. die Kombination von
OOSEM (Object-Oriented Systems Engineering Method) mit SysML v1 zur itera-
tiven Konzeptentwicklung (Bild 2-12). Dabei entsteht ein kontinuierlicher Ent-
wicklungsprozess, der Flexibilitit in der Modellierung mit hoher Nachvollziehbar-
keit verbindet und gleichzeitig die Anforderungen regulatorischer Standards wie
ARP4754A und ARP4761 unterstiitzt.

Dartiber hinaus wird der AMBSE-Prozess in Bild 2-13 als SysML-Aktivitdtsdia-
gramm dargestellt. Die Aktivitdten innerhalb des Diagramms reprisentieren zent-
rale Aufgaben im Rahmen des MBSE. Nachdem eine konkrete System- bzw. Sub-
systemarchitektur entworfen wurde, erfolgt ein Vergleich mit alternativen Konzep-
ten. Sobald eine Architekturvariante als geeignet eingestuft wird, wird sie an die
integrierten Produktentwicklungsteams (IPDT) zur weiteren Ausarbeitung im

Theoretische Grundlagen und Stand der Technik Seite 29

Rahmen des vorldufigen Designs libergeben. Wihrend des gesamten Entwicklungs-
prozesses dienen die Luftfahrtstandards ARP4754A und ARP4761 als Grundlage
zur sys-tematischen Anforderungserhebung und Sicherheitsanalyse (Krupa, 2019).

Project
initiation

Preliminary
design phase

Is the
(sub)system
mature

enough? System
Verification

Stakeholder
Requirements
Analysis

System
Validation

Functional
Analysis

Architecture
Trade-off

Conceptual
design
phase

Requirement
Analysis

Architecture
Synthesis

Define
Logical
Architecture

Architecture
Analysis

ith Subsystem
Agile Cycle

(Program Management)

(Safety Assessment Process Guidelines & Methods (ARP 4761))

G\ircmf! & System Development Processes (ARP 4754A / ED-?@

Bild 2-12 Agiler Systementwicklungsprozess fiir die Flugzeugkonzeption nach

Krupa, (2019)

act Conceptual Design System Level AMBSE pwcc»l

System/subsystem [more regs] [done]

Architecture
Trade-off analysis

Hand-off Validated requirements
to IPDTs

Requirement

Architecture
Analysis

Model Validation

_>(Program Management]7
L Safety Assessment Process (ARP 4761)) I
ﬂ Integral Processes (ARP 4754A) }7

Bild 2-13 AMBSE Lieferprozess wdihrend der Konzeptionsphase nach Krupa,

(2019)

Theoretische Grundlagen und Stand der Technik Seite 30

2.5.3 Git als Versionskontrollsystem

Git ist ein verteiltes Versionskontrollsystem, das urspriinglich zur Koordination der
Entwicklung des Linux-Kernels entwickelt wurde und sich seither als fithrendes
Werkzeug fiir die Verwaltung von Quellcodednderungen etabliert hat (Spinellis,
2012). Im Gegensatz zu zentralisierten Systemen wie Subversion oder CVS erlaubt
Git es mehreren Entwicklern, parallel an lokalen Ablagen (engl. ,, Repository “ pl.
., Repositories **) zu arbeiten, die bei Bedarf mit einem zentralen entfernten Reposi-
tory synchronisiert werden. Jeder ,, Commit “ stellt dabei eine Momentaufnahme des
Projekts dar, die durch einen eindeutigen Hash identifiziert wird. Durch die Nut-
zung von sogenannten Zweigen (engl. ,, Branch* pl. ,, Branches ‘) konnen Funktio-
nen, Fehlerbehebungen oder experimentelle Anderungen unabhiingig voneinander
entwickelt und spéter selektiv zusammengefiihrt werden (Ghodke & Chavan,
2024).

Diese dezentrale Struktur ermoglicht nicht nur eine flexible Arbeitsweise, sondern
unterstiitzt auch komplexe Workflows, wie sie in modernen Softwareentwicklungs-
projekten iiblich sind. Entwickler kénnen lokale Anderungen vor dem Commit im
sogenannten ,, Staging “-Bereich vorbereiten und die Historie eines Projekts jeder-
zeit vollstdndig lokal nachvollziehen — selbst ohne Internetverbindung. Relevante
Git-Befehle — wie ‘git init’, ‘git add’, 'git commit’, 'git status’, 'git log” oder git
push’ ermoglichen eine granulare Kontrolle iiber den Entwicklungsprozess (Gho-
dke & Chavan, 2024). Eine vollstindige Ubersicht zentraler Git-Befehle findet sich
in Anhang A2.

Im Kontext von DevOps spielt Git eine zentrale Rolle als verbindendes Element
zwischen Entwicklung und Betrieb. Als Teil einer integrierten Werkzeugkette 1asst
sich Git nahtlos mit weiteren DevOps-Werkzeugen wie GitLab, Jenkins oder Do-
cker kombinieren, um CI/CD und automatisierte Testprozesse zu ermdglichen.
Diese Integration ist essenziell, um eine durchgéngige Riickverfolgbarkeit, eine
konsistente Entwicklungsumgebung und eine hohe Automatisierung zu gewahrleis-
ten (Jayaraman & Rastogi, 2025).

Neben der lokalen Nutzung von Git bieten Plattformen wie GitHub und GitLab
erweiterte Funktionen zur Verwaltung und Kollaboration von Git-Repositories.
Wie Spinellis (2012) beschreibt, {ibernimmt GitHub als Drittanbieter zentrale Auf-
gaben wie das Hosting, die Versionskontrolle, die Benutzerverwaltung sowie Si-
cherheits- und Zugriffsrichtlinien. Dadurch wird insbesondere die Zusammenarbeit
in Open-Source-Projekten erleichtert, etwa durch die Moglichkeit, Merge Requests
(MR) einzureichen oder Anderungen direkt iiber eine webbasierte Oberfliche vor-
zunehmen. GitHub fordert so die kollaborative Entwicklung durch ein integriertes
Okosystem mit Funktionen wie der Nachverfolgung von Aufgaben, Projektdoku-
mentationen und Quellcodeiiberpriifungen. GitLab bietet dhnliche Funktionalititen
und integriert Werkzeuge fiir CI/CD direkt in die Plattform. Dadurch eignet sich

Theoretische Grundlagen und Stand der Technik Seite 31

GitLab besonders gut fiir die Umsetzung von DevOps-Prinzipien in einer konsoli-
dierten Entwicklungsumgebung. Beide Plattformen haben sich somit als zentrale
Bausteine in modernen Softwareentwicklungsprozessen etabliert und tragen we-
sentlich zur effizienten Anwendung von Git in verteilten Teams bei (Spinellis,
2012).

Im Gegensatz zu SysML vl1, dessen Modelle primér in bindren Formaten gespei-
chert werden, ermoéglicht SysML v2 eine Serialisierung in menschenlesbaren Text-
dateien. Dadurch lassen sich Modelle mit Git auf dieselbe Weise versionieren wie
Quellcode in der Softwareentwicklung. Dies erdffnet neue Potenziale fiir verteilte
Zusammenarbeit, Modellnachverfolgbarkeit und Wiederverwendung von Model-
lartefakten — ohne auf proprietire Datenformate angewiesen zu sein.

Im Rahmen dieser Arbeit wird Git in Verbindung mit GitLab als Versionskontroll-
system eingesetzt, um modellbasierte Systementwicklungsartefakte zu verwalten.
Dabei liegt ein besonderer Fokus auf der Integration der textuellen SysML v2-No-
tation, wie sie durch das CSM SysML v2-Plugin unterstiitzt wird. Die Moglichkeit
zur Nutzung einer klar strukturierten, textuellen Repréasentation der Modelle erlaubt
es, diese in Versionskontrollsysteme einzubinden, wie es bei Quellcode iiblich ist.

Umgebungsanalyse und Anforderungen an den Ansatz Seite 32

3 Umgebungsanalyse und Anforderungen an den An-
satz

Dieses Kapitel widmet sich der Analyse der Forschungsumgebung und der Ablei-
tung relevanter Anforderungen an den zu entwickelnden Git-basierten Kollaborati-
onsprozess. Ziel ist es, die Relevanz und Anwendbarkeit des Ansatzes im Kontext
der modellbasierten Flugsystementwicklung zu fundieren. Methodisch ist dieses
Kapitel dem Relevance Cycle der DSR-Methodologie nach Hevner et al. (2004)
zuzuordnen. Dieser Zyklus betont die systematische Erfassung praxisrelevanter
Problemstellungen sowie die Ableitung von Anforderungen, die als Input fiir die
Gestaltung und Evaluation von Artefakten dienen.

Im ersten Schritt wird das methodische Vorgehen beschrieben, mit dem die For-
schungsumgebung erhoben und analysiert wurde (Kapitel 3.1). Darauf folgt eine
Beschreibung der organisatorischen Rahmenbedingungen des Projektteams am
DLR (Kapitel 3.2).

Kapitel 3.3 stellt die Ergebnisse einer teaminternen Umfrage vor, mit der beste-
hende Kompetenzen, Werkzeuge und Prozesse identifiziert wurden. Diese Ergeb-
nisse bilden die Grundlage fiir die Entwicklung einer Rollenzuweisung gemaf
ARP4754B und ISO/IEC 15288, die in Kapitel 3.4 behandelt wird. Kapitel 3.5
schlieBt die Analyse mit einer strukturierten Darstellung der zentralen Kollaborati-
onsherausforderungen ab. Diese bilden die Basis fiir die in Kapitel 4 zu entwickeln-
den Anforderungen an den Git-basierten Kollaborationsansatz.

3.1 Methodisches Vorgehen zur Umgebungsanalyse

Die Analyse der Forschungsumgebung basiert auf einer empirischen Untersuchung
innerhalb der Forschungsgruppe am DLR. Ziel war es, bestehende Strukturen, Pro-
zesse und Herausforderungen der modellbasierten Zusammenarbeit im Team sys-
tematisch zu erfassen.

Hierzu wurde eine standardisierte Umfrage mit 18 geschlossenen und offenen Fra-
gen entwickelt und durchgefiihrt. Elf Teammitglieder nahmen daran teil. Die Um-
frage zielte darauf ab, Kompetenzen, genutzte Werkzeuge, Rollenverstindnisse so-
wie Probleme in der tdglichen Zusammenarbeit zu identifizieren.

Ergénzend wurde ein strukturierter Rollenzuweisungsprozess durchgefiihrt. Grund-
lage bildete eine RACI-Matrix, in der die im Team identifizierten Rollen systema-
tisch den Aktivitdten der Systementwicklungsprozesse gemiafl ARP4754B und
ISO/IEC 15288 zugeordnet wurden. Diese methodische Kopplung ermdglicht eine
fundierte Einordnung von Verantwortlichkeiten in Bezug auf etablierte Entwick-
lungsstandards.

Umgebungsanalyse und Anforderungen an den Ansatz Seite 33

Die identifizierten Herausforderungen aus Umfrage und Rollenanalyse dienen in
den nachfolgenden Kapiteln als Grundlage fiir die Ableitung funktionaler und
nicht-funktionaler Anforderungen an den Kollaborationsprozess.

3.2 Beschreibung der Forschungsumgebung

Die vorliegende Masterarbeit wurde im Rahmen einer Forschungsaktivitdt am DLR
Institut fiir Flugsystemtechnik, in der Abteilung ,,Sichere Systeme & Systems En-
gineering” (FT-SSY) in Braunschweig durchgefiihrt. Die Abteilung beschéftigt
sich mit der Entwicklung sicherheitskritischer Systeme im Bereich der Flugsystem-
technik sowie mit der Anwendung und Weiterentwicklung modellbasierter Metho-
den des Systems Engineerings.

Die Forschungsgruppe besteht aus einem Gruppenleiter und zehn wissenschaftli-
chen Mitarbeitenden, von denen sich die Mehrheit in der Promotionsphase befindet.
Die Mitarbeitenden sind in verschiedene nationale und internationale Forschungs-
projekte eingebunden. Inhaltlich liegen die Arbeitsschwerpunkte iiberwiegend in
der frithen Phase der Systementwicklung, insbesondere in der Systemkonzeption,
dem Entwurf und der Analyse von Flugsystemen. Diese Tatigkeiten lassen sich im
V-Modell nach ARP4754B primir auf der linken Seite verorten, also im Bereich
der Anforderungsdefinition, Konzeptausarbeitung und Architekturentwicklung.
Dariiber hinaus sind die Mitarbeitenden regelméaBig mit wissenschaftlichen Publi-
kationen und Konferenzbeitragen aktiv.

Neben den wissenschaftlichen Mitarbeitenden betreuen die Teammitglieder auch
Bachelor- und Masterarbeiten. Die studentischen Hilfskrifte sowie Abschlussar-
beitsstudierende sind jedoch nicht Teil der systematischen Analyse in dieser Arbeit,
da der Fokus auf den dauerhaft im Projekt eingebundenen Fachkriften liegt.

In der téglichen Arbeit kommen verschiedene Softwarewerkzeuge zum Einsatz.
Dazu zdhlen unter anderem modellbasierte Entwicklungstools wie CSM, mit dem
auf Basis von SysML v1 modelliert wird. Dariiber hinaus werden weitere Werk-
zeuge zur Dokumentation, Versionskontrolle, Simulation oder Kommunikation
verwendet. Eine einheitliche, integrierte Toollandschaft fiir die kollaborative Sys-
temmodellierung ist bislang jedoch nicht etabliert.

Ziel der im Rahmen dieser Arbeit durchgefiihrten Erhebung ist es daher, die beste-
hende Arbeitsweise hinsichtlich Kompetenzen, genutzter Werkzeuge und Formen
der Zusammenarbeit zu erfassen. Die daraus gewonnenen Erkenntnisse bilden die
Grundlage fiir die Ableitung von Anforderungen an einen Git-basierten Kollabora-
tionsprozess im modellbasierten Systems Engineering.

Umgebungsanalyse und Anforderungen an den Ansatz Seite 34

3.3 Analyse der Teamumfrage zur Zusammenarbeit

Zur Untersuchung der aktuellen Modellierungs- und Kollaborationspraxis inner-
halb der Forschungsgruppe wurde eine Teamumfrage durchgefiihrt. Ziel war es, ein
fundiertes Verstdndnis liber die Rollenverteilung, eingesetzte Modellierungsmetho-
den, etablierte Kollaborationsprozesse sowie bestehende Herausforderungen und
Verbesserungspotenziale im Umgang mit Systemmodellen zu gewinnen.

3.3.1 Methodik der Umfrage

Die Umfrage wurde mithilfe von Microsoft Forms erstellt und im Rahmen eines
Online-Meetings mit dem Team durchgefiihrt. Insgesamt nahmen elf Personen teil
—acht davon wihrend des Meetings und drei im Nachgang. Ein neues Teammitglied
konnte nicht alle Fragen beantworten, sodass einige Fragen nur zehn statt elf Ant-
worten aufweisen.

Der Fragebogen umfasste 18 Fragen, davon 17 geschlossene und eine offene Frage.
Die Formulierungen wurden so gewahlt, dass sie gezielt auf die erwarteten Erkennt-
nisse ausgerichtet sind. Zur systematischen Auswertung wurden die Ergebnisse in
fiinf thematische Kategorien eingeordnet:

1. Team- und Projektinformationen

2. Rollen und Verantwortlichkeiten in der Systementwicklung
3. Modellierungspraxis und SysML-Nutzung

4. Kollaboration und Versionskontrolle

5. Erwartungen und Verbesserungsideen

Die Auswertung der Ergebnisse erfolgte mithilfe von Microsoft Excel. Eine voll-
standige Auflistung aller Fragen samt Antwortverteilungen ist im Anhang A3 do-
kumentiert. Im folgenden Abschnitt (3.3.2) werden ausgewéhlte Ergebnisse vorge-
stellt und interpretiert.

3.3.2 Ergebnisse und Auswertung
Team- und Projektinformationen

Die Mehrheit der Teilnehmenden arbeitet aktuell an zwei bis drei Projekten parallel.
Hinsichtlich der Zusammenarbeit zeigt sich ein heterogenes Bild: Wéhrend einige
Teammitglieder eigenstidndig agieren, findet bei anderen ein regelméBiger Aus-
tausch in kleinen oder gréfleren Gruppen statt. Die Abstimmung zu Systemmodel-
len erfolgt iiberwiegend auf monatlicher Basis; ein taglicher Austausch findet der-
zeit nicht statt.

Umgebungsanalyse und Anforderungen an den Ansatz Seite 35

Rollen und Verantwortlichkeiten

Die Antworten zeigen, dass viele Teammitglieder mehrere Aufgabenbereiche ab-
decken, insbesondere in den Bereichen Systemarchitektur, Sicherheit sowie Model-
lierung mit SysML. Gleichzeitig geben lediglich 10 % an, eine klar definierte Mo-
dellierungsverantwortung zu besitzen — was auf einen Mangel an Rollenklarheit
hinweist. Die Abstimmung beim Aktualisieren von Modellen erfolgt vorwiegend
innerhalb des jeweiligen Projektteams, was auf teaminterne Abhéngigkeiten schlie-
en ldsst.

2.2 Sind lhre Verantwortlichkeiten bei der Modellierung klar
definiert?

= Ja, ich habe eine klar definierte
Rolle

= Teilweise, einige
Verantwortlichkeiten sind
unklar

= Nein, Verantwortlichkeiten sind
nicht klar definiert

Bild 3-1 Klarheit iiber Modellierungsverantwortlichkeiten (Frage 2.2)
Modellierungspraxis und SysML-Nutzung

Die Modellierung mit SysML erfolgt in der Mehrheit monatlich, tigliche Model-
lierung ist im Team nicht etabliert. Als bevorzugtes Werkzeug wird CSM einge-
setzt. Ein formell definierter Modellierungsprozess liegt jedoch nicht vor — die
meisten orientieren sich nur grob an bestehenden Vorgaben. Die Riickverfolgbar-
keit von Modellinhalten wird iiberwiegend manuell oder halbautomatisiert doku-
mentiert, wobei die eingesetzten Methoden stark variieren.

3.3 Folgen Sie einem vordefinierten Modellierungsprozess oder
entscheiden Sie selbst?

= |ch folge einem klar definierten
Prozess

= |ch orientiere mich grob an einem
Prozess, entscheide aber vieles selbst

u |ch entscheide vollstiandig selbst

Bild 3-2 Existenz eines definierten Modellierungsprozesses (Frage 3.3)

Umgebungsanalyse und Anforderungen an den Ansatz Seite 36

Kollaboration und Versionskontrolle

Zu den groBten Herausforderungen bei der modellbasierten Zusammenarbeit zihlen
fehlende Prozesse, inkonsistente Anderungen und veraltete Modellstinde. Die ak-
tuelle Anderungshistorie wird meist ohne strukturierte Strategie oder manuell ge-
pflegt. Git wird in einzelnen Fillen eingesetzt, jedoch nicht durchgéngig im Team
verwendet. Positiv hervorzuheben ist, dass Git vielen Teammitgliedern bereits be-
kannt ist, was eine potenzielle Einfithrung Git-basierter Workflows erleichtern
konnte. Bemerkenswert ist zudem, dass 33 % der Teilnehmenden bereits Versions-
konflikte erlebt haben, die typischerweise manuell abgestimmt wurden.

4.1 Was sind die groRten Herausforderungen bei der
Zusammenarbeit an Systemmodellen? (Mehrfachauswahl
moglich)

% » Veraltete Modelle
= Inkonsistente Anderungen

u Fehlende klare Prozesse
= Fehlende geeignete Tools

s [Other]:

Bild 3-3 Herausforderungen bei der modellbasierten Zusammenarbeit
(Frage 4.1)

Erwartungen und Verbesserungsideen

Viele Teammitglieder dulern den Wunsch nach klar definierten Rollen, strukturier-
ter Versionierung und einer automatisierten Synchronisierung. Eine Git-basierte
Versionskontrolle wird von der Mehrheit als sinnvoll eingeschitzt, sofern sie be-
nutzerfreundlich implementiert ist.

5.2 Wiirde eine Git-basierte Versionskontrolle fur
Systemmodelle Ihren Workflow verbessern?

= Ja, das wére eine gute Losung

= Vielleicht, wenn es einfach zu
benutzen ist

= Nein, ich sehe keinen Mehrwert

Bild 3-4 Bewertung Git-basierter Versionskontrolle fiir MBSE (Frage 5.2)

Umgebungsanalyse und Anforderungen an den Ansatz Seite 37

Die Einschitzungen zu agilen Methoden fallen gemischt aus: Einige erkennen de-
ren Potenzial zur Flexibilisierung von Entwicklungsprozessen, wihrend andere die
Eignung im forschungsnahen Umfeld kritisch bewerten.

5.3 Glauben Sie, dass agile Methoden (z. B. Backlogs, Sprints)
die Zusammenarbeit in der Modellierung verbessern kénnten?

= Ja, das wire eine hilfreiche
Ergdnzung

= Vielleicht, aber ich bin mir
unsicher

= Nein, agile Methoden passen
nicht zu unserer Arbeitsweise

Bild 3-5 Anwendung agiler Prinzipien im MBSE-Kontext (Frage 5.3)

In der abschlieBenden offenen Frage wurde insbesondere die Teamwork Cloud von
CSM als aktuell eingesetzte Losung genannt — verbunden mit kritischen Anmer-
kungen zu deren Einschrinkungen im Hinblick auf Versionsverwaltung und Zu-
sammenarbeit.

Eine vollstindige Ubersicht aller Umfragefragen und ihrer Auswertung befindet
sich im Anhang A3.

3.4 Rollenzuweisung anhand ARP4754B & ISO/IEC 15288

Weder ARP4754B noch ISO/IEC 15288 spezifizieren konkrete Rollen oder orga-
nisatorische Strukturen fiir die Durchfithrung der in den Normen definierten Pro-
zesse. Vielmehr liegt es in der Verantwortung der Organisationen, geeignete Teams
zu definieren, die in der Lage sind, die prozessbezogenen Anforderungen zu erfiil-
len und ein sicheres sowie normkonforme Flugsysteme zu entwickeln.

Vor diesem Hintergrund wird im Rahmen dieser Arbeit ein Vorschlag zur internen
Rollenzuweisung innerhalb des betrachteten DLR-Teams unterbreitet. Die Grund-
lage dafiir bildet die Teamumfrage, insbesondere die Auswertung von Frage 2.1
(siche Bild 3-6), in der die vorhandenen Kompetenzen der Teammitglieder erhoben
wurden.

Die Auswertung der Antworten auf Frage 2.1 zeigt, dass die Kompetenzen des
Teams tiberwiegend im Bereich der Systementwicklung liegen, insbesondere in der
Anforderungsanalyse, Systemarchitektur und Modellierung. Im Vergleich dazu
sind Kenntnisse und Zustdndigkeiten in der Implementierung und Validierung

Umgebungsanalyse und Anforderungen an den Ansatz Seite 38

weniger stark ausgeprigt. Dieses Kompetenzprofil deutet darauf hin, dass die Ak-
tivitidten des Teams primér auf der linken Seite des ARP-V-Modells (vgl. Bild 2-3)
verortet sind — also in den friihen Phasen der Systementwicklung, in denen die Sys-
temanforderungen analysiert und das Design spezifiziert werden.

2.1 Welche Aufgaben ibernehmen Sie hauptsachlich in der
Systementwicklung? (Mehrfachauswahl méglich)
Anforderungsanalyse |GGG :
Systemarchitektur & Design [N 7
Sicherheit & Zuverlissigkeit [NNNNGEGEGNENENEENEEEEEEEEEEEN
Validierung & Verifizierung [N 1
Modellierung mit SysML I ©
[Other]: NG >

0 1 2 £ 4 5 6 7 8

Bild 3-6 Ubersicht von Teamkompetenzen (Frage 2.1)

Basierend auf den identifizierten Kompetenzfeldern und unter Beriicksichtigung
der charakteristischen Arbeitsergebnisse einzelner Prozesse konnten vier funktio-
nale Teams abgeleitet werden:

e SE Management Team (nicht-technisch, Prozesskoordination)
e Anforderungsanalyse Team

e Systemarchitektur & Sicherheit Team

e Verifikation, Validierung (V&V) & Modellintegration Team

Zur strukturierten Zuweisung der relevanten Normprozesse zu den identifizierten
Teams wird im nichsten Abschnitt eine RACI-Matrix herangezogen, um Verant-
wortlichkeiten nachvollziehbar abzubilden.

3.4.1 Methodik des Rollenzuweisungsprozesses

Fiir die systematische Zuordnung der in ARP4754B und ISO/IEC 15288 beschrie-
benen Prozesse zu den vier definierten Teams wird eine RACI-Matrix gemal Grifl-
ler et al., (2022) verwendet. Diese Methode erlaubt eine differenzierte Betrachtung
der Rollenverteilung entlang folgender vier Verantwortlichkeitsstufen (Costello,
2012):

e R —Responsible: Die verantwortliche Person oder das Team fiihrt die jewei-
lige Aufgabe durch.

Umgebungsanalyse und Anforderungen an den Ansatz Seite 39

e A — Accountable: Eine Person oder ein Team ist iibergeordnet verantwort-
lich fiir die Zielerreichung und Qualitét der Aufgabe. In kleinen Teams kann
diese Rolle identisch mit der Rolle Responsible sein.

o C— Consulted: Personen oder Teams, die mit ihrer fachlichen Expertise be-
ratend in den Prozess eingebunden werden.

o [— Informed: Beteiligte, die {iber den Fortschritt oder die Ergebnisse infor-
miert werden miissen, aber nicht aktiv in die Durchfiihrung eingebunden
sind.

Die konkrete Zuordnung der Normprozesse zu den Teams erfolgt in Kapitel 3.4.2
und basiert auf den in der Umfrage ermittelten Teamfahigkeiten sowie den in den
Normen geforderten Ergebnissen pro Prozess.

3.4.2 Ergebnisse der RACI-Matrix

Die in Tabelle 3-1 und Tabelle 3-2 dargestellten RACI-Matrizen bilden die erarbei-
teten Rollenzuweisungen fiir die Normprozesse der ARP4754B bzw. der ISO/IEC
15288 ab. Ziel dieser systematischen Zuordnung ist es, die funktionale Verantwor-
tungsverteilung innerhalb des DLR-Teams transparent darzustellen und aufzuzei-
gen, welche Rollen innerhalb des Teams welchen Prozessen der Standards zuge-
wiesen werden konnen. Die Zuordnung unterstiitzt dabei, einen strukturierten Uber-
blick tliber die Zusténdigkeiten in der Systementwicklung zu gewinnen und liefert
eine Orientierung fiir die praxisnahe Anwendung normativer Anforderungen im
MBSE-Kontext.

Die RACI-Matrix zur ARP4754B (vgl. Tabelle 3-1) beriicksichtigt simtliche Pro-
zesse der Norm, einschlieBlich der Planungs-, Entwicklungs- und Integralprozesse.
Fiir jeden Hauptprozess wurde mindestens ein verantwortliches Team (Respon-
sible) definiert, wodurch eine klare funktionale Rollenzuweisung innerhalb des be-
trachteten DLR-Teams ermoglicht wird. In den Planungsprozessen (1.1-1.3) {iber-
nimmt das SE-Management-Team die federfiihrende Verantwortung, insbesondere
hinsichtlich des Planungsumfangs und der Abstimmung mit externen Zertifizie-
rungsstellen. Die librigen Teams sind als Consulted eingestuft, da sie mit ihrer fach-
lichen Expertise zur Plausibilititspriifung und Absicherung der Planinhalte beitra-
gen.

Der Prozess 3.1 (Summary of Development Assurance Process Outputs) wurde dem
SE-Management-Team als Responsible zugewiesen, da es die Nachweisdokumente
gemill Normvorgaben zentral zusammenfiihrt und verwaltet. Die technischen
Teams liefern fachliche Inhalte zu (Consulted), tragen aber nicht die Gesamtverant-
wortung. Dieses zentralisierte Modell sieht die inhaltliche Zuarbeit durch die Fach-
bereiche vor, wihrend das SE-Management Koordination und Endverantwortung
iibernimmt. In den operativen Entwicklungsprozessen ist das SE-Management

Umgebungsanalyse und Anforderungen an den Ansatz Seite 40

meist als Informed eingestuft, da sein Schwerpunkt auf der iibergeordneten Steue-
rung liegt.

Fiir die Integralprozesse der ARP4754B wurden Zustindigkeiten in Abhidngigkeit
von den jeweiligen Inhalten und erwarteten Arbeitsergebnissen festgelegt. Dabei
wurde beriicksichtigt, dass diese Prozesse haufig eine enge fachliche Zusammenar-
beit zwischen mehreren Teams erfordern. Um die Matrix tibersichtlich zu halten,
wurden nur explizit begriindbare Consulted-Beziehungen eingetragen. Eine pau-
schale Beteiligung aller technischen Teams an sémtlichen Integralprozessen wurde
bewusst vermieden, um die Zuordnung moglichst klar und zielgerichtet darzustel-
len.

Tabelle 3-1 RACI-Matrix zur Rollenzuweisung der ARP4754B-Prozesse im
DLR-Projektkontext

Pro- | Prozess (Engl.) & = £
zess € e | 2® &€
] © = 0 =g
£ wEeE B8 F o
9 o g‘ @ == TH
o Q GO O
G ® Sk C £l =6
c o] —
S SQ3| E2 ®F
= | 5225 >
w = ;| o3 k7]
2 1< | des”
1 Development Planning
1.1 Development Assurance Planning Process R C C &
1.2 Development Assurance Plan R C C C
13 Certification Authority Coordination R C C &
2 Aircraft/ System Development Process
21 Aircraft Function and Requirement Development | R C C
Development of Aircraft Architecture and Allocation of
22 : : I Cc R C
Aircraft Functions to Systems
2.3 Development of System Functions and Requirements I R C C
Development of System Architecture and Allocation of
24 : | C R C
System Requirements to ltems
25 Implementation | C C R
3 Data & Documentation
31 FS):.letr:mary of Development Assurance Process Out- R c c c
4 Integral Processes
4.1 Safety Assessment | C R C
4.2 Development Assurance Level Assignment A C R |
4.3 Requirements Capture | R C |
4.4 Requirements Validation | C C R
4.5 Implementation Verification | | C R
46 Configuration Management R C C C
4.7 Process Assurance R I | |

Umgebungsanalyse und Anforderungen an den Ansatz Seite 41

Die zweite RACI-Matrix in Tabelle 3-2 basiert auf der internationalen Norm
ISO/IEC 15288:2023 und bezieht sich ausschlieBlich auf die darin definierten Tech-
nical Management Processes (TMP) und Technical Processes (TP). Die Auswahl
beschrinkt sich bewusst auf diese beiden Prozessgruppen, da die umfassenden Le-
benszyklusprozesse der Norm in ihrer Gesamtheit nicht vollstindig durch die im
Projektkontext definierten Teamrollen abgedeckt werden kénnen. Insbesondere die
Prozesse des Betriebs, der Wartung und der Entsorgung (4.12—4.14) liegen auller-
halb des Wirkungskreises der betrachteten Forschungsgruppe und bleiben daher un-
beriicksichtigt.

Tabelle 3-2 RACI-Matrix zur Rollenzuweisung der ISO/IEC 15288:2023 im
DLR-Projektkontext

Pro- | Prozess (Engl.)

zess E g £ % _é £
£ wE| 8- | T o
SE| 28|53 |38%
e8| e | 5£| =0
S- 32 8| =%
= | 52|85 |25
w |E |8n | 3B
< 0N o3
3 Technical Management Processes
31 Project Planning Process R C C C
3.2 Project Assessment and Control Process R C C C
3.3 Decision Management Process R C C C
3.4 Risk Management Process R C C C
35 Configuration Management Process R C C C
3.6 Information Management Process R C C C
37 Measurement Process R C C C
3.8 Quality Assurance Process R C C C
4 Technical Processes
4.1 Business or Mission Analysis Process R C I |
4.2 Stakeholder Needs and Requirements Defini- C R | |
tion Process
4.3 System Requirements Definition Process | R C C
4.4 System Architecture Definition Process | C R C
4.5 Design Definition Process | C R C
46 System Analysis Process | C R C
47 Implementation Process | C C R
4.8 Integration Process | C C R
49 Verification Process | C C R
410 | Transition Process | C Cc R
411 | Validation Process | Cc Cc R
4.12 | Operation Process - - - -
413 | Maintenance Process - - - -
4.14 | Disposal Process - - - -

Umgebungsanalyse und Anforderungen an den Ansatz Seite 42

Die TMP (3.1-3.8) wurden vollstindig dem SE-Management-Team als Respon-
sible zugewiesen, da diese Prozesse im Wesentlichen Aufgaben wie Planung, Steu-
erung, Entscheidungsfindung, Qualititssicherung sowie projektiibergreifendes
Konfigurations- und Informationsmanagement umfassen. Diese Téatigkeiten ent-
sprechen dem Rollenverstdndnis des SE-Management-Teams als koordinierende
Instanz innerhalb der Forschungsgruppe. Ergénzend wurden alle weiteren Teams
als Consulted eingetragen, um ihre fachliche Einbindung in die Prozessgestaltung
und -reflexion zu beriicksichtigen. Diese beratende Beteiligung dient der Sicher-
stellung von Umsetzbarkeit, Transparenz und Plausibilitdt der Managementent-
scheidungen.

Fiir die TP (4.1-4.11) wurde jeweils ein fachlich zustindiges Team als Responsible
festgelegt, basierend auf den in der Teamumfrage identifizierten Kompetenzen so-
wie den typischen Arbeitsergebnissen der jeweiligen Prozesse. In Ubereinstim-
mung mit den Grundprinzipien des MBSE wurde zudem beriicksichtigt, dass viele
dieser Prozesse eine interdisziplindre Zusammenarbeit erfordern. Dementspre-
chend wurden benachbarte Teams als Consulted eingetragen, wenn eine inhaltliche
Riickkopplung oder Mitwirkung zu erwarten ist, etwa bei der Erstellung und Vali-
dierung technischer Anforderungen oder bei der architektonischen Modellintegra-
tion. Teams, die lediglich {iber Zwischenergebnisse oder Statusinformationen in-
formiert werden miissen, erhielten die Rolle /nformed. Eine iibergreifende Beteili-
gung aller Teams an allen Prozessen wurde dabei vermieden, um die Matrix {iber-
sichtlich und aussagekriftig zu halten.

3.5 Herausforderungen der Zusammenarbeit

Die in Kapitel 2.5.1 identifizierten Herausforderungen der modellbasierten Kolla-
boration wurden auf Basis einer Literaturanalyse strukturiert und in acht iiberge-
ordnete Kategorien eingeordnet (vgl. Tabelle 2-4). Im Rahmen der Teamumfrage
(Frage 4.1, vgl. Bild 3-3) konnten spezifische Hiirden benannt werden, die inner-
halb der betrachteten Forschungsgruppe im Umgang mit modellbasierten Arbeits-
weisen auftreten. Diese wurden anschlielend den bestehenden Kategorien zugeord-
net, um ein konsistentes Bild zwischen Theorie und Praxis zu erhalten. Die identi-
fizierten teaminternen Herausforderungen und deren systematische Zuordnung zu
den literaturbasierten Kategorien sind in Tabelle 3-3 dargestellt.

Die in Kapitel3.4 entwickelte Rollenzuweisung nach ARP4754B und
ISO/IEC 15288 stellt einen ersten Ansatz zur Bewiltigung der organisatorischen
Herausforderung ,,fehlende klare Prozesse* dar. Durch den Einsatz der RACI-Mat-
rix konnte eine transparente Orchestrierung der Teamrollen erfolgen, wodurch Ver-
antwortlichkeiten und Schnittstellen klarer definiert wurden.

Auch die im Rahmen der Teamumfrage genannten Herausforderungen im Bereich
Anderungsmanagement und Informationsmanagement werden im weiteren Verlauf

Umgebungsanalyse und Anforderungen an den Ansatz Seite 43

adressiert. In Kapitel 4.4 wird ein Git-basierter Kollaborationsprozess spezifiziert,
der es erlaubt, Modellversionen nachvollziehbar zu verwalten, Anderungen trans-
parent zu dokumentieren und verteilte Zusammenarbeit effizient zu unterstiitzen.
Auf diese Weise konnen zentrale Defizite der bisherigen Arbeitsweise gezielt be-
hoben werden.

Tabelle 3-3 Zuordnung der teamintern identifizierten Herausforderungen zu den
literaturbasierten Kategorien (vgl. Kapitel 2.5.1)

Teaminterne Herausforderung Zuordnung zur Kategorie (vgl. Kap. 2.5.1)
Fehlende klare Prozesse Orchestrierung

Inkonsistente Anderungen Anderungsmanagement

Veraltete Modelle Informationsmanagement

Fehlende geeignete Tools Plattformtechnische Grenzen

Zeitlicher Mehraufwand im For- Organisation & Kultur

schungsbereich

Ein weiteres Hindernis stellt die eingeschrinkte Werkzeugunterstiitzung dar. Um
den Auswirkungen der plattformtechnischen Grenzen zu begegnen, wird ein proto-
typisches Anwendungsszenario entworfen, in dem ein SysML-v2-Modell, das in
CSM erstellt wurde, zusétzlich im Jupyter Notebook visualisiert und bearbeitet wer-
den kann. Diese Integration ermdglicht es, Modelle unabhingig vom proprietiren
Modellierungswerkzeug zu betrachten und zu analysieren.

Die zuletzt genannte Herausforderung — der zeitliche Mehraufwand im Forschungs-
bereich — verweist auf strukturelle Gegebenheiten innerhalb der Organisation.
Diese sind durch projektbezogene Dynamiken, wechselnde Zustdndigkeiten und
begrenzte Modellierungskapazititen geprigt. Solche Rahmenbedingungen lassen
sich im Kontext dieser Arbeit nicht grundlegend verdndern, kdnnen aber bei der
Gestaltung von Prozessen und Werkzeugen insofern beriicksichtigt werden, dass
moglichst ressourcenschonende und intuitive Losungen entwickelt werden.

Insgesamt zeigt sich, dass ein erheblicher Teil der identifizierten Herausforderun-
gen durch gezielte methodische und technische Gestaltung adressiert werden kann.
Die Erkenntnisse aus diesem Kapitel bilden somit eine wichtige Grundlage fiir den
in Kapitel 4 folgenden Design Cycle der DSR-Methodologie.

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 44

4 Entwicklung eines Git-basierten Kollaborationspro-
zesses

Basierend auf den in Kapitel 3 identifizierten Anforderungen und Herausforderun-
gen wird im vorliegenden Kapitel ein Git-basierter Kollaborationsprozess fiir die
modellbasierte Systementwicklung mit SysML v2 entwickelt. Dieses Kapitel mar-
kiert den Ubergang in den Gestaltungszyklus (Design Cycle) des DSR-Ansatzes
und stellt somit den zentralen Konstruktionsanteil dieser Arbeit dar. Ziel ist es, ei-
nen nachvollziehbaren, reproduzierbaren und toolgestiitzten Arbeitsablauf zu ent-
werfen, der die gleichzeitige Bearbeitung von Systemmodellen durch verteilte
Teammitglieder ermdglicht und dabei Aspekte wie Nachvollziehbarkeit, Konsis-
tenz und Konfliktvermeidung adressiert.

Die Entwicklung des Prozesses erfolgt exemplarisch anhand eines UAV-Systems
unter Verwendung des CSM mit SysML v2-Plugin sowie GitLab als Plattform zur
verteilten Versionsverwaltung. Die Ausgestaltung orientiert sich an bewéhrten Vor-
gehensweisen aus der Softwareentwicklung, die gezielt auf die Anforderungen und
Besonderheiten der modellbasierten Systementwicklung (MBSE) {ibertragen und
angepasst werden.

Das folgende Kapitel gliedert sich in vier Abschnitte: Zunéchst wird das methodi-
sche Vorgehen zur Prozessentwicklung erlautert (Kapitel 4.1). AnschlieBend wer-
den die erforderlichen Konfigurationen fiir die Modellierung in CSM (Kapitel 4.2)
und die Einrichtung der Versionsverwaltung mit GitLab (Kapitel 4.3) beschrieben.
Den Abschluss bildet die Integration beider Komponenten in einen durchgingigen
Kollaborationsprozess (Kapitel 4.4).

4.1 Methodisches Vorgehen zur Prozessentwicklung

Ziel dieses Kapitels ist die Entwicklung eines Git-basierten Prozesses zur verteilten
modellbasierten Systementwicklung, der auf die Anforderungen des Projektkon-
texts zugeschnitten ist. Zur methodischen Absicherung wurde ein durchgéngiges
Beispielsystem verwendet, das den praktischen Einsatz und die Werkzeugintegra-
tion veranschaulicht.

Als Beispielsystem dient ein unbemanntes Luftfahrtsystem ,, UAV Civil Drone*,
das urspriinglich in SysML v1 modelliert und vom DLR bereitgestellt wurde. Im
Rahmen dieser Arbeit wurde dieses System manuell in SysML v2 iiberfiihrt und
entsprechend der aktuellen Sprachspezifikation strukturiert. Die Modellierung er-
folgte in der Software CSM unter Verwendung des SysML v2-Plugins.

Zur zentralen Verwaltung des Modells wurde ein GitLab-Repository eingerichtet,
das sowohl der Versionskontrolle als auch der kollaborativen Entwicklung dient.

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 45

Die Modellversionen werden als .sysm/-Dateien exportiert und iiber Git synchroni-
siert.

Zur textuellen Bearbeitung und Anzeige der .sysml/-Dateien auB3erhalb von CSM
wird Jupyter Notebook (JN) mit dem offiziellen SysML-Kernel der OMG verwen-
det. Die Installation dieses Kernels erfolgte geméf den im offiziellen GitHub-Repo-
sitory dokumentierten Anleitungen (OMG Systems Modeling Community, n.d.).

Die Anzeige und Analyse des Modells im JN erfolgt liber spezifische Kommandos
des SysML-Kernels. Eine exemplarische Ubersicht dieser Kernel-Kommandos ist
im Anhang A4 dokumentiert. Damit kann das Modell unabhingig von CSM in einer
offenen, textbasierten Umgebung analysiert, bearbeitet und visualisiert werden.
Eine detaillierte Konfiguration von JN wird in dieser Arbeit nicht behandelt, da das
Werkzeug ausschlieBlich in der Evaluationsphase (Kapitel 5) unterstiitzend zum
Einsatz kommt.

Bild 4-1 veranschaulicht die eingesetzte Werkzeuglandschaft zur modellbasierten
Systementwicklung mit SysML v2.
) visualisieren und

1 modellieren GitLab bearbeiten
UAV Civil Drone
O O o
@aMEO versionieren ° S
SYSTEMS MODELER Jupyter
[
Bild 4-1 Werkzeuglandschaft im Git-basierten MBSE-Prozess (eigene Dar-
stellung)

Die Entwicklung des Git-basierten Kollaborationsprozesses erfolgt entlang eines
strukturierten methodischen Vorgehens, das sowohl die Zieldefinition als auch die
Auswahl und Konfiguration geeigneter Werkzeuge umfasst. Die Konfigurations-
richtlinien betreffen ausschlieSlich die in der Definitions- und Implementierungs-
phase genutzten Hauptwerkzeuge: CSM und GitLab.

Das in Bild 4-2 dargestellte Aktionsdiagramm visualisiert die wesentlichen Schritte
der Definitions- und Werkzeugkonfigurationsphase im Rahmen der Prozessent-
wicklung. Aufgeteilt in zwei parallele Handlungsstringe werden zunéchst die Kon-
figurationsrichtlinien fiir das GitLab-Repository sowie fiir das Systemmodell in
CSM festgelegt. Daraufhin erfolgt jeweils die konkrete Umsetzung: Das Repository
wird erstellt, mit Zugriffsbeschrankungen versehen und fiir die Zusammenarbeit
vorbereitet. Parallel dazu wird das Systemmodell in CSM neu aufgebaut, gemél
den Richtlinien strukturiert und anschlieBend als .sysm/-Datei exportiert. Abschlie-
Bend wird die exportierte Datei in das GitLab-Repository tiberfiihrt und mit den
beteiligten Teammitgliedern geteilt. Das Diagramm verdeutlicht somit den engen

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 46

Zusammenhang zwischen Modellierungs- und Versionsverwaltungswerkzeugen
und legt die Grundlage fiir den in Abschnitt 4.4 beschriebenen Kollaborationspro-
Zess.

(«action»

Definition- & Toolkonfigurationsphase
«action» «action» «action»
------ Konfigurationsrichtlinien fir [------->{ GitLab-Repository |---> Zugriffsbeschrankungen
GitLab-Repository festlegen erstellen fur das Repository festlegen

«action» «action» «action»
""" Konfigurationsrichtlinien des |2 Systemmodelin [~ Systemmodel als
Systemmodels festlegen CSM erstellen .sys ml-Datei exportieren

«action»
.sysml-Datei in das
GitLab-Repository hochladen

«action»
GitLab-Repository mit
Teammitgliedern teilen

Bild 4-2 SysML v2 Aktionsdiagramm zur Darstellung der Definition- und
Werkzeugkonfigurationsphase (eigene Darstellung in CSM)

Aufbauend auf dem in Bild 4-2 dargestellten Vorgehen konzentrieren sich die fol-
genden Abschnitte 4.2 und 4.3 auf die Konfigurationsrichtlinien fiir das Systemmo-
dell in CSM sowie fiir das GitLab-Repository.

4.2 Konfigurationsrichtlinien fur CSM mit SysML v2

Zur modellbasierten Entwicklung des Beispielsystems UAV wurde der CSM mit
dem SysML v2-Plugin verwendet. Die Konfiguration des Systemmodells orientiert
sich an den grundlegenden Sprachfdhigkeiten von SysML v2, wie sie in Bild 2-7
dargestellt sind. Fiir die Umsetzung im Rahmen dieser Arbeit wurden die Fahigkei-
ten Anforderungen, Verhalten, Struktur sowic View & Viewpoint beriicksich-
tigt. Die Fahigkeiten Analyse und Verifikation bleiben im aktuellen Modellie-
rungsumfang unberiicksichtigt, da sie fiir die Definitions- und Implementierungs-
phase nicht im Fokus stehen.

Die Umsetzung dieser Fihigkeiten erfolgt in CSM durch das Anlegen separater,
sogenannter namespaces, die den jeweiligen Modellierungsaspekten zugeordnet
sind. Bild 4-3 zeigt die initial konfigurierte Paketstruktur des UAV-Systems. Jedes
Paket repriasentiert dabei eine sprachspezifische Fahigkeit gemall SysML v2 und
bildet eine klare Trennung der Modellinhalte. Diese Struktur unterstiitzt sowohl die

Entwicklung eines Git-basierten Kollaborationsprozesses

Seite 47

logische Ordnung innerhalb des Modells als auch die Wiederverwendbarkeit und

Erweiterbarkeit des Systems.

[]

UAV Civil Drone

1] 1
Requirements Behavior
1 1
Structure View & Viewpoint

Bild 4-3

Darstellung)

UAV-Paketstruktur gemdf; SysML v2 Sprachfihigkeiten (eigene

Ein detaillierter Einblick in das strukturierte Systemmodell wird in Bild 4-4 gege-
ben. Im namespace Anforderungen sind Kundenanforderungen, Anforderungen
auf System-of-Systems-Ebene (SoS) sowie Anforderungen fiir das System-of-Inte-
rest (Sol) enthalten. Der namespace Verhalten enthélt modellierte Use Cases zur
Beschreibung funktionaler Ablaufe. Im namespace Struktur wurde eine hierarchi-

sche Zerlegung des Systems realisiert — unter anderem mit einer Part-Dekomposi-

tion des SoS und Sol.

Containment

e Q
E) [:E] namespac

B @ namespac

& F5) namespac

& [:_E] namespac
i (&) view C

B- [5] Used Projects

%E Containment

[SRRYUAV Civil Drone_SysML v2

e Behavior

- 7 package Use_Cases

e Requirements

B 7 package Customer_Requirements
! i package SOS_Requirements
-] package System_Requirements

e Structure

- B3 package SOS
“-] package SOI

e View & Viewpoint
ustomer_Requirements

view SOS_Requirements
view System_Requirements
i (@) view Use_Cases

i-- (@) view SOS

b - (&) view SOI

(L

Bild 4-4

Modellstruktur in CSM (eigener Screenshot, CSM)

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 48

Besonderheiten ergeben sich beim Umgang mit der Fahigkeit View & Viewpoint.
In CSM ist diese Funktionalitét direkt integriert und unterstiitzt die visuelle Aufbe-
reitung von Modellinhalten entsprechend der Bediirfnisse unterschiedlicher Stake-
holder. In der Modellierungsumgebung existiert lediglich nur ein Diagrammtyp,
das sogenannte View-Diagramm, das unterschiedliche Elemente aus dem Modell in
einem gemeinsamen Kontext darstellen kann.

Beim Export in die textuelle SysML v2-Notation — beispielsweise zur Weiterverar-
beitung oder Analyse in JN — wird jedoch nicht zwischen View-Diagramm und
View-Element unterschieden. Beide werden dort als regulére View-Elemente dar-
gestellt, was zu Darstellungsabweichungen fithren kann. Diese Diskrepanz ist
exemplarisch in Bild 4-5 erkennbar: Wiahrend CSM eine visuell konsolidierte Dar-
stellung bietet, erscheinen im textuellen Notation zwei separate Elementdefinitio-
nen fiir die ,, Views “.

‘ (&) view_Diagramm X 4 b i) view_Diagramm X
Ti%e i A | 8 il - P heov| : ®E
Selection & 1 view view_Diagramm;
Rl B, 55 -~ 2 view view Element;
Tools 3
_f;l' % z «iew »
Items/Ports/Attributes
(?) part ¥
B port
(D) item
(2) attribute
[=) timeslice -
ref
[€] enum def
Connectors
Bild 4-5 ,, View “-Diagramm und ,, View “-Element in SysML v2-textueller

Notation (eigener Screenshot, CSM)

Zum Austausch des Modells in textueller Form stellt CSM eine Export- und Im-
portfunktion fiir die SysML v2-Notation bereit. Der Export erfolgt {iber das Menii
,Datei — ,, Exportto — ,, Export SysML v2 textual notation “ (vgl. Bild 4-6). Um
ein bestehendes Modell im .sysm/-Format zu importieren, wird per Rechtsklick auf
das Systemmodell im Containment-Baum die Option ,, Import SysML v2 from tex-
tual notation ** ausgewéhlt (vgl. Bild 4-7).

Diese Funktionen erméglichen den Export und Import von .sysm/l-Dateien, also des
Modells in textueller Notation, was im Fokus dieses Git-basierten Ansatzes steht.
Dabei enthélt jeder namespace die textuelle Représentation der darin beschriebenen
Pakete bzw. Modellelemente, welche auch einzeln exportiert werden konnen. Die
Funktionsweise und Zuverlédssigkeit dieser Import- und Exportmechanismen wird
in Kapitel 5 im Rahmen der Testszenarien eingehender untersucht.

Entwicklung eines Git-basierten Kollaborationsprozesses

Seite 49

i| Datei | Bearbeiten Ansicht Layout Optionen Tools Analyze kollaborieren 3DEXPERIENCE Fenster Hilfe

Neues Projekt...

Projekt 6ffnen...

Projekt speichern
Projekt speichern unter...
Projekt schlieBen

MDD O

Alle Projekte schlieBen

Ein Element Uber eine URL 6ffnen

Strg+Umschalt+N

Strg+0
Strg+S

Use Project

Import From
Export To
Speichere als Bild...

Drucke...

Vorschau drucken

BPFP

Druckoptionen...
Projekteigenschaften

Switch Projects

1 SysML_v2_Test_Projectmdzip

2 UAV Civil Drone_SysML v2.mdzip
3 MBPLE UAV Civil Drone.mdzip
4 Package structure.mdzip

md mﬂ mﬂ mﬂ E

Beenden

Strg+P

[IR
e: | System Engineer SysMLv2 v

Profil/Modul...
Export SysML v2 to textual notation

Bild 4-6

Export einer SysML v2-Datei in CSM (eigener Screenshot, CSM)

i Datei Bearbeiten Ansicht Layout Optionen Tools Anzlyze kollaborieren 3DEXPERIENCE Fenster Hilfe

D& & @ = = 51 % % gPerspective: System Engineer SysMLv2 v
8 Containment |
Containment a8 x
2 Q o -

[l SysML v2 Test Project

-5 namespace

[Used Projects)| Einfigen

Create Namespace

Import SysML v2 from Textual notation

Strg+V

Bild 4-7

4.3 Konfigurationsrichtlinien fur Git in GitLab

Import einer SysML v2-Datei in CSM (eigener Screenshot, CSM)

In diesem Abschnitt wird die Einrichtung eines Git-Repository in GitLab erlautert.
In GitLab werden Repositories als ,,Projekte* bezeichnet. Grundsitzlich gibt es

zwei Moglichkeiten, ein Repository mit Git zu initialisieren:

1. Initialisierung lokal mit ‘git init” und anschlieBendes Hochladen in das Git-

Lab-Repository, oder

2. Erstellung eines neuen Projekts direkt in GitLab und anschlieBendes Klonen

in ein lokales Repository.

Fiir diese Arbeit wurde der zweite Weg gewdéhlt, da er u.a. fiir Teamkollaboration

und spétere Integration mit GitLab CI/CD und Zugriffsverwaltung besser geeignet

1st.

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 50

Die Erstellung eines neuen Projekts erfolgt iiber die Schaltfliche ,,Create blank
project”, wie in Bild 4-8 dargestellt. Fiir das Projekt wurde der Name ,, U4V Civil
Drone* gewéhlt. Der ,,Visibility Level “ wurde auf Private gesetzt, um unautorisier-
ten Zugriff zu vermeiden. Zusitzlich wurde unter ,,Project Configuration eine
README-Datei hinzugefiigt. Diese Datei ist optional, wird hier jedoch eingefligt,
um die erfolgreiche Verbindung beim spéteren ,,Klonen* des Projekts auf das lokale
Repository sichtbar tiberpriifen zu konnen.

Create blank project
Create a blank project to store your files, plan your work, and collaborate on code, among other things.

Project name

UAV Civil Drone

Must start with a lowercase or uppercase letter, digit, emoji, or underscore. Can also contain dots, pluses, dashes, or spaces.

Project URL Project slug

https://gitlab.com/ | test9862913 v | /| vav-civil-drone

Project deployment target (optional)

| 'setect the geptoyment target v

Visibility Level ®
© A Private
Project access must be granted explicitly to each user. If this project is part of a group, access is granted to members of the group.
@ Internal &
The project can be accessed by any logged in user except external users.
O @ Public
The project can be accessed without any authentication.

Project Configuration
Initialize repository with a README

Allows you to immediately clone this project's repository. Skip this if you plan to push up an existing repository.

() Enable Static Application Security Testing (SAST)
Analyze your source code for known security vulnerabilities. Learn more.

> Experimental settings

Create project Cancel

Bild 4-8 Erstellung eines neuen Projekts in GitLab iiber die Option ,, Create
blank project* (eigener Screenshot, GitLab)

Bevor das Projekt geklont wird, ist ein Uberblick iiber die wichtigsten Git-Befehle
hilfreich, die im Rahmen des spéter vorgestellten Git-basierten Kollaborationspro-
zesses (Kapitel 4.4) verwendet werden. Tabelle 4-1 enthilt die zentralen Git-Kom-
mandos, die regelmifBig bendtigt werden. Eine ausfiihrlichere Befehlsiibersicht ist
im Anhang A2 zu finden.

Die effektive Nutzung von Git als Versionskontrollsystem setzt ein grundlegendes
Versténdnis der wichtigsten Kommandos voraus — insbesondere in modellbasierten
Entwicklungsprozessen, bei denen textuelle Inhalte wie SysML v2-Dateien versio-
niert werden. Die folgenden Git-Befehle dienen als Basis fiir den Git-basierten Kol-
laborationsprozess und kommen sowohl bei der lokalen Arbeit mit Branches als
auch bei der Synchronisation mit dem entfernten Repository regelméflig zum Ein-
satz. Da Git urspriinglich fiir Quellcode entwickelt wurde, ist ein disziplinierter und
kontextbezogener Umgang mit den Befehlen erforderlich, um Modellversionen
konsistent und nachvollziehbar zu verwalten. Dies gilt insbesondere beim paralle-
len Arbeiten im Team, wo Klarheit {iber den Ablaufvon Commit-, Pull- und Merge-
Vorgingen entscheidend ist.

Entwicklung eines Git-basierten Kollaborationsprozesses

Seite 51

Tabelle 4-1 Ubersicht der wichtigsten Git-Befehle
Befehl Beschreibung
o s Initialisiert ein neues Git-Repository im aktuellen Ver-
git init

zeichnis

‘git clone <URL>"

Klonen eines Remote-Repositories in ein lokales Ver-
zeichnis

‘git branch’ Listet alle lokalen Branches auf

‘git checkout -b L

<branchname> Erstellen und Wechseln in einen neuen Branch
‘gitadd .’ Stellt alle Anderungen im aktuellen Verzeichnis bereit

‘git commit -m "<Nach-
richt>""

Speichern der Anderungen mit einer Commit-Nachricht

‘git push’

Ubertragt lokale Commits zum entfernten Repository

‘git push -u origin
<branchname>"

Hochladen des Branches in das entfernte Repository

“git pull”

Abrufen und Zusammenfiihren von Anderungen aus
dem entfernte Repository

‘git merge <branchname>"

Zusammenfiihren eines Branches in den aktuellen
Branch

‘git status”

Zeigt den Status der Dateien (staged, unstaged, untra-
cked)

Zum Klonen des GitLab-Projekts in ein lokales Repository wurde auf dem lokalen
Repository zunéchst ein leerer Ordner erstellt — ebenfalls mit dem Namen ,, U4V

Civil Drone”. Um Git-Befehle in diesem Verzeichnis auszufithren, wurde im
Windows-Datei-Explorer die Adresszeile genutzt. Dort kann durch Eingabe von
,,emd* (Command Prompt) direkt ein Eingabeaufforderungsfenster im entsprechen-

den Verzeichnispfad gedffnet werden. Dies ist in Bild 4-9 zu sehen.

v = | UAV Civil Drone — o X
Home Share Wiew @
« v cmd] | Search UAV Civil Drone P
cmd
@ OneDrive - Perse Search for "cmd” dified Type
Apps Id mpt
Attachments
B Deskiop
= Documents
& Pictures
%= This PC
¥ 3D Objects
W Deskiop
= Document its
§ Download
> Mu
= Pict
B vid
% Windows (C9)
o EE
Bild 4-9 Offnen der Eingabeaufforderung direkt aus dem lokalen Verzeich-

nispfad tiber die Adresszeile (eigener Screenshot, Windows Explorer)

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 52

AnschlieSend wurde das Repository mithilfe des Befehls "git clone <Repository-
URL>" in das lokale Repository geklont. Bild 4-10 zeigt den Cloning-Vorgang im
cmd bzw. Git CLI (Command Line Interface).

BN C\Windows\System32\emd.exe - [m] *x

ivil-drone.git,

Bild 4-10 Klonen des GitLab-Repository tiber die Eingabeaufforderung mit
‘git clone’ (eigener Screenshot, Git CLI)

Nach erfolgreichem Klonen ist die zuvor in GitLab angelegte README-Datei nun
auch im lokalen Repository sichtbar, wie in Bild 4-11 dargestellt.

v = | uav-civil-drone — O x
Home Share Wiew o
v L Search uav-civil-drone R

4 « Windows (C:) » UAV Civil Drone uav-civil-drone

L P T - _—_—
@ OneDrive - Personi Mame Type

Apps] README

Attachments
B Desktop
= Documents

= Pictures

& This PC

3D Objects
B Desktop

= Documents
Downloads
B Music

Pictures

7 Ly

| Videos

Windows (C:)

1 item

Bild 4-11 Anzeige der geklonten README-Datei im lokalen Repository (ei-
gener Screenshot, Windows Explorer)

Nach dem erfolgreichen Verbinden des lokalen Repository mit dem entfernten Git-
Lab-Repository besteht nun die Moglichkeit, Dateien lokal hinzuzufiigen und an-
schlieBend in das entfernte Repository zu iibertragen. Was bislang fehlt, ist eine

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 53

Definition eines Git-basierten Kollaborationsprozesses (Workflow), der als einheit-
liche Vorgehensweise von allen Beteiligten befolgt werden soll, um die Zusammen-
arbeit effizient und konsistent zu gestalten. Dieser Prozess wird im folgenden Ka-
pitel 4.4 eingefiihrt.

4.4 Definition des Git-basierten Kollaborationsprozesses

Ein Git-Workflow definiert die Struktur und die Regeln fiir die Zusammenarbeit
innerhalb eines Entwicklungsteams auf Basis von Git. Als verteiltes Versionskon-
trollsystem erméglicht Git eine effiziente Nachverfolgbarkeit von Anderungen, pa-
rallele Entwicklungsstrange sowie eine verldssliche Verwaltung unterschiedlicher
Softwareversionen (Cui, 2024). Dies schafft die Grundlage fiir kollaborative Soft-
ware- und Systementwicklung in modernen, oft standortverteilten Projektteams.

Im Kontext dieser Arbeit bezieht sich der Git-Workflow nicht auf klassischen
Quellcode, sondern auf modellbasierte Entwicklungsartefakte, die in CSM mit
SysML v2 erstellt werden. Ziel ist es, Anderungen an Modellinhalten — etwa Pake-
ten, Anforderungen oder Strukturelementen — versionierbar, nachvollziehbar und
kollaborativ zu verwalten.

Zu den bekanntesten Workflows gehoren Git Flow, GitHub Flow und GitLab Flow,
die jeweils unterschiedliche Anforderungen und Projektgréfien adressieren. Neben
der Organisation der Branch-Strukturen stehen auch moderne Praktiken der Soft-
warebereitstellung wie CI/CD sowie der kontrollierte Wechsel zwischen verschie-
denen Systemzustinden in engem Zusammenhang mit diesen Workflows (Gowda,
2022).

Ein Branch-Modell ist dabei eine essenzielle Strategie, um die Zusammenarbeit im
Team zu strukturieren. Es legt fest, wie neue Funktionen, Fehlerkorrekturen und
Veroffentlichungsversionen organisiert werden, reduziert Integrationskonflikte,
verbessert die Modellqualitét und sorgt fiir eine stabile, auslieferbare Hauptversion
des Modells. Ohne ein solches Modell kann Git zwar genutzt werden, verliert aber
schnell an Ubersichtlichkeit und Kontrolle — insbesondere bei mehreren beteiligten
Personen oder komplexeren Projekten.

Git Flow eignet sich besonders fiir Projekte mit stabilen Release-Zyklen. Es nutzt
zwei Hauptzweige (main und develop) und organisiert Entwicklung in Feature-,
Release- und Fehlerbehebungszweige. Dieses Modell ist strukturiert, jedoch relativ
komplex und fiir kontinuierliche Auslieferungen weniger geeignet.

GitHub Flow verfolgt hingegen einen sehr schlanken Ansatz. Fiir jede Anderung
wird ein neuer Branch aus dem Hauptzweig (main) erstellt, darin gearbeitet und
anschlieBend ein Merge Request (MR) gedffnet. Nach erfolgreicher Uberpriifung
wird der Zweig direkt in den Hauptzweig integriert. Diese Methode ist besonders
fiir kontinuierliche Integration und kurze Iterationen geeignet.

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 54

GitLab Flow kombiniert Elemente aus Git Flow und GitHub Flow, um verschie-
dene Entwicklungs- und Bereitstellungsumgebungen zu unterstiitzen.

Die Wahl eines geeigneten Workflows hingt von mehreren Faktoren ab. Die meist
relevanten sind:

e Teamgrofle: Kleine Teams profitieren oft von einfacheren Modellen wie
GitHub Flow.

e Projektkomplexitit: Fiir umfangreiche Systeme mit mehreren parallelen
Entwicklungen kann Git Flow sinnvoll sein.

e Release-ZyKlen: Bei kontinuierlicher Bereitstellung empfiehlt sich GitHub
Flow.

e Automatisierungsgrad: CI/CD-Verfahren harmonieren besonders gut mit
schlanken Workflows.

Fiir die vorliegende Arbeit wird der GitHub Flow als Kollaborationsprozess ge-
wihlt. Ausschlaggebend dafiir ist seine Einfachheit, die auf kurzen ,, Feature*-
Branches und einer klaren Struktur basiert. Diese erlaubt eine schnelle Integration
von Anderungen, reduziert Konfliktpotenziale und unterstiitzt einen kontinuierli-
chen Entwicklungsfluss. Obwohl GitHub Flow urspriinglich fiir GitHub entwickelt
wurde, ldsst er sich problemlos auch in GitLab umsetzen. Funktionen wie MR,
Pipeline-Integration und Rechteverwaltung sind dort ebenfalls gegeben. Bild 4-12
zeigt schematisch den Ablauf des GitHub Flow.

neues Branch
erstellen Merge

»main” Branch

\ 3 P
\ ’
\ Systemmodell @ //
¢ bearbeiten /7
#feature” Branch O—O O_O—O

»add commits* Diskussion und

.Merge Request" Analyse von
offnen commits

Bild 4-12 GitHub Flow — vereinfachter kollaborativer Entwicklungsprozess
(eigene Darstellung)

Die Umsetzung des Workflows basiert auf dem Export von modellierten Inhalten
im SysML v2-Textformat aus CSM. Die so erzeugten .sysml-Dateien konnen als
Versionseinheiten tiber GitLab verwaltet und im Rahmen von Branches und MR
ausgetauscht werden.

Entwicklung eines Git-basierten Kollaborationsprozesses Seite 55

Nach der Einfiihrung in das Konzept des GitHub Flow wird im Folgenden erldutert,
wie dieser Workflow konkret im Rahmen dieser Arbeit umgesetzt wurde. Dabei
wurden insbesondere die im Kapitel 3 dargestellten Rahmenbedingungen beriick-
sichtigt — darunter Teamgrofe, Projektkomplexitét, Release-Zyklen sowie die iden-
tifizierten Herausforderungen. Vor diesem Hintergrund erwies sich GitHub Flow
als geeigneter Ansatz flir die modellbasierte Zusammenarbeit. Die Kollaborations-
strategie orientiert sich somit an den realen Gegebenheiten der Modellierungsum-
gebung mit CSM in Verbindung mit GitLab.

Im Sinne eines schlanken und zugleich qualititsgesicherten Prozesses gelten fiir
den Umgang mit Branches und MR folgende teamiibergreifende Regeln:

1. Branch-Erstellung: Jede modellierende Person erstellt fiir eine geplante
Anderung einen neuen Feature-Branch ausgehend vom Hauptentwicklungs-
zweig (main-Branch). Der Branch-Name folgt dem Schema feature/<kurze-
Beschreibung> — Beispiel: feature/add-new-uc, um eine klare Zuordnung
und spétere Nachverfolgung zu ermdglichen.

2. Merge Requests (MR): Nach Abschluss und erfolgreicher Priifung der An-
derung in der lokalen Modellierungsumgebung wird ein MR erstellt. Dieser
enthilt eine kurze, prizise Beschreibung der Anderung sowie den Bezug zu
den betroffenen Systemfunktionen oder Anforderungen. Der MR dient der
Einleitung des Review-Prozesses.

3. Review-Prozess: Jeder MR wird von mindestens einer fachlich geeigneten
Person aus einem anderen Team iiberpriift. Dabei wird insbesondere auf Mo-
dellkonsistenz, Einhaltung der Modellierungsrichtlinien und Konfliktfreiheit
geachtet. Das SE-Management-Team nimmt nicht aktiv an der Modellierung
teil, beteiligt sich jedoch am Review-Prozess zur Koordination, Validierung
und finalen Entscheidung iiber die Integration in den Hauptzweig (main).

Durch die systematische Nutzung von Branches, Commit-Historien und MR kann
die Entwicklungshistorie der Modellartefakte revisionssicher dokumentiert werden.
Dies ermdglicht eine transparente Nachverfolgung aller Anderungen sowie die
Riickverfolgbarkeit zu Anforderungen und Systemfunktionen.

Diese Regeln ermoglichen eine koordinierte Zusammenarbeit zwischen den techni-
schen Teams, wobei gleichzeitig Transparenz und Modellqualitét sichergestellt
werden. Die Branches dienen der parallelen Entwicklung, der Review-Prozess ver-
hindert unkontrollierte Anderungen, und die strukturierte Namensgebung unter-
stiitzt sowohl Nachvollziehbarkeit als auch Automatisierung.

Eine schrittweise Anleitung zur praktischen Durchfiihrung dieses GitHub-Flow-
orientierten Prozesses — einschlieBlich aller benotigten Git-Befehle — wird in Kapi-
tel 5 unter Testszenario #5 detailliert beschrieben.

Prozessdurchfihrung und Bewertung Seite 56

5 Prozessdurchfiihrung und Bewertung

Im Sinne des Design Cycle im DSR-Ansatz steht dieses Kapitel im Zeichen der
Umsetzung und Evaluation des in Kapitel 4 definierten Losungsartefakts. Ziel ist
es, den Git-basierten Kollaborationsprozess praktisch anzuwenden, seine Funkti-
onsfihigkeit unter realitdtsnahen Bedingungen zu iiberpriifen und daraus gewon-
nene Erkenntnisse systematisch zu analysieren. Die Evaluation erfolgt dabei ent-
lang konkreter Anwendungsszenarien und dient sowohl der Validierung der Pro-
zessdefinition als auch ihrer iterativen Verbesserung.

Dazu werden in Kapitel 5.1 insgesamt acht Testszenarien definiert und durchge-
fithrt, die zentrale Aspekte der Git-basierten Zusammenarbeit mit SysML v2 adres-
sieren. Jedes Szenario wird dabei einzeln betrachtet, dokumentiert und hinsichtlich
seines Ablaufs, der verwendeten Werkzeuge und der erzielten Ergebnisse beschrie-
ben.

In Kapitel 5.2 erfolgt anschliefend eine strukturierte Bewertung des Git-basierten
Kollaborationsprozesses. Auf Grundlage der Testergebnisse werden Stirken und
Schwéchen des gewéhlten Workflows identifiziert, zentrale Erkenntnisse herausge-
arbeitet und potenzielle Verbesserungspotenziale aufgezeigt. Die gewonnenen Er-
kenntnisse flieBen in die Reflexion der Prozessgestaltung ein und unterstiitzen eine
fundierte Beurteilung der Eignung des Ansatzes fiir den Einsatz im MBSE-Kontext.

5.1 Definition und Durchfiihrung von Testszenarien

In diesem Kapitel wird die praktische Durchfithrung von acht definierten Test-sze-
narien dokumentiert. Die Szenarien sind so gewéhlt, dass sie den Git-basierten Kol-
laborationsprozess im Kontext modellbasierter Systementwicklung sowohl in
Grundfunktionen als auch in fortgeschrittenen Anwendungsféllen wie der CI/CD-
Integration abdecken. Jedes Testszenario wird strukturiert dokumentiert und hin-
sichtlich seiner Wirksamkeit, Reproduzierbarkeit und Relevanz fiir die Kollabora-
tion im Team bewertet.

Die Testszenarien lassen sich in drei Gruppen gliedern: Die ersten vier Szenarien
iiberpriifen grundlegende Funktionen von Git sowie die Kompatibilitit der verwen-
deten Werkzeuge (CSM, JN und GitLab). Testszenario #5 demonstriert die Anwen-
dung des in Kapitel 4.4 definierten GitHub-Flow-basierten Kollaborationsprozes-
ses. Die letzten drei Szenarien untersuchen die automatisierte Verarbeitung von
SysML-Modellen mithilfe von GitLab CI/CD — insbesondere Konfigurationsprii-
fungen, Syntaxanalysen und automatisierte Dokumentenerstellung. Diese Vielfalt
ermdglicht eine ganzheitliche Bewertung des entwickelten Prozesses iiber den ge-
samten Lebenszyklus eines MBSE-Projekts hinweg und beriicksichtigt dabei auch
Aspekte der Automatisierung durch die CI/CD-Funktionalititen von GitLab.

Prozessdurchfihrung und Bewertung Seite 57

CI/CD beschreibt einen automatisierten Ansatz zur Qualititssicherung und Bereit-
stellung von Software-artefakten. In GitLab wird CI/CD iiber sogenannte Pipelines
umgesetzt, die in einer .gitlab-ci.yml-Datei definiert werden. In dieser Datei werden
einzelne Jobs beschrieben, die bestimmten Stufen (z. B. build, test, deploy) zuge-
ordnet sind. Jeder Job beschreibt einen spezifischen Schritt im Verarbeitungspro-
zess. Die automatisierte Ausfiihrung dieser Jobs erfolgt bei definierten Triggern,
z. B. nach jedem Commit oder bei MR. Auf diese Weise wird sichergestellt, dass
Anderungen am Modell konsistent verarbeitet und validiert werden konnen, ohne
manuelle Zwischenschritte.

Zur besseren Ubersicht sind die Testszenarien in Tabelle 5-1 zusammengefasst. Die
Tabelle gibt einen Uberblick iiber die jeweiligen Zielsetzungen und ordnet jedes
Szenario einer bestimmten Projektphase innerhalb des GitLab-Prozesses zu. Die
Spalte ,,GitLab-Projektphase® beschreibt dabei die logische Rolle, die das jeweilige
Testszenario im Verlauf eines modellbasierten Projekts einnimmt. Sie orientiert
sich an typischen Entwicklungsphasen — beginnend bei der Initialisierung des Repo-
sitories, liber die Bearbeitung, Integration und Wartung der Inhalte bis hin zu spe-
zifischen Aspekten wie Konfiguration, Validierung und Dokumentation. Die Be-
zeichnungen der Phasen dienen dazu, die Einordnung des Szenarios im Lebenszyk-
lus des Projekts aus Sicht der GitLab-Nutzung zu verdeutlichen.

Tabelle 5-1 Ubersicht der definierten Testszenarien und zugehériger GitLab-

Projektphasen
Testszenario GitLab Projektphase
1. Export und Commit-Validierung Initialisierung
2. Anzeige und Bearbeitung im JN Bearbeitung
3. Multi-Tool-Kompatibilitat (CSM und JN) Integration
4. Versionierung und Rollback Wartung
5. GitHub Flow Test (Kollaborationsworkflow) Kollaboration
6. Automatisierte Konfigurationsprifung Konfiguration
7. Automatisierte Syntaxprifung Validierung
8. Automatisierte Dokumentenerstellung Dokumentation

Fiir die Darstellung und Analyse jedes einzelnen Testszenarios wird in den folgen-
den Unterkapiteln ein einheitliches Gliederungsformat verwendet. Dies gewéhrleis-
tet eine klare Nachvollziehbarkeit der Durchfiihrung, Ergebnisse und Bewertungen.
Jedes Testszenario wird in einer eigenen Untersektion dokumentiert (z. B. 5.1.1 Ex-
port und Commit-Validierung, usw.).

Prozessdurchfihrung und Bewertung Seite 58

Der strukturelle Aufbau jeder Testszenario-Untersektion folgt folgendem Schema:

1. Ziel des Testszenarios: Es wird erldutert, welche Funktionalitit oder Ei-
genschaft des Git-basierten MBSE-Prozesses iiberpriift werden soll.

2. Testumgebung: Beschreibung der verwendeten Werkzeuge, Konfigura-
tionen und ggf. relevanter Branches oder Kernels.

3. Aktivititen: Darstellung der konkreten Testschritte in nummerierter
Form.

4. Durchfiihrung: Beschreibung der Durchfithrung der zuvor gelisteten
Aktivitdten in FlieBtextform. Hierbei werden die technischen Ablaufe erldu-
tert und bei Bedarf auf unterstiitzende Bilder verwiesen (z. B. Screenshots
oder Benutzeroberfldachen).

5. Beobachtetes Ergebnis (Screenshots): Es werden ausgewahlte Screens-
hots prasentiert, die die tatsdchlichen Resultate dokumentieren. Alle rele-
vanten Screenshots sind zusitzlich im Anhang A5 bis A12 dokumentiert.

6. Diskussion: Reflexion des Testergebnisses im Kontext der Git-basierten
MBSE-Zielstellung. Hierbei werden positive Erkenntnisse, mogliche Ab-
weichungen und Verbesserungspotenziale identifiziert.

Diese strukturierte Herangehensweise erlaubt es, die einzelnen Testszenarien ver-
gleichbar darzustellen und ihren Beitrag zur Validierung des entwickelten Prozes-
ses transparent zu machen.

5.1.1 Testszenario #1: Export und Commit-Validierung
Ziel des Testszenarios

Ziel dieses Testszenarios ist die Uberpriifung, ob ein in CSM erstelltes SysML v2-
Modell erfolgreich exportiert und im .sysml/-Format {iber GitLab versioniert werden
kann. Dabei steht die Sicherstellung der grundsétzlichen Kompatibilitdt zwischen
Modellierungsumgebung und Versionsverwaltung im Vordergrund. Der Test vali-
diert, ob ein sauber strukturierter Export sowie ein vollstindiger Commit-Vorgang
technisch moglich und fiir weitere Kollaborationsschritte reproduzierbar ist.

Testumgebung
e Modellierungsumgebung: CSM mit SysML v2-Plugin
e Versionskontrolle: Git CLI

e Versionsverwaltung: GitLab Ul, main-Branch

Prozessdurchfiihrung und Bewertung Seite 59

Aktivitaten
1. Systemmodell in CSM erstellen
2. .sysml-Datei exportieren
3. .sysml-Datei im lokalen Repository speichern — hier ,, UAV Civil Drone*

4. Anderungen in GitLab aktualisieren: "git pull” = "git add .” = ’git commit
-m “nachricht” > 'git push’

Durchfiihrung

Zunichst wurden die Customer Requirements, SOS Requirements sowie System Re-
quirements in CSM modelliert (siche Bild 5-1). AnschlieBend erfolgte der Export
ausschlieBlich der Datei ,, Requirements.sysml*, wobei weitere Modellbestandteile
wie Use Cases und Systemstruktur bewusst nicht exportiert wurden (siche Bild 5-
2). Die exportierte Datei wurde in das lokale Git-Repository ,, UAV Civil Drone
gespeichert. AnschlieBend wurden die in Schritt 4 beschriebenen Git-Befehle mit
der Commit-Nachricht ,, added requirements “ ausgefiihrt. Durch den erfolgreichen
Push-Vorgang wurde die Datei im GitLab-/Interface (UI) sichtbar gemacht (siehe
Bild 5-3).

Beobachtetes Ergebnis (Screenshots)

Customer_Requirements X SOS_Requit | System_Requit |
i i 8 B - feo-
Selection
[, 8 -

Tools

Common

Items/Ports/Attributes
(¢) part i
B port

@ item

(@) attribute
(=) timeslice
@l

Connectors
$I° connection < flad

44 4

3 allocation v

2 bind

+#° flow -
AIF interface -
Actions

action o flad
perform action
(D in ref -
@ out ref -
() inout ref -
& Ansins

Other Actions.

Bild 5-1 Modellierung der Anforderungen in CSM (eigener Screenshot,
CSM)

Prozessdurchfiihrung und Bewertung Seite 60

¥ Select namespaces X
Export SysML v2 project
Select the namespaces to be exported into sysml files
Select namespaces
All namespaces: Select namespaces:
Namespace name File name Namespace name File name
%5 Namespace Behavior Behavior.sysml B Namespace Requirements
F51 Namespace Structure Structure.sysml
)| Namespace View & Viewp.. View & Viewpoint.sysml
F5] Namespace [Policies..] Policies.sysml =
>>
<<
Export option:
[Clean existing sysml files in output folder
Select folder:
C:\Users\shei_zo\Desktop\UAV Civil Drone
Export Abbrechen
Bild 5-2 Exportdialog und Dateispeicherung in das lokale Repository (eige-

ner Screenshot, CSM)

U UAV Civil Drone & s
¥ main v uav-civil-drone + v Find file :

¥Y, added requirmenets R
'55: zohair95 authored 1 minute ago 6d3cf2bs | [|| History
Name Last commit Last update

1+ README.md Initial commit 1week ago

Requirements.sysml added requirmenets 1 minute ago
Bild 5-3 Darstellung der ,, Requirements.sysml “~-Datei im GitLab nach

Push-Vorgang (eigener Screenshot, GitLab Ul)

Diskussion

Das Testszenario verlief erfolgreich und bestétigte die grundsatzliche technische
Machbarkeit des Exports und der Versionierung eines SysML v2-Modells iiber Git.
Die strukturierte Modellierung in CSM sowie der gezielte Export einzelner Modell-
teile funktionierten erwartungsgemal3. Ebenso konnte der Commit- und Push-Vor-
gang ohne Konflikte durchgefiihrt werden. Die Sichtbarkeit der Datei im GitLab Ul
demonstriert die Reproduzierbarkeit und Nachvollziehbarkeit des Vorgangs. Fiir
zukiinftige Kollaborationen bildet dieser Test die Grundlage, um weitere Modell-
bestandteile analog in den Versionsverwaltungsprozess zu integrieren.

Prozessdurchfihrung und Bewertung Seite 61

5.1.2 Testszenario #2: Anzeige und Bearbeitung im JN
Ziel des Testszenarios

Ziel dieses Tests ist es, das .sysm/-Modell auBerhalb der Modellierungsumgebung
zu laden, anzuzeigen und gezielt zu bearbeiten. Die Bearbeitung erfolgt direkt im
JN durch textuelle Modifikation der Modellstruktur. Dadurch wird gepriift, inwie-
weit Git-basierte Workflows mit einer leichten, skriptbasierten Modifikation des
Modells kombinierbar sind.

Testumgebung

e Ausfiihrungsumgebung: JN mit SysML-Kernel

e Versionskontrolle: Git CLI

e Versionsverwaltung: GitLab Ul, main-Branch
Aktivitaten

1. .sysml-Datei in JN 6ffnen — hier ,, Requirements.sysml “

2. InJN SysML-Kernel visualisieren und Anderungen vornehmen: "%viz <Mo-
dellname>"

3. .sysml-Datei im lokalen Repository speichern — hier ,, UAV Civil Drone “

4. Anderungen in GitLab aktualisieren: 'git add <Dateiname>" = 'git commit
-m “nachricht’ -> 'git push’

Durchfiihrung

Beim Offnen der Datei ,, Requirements.sysml* in IN wurde diese zunichst als reiner
Textinhalt angezeigt. Um eine Visualisierung und Bearbeitung zu ermoglichen,
wurde der Inhalt in eine separate Notebook-Zelle innerhalb eines aktiven SysML-
Kernels eingefiigt (siche Bild 5-4). Nach dem Ausfiihren der entsprechenden Zellen
konnten die verfiigbaren Requirement-Pakete geladen und mittels des Befehls "%viz
<Modellname> " visualisiert werden (siehe Bild 5-5).

Im Anschluss wurde das Modell gezielt modifiziert. Konkret wurde die Anforde-
rung ,, Customer Requirement <5_5> “ erweitert, indem zusitzliche Attribute sowie
Constraints direkt in der textuellen Notation erginzt wurden. Die Anderungen wur-
den innerhalb des Kernels erneut visualisiert und {iberpriift (siche Bild 5-6). Ab-
schlieBend wurden sowohl die angepasste ,, Requirements.sysml“-Datei als auch
das zugehorige JN ,,UAV JN.ipynb“ lokal gespeichert, in das Repository einge-
pflegt und per Git CLI auf GitLab mit der Nachricht ,, updated Req <5 5> hoch-
geladen (siehe Bild 5-7).

Prozessdurchfihrung und Bewertung

Seite 62

Beobachtetes Ergebnis (Screenshots)

Step 1: Paste and Run .sysml file

UAV Requirements

1 package Customer_Requirements {
2 requirement ‘<1_1> Public Safety & Emergency Services' {

require constraint ‘activationTime <= 2 [min.]';

12 requirement '<1_3> Public Safety & Emergency Services' {

14 ¥

doc /* The UAV shall be operational within 2 minutes of activation to support time-sensitive emergencies.*/

doc /* The UAV shall include thermal imaging capabilities to support night-time search and rescue operations.*/

5 attribute ‘activationTime :> ISQ::Time';

¥

7 requirement '<1_2> Public Safety & Emergency Services' {

8 doc /* The UAV shall provide live-stream video with a resolution of at least 4K for effective situational awareness.*/
9 attribute ‘videoResolution :>';

10 require constraint 'videoResolution <= 4000 [pix.]';

Bild 5-4
Screenshot, JN)

Textbasierte Anzeige der Datei ,, Requirements.sysml* (eigener

Package Customer_Requirements (8cc442f6-f8d8-44ea-838a-be6b23797eda)
Package SOS_Requirements (334c9c27-9d6a-4be7-bd20-43beefca354b)
Package System_Requirements (6fcdc2d2-6615-42da-bdd3-68336b2fced7)

Step 2: Choose Package to view and run “%viz" command

1 %viz Customer_Requirements

Customer_Requirements \

«requirements
«requirement»

7 - 3
«requirements e
<5_5> Energy & Utilities 7

<5_4> Energy & Utilities

doc
The UAV shall withstand exposure to dust,
moisture, and temperatures ranging from -30°C
to 60°C.

doc
The UAV shall encrypt all transmitted data
using AES-256 standards to ensure secure
communications.

<5_3> Energy & Utilities

doc
The UAV shall support up to 1 hour of flight
|time for prolonged inspection tasks.

i

Bild 5-5

Visualisierung der modellierten Anforderungen im SysML-Kernel

mittels ,, %oviz “-Befehl (eigener Screenshot, JN)

Step 2: Choose Package to view and run "%viz" command

%viz Customer_Requirements

Customer_Requirements

«requirements»
‘ <5_5> Energy & Utilities

doc
The UAV shall withstand exposure to dust,
moisture, and temperatures ranging from -30°C
to 60°C.

attributes
maxTemp :> ISQ:: Temp
minTemp :> 1SQ::Temp

7

<
' \
/ .
; «require»
¢ \
1% <4
«constraint» «constraints

minTemp <= -30 [C] maxTemp >= 60 [°C]

\
\ «require»
\

«requirements
<5_4> Energy & Utilities
doc
The UAV shall encrypl all transmitted data
using AES-256 standards to ensure secure
communications.

«requirement»
<5_3> Energy & Utilities

doc
The UAV shall support up to 1 hour of flight
time for prolonged inspection tasks.

Bild 5-6

Modifikation der Anforderung ,, Customer Requirement <5_5>*

inkl. neuer Constraints und Attribute (eigener Screenshot, JN)

Prozessdurchfiihrung und Bewertung Seite 63

U UAV Civil Drone & e
¥ main v uav-civil-drone + v Find file

4%y updated Req <5_5>

OQ4dcbfed | [Histor
"$%7 zohair95 authored 4 hours ago f: 4

Name Last commit Last update
~+ README.md Initial commit 1week ago
[Requirements.sysml updated Req <5_5> 4 hours ago
[UAV_JN.ipynb updated Req <5_5> 4 hours ago

Bild 5-7 Erfolgreicher Push der gednderten Dateien (Requirements.sysml,
UAV _JN.ipynb) auf GitLab (eigener Screenshot, GitLab Ul)

Diskussion

Das Testszenario konnte erfolgreich durchgefiihrt werden. Die aus CSM exportierte
., Requirements.sysml “-Datei wurde korrekt in JN geladen, visualisiert und an-
schlieBend textuell angepasst. Die vorgenommenen Anderungen konnten im Kernel
validiert und iiber GitLab versioniert werden, wodurch die prinzipielle Kombinier-
barkeit textbasierter Modellbearbeitung mit Git-basierten Workflows bestitigt
wurde.

Allerdings zeigte sich eine Einschrankung hinsichtlich der Handhabung: Da JN
.sysml-Dateien als reine Textdateien interpretieren, ist ein zusétzlicher Zwischen-
schritt erforderlich, bei dem die Inhalte manuell in eine Notebook-Zelle innerhalb
eines laufenden SysML-Kernels eingefiigt werden miissen. Diese Notwendigkeit
der Zwischenspeicherung und Ubertragung in ein .ipynb-Dateiformat erhoht den
manuellen Aufwand. Positiv hervorzuheben ist jedoch, dass GitLab .ipynb-Dateien
nativ unterstiitzt und deren Inhalte direkt im Webinterface angezeigt werden kon-
nen, was die Nachverfolgbarkeit von Anderungen erleichtert.

5.1.3 Testszenario #3: Multi-Tool-Kompatibilitat (CSM und JN)
Ziel des Testszenarios

Das Ziel dieses Szenarios ist die Validierung der Werkzeugkompatibilitét zwischen
CSM und JN. Es wird untersucht, ob textuelle Modelldnderungen, die in JN vorge-
nommen und via GitLab versioniert wurden, anschlieBend erfolgreich in CSM im-
portiert und angezeigt werden konnen. Dieser Test stellt sicher, dass ein Toolwech-
sel im Kollaborationsprozess verlustfrei moglich ist und keine semantischen Inkon-
sistenzen im Modell entstehen.

Prozessdurchfiihrung und Bewertung Seite 64

Testumgebung
e Versionskontrolle: Git CLI
e Modellierungsumgebung: CSM mit SysML v2-Plugin
Aktivitaten
1. Anderungen aus GitLab Repository lokal aktualisieren: "git pull’
2. .sysml-Datei in CSM importieren — hier ,, Requirements.sysml “
3. Anderungen in CSM visualisieren
Durchfiihrung

Nach dem Abrufen der aktuellen Repository-Inhalte mittels “git pull” wurde die zu-
vor in JN modifizierte Datei ,, Requirements.sysml “ in CSM importiert. Der Import-
vorgang fiihrte zur automatischen Erstellung eines neuen namespaces mit der Be-
zeichnung ,, Customer Requirements “, welcher dem ersten Paketnamen in der Da-
tei entspricht (siche Bild 5-8).

Infolgedessen waren im Modell zwei Anforderungs-namespaces vorhanden: der ur-
spriingliche und der neu importierte. Zur gezielten Analyse wurde ein separates
SysML v2 View-Diagramm mit dem Namen ,,Req New * erstellt, in dem sowohl
die alte als auch die modifizierte Version der Anforderung ,, Requirement <5 5>
nebeneinander dargestellt wurden (siehe Bild 5-9). Dies ermdglichte einen direkten
Vergleich der urspriinglichen und der textuell liberarbeiteten Anforderungsversion.

Beobachtetes Ergebnis (Screenshots)

LEB Containment

Containment a8 x
2B Q (ol

B~ 4 UAV Civil Drone_SysML v2

&
B F] package Customer_Requirements

g 7 package SOS_Requirements

i B package System_Requirements

B} [namespace Behavior

Bl F& namespace Requirements

; E+] 7 package Customer_Requirements

; ' 7 package SOS_Requirements

- package System_Requirements

F&] namespace Structure

& [namespace View & Viewpoint

i view Customer_Requirements

view SOS_Requirements

view System_Requirements

(&) view SOI_Use_Cases

@) view SOS

- @ view SOI

- [=] Used Projects

Bild 5-8 Neuer namespace ,, Customer_Requirements * nach dem Import der
,, Requirements.sysml“~-Datei (eigener Screenshot, CSM)

Prozessdurchfiihrung und Bewertung Seite 65

() Req_New X
PR A - Sl A 2R P ko~
Selection
w{} | :,:-. ::E -
R Q |
Tools «package»
& '-%‘- z Customer_Requirements
Common
Items/Ports/Attribu... «requirement» («requirement» N
o B <5_5> Energy & Utilities <5_5> Energy & Utilities
p documentation documentation
=] port - The UAV shall w ithstand The UAV shall w ithstand
exposure to dust, exposure to dust,
(1) item - moisture, and moisture, and
temperatures ranging temperatures ranging

(@) attribute = from-30°C to 60°C from-30°C to 60°C.
[=) timeslice w attributes

Y minTemp :> ISQ::Temp
() vnf maxTemp > ISQ:: Temp
ConneCtors require constraints
€ connecti.. v * minTemp <=-30 [*C]
: maxTemp >= 60 [°C]
3¢ allocation ¥
J* bind N
+#° flow 2
J interface

s = o s = = N
Bild 5-9 Vergleich der urspriinglichen (Links) und modifizierten (Rechts)

Anforderung ,, Requirement <5 5> im View-Diagramm ,,Req New* (eigener
Screenshot, CSM)

Diskussion

Das Szenario demonstriert grundsétzlich die Kompatibilitit zwischen JN und CSM
hinsichtlich des Imports von textuell geinderten .sysmi-Dateien. Die Anderungen,
die auBerhalb von CSM vorgenommen wurden, konnten ohne technische Fehler
importiert und im Modell angezeigt werden. Damit wurde die prinzipielle Tool-
kompatibilitit bestétigt.

Allerdings zeigten sich im Detail Einschrankungen: Der Import einer gednderten
Datei erzeugt in CSM automatisch einen neuen namespace, selbst wenn bereits ein
gleichnamiger Inhalt im Modell vorhanden ist. Dies kann zu redundanten Struktu-
ren fithren. Um doppelte Inhalte zu vermeiden, sind zwei Alternativen denkbar:
entweder das Loschen des urspriinglichen namespaces nach erfolgreichem Import
oder das Anlegen eines neuen CSM-Projekts flir den Importvorgang.

Ein weiterer Nachteil zeigt sich in der eingeschrinkten Visualisierung der Mo-
dellelemente nach dem Import einer neuen .sysml-Datei: In CSM werden die beste-
henden View-Diagramme nicht automatisch aktualisiert. Stattdessen muss ein neues
View-Diagramm manuell erstellt und die relevanten Modellelemente erneut per
Drag-and-Drop eingefiigt werden, um eine visuelle Repréisentation zu erhalten.
Dies erschwert die Nachvollziehbarkeit der Anderungen, insbesondere wenn zuvor
keine Kommunikation oder Dokumentation erfolgte — wie im Fall der geénderten
Anforderung ,, Requirement <5 5> ",

Prozessdurchfihrung und Bewertung Seite 66

5.1.4 Testszenario #4: Versionierung und Rollback
Ziel des Testszenarios

Dieses Testszenario zielt darauf ab, die Riickverfolgbarkeit und Wiederherstellbar-
keit von Modellzustdnden innerhalb des Git-basierten Prozesses zu iiberpriifen. Es
wird getestet, ob inkrementelle Anderungen korrekt versioniert werden und ob mit
Hilfe von Git-Befehlen wie ‘git log " und ‘git revert’ friihere Modellzustande zuver-
lassig wiederhergestellt werden konnen. Ziel ist es, die Robustheit des Versions-
kontrollmechanismus im Hinblick auf Fehlerbehandlung und iterative Entwicklung
zu bewerten.

Testumgebung
e Modellierungsumgebung: CSM mit SysML v2-Plugin
e Versionskontrolle: Git CLI
e Versionsverwaltung: GitLab Ul, main-Branch
Aktivitaten
1. Anderungen in mehreren Commits vornehmen
2. Ein Commit auswihlen und entfernen: ‘git log” > 'git revert <commit>"->
‘git add .” > 'git commit -m “nachricht”’ > 'git push’
3. Modellkonsistenz iiberpriifen
Durchfiihrung

Im Rahmen dieses Tests wurden schrittweise Anderungen am Modell vorgenom-
men, darunter das Hinzufiigen von System Use Cases im Behavior-Paket. Diese
Anderung wurde unter dem Commit-Nachricht ,, added-behavior“ in das GitLab-
Repository hochgeladen.

Anschlieflend wurden tiber die Git-Befehle ‘git log und ‘git revert <commit>" ge-
zielt frithere Modellzustinde wiederhergestellt. Zunédchst wurde mittels ‘git log " der
Commit-Verlauf eingesehen (siche Bild 5-10). Darauthin wurde der Commit ,, ad-
ded-behavior” (Commit 89adfb82) identifiziert und iiber ‘git revert 89adfb82 " zu-
riickgesetzt. Die Anderung wurde mit dem Commit-Kommentar ,, deleted last com-
mit* erneut versioniert und in das zentrale Repository libertragen. In der GitLab-
Oberflache war zunédchst die Datei ,, Behavior.sysml“ sichtbar (siche Bild 5-11),
nach dem Revert-Vorgang jedoch nicht mehr vorhanden (siehe Bild 5-12), was auf
eine erfolgreiche Wiederherstellung des vorherigen Modellzustands hinweist.

Prozessdurchfiihrung und Bewertung Seite 67

Beobachtetes Ergebnis (Screenshots)

B¥ C:\Windows\System32\cmd.exe — 0 X

\Users\Zohai\UAV Civil Drone\uav-civil-drone>git log
commit 89adfb8268a49353b8233668559ab47168216c9¢c (HEAD -> main,
lAuthor: Zohair S. Sueiman <zohair.sheikh.suleiman@campus.tu-berlin.de>
Date: Fri May 23 12:18:15 2025 +0200

I added-behavior

commit ©4dcbfe08276e8472634ed807a0e216e670e722b
uthor: Zohair S. Sueiman <zohair.sheikh.suleiman@campus.tu-berlin.de>
Date: Wed May 21 13:25:02 2025 +0200
updated Req <5_5>
commit 6d3cf2b51a7d4082ff6942ced4be73b7b3bc641b1
uthor: Zohair S. Sueiman <zohair.sheikh.suleiman@campus.tu-berlin.de>
Date: Tue May 20 18:21:06 2025 +0200
added requirmenets
commit ab6fld2acbdc4casébdeef93f948cf717f3a81e7
uthor: zohair85 <zohair.sheikh.suleiman@campus.tu-berlin.de>
Date: Sun May 11 13:24:17 2025 +0000

Initial commit

IC:\Users\Zohai\UAV Civil Dronel\uav-civil-drone>

Bild 5-10 Ubersicht des 'git log-Befehls (eigener Screenshot, Git CLI)

U UAV Civil Drone & e
¥ main v | uav-civil-drone + v || Find file m :

updated-Behavior
zohair95 authored 12 seconds ago

7486231e | [y || History

Name Last commit Last update
3 Behavior.sysml updated-Behavior 13 seconds ago
1+ README.md Initial commit 1week ago
[3 Requirements.sysml updated Req <5_5> 1day ago
[UAV_JN.ipynb updated Req <5_5> 1day ago

Bild 5-11 GitLab Ul mit ,, Behavior.sysml* (eigener Screenshot, GitLab Ul)

U UAV Civil Drone & e
¥ main v | uav-civil-drone + Find file :

Yy deleted last commit
zohair95 authored 11 minutes ago

ve

b429efc7 | [History

Name Last commit Last update
M+ README.md Initial commit 1week ago
[Requirements.sysml updated Req <5_5> 1day ago
B UAV_JN.ipynb updated Req <5_5> 1day ago

Bild 5-12 GitLab Ul ohne ,, Behavior.sysml* (eigener Screenshot, GitLab Ul)

Prozessdurchfihrung und Bewertung Seite 68

Diskussion

Das Testszenario bestétigt die korrekte Funktionsweise der Git-basierten Versio-
nierung und die Moglichkeit zur Wiederherstellung fritherer Modellzustéinde mit-
tels ‘git revert’. Die erfolgreiche Entfernung der Datei ,, Behavior.sysml ““ nach dem
Zuriicksetzen des Commits verdeutlicht, dass Anderungen nicht nur versioniert,
sondern auch gezielt riickgidngig gemacht werden kdnnen.

Im Kontext kollaborativer Arbeitsumgebungen ist jedoch Vorsicht geboten: Das
direkte Riickgangigmachen von Commits im main-Branch kann zu Inkonsistenzen
fiihren, wenn andere Teammitglieder parallel arbeiten. Daher ist es empfehlens-
wert, Anderungen iiber einen MR riickgiingig zu machen. Dies ermdglicht eine Prii-
fung der MaBBnahme durch andere Beteiligte und bietet eine zusétzliche Qualitits-
sicherung, bevor Anderungen wirksam werden.

Zusammenfassend zeigt das Testszenario, dass Git ein robustes Werkzeug zur Ver-
waltung von Modellzustédnden darstellt, jedoch organisatorische Mafinahmen wie
MRs notwendig sind, um Konflikte in Teamumgebungen zu vermeiden.

5.1.5 Testszenario #5: GitHub Flow Test (Kollaborationsworkflow)
Ziel des Testszenarios

Ziel dieses Tests ist es, den in Kapitel 4.4 beschriebenen GitHub-Flow-Prozess
exemplarisch anzuwenden. Der Fokus liegt dabei auf der Erstellung eines Feature-
Branch, dem Durchlaufen des Review-Prozesses und dem kontrollierten Merge in
den main “-Branch. Durch diesen Test wird liberpriift, ob die definierten Kollabo-
rationsregeln im Teamkontext praktisch umsetzbar sind und ob typische Teamauf-
gaben wie Anderungsdokumentation, Review und Merge-Prozesse reibungslos
funktionieren.

Testumgebung

e Versionskontrolle: Git CLI

e Versionsverwaltung: GitLab Ul, feature- und main-Branch
Aktivitaten

1. feature-Branch erstellen: ‘git checkout -b feature’

2. Anderungen vornehmen: ‘git add .” = 'git commit -m “nachricht”’ > ’git
push -u origin feature’

3. MR in GitLab Ul er6ffnen

4. Review und Merge — In GitLab UI oder in Git CLI: ‘git checkout main’ >
"git pull origin main’ > 'git merge feature’ > ’git push origin main’

Prozessdurchfiihrung und Bewertung Seite 69

5. (Optional) feature-Branch lokal 16schen: ‘git branch -d feature’
Durchfiihrung

Im Rahmen dieses Tests wurde ein typischer GitHub-Flow-Kollaborationsprozess
durchgefiihrt. Zunéchst wurde lokal ein neuer feature-Branch mit dem Namen ,, fea-
ture/add-new-uc* erstellt und darin Anderungen an der Datei ,, Behavior.sysml*
vorgenommen. AnschlieBend wurden nach Schritt 2 diese Anderungen in das ent-
fernte Repository libertragen.

Im néchsten Schritt wurde iiber die GitLab-Oberfliche ein MR er6ffnet, um die
Anderungen vor dem Merge in den main-Branch zu iiberpriifen (siehe Bild 5-13
und 5-14). Der Review- und Freigabeprozess erfolgte ebenfalls vollstdndig in der
GitLab UL Nach erfolgreicher Uberpriifung wurde der feature-Branch in den main-
Branch zusammengefiihrt (siche Bild 5-15). AbschlieBend wurde der lokale Fea-
ture-Branch mit ‘git branch -d feature/add-new-uc’ geloscht, um die lokale Ar-
beitsumgebung zu bereinigen, da er trotz Pull-Vorgang weiterhin lokal sichtbar
war.

Beobachtetes Ergebnis (Screenshots)

Active branches
New merge request
feature/add-new-uc [
l°' ol1 I $INew || & v | ¢
569666b7 - updated-uc - 1 minute ago L)

main [} default protected N
- a (A4 v
7486231e - updated-Behavior - 1 hour ago

Bild 5-13 Ubersicht der Branches ,, main“ und ,, Jfeature/add-new-uc* (eige-
ner Screenshot, GitLab Ul)

New merge request

From feature/add-new-uc into main Change branches

Title (required)

updated-uc-Behavior.sysml

() Mark as draft
Drafts cannot be merged until marked ready.

Description

Preview B I § 1= < & ==x="9 B ¢ O

Updated use cases in Behavior‘.sxsml file.

Switch to rich text editing
\

Bild 5-14 Merge Request-Erstellung (eigener Screenshot, GitLab Ul)

Prozessdurchfiihrung und Bewertung Seite 70

updated-uc-Behavior.sysml

3% Open zohair95 requested to merge feature/add-new-uc [} into main just now
Overview 0 Commits - Pipelines 0 Changes 1

Updated use cases in Behavior.sysml file.

@o|l®
8~ Approval is optional (® v
© Ready to merge! v

Delete source branch () Squash commits @ () Edit commit message
* 1commit and 1 merge commit will be added to main.

Activity Allactivity v | 1=
Preview B I § 1=« @ ==:=%89 B ¢ 2 e
Write a comment or drag your files here..

Switch to rich text editing =

(J) Make this an internal note @

Comment v Start review Close merge request

Bild 5-15 Merge-Vorgang des Feature-Branch nach abgeschlossenem Re-
view, Abschluss des Vorgangs tiber ,,merge* (eigener Screenshot, GitLab Ul)

Diskussion

Dieses Testszenario bestétigt die erfolgreiche Umsetzung eines GitHub-Flow-Pro-
zesses im Rahmen einer GitLab-gestiitzten Modellierungsumgebung. Der gesamte
Ablauf — von der Erstellung eines Feature-Branch iiber die Anderungsiibertragung
bis hin zum Merge nach abgeschlossenem Review — verlief reibungslos und erfiillte
alle definierten Anforderungen an kollaborative Entwicklungsprozesse.

Besonders hervorzuheben ist die Benutzerfreundlichkeit der GitLab UI, die den Re-
view- und Merge-Prozess visuell unterstiitzt und durch intuitive Funktionen wie
Reviewer-Zuweisung, Kommentierung und Anderungsverfolgung erginzt. Die im
Git CLI verfiigbaren Kommandos fiir den Merge-Prozess sind bei Verwendung der
GitLab Ul nicht zwingend notwendig, bieten jedoch zusitzliche Flexibilitét fiir fort-
geschrittene Nutzer:innen.

Ein wichtiger Hinweis aus diesem Test ist die Notwendigkeit, nach dem Merge ab-
geschlossener Feature-Branches lokal zu 16schen, um die Arbeitsumgebung tiber-
sichtlich zu halten. Diese Praxis unterstiitzt die langfristige Wartbarkeit und ver-
meidet Konflikte durch veraltete lokale Branches.

Prozessdurchfihrung und Bewertung Seite 71

5.1.6 Testszenario #6: Automatisierte Konfigurationspriifung
Ziel des Testszenarios

Das Ziel dieses Testszenarios besteht darin, eine automatisierte Priifung und Kor-
rektur der Konfiguration von .sysml-Dateien zu etablieren, um syntaktische Inkon-
sistenzen zu beheben, die beim Export aus dem CSM auftreten. Insbesondere be-
trifft dies die fehlerhafte Behandlung von benutzerdefinierten Bezeichnern inner-
halb der textuellen SysML v2-Syntax, bei denen filschlicherweise keine einfachen
Anfiihrungszeichen gesetzt werden, wenn es sich um ein einzelnes Wort handelt
(Beispiel: einWort anstelle von 'einWort").

Diese Abweichung tritt systematisch dann auf, wenn das benutzerdefinierte Einga-
befeld nur aus einem einzigen, zusammenhédngenden Wort besteht — wihrend bei
mehrteiligen Werten (mit Leerzeichen) automatisch einfache Anfiihrungszeichen
generiert werden (z. B. 'ein Wort).

Um die Lesbarkeit und die maschinelle Verarbeitbarkeit zu verbessern, soll eine
Korrektur dieser Félle direkt im GitLab CI/CD-Pipelineprozess erfolgen. Ziel ist
es, fehlerhafte Stellen automatisiert zu erkennen, zu korrigieren und die aktuali-
sierte Datei bei Bedarf zuriickzuschreiben.

Testumgebung
e Skriptausfithrung: JN mit Python 3-Kernel
e Modellierungsumgebung: CSM mit SysML v2-Plugin
e Versionskontrolle: Git CLI

e Automatisierung: GitLab CI/CD mit .gitlab-ci.yml

Aktivitaten

1. Erstellung einer .sysml-Datei mit einem absichtlich eingebauten Formatie-
rungsfehler

2. Implementierung eines Python-Skripts (fix config.ipynb), das systematisch
alle benutzerdefinierten Eingaben analysiert und bei Bedarf korrekt forma-
tiert.

3. Integration des Skripts in die GitLab-CI-Pipeline durch Erweiterung der Da-
tei .gitlab-ci.yml mit einem neuen Job check config

4. Ausfiihrung des Skripts sowohl lokal als auch iiber GitLab CI zur Uberprii-
fung der Funktionalitit und automatischen Korrektur

5. Push der Anderungen ins zentrale GitLab-Repository iiber die Git-Befehle:
‘git add .” > 'git commit -m “nachricht”’ > 'git push’

Prozessdurchfiihrung und Bewertung Seite 72

Durchfiihrung

Fiir die Durchfiihrung des Testszenarios wurde zunichst eine bewusst fehlerhafte
.sysml-Datei mit dem Namen Structure.sysml erstellt. Diese Datei enthilt zwei Part-
Dekomposition-Pakete fiir die Subsysteme SOS und SOI. Nach dem Export aus
CSM zeigte sich, dass Benutzereingaben ohne Leerzeichen nicht in einfache An-
fiihrungszeichen (' ') gesetzt wurden (sieche Bild 5-17, links). Betroffen waren u. a.
Begriffe wie SOI, SOS, Communication und Airframe.

Im Anschluss wurde das Python-Notebook fix config.ipynb ausgefiihrt (siche An-
hang A10). Dieses durchsucht alle .sysmi-Dateien im Verzeichnis System Models
und iiberpriift deren Inhalt zeilenweise auf eine korrekte Konfiguration. Das enthal-
tene Skript identifiziert mithilfe reguldrer Ausdriicke fehlerhaft gesetzte oder feh-
lende Anfiihrungszeichen im Bereich der Benutzereingaben und ersetzt diese durch
eine korrekt formatierte Version. Nach erfolgreicher Ausfiihrung wird die korri-
gierte .sysmi-Datei automatisch mit der fehlerhaften Ursprungsversion iiberschrie-
ben (Bild 5-17, rechts).

Nach dem erfolgreichen Test des Notebooks im lokalen JN-Umfeld wurde die Git-
Lab-CI-Konfigurationsdatei .gitlab-ci.ym/ um einen neuen Job erweitert, der
fix_config.ipynb automatisch ausfiihrt, sobald .sysml-Dateien im Repository geédn-
dert werden (Bild 5-16).

Im Zuge der Anpassung wurde auflerdem die Verzeichnisstruktur im GitLab-Repo-
sitory optimiert: Alle .sysmi-Dateien wurden in einen zentralen Ordner mit dem
Namen System_Models verschoben, um den Zugriff innerhalb der CI-Pipeline zu
vereinheitlichen und zukiinftige Automatisierungsschritte zu erleichtern (Bild 5-
18).

Beobachtetes Ergebnis (Screenshots)

check_config:
stage: check-config
image: python:3.10 # Leichtgewichtiges Python-Image
before_script:

- pip install jupyter # Jupyter wird fir die Konvertierung bendtigt
script:
- jupyter nbconvert --to script fix_config.ipynb # Notebook in .py-Datei konvertieren
- python fix_config.py # fix_config Skript ausfihren
only:
changes:
- System_Models/x.sysml # Trigger nur bei Anderungen an SysML-Dateien

Bild 5-16 Ausschnitt aus .gitlab-ci.yml mit Definition des neuen Jobs zur au-
tomatisierten Konfigurationspriifung (eigener Screenshot, .gitlab-ci.yml)

Prozessdurchfihrung und Bewertung

Seite 73

package SOS { package 'SO0S* {
part SOS { part 'S0S* {
part ‘Communication System'; part ‘Communication System’;
part SOI; part ‘SOI*;
part ‘Payload Sensor System'; part ‘Payload Sensor System’;
part ‘Ground Control Sytem'; part ‘Ground Control Sytem';
part ‘Air Traffic Management'; part ‘Air Traffic Management";
¥ 3
3 ¥
package SOI { package "SOI' {
part SOI { part "SOI" {
part Airframe { part ‘Airframe’ {
part ‘Wing type’; part ‘Wing type';
part ‘'Payload System' { part ‘Payload System" {
part ‘Environmental Sensors®; part ‘Environmental Sensors’;
part Camera; part ‘Camera’;
part ‘Delivery Meachnism®; part ‘Delivery Meachnism';
i) }
part ‘Propulsion System'; part ‘Propulsion System';
part ‘Safety System’ { part ‘Safety System' {
part ‘Return to Home'; part ‘Return to Home®;
part ‘Emergency Landing'; part ‘Emergency Landing®;
part ‘Power System'; part ‘Power System';
part Communication { part ‘Communication® {
part ‘RF Communication’; part ‘RF Communication’;
3 }
part ‘Navigation System' { part ‘Navigation System’ {
part GPS; part ‘GPS';
part ‘Flight System'; part 'Flight System';
3
part ‘Fixed Wing' :> SOI::Airframe::‘Wing type'; part ‘Fixed Wing' :> '
part ‘Roraty Wing' :> SOI::Airframe::'Wing type'; part ‘Roraty Wing' :> 'SOI'::'Airframe’
part Hybrid :> SOI::Airframe::‘Wing type'; part ‘Hybrid® :> 'SOI'::'Airframe’::'Wing type’;
) A
Bild 5-17 Links: Urspriingliche Exportdatei mit fehlerhafter Formatierung;

Rechts: Datei nach automatischer Korrektur durch fix_config.ipynb (eigener

Screenshot, Structure.sysml)

Name

B3 .ipynb_checkpoints
B3 SysML_Reports

B3 System_Models

& gitlab-ci.yml

M+ README.md

[fix_config.ipynb

Last commit

Added Req. and updated System_Models
Added Req. and updated System_Models
Added Req. and updated System_Models
added comments to .gitlab-ci.yml file
Initial commit

Added Req. and updated System_Models

Bild 5-18

Organisationsstruktur der Repository fiir eine saubere und konsis-

tente Ablagestruktur (eigener Screenshot, GitLab Ul)

Diskussion

Das Skript fix_config.ipynb erfiillte die erwartete Funktionalitdt und konnte die zu-
vor identifizierten Formatierungsprobleme in den .sysm/-Dateien erfolgreich behe-
ben. Insbesondere wurden Benutzereingaben ohne Leerzeichen, die beim Export
aus CSM nicht korrekt mit einfachen Anfiithrungszeichen versehen waren, automa-

tisiert korrigiert.

Prozessdurchfihrung und Bewertung Seite 74

Die Idee zur Aufnahme dieses Testszenarios entstand im Verlauf der Entwicklung
des Syntaxpriifskripts, das im folgenden Testszenario #7 beschrieben wird. Ur-
spriinglich war lediglich eine Syntaxpriifung geplant. Wahrend der ersten Testlaufe
zeigte sich jedoch, dass bestimmte Formatierungsfehler — insbesondere fehlende
Anfiihrungszeichen bei bestimmten Texteingaben — zu Validierungsfehlern fiihrten.
Daher wurde Testszenario #6 als notwendiger Zwischenschritt eingefiihrt, um die
zugrunde liegenden Probleme zunédchst zu beheben. Wire die von CSM erzeugte
Syntax an dieser Stelle korrekt, hitte dieser zusétzliche Schritt nicht implementiert
werden miissen.

Eine bekannte Einschrinkung des aktuellen Skripts besteht darin, dass es nur ein-
mal ausgefiihrt werden sollte. Bei einer zweiten Ausfiihrung werden bestimmte
Konnektoren der Form 'xx' :: 'yy' :: 'zz' fehlerhaft umformatiert, was zu Syntaxprob-
lemen fithren kann. Bei einem dritten Durchlauf wird dieser Fehler jedoch wieder
korrigiert. Trotz mehrerer Anpassungsversuche konnte dieses Verhalten bislang
nicht behoben werden, ohne gleichzeitig funktionierende Teile des Codes zu beein-
trachtigen. Daher ist es essenziell, die Ausfithrung des Notebooks auf einen einma-
ligen Durchlauf pro Anderungszyklus zu beschriinken.

Zur Validierung der Korrekturen wurden die modifizierten .sysm/-Dateien erneut in
den CSM importiert. Der Import verlief fehlerfrei, sodass bestitigt werden konnte,
dass die vorgenommenen Anpassungen zu einer konsistenten und verarbeitbaren
SysML-Syntax fiihren.

5.1.7 Testszenario #7: Automatisierte Syntaxpriifung
Ziel des Testszenarios

Ziel dieses Testszenarios ist die automatisierte Priifung der syntaktischen Korrekt-
heit von .sysml-Dateien im Verzeichnis System Models. Der Fokus liegt auf der
Uberpriifung standardisierter SysML-Begriffe wie part, requirement, action etc.,
die im ersten Teil der SysML-Textnotation vorkommen. Die Syntax in SysML ist
in zwei Bereiche gegliedert: die standardisierte Notation (z. B. Schliisselworter)
und die nutzergenerierten Inhalte, welche typischerweise in einfachen Anfiihrungs-
zeichen gesetzt werden.

Das hier entwickelte Skript liberpriift ausschlieBlich die standardisierten Begriffe
auf korrekte Schreibweise und GroB-/Kleinschreibung. Bei Abweichungen werden
diese erkannt und mit Angabe der entsprechenden Zeilennummer zur Korrektur ge-
meldet.

Testumgebung
e Skriptausfithrung: JN mit Python 3-Kernel
e Modellierungsumgebung: CSM mit SysML v2-Plugin

Prozessdurchfihrung und Bewertung Seite 75

e Versionskontrolle: Git CLI

e Automatisierung: GitLab CI/CD mit .gitlab-ci.yml

Aktivitaten
1. Manuelles Einfiigen syntaktischer Fehler in eine .sysml-Datei

2. Entwicklung eines Python-Skripts (syntax_check.ipynb) zur automatisierten
Syntaxpriifung

3. Definition giiltiger Begriffe basierend auf OMG SysML v2.0 Language Spe-
cification im Skript

4. Anpassung der .gitlab-ci.yml, um das Notebook im CI-Prozess automatisch
auszufithren

5. Durchfiihrung des Tests lokal und in GitLab CI
6. Uberpriifung und Dokumentation der Ausgaben
Durchfiihrung

Fiir die Durchfithrung des Tests wurde das Notebook syntax check.ipynb entwi-
ckelt (vgl. Anhang Al1). Dieses analysiert .sysm/-Dateien im Verzeichnis Sys-
tem_Models hinsichtlich der korrekten Verwendung standardisierter Begriffe aus
der SysML v2.0-Spezifikation (OMG Systems Modeling Language, 2024). Die
gleiche Liste an Schliisselwortern kam bereits im Skript fix_config.ipynb zum Ein-
satz.

Das Notebook durchlduft jede .sysml-Datei zeilenweise und priift:
e ob giiltige Schliisselworter korrekt geschrieben und kleingeschrieben sind,

e ob o6ffnende und schlieende geschweifte Klammern {} korrekt verwendet
werden,

e ob Zeilen mit Semikolon ; abgeschlossen sind.

Zur Validierung wurde die Datei Structure.sysml gezielt mit zwei Fehlern versehen:
In Zeile 4 wurde part versehentlich als patt, in Zeile 13 als past geschrieben (vgl.
Bild 5-20). Nach dem Ausfiihren des Skripts wurden beide Fehler wie erwartet er-
kannt und mit korrekter Fehlermeldung ausgegeben (vgl. Bild 5-21).

Die Ausfiihrung innerhalb der GitLab CI wurde tiber die .gitlab-ci.yml konfiguriert,
wobei die automatische Analyse bei jeder Anderung an Dateien im System Models-
Verzeichnis erfolgt (vgl. Bild 5-19).

Prozessdurchfiihrung und Bewertung Seite 76

Beobachtetes Ergebnis (Screenshots)

syntax_check:
stage: syntax-check
image: python:3.10
before_script:
- pip install jupyter
script:
- jupyter nbconvert --to script syntax_check.ipynb
- python syntax_check.py
only:
changes:
- System_Models/*.sysml

Bild 5-19 Ausschnitt aus .gitlab-ci.yml mit Definition des neuen Jobs zur au-
tomatisierten Syntaxpriifung (eigener Screenshot, .gitlab-ci.yml)

package 'SoS_System_Context' {
part 'SoSs' {
part 'Communication System’;
patt 'UAV Civil Drone';
part 'Payload Sensor System’';
part 'Ground Control Sytem';
part 'Air Traffic Management';

}
package 'Sol_Subsystems' {
part 'UAV Civil Drone' {

part 'Airframe : UA-AF';
pas& 'Payload System : EO';
part 'Propulsion System : UA-PS';
part 'Safety System : SS5';
part 'Power System : EP';
part 'Communication : C2';
part 'Navigation System : NAV';
part 'Flight System : UA-FCS';

Bild 5-20 Manuell eingefiigte Syntaxfehler in Structure.sysml (eigener
Screenshot, Structure.sysml)

Scanning 'Behavior.sysml'...

Ba

No issues found.

Scanning 'Customer_Requirements.sysml'...
No issues found.

B8O

Scanning 'SoS_Requirements.sysml'...
No issues found.

Bo

Scanning 'Structure.sysml'...

Line 4: unknown term 'Unknown term: 'patt''
+ patt 'UAV Civil Drone’;

Line 13: unknown term 'Unknown term: 'past''

B> B0

+ past 'Payload System : EOQO';

Bild 5-21 Konsolenausgabe des Syntaxpriifskripts (eigener Screenshot, Py-
thon 3-Kernel)

Prozessdurchfihrung und Bewertung Seite 77

Diskussion

Der Test verlief erfolgreich. Das Skript konnte die fehlerhafte Schreibweise von
standardisierten SysML-Schliisselwortern zuverldssig erkennen und mit klaren
Fehlermeldungen kennzeichnen. Auch syntaktische Fehler wie fehlende Semiko-
lons oder nicht geschlossene Klammern wurden korrekt detektiert.

Im Unterschied zum vorherigen Test (5.1.6) greift dieses Skript nicht in die Datei
ein, sondern meldet ausschlieBlich die gefundenen Abweichungen. Eine automati-
sche Korrektur findet nicht statt, was aus Nachvollziehbarkeits- und Validierungs-
griinden im Rahmen eines Review-Prozesses von Vorteil ist.

Die Syntaxpriifung ist insbesondere dann hilfreich, wenn .sysm/-Modelle manuell
im Texteditor oder durch Skripte angepasst werden. Durch die Integration in GitLab
CI kann eine kontinuierliche Uberpriifung gewihrleistet werden, ohne die Arbeits-
schritte der Modellierer zu beeintrachtigen.

5.1.8 Testszenario #8: Automatisierte Dokumentenerstellung
Ziel des Testszenarios

Ziel dieses Tests ist die automatisierte Erstellung eines aktuellen SysML-Reports,
sobald Anderungen an .sysml-Dateien im Verzeichnis System Models festgestellt
werden. Der Report soll stets die aktuellste Version der modellierten Pakete enthal-
ten und automatisch im GitLab Repository bereitgestellt werden. Damit steht allen
Beteiligten jederzeit ein konsistenter Uberblick iiber die Modellstruktur zur Verfii-
gung, ohne dass der Report manuell gepflegt werden muss.

Testumgebung
e Skriptausfiihrung: JN mit Python 3-Kernel
e Ausfiihrungsumgebung: JN mit SysML-Kernel
e Versionskontrolle: Git CLI

e Automatisierung: GitLab CI/CD mit .gitlab-ci.yml

Aktivitaten

1. Erstellung des Notebooks generate render notebook.ipynb zur Analyse und
Aufbereitung der .sysm/-Dateien

2. Integration des Notebooks in den GitLab-CI-Prozess iiber .gitlab-ci.yml

3. Konfiguration von GitLab CI zur Speicherung des Berichts als Artefakt bei
Anderungen an den .sysm/-Dateien

Prozessdurchfihrung und Bewertung Seite 78

4. Lokale Testlaufe des Notebooks mit aktivem SysML-Kernel zur Verifikation
der Ergebnisdarstellung

5. Durchfiihrung automatisierter Testldufe bei Dateidnderungen im Repository
Durchfiihrung

Die initiale Idee bestand darin, automatisch einen visuell aufbereiteten SysML-Re-
port im HTML- oder PDF-Format zu erzeugen. Da GitLab CI jedoch keine Unter-
stiitzung fiir die Ausfiihrung von Notebook-Zellen mit dem SysML-Kernel bietet,
musste ein alternativer Ansatz gewéhlt werden. Stattdessen wird ein JN erzeugt, das
die Struktur des Reports vorbereitet und spater manuell im SysML-Kernel ausge-
fithrt werden kann.

Das Skript in generate render notebook.ipynb analysiert alle .sysm/-Dateien im
Verzeichnis System_Models und extrahiert daraus die enthaltenen Pakete. Fiir jedes
erkannte Paket wird automatisch eine Notebook-Zelle generiert, die den %viz-Be-
fehl aufruft, um die grafische Darstellung im SysML-Kernel zu erméglichen.
Dadurch lésst sich der Bericht manuell im Notebook ausfiihren und vollstindig vi-
sualisieren (vgl. Bild 5-23 und Bild 5-24).

Die erzeugten Reports werden automatisch im GitLab CI-Prozess gespeichert — so-
wohl lokal im Ordner SysML_Reports als auch im GitLab-Projekt als Artefakt (vgl.
Bild 5-22). Zur besseren Nachverfolgbarkeit wird dabei eine semantische Versio-
nierung verwendet:

e Wird eine .sysml-Datei inhaltlich verdndert, wird die Patch-Version erhoht
(z.B.v1.1.0 -» v1.1.1).

e Werden .sysml-Dateien hinzugefiigt oder geloscht, wird die Minor-Version
erhoht (z. B. v1.1.1 — v1.2.0).

Eine Major-Version ist bislang nicht definiert, da der Report noch experimentell
eingesetzt wird — das Skript kann jedoch jederzeit an verdnderte Anforderungen
angepasst werden.

Beobachtetes Ergebnis (Screenshots)

Artifacts / SysML_Reports

Name

B.

[A sysmi_report_v1.1.0.ipynb
3 sysmLreport_v1.11ipynb

A sysml_report_v1.2.0.ipynb
B sysmlreport_v1.2.1ipynb

[A sysmi_report_v1.3.0.ipynb

Bild 5-22 SysML-Reports als GitLab-Artefakte (eigener Screenshot, GitLab)

Prozessdurchfihrung und Bewertung

Seite 79

[21:

SysML Report

Version: v1.3.0

package 'SoI Use Cases' { T v aE F R

use case 'Data Colletion® {
subject;
actor 'Regulatory Authority®;
actor 'Ground Control Station®;
actor 'Operator’;

7 actor 'Data Analyst';

actor 'Environmental Sensors';

¥

18 include use case "Real-Time Data Transmission';
case 'Onboard data storage’;
Colletion' then 'Real-Time Data Transmission';

Colletion' then 'Onboard data storage';

r

1

11 include use

first 'Data

first 'Data

use case 'Mission Planning and Control'
subject;

16 actor 'Operator’;

Bild 5-23

Generierter SysML-Report in JN, Teil 1 (eigener Screenshot, JN
mit SysML-Kernel)

sse

SysML Report

Version: v1.3.0

Package
Package
Package
Package
Package
Package

Sol Use Cases (8c@lf@da-2dec-4c8f-b3df-66b41a34Te98)
Customer Requirements {aec57793-2d21-4239-8b54-3cceblfdoc23)
S05_Requirements (61630799-7417-4d46-aad3-3dcle2ded3ca)
So5_System_Context (bab3d7b2-e996-4%9c4-b3b4-8F@c334ec893)
Sol_Subsystems (16cdGel8-2442-4b86-8ecf-abd224fdal?f)

System Requirements (dcb7e709-be58-466d-b205-6172c46ee621)

@) Visualized Models

Customer_Requirements\

Hviz --view=DEFAULT --style=DEFAULT Customer_Requirements

wreguirements
«<5_5= Energy & Ultilities
doc
The UAV shall withstand exposure to dust,
moisture, and temperatures ranging from -30°C

to 60°C.
altributes
maxTemp - 1SQ
| minTemp - 1SQ
L 3 = =
1 5
i/ hY
; arequire» “ grequiren
i/ ¥ A
('3 . <
| «=Consiraints

" «Constraints

minTemp <= -30 [*C] ‘max'l’emp == 60 [*C]

wrequirements
<5_4> Energy & Utilities

doc
The UAV shall encrypt all transmitted data
using AES-256 standards to ensure secure

| communications.

1

Bild 5-24

mit SysML-Kernel)

Generierter SysML-Report in JN, Teil 2 (eigener Screenshot, JN

Prozessdurchfihrung und Bewertung Seite 80

Diskussion

Die automatisierte Erstellung von SysML-Reports iiber GitLab CI konnte erfolg-
reich umgesetzt werden — wenngleich mit der Einschrénkung, dass die eigentliche
Visualisierung der Modelle manuell im SysML-Kernel erfolgen muss. Eine voll-
standige Automatisierung der grafischen Darstellung war nicht moglich, da GitLab
keine native Unterstiitzung fiir den SysML-Kernel bietet.

Dennoch stellt das Testskript einen wertvollen Beitrag zur Dokumentation dar: Es
bereitet die notwendigen Visualisierungsbefehle vor und ermoglicht es, die aktu-
ellsten Systemmodelle jederzeit strukturiert einzusehen. Besonders hilfreich ist der
Ansatz im kollaborativen Umfeld, da alle Teammitglieder auf einen stets aktuellen
Report zugreifen konnen.

Die Kombination aus lokalem Testlauf mit manuell ausfithrbarem Report und au-
tomatischer Speicherung als Artefakt bietet eine praktikable Losung, um Modellén-
derungen nachvollziehbar zu dokumentieren. Optional kann der Report vor dem
Push-Vorgang lokal ausgefiihrt und iiberpriift werden. So wird nicht nur ein giilti-
ges Artefakt erzeugt, sondern auch eine nachvollziehbare Integration der Model-
landerungen im GitLab-Repository im Verzeichnis SysML Reports gewéhrleistet.

5.2 Bewertung des Git-basierten Kollaborationsprozesses

Im Anschluss an die Durchfithrung der acht definierten Testszenarien konnte der
entwickelte Git-basierte Kollaborationsprozess im Hinblick auf Struktur, Verant-
wortlichkeiten, Integration sowie Vor- und Nachteile systematisch bewertet wer-
den. Im Folgenden werden zentrale Erkenntnisse und offene Fragen diskutiert, die
sich aus der praktischen Erprobung ergeben haben.

Die Bewertung erfolgt dabei auch in Bezug zu den in Kapitel 3.5 identifizierten
teaminternen Herausforderungen, welche in fiinf zentrale Kategorien eingeordnet
wurden — darunter fehlende klare Prozesse, Anderungsmanagement, Informations-
management sowie plattformtechnische Grenzen. Ziel des Git-basierten Kollabora-
tionsprozesses war es unter anderem, diese Defizite durch methodische und techni-
sche Mafinahmen gezielt zu adressieren. Im Folgenden wird daher auch reflektiert,
inwieweit der entwickelte Ansatz zur Uberwindung dieser Herausforderungen bei-
tragen konnte.

Finale Repository-Struktur und Funktionsweise der Pipeline

Die endgiiltige Struktur des GitLab-Repositories wurde im Laufe der Tests mehr-
fach angepasst und spiegelt nun eine klare Trennung der Systemmodelle (Verzeich-
nis System_Models), generierter Reports (SysML_Reports) sowie unterstiitzender
Cl-Konfigurationen wider (sieche Bild 5-25). Dadurch ist gewihrleistet, dass mo-
dellierte Inhalte, Konfigurationslogik und Auswertungen strukturell voneinander

Prozessdurchfiihrung und Bewertung Seite 81

getrennt, aber funktional aufeinander abgestimmt sind. Die entwickelte .gitlab-
ci.yml-Konfiguration erkennt automatisch Anderungen in .sysmi-Dateien und fiihrt
je nach Anderungstyp unterschiedliche Pipelines aus — etwa Konfigurations- oder
Syntaxpriifungen oder die Erzeugung von Reports.

Name Last commit Last update
B3 .ipynb_checkpoints Added Req. and updated System_Mod... 3 days ago
B3 SysML_Reports Added Req. and updated System_Mod... 3 days ago
3 System_Models Added Req. and updated System_Mod... 3 days ago
&) _gitlab-ci.yml added comments to .gitlab-ci.yml file 3 days ago
m+ README.md Initial commit 1month ago
3 fix_config.ipynb Added Regq. and updated System_Mod... 3 days ago
[generate_render_notebook.ipynb Added Req. and updated System_Mod... 3 days ago
[syntax_check.ipynb Added Req. and updated System_Mod... 3 days ago

Bild 5-25 Ubersicht iiber die finale Repository-Struktur (eigener Screenshot,
GitLab Ul)

Die Gestaltung der Pipeline orientierte sich dabei nicht an einer Best Practice-Vor-
gabe, sondern diente der Erprobung moglicher CI/CD-Funktionen im MBSE-Kon-
text. Trotzdem wurde bewusst darauf geachtet, Konfigurationen zu wéhlen, die
iibertragbar und erweiterbar sind. Einschrénkungen zeigten sich insbesondere bei
den Notebooks fix config.ipynb und generate render notebook.ipynb. Wihrend
fix_config.ipynb zwar automatisch Syntax korrigiert, kann es in komplexeren Mo-
dellen zu Uberschreibungsproblemen kommen. Das Notebook zur Reportgenerie-
rung wiederum héngt stark vom SysML-Kernel ab und ldsst sich nicht vollstidndig
automatisieren, da GitLab CI keine SysML-Kernel-Ausfiihrung unterstiitzt.

Herausforderung zu vieler Pipeline-Stufen

Die nach Abschluss der Testszenarien entstandene CI-Pipeline umfasst drei aufei-
nanderfolgende Stufen, die jeweils unterschiedliche Aufgaben {ibernehmen — von
der Konfigurationspriifung bis zur automatisierten Berichtserzeugung. Die Struktur
der finalen CI-Pipeline wurde zur besseren Nachvollziehbarkeit in einem SysML
v2 Action-Diagramm modelliert und ist in Bild 5-26 dargestellt.

«action def»
CI_Pipeline_Configuration

«actions «action» «actions
Configuration Check Syntax Check Generate Report o

Bild 5-26 Action-Diagramm mit den drei CI-Stufen im finalen Repository
(eigene Darstellung, JN mit SysML-Kernel)

Prozessdurchfihrung und Bewertung Seite 82

Diese Aufteilung ermoglicht eine saubere Trennung der Verarbeitungsschritte und
eine hohere Nachvollziehbarkeit des Ablaufs. Gleichzeitig sollte jedoch bedacht
werden, dass mit jeder zusétzlichen Stufe der Pflegeaufwand steigt und die Pipeline
komplexer wird. Dies kann insbesondere bei kleinen Teams oder bei haufigen, in-
krementellen Anderungen zu Mehraufwand fiihren und erfordert erhdhte Aufmerk-
samkeit bei der Pflege und Nutzung der CI-Infrastruktur.

Dariiber hinaus ist es empfehlenswert, bereits vor der Implementierung einer
CI/CD-Pipeline bewusst zu entscheiden, welche Schritte tatsdchlich als eigene Stu-
fen ausgefiihrt werden sollen. Nicht jeder Verarbeitungsschritt muss zwangsléufig
durch die GitLab-Pipeline automatisiert werden. Manche Aufgaben — etwa erste
Modellpriifungen oder Formatierungschecks — lassen sich lokal vor dem Commit
durchfiihren. Eine wohliiberlegte Balance zwischen lokalen Priifungen und server-
seitigen Automatisierungen ist entscheidend, um die Pipeline handhabbar zu halten
und trotzdem eine verldssliche Qualititssicherung zu gewahrleisten

Ein praktikabler Losungsansatz zur Reduktion dieses Aufwands besteht in der Ein-
fiihrung strukturierter Checklisten innerhalb der MR. Diese konnten dazu genutzt
werden, typische Fehlerquellen vorab zu priifen und sicherzustellen, dass alle rele-
vanten Anforderungen vor dem Merge erfiillt sind. In Verbindung mit der in Kapitel
3.4.2 vorgestellten RACI-Matrix kann dadurch zudem eine klare Abgrenzung der
Priifverantwortlichkeiten zwischen SE-Management-Team und den technischen
Teams unterstiitzt werden.

Verantwortlichkeit fiir Branches

Ein wichtiger Aspekt betrifft die organisatorische Verantwortung fiir das Anlegen
und Verwalten von Branches. In der Praxis stellt sich die Frage, ob dieser Schritt
durch das SE-Management-Team zentral koordiniert oder durch die jeweiligen
Fachteams selbststdndig iibernommen werden sollte. Beide Optionen haben Vor-
und Nachteile: Eine zentrale Verwaltung kann Konsistenz und Nachverfolgbarkeit
sichern, erhoht jedoch den Koordinationsaufwand. Dezentrale Branch-Erstellung
durch die technischen Teams ist flexibler, birgt aber die Gefahr von Uniibersicht-
lichkeit, da viele Akteure gleichzeitig Branches anlegen konnen. Um diesem Risiko
zu begegnen, ist es sinnvoll, vorab verbindliche Namenskonventionen, Rollenver-
teilungen und Qualitétskriterien fiir Branches festzulegen und teamiibergreifend zu
kommunizieren.

In kleineren Projekten oder bei enger Abstimmung im Team ist die dezentrale Va-
riante hdufig praktikabel. In groleren Teams oder bei gleichzeitiger Arbeit an meh-
reren Systemmodellen empfiehlt sich die zentrale Ubernahme der Branch-Erstel-
lung durch das SE-Management-Team, da so eine einheitliche Struktur gewahrt und
die Kollaboration gezielter gesteuert werden kann.

Prozessdurchfiihrung und Bewertung Seite 83

Bild 5-27 zeigt ein solches Swimlane-Diagramm zur Repository-Verwaltung, das
den dezentralen Ablauf exemplarisch abbildet: Das SE-Management-Team tiber-
nimmt die Pflege und Strukturierung des GitLab-Repositories. Die technischen
Teams arbeiten eigenstidndig an Systemmodellen, indem sie nach Bedarf Feature-
Branches anlegen, Anderungen lokal in der .sysmil-Datei im Verzeichnis Sys-
tem_Models vornehmen und ihre Arbeit anschlieBend in das zentrale Repository
hochladen. Sobald alle relevanten Anderungen implementiert sind, initiiert das SE-
Management-Team einen MR, um den Integrationsprozess zu starten. Im Review-
Prozess wird gepriift, ob die Modelldnderungen den vereinbarten Qualitéitskriterien
entsprechen. Bei positiver Bewertung werden die Anderungen in den main-Branch
iibernommen. Bei Ablehnung werden die entsprechenden Fachteams benachrichtigt
und zur Uberarbeitung aufgefordert.

SE-Management- Team

Technische Teams

©4_

| main-Branch)
pflegen J

\ A

lokale Repository
aktualisieren

'

feature-Branch
erstellen

|

Systemmodell
bearbeiten

}

.sysml-Datei
exportieren

!

[MR o&ffnen

N/

A\ 4
Diskussion und
Analyse von
Anderungen

not ok

ok

Merge feature-
Branch

Anderungen auf
GitLab-Repository
hochladen

Bild 5-27

Swimlane-Diagramm zur Repository-Verwaltung
(eigene Darstellung)

Prozessdurchfihrung und Bewertung Seite 84

Rolle zur Repository-Verwaltung

Im Verlauf der Testszenarien wurde deutlich, dass die Einrichtung, Pflege und Wei-
terentwicklung des Repositories sowie der zugehdrigen CI/CD-Pipeline speziali-
siertes Wissen erfordert, das nicht bei allen Teammitgliedern vorausgesetzt werden
kann. Besonders in den initialen Phasen — etwa beim Aufsetzen der CI-Konfigura-
tion, der Anpassung der .gitlab-ci.yml-Datei sowie der Einrichtung einer sinnvollen
Projektstruktur — entsteht ein erheblicher Mehraufwand. Dariiber hinaus ist eine
kontinuierliche Uberwachung notwendig, um sicherzustellen, dass alle automati-
sierten Prozesse zuverldssig funktionieren.

Vor diesem Hintergrund erscheint es sinnvoll, eine dedizierte Rolle fiir die techni-
sche Betreuung von Git und CI/CD-Prozessen vorzusehen — beispielsweise in der
Funktion eines ,,Konfigurations-Managers®. Diese Person wire nicht nur fiir die
Wartung der CI/CD-Konfigurationen und die Weiterentwicklung der Git-Struktur
verantwortlich, sondern konnte auch als zentrale Ansprechperson bei Fragen zur
Git-Nutzung dienen. Voraussetzung dafiir ist ein solides Verstindnis der Git-Kon-
zepte und -Workflows. Optional konnte diese Rolle auch Schulungen oder Onboar-
dings fiir neue Teammitglieder durchfiihren, um einen einheitlichen Wissensstand
im Umgang mit Git sicherzustellen.

Entscheidend ist dabei die Kldrung folgender Fragen: Welche Aufgaben fallen re-
gelméBig an, welche sind eher einmalig? Wie hoch ist der laufende Aufwand zur
Betreuung der Infrastruktur? Und wie lésst sich diese Rolle sinnvoll in die beste-
hende Teamstruktur integrieren, ohne unnétige Hierarchieebenen zu schaffen?

Integration in Toollandschaft und Riickverfolgbarkeit

Ein zentraler Vorteil des Git-basierten Ansatzes in Kombination mit der textuellen
Notation von SysML v2 besteht in der Mdglichkeit, Anderungen an einzelnen Sys-
temelementen gezielt nachzuverfolgen. Bild 5-28 zeigt exemplarisch, wie Modifi-
kationen an package- und part-Elementen im .sysmi-Dateiformat liber die GitLab-
Oberfliche differenziert dargestellt werden. Jede Anderung im Text — selbst auf
Zeilenebene — lasst sich so revisionssicher dokumentieren und dem jeweiligen Be-
arbeitungszeitpunkt sowie dem verantwortlichen Teammitglied zuordnen.

Auch die Integration des JN erweist sich im Rahmen der gewéhlten Toolkette als
sinnvoll. Die Moglichkeit, Markdown-Zellen zur strukturierten Dokumentation zu
nutzen und gleichzeitig durch den SysML-Kernel systemtechnische Inhalte darzu-
stellen, schafft eine leistungsfahige Umgebung fiir die Modellvisualisierung und
Berichtserstellung. Dies fordert nicht nur die Lesbarkeit, sondern ermoglicht auch
eine bessere Trennung zwischen Beschreibung, Code und generierten Ergebnissen.

Prozessdurchfiihrung und Bewertung Seite 85

v [System_Models/Structure.sysml [3} +3 -3 |[[@ || View file @ 342f127a
1 package SOS_System_Context {
2 part 'S0S' {
1 package SoS_System_Context {
2 part 'SoS' {
3 3 part 'Communication System';
4 4 part 'UAV Civil Drone';
5 5 part 'Payload Sensor System';

7 Y i part 'Air Traffic Management';
8 8 }

9 9 }

10 package SOI_Subsystems {

10 package Sol_Subsystems {

11 11 part 'UAV Civil Drone' {
12 12 part 'Airframe’;
13 13 part 'Payload System';

Bild 5-28 Anderungsiibersicht in GitLab fiir .sysml-Dateien
(eigener Screenshot, GitLab Ul)

Die Einfiihrung und Etablierung eines Git-basierten Workflows in der modellba-
sierten Systementwicklung bringt zunichst gewisse Herausforderungen mit sich —
insbesondere im Hinblick auf die Einrichtung der Toolkette, die CI/CD-Konfigura-
tion und die Schulung der Beteiligten im Umgang mit Git und der textuellen Nota-
tion. Langfristig jedoch zeigt sich, dass diese Investitionen zu einem robusten,
nachvollziehbaren und effizient wartbaren Entwicklungsprozess fiihren. Sobald die
Abléufe etabliert und die Rollen geklért sind, sinkt der operative Aufwand deutlich,
und die Vorteile eines versionierbaren Systemmodells treten deutlich hervor.

Zusammenfassung und Ausblick Seite 86

6 Zusammenfassung und Ausblick

Ziel dieser Arbeit war die Untersuchung der Integration von Git mit SysML v2-
Modellen zur Versionskontrolle und Kollaboration im modellbasierten Systems En-
gineering (MBSE). Im Fokus standen insbesondere die Potenziale und Herausfor-
derungen einer Git-basierten Verwaltung von Systemmodellen im Kontext sicher-
heitskritischer Systeme. Die Arbeit orientierte sich am Design Science Research
(DSR)-Ansatz und kombinierte methodische Analyse mit praktischer Gestaltung
und Evaluation.

Zur Beantwortung der Forschungsfragen wurde ein exemplarisches UAV-Modell
mit dem Cameo Systems Modeler (CSM) und dem SysML v2-Plugin entwickelt.
Dieses wurde iiber GitLab in Kombination mit Jupyter Notebook (inkl. SysML-
Kernel) versioniert, automatisiert gepriift und kollaborativ weiterentwickelt. Die
technische Umsetzung erfolgte iterativ anhand von acht Testszenarien, die eine pra-
xisnahe Bewertung des gewahlten Workflows ermoglichten.

Die im Rahmen dieser Arbeit aufgeworfenen Forschungsfragen lassen sich auf
Grundlage der durchgefiihrten Analysen, Implementierungen und Testszenarien
wie folgt beantworten:

1. Wie liisst sich die bestehende Kollaborationsstruktur im MBSE unter Be-
riicksichtigung relevanter Luftfahrtstandards und Teamstrukturen analysie-
ren?

Die Analyse der Forschungsumgebung zeigte, dass Kollaboration im MBSE stark
durch organisatorische und regulatorische Rahmenbedingungen geprégt ist. Insbe-
sondere in sicherheitskritischen Doménen wie der Luftfahrt miissen Standards wie
ARP4754B, ARP4761A und ISO/IEC 15288 beriicksichtigt werden, die klare Ver-
antwortlichkeits- und Dokumentationsstrukturen verlangen. Die durchgefiihrten
Umfragen und RACI-Analysen zeigten zudem, dass eine effektive Kollaboration
eine eindeutige Rollenverteilung, eine abgestimmte Methodik sowie eine geeignete
technische Infrastruktur voraussetzt.

Die in Kapitel 3.5 identifizierten teaminternen Herausforderungen bestitigten die
Relevanz dieser Analyse. Sie wurden systematisch den in der Literatur beschriebe-
nen Problemfeldern zugeordnet und bildeten eine zentrale Grundlage fiir die Ge-
staltung des Git-basierten Kollaborationsprozesses. Die Arbeit zeigt exemplarisch,
wie sich solche praktischen Herausforderungen durch gezielte methodische und
technische MaBBnahmen adressieren lassen — etwa durch die Definition klarer Rollen
(vgl. RACI-Matrix), eine strukturierte Repository-Organisation oder den Einsatz
Cl-gestiitzter Priifroutinen.

Zusammenfassung und Ausblick Seite 87

2. Welche Werkzeug-Konfigurationsrichtlinien sind erforderlich, um eine ef-
fiziente Nutzung von Git mit SysML v2 zu gewéhrleisten?

Die Integration von Git mit SysML v2 erfordert spezifische Konfigurationsrichtli-
nien, um eine effiziente und skalierbare Zusammenarbeit zu ermdéglichen. Dazu
zdhlen:

e Eine modulare Strukturierung des Repositories zur besseren Trennung von
Verantwortlichkeiten,

e cine konsistente Branch-Strategie zur Steuerung von Entwicklungsaktivita-
ten,

e die Nutzung standardisierter Merge-Request-Vorlagen mit technischen und
inhaltlichen Priifkriterien,

e sowie die Definition von Konventionen zur textuellen Modellierung.

Die textuelle Notation von SysML v2 ermdglicht eine quellcodedhnliche Handha-
bung von Systemmodellen, wodurch sich Modelldnderungen strukturiert verwalten,
nachverfolgen und automatisiert verarbeiten lassen. Dieser Ansatz erlaubt es, Prin-
zipien aus dem DevOps-Umfeld in das MBSE zu integrieren — etwa durch CI/CD,
automatisierte Priifprozesse und die verlassliche Generierung einheitlicher Modell-
stinde.

3. Wie kann ein Git-basierter Arbeitsablauf fiir SysML v2 gestaltet und imple-
mentiert werden?

Der entworfene Kollaborationsprozess orientiert sich am GitHub Flow und wurde
um MBSE-spezifische Erweiterungen erginzt. Die finale Repository-Struktur, die
in Kapitel 5 dokumentierte CI/CD-Pipeline sowie das Swimlane-Diagramm zur
Verantwortlichkeitsverteilung ermdglichen eine nachvollziehbare, skalierbare Ar-
beitsweise. Besondere Aufmerksamkeit erhielt die Rolle eines potenziellen ,,Kon-
figuration Managers®, der fiir Wartung, technische Unterstiitzung und Schulung zu-
stindig sein kdnnte.

4. Inwiefern ermoglicht dieser Arbeitsablauf eine verbesserte Nachverfolgbar-
keit und Effizienz in der modellbasierten Entwicklung sicherheitskritischer
Systeme?

Die Git-basierte Verwaltung von SysML v2-Modellen erlaubt eine detaillierte und
transparente Nachverfolgung aller Anderungen auf Elementebene. Anderungen an
Packages, Parts oder anderen Modellkomponenten sind versioniert, vergleichbar
und im GitLab-UI visuell nachvollziehbar (vgl. Bild 5-28). Dies fordert nicht nur
die Riickverfolgbarkeit, sondern erleichtert auch die Kommunikation zwischen
Fachteams. Zudem ermdglicht die Integration von GitLab, Jupyter Notebook und
dem SysML-Kernel eine nahtlose Verbindung zwischen Modellierung,

Zusammenfassung und Ausblick Seite 88

Dokumentation und Automatisierung. Dies verbessert die Effizienz insbesondere
bei repetitiven Aufgaben, bei der Analyse von Modellstinden sowie beim Review
technischer Inhalte.

Die im Rahmen dieser Arbeit gewonnenen Erkenntnisse zeigen, dass die Integra-
tion von Git in die modellbasierte Systementwicklung mit SysML v2 nicht nur tech-
nisch moglich, sondern auch methodisch sinnvoll ist. Insbesondere die Nutzung der
textuellen Notation von SysML v2 bietet neue Gestaltungsmoglichkeiten fiir die
Verwaltung, Nachverfolgbarkeit und Automatisierung von Systemmodellen. Der
modellierte Git-basierte Arbeitsablauf zeigt, wie Prinzipien aus der Softwareent-
wicklung, wie beispielsweise CI/CD, strukturiert in das MBSE {ibertragen werden
konnen, um nachvollziehbare und wartbare Modellstinde zu erzeugen.

Ein zentrales Ergebnis ist die Erkenntnis, dass die Offenheit der SysML v2-Text-
notation in Kombination mit Git die technische Grundlage schafft, um Systemmo-
delle dhnlich wie Quellcode zu versionieren. Damit wird eine effizientere Zusam-
menarbeit iiber Teamgrenzen hinweg moglich — sowohl innerhalb eines Projekts als
auch perspektivisch in interorganisationalen Konstellationen. Zugleich wird deut-
lich, dass diese Offenheit auch eine stirkere methodische und organisatorische Or-
chestrierung erfordert. Eine Git-basierte Kollaboration setzt voraus, dass klare
Spielregeln zur Branch-Nutzung, zu Verantwortlichkeiten und zur Toolverwen-
dung etabliert sind. Die in dieser Arbeit entwickelte RACI-Matrix, das Swimlane-
Diagramm zur Rollenverteilung und die CI-Pipeline zeigen exemplarisch, wie ein
solcher Rahmen gestaltet werden kann.

Die Erfahrungen aus den Testszenarien belegen zudem, dass insbesondere in der
Einfithrungsphase ein erheblicher Konfigurations- und Betreuungsaufwand ent-
steht. Die Einrichtung der CI/CD-Pipeline, die Pflege der GitLab-Struktur sowie
die Tool-Integration erfordern spezifisches Wissen und technisches Verstindnis.
Dieser initiale Aufwand sollte jedoch nicht als Hiirde, sondern als Investition in
eine langfristig skalierbare und transparente Modellierungskultur betrachtet wer-
den. In einem interdisziplindren Umfeld wie dem DLR kann eine solche Infrastruk-
tur die Zusammenarbeit zwischen SE-Management und technischen Teams deut-
lich strukturieren und beschleunigen — insbesondere, wenn sie auf konkrete, zuvor
identifizierte Herausforderungen reagiert, wie sie in Kapitel 3.5 erhoben wurden.

Gleichzeitig sind einige Limitationen zu beriicksichtigen. Die grafische Darstellung
von Anforderungen in SysML v2 ist aktuell noch nicht auf dem Niveau von
SysML v1 —insbesondere, wenn es um Matrixansichten oder die iibersichtliche Na-
vigation grofler Anforderungsbdume geht. Eine hybride Losung, etwa durch die
Kopplung mit einem externen Anforderungsmanagement-Werkzeug wie Jira oder
DOORS, erscheint gegenwartig sinnvoll. Auch die Plattformabhingigkeit einzelner
Tools (etwa des Cameo Systems Modelers) und Einschrinkungen in der Jupyter-
Notebook-Integration stellen technische Herausforderungen dar, die den Einsatz im

Zusammenfassung und Ausblick Seite 89

Alltag erschweren konnen. Zudem ist die Kollaboration in dieser Arbeit nur inner-
halb eines Teams betrachtet worden. Die Erweiterung auf externe Partner oder Zu-
lieferer bringt weitere organisatorische und sicherheitstechnische Fragestellungen
mit sich, die in zukiinftigen Arbeiten untersucht werden sollten.

Vor diesem Hintergrund ergeben sich mehrere Anschlussfragen fiir die weitere For-
schung:

e Wie lassen sich Git-basierte Modellierungsprozesse in grofleren Organisa-
tionen oder zwischen verschiedenen Unternehmen skalieren?

e Welche Rolle konnen API und Services von SysML v2 spielen, um eine
modellzentrierte Integration iiber Toolgrenzen hinweg zu ermoglichen?

e Wie muss ein Organisationskonzept fiir modellbasierte Entwicklungsinfra-
strukturen aussehen, das sowohl methodische Leitlinien als auch technische
Unterstiitzung (z. B. in Form eines Konfigurationsmanagers) umfasst?

Auch die Weiterentwicklung der Toollandschaft — insbesondere hinsichtlich der
Benutzerfreundlichkeit von SysML v2-Werkzeugen und der Interoperabilitit zwi-
schen Modellierungsumgebungen — bleibt ein zentrales Forschungsthema.

Insgesamt zeigen die Ergebnisse, dass die Kombination von Git und SysML v2 in
der Lage ist, bestehende Liicken in der Nachvollziehbarkeit und Versionskontrolle
in MBSE-Prozessen zu schlieBen. Die methodische Gestaltung solcher Prozesse
bleibt jedoch ein kritischer Erfolgsfaktor. Die hier erarbeiteten Strukturen bieten
dafiir einen praxisnahen Ausgangspunkt — sowohl fiir die interne Optimierung im
DLR als auch fiir die Weiterentwicklung von Best Practices in der modellbasierten
Entwicklung sicherheitskritischer Systeme.

Literaturverzeichnis Seite 90

Literaturverzeichnis

Ahlbrecht, A., Luki¢, B., Zaeske, W., & Durak, U. (2024). Exploring SysML v2 for
Model-Based Engineering of Safety-Critical Avionics Systems. 2024 AIAA DATC/IEEE
43rd Digital Avionics Systems Conference (DASC), 1-8.
https://doi.org/10.1109/DASC62030.2024.10749311

Alsaqqa, S., Sawalha, S., & Abdel-Nabi, H. (2020). Agile Software Development: Meth-
odologies and Trends. International Journal of Interactive Mobile Technologies (iJIM),
14(11), 246. https://doi.org/10.3991/ijim.v14i11.13269

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., & Cunningham, W. (2001).
Manifesto for Agile Software Development. https://agilemanifesto.org/

Costello, T. (2012). RACI—Getting Projects “Unstuck.” IT Professional, 14(2), 64—63.
https://doi.org/10.1109/MITP.2012.41

Cui, J. (2024). Research on DevOps Architecture Design and Git Flow Code Workflow
Architecture Design: A case study. https://doi.org/10.13140/RG.2.2.20367.60327

Dassault Systémes. (2023, May 22). Cameo Systems Modeler. Dassault Systémes.
https://www.3ds.com/products/catia/no-magic/cameo-systems-modeler

exapp.ca. (2024, March 25). Agile software development: Everything you need to know.
https://www.nexapp.ca/en/blog/agile-software-development

Friedenthal, S. (2024, January). INCOSE IW SysML v1 to SysML v2 Transition Infor-
mation Session January 28, 2024.

Friedenthal, S., Moore, A., & Steiner, R. (2009). OMG Systems Modeling Language
(OMG SysML™) Tutorial September, 2009.

Ghodke, G. M., & Chavan, T. (2024). An Overview of Git. International Journal of Sci-
entific Research in Modern Science and Technology, 3(6), 17-23.
https://doi.org/10.59828/ijsrmst.v3i6.216

Gowda, P. G. A. N. (2022). Git branching and release strategies.
https://doi.org/10.5281/ZENODO.14221771

GriéBler, 1., Thiele, H., Grewe, B., & Hieb, M. (2022). Responsibility Assignment in Sys-
tems Engineering. Proceedings of the Design Society, 2, 1875-1884.
https://doi.org/10.1017/pds.2022.190

Haberfellner, R., De Weck, O., Fricke, E., & Vossner, S. (2019). Systems Engineering:
Fundamentals and Applications. Springer International Publishing.
https://doi.org/10.1007/978-3-030-13431-0

Literaturverzeichnis Seite 91

Hevner, March, Park, & Ram. (2004). Design Science in Information Systems Research.
MIS Quarterly, 28(1), 75. https://doi.org/10.2307/25148625

Hick, H., Bajzek, M., & Faustmann, C. (2019). Definition of a system model for model-
based development. SN Applied Sciences, 1(9). https://doi.org/10.1007/s42452-019-
1069-0

International Council on Systems Engineering. (2007, September). SYSTEMS ENGI-
NEERING VISION 2020. International Council on Systems Engineering (INCOSE).
https://sdincose.org/wp-content/uploads/2011/12/SEVision2020 20071003 v2 03.pdf

ISO/IEC & IEEE. (2023). ISO/IEC/IEEE 15288:2023(en), Systems and software engi-
neering—System life cycle processes. https://www.iso.org/obp/ui/en/#iso:std:iso-iec-
ieee:15288:ed-2:vl:en

Jayaraman, K. D., & Rastogi, D. (2025). Best Practices for DevOps Integration in Enter-
prise Software Development. https://doi.org/10.5281/ZENODO.14769328

Kaiser. (2013). Kaiser—Rahmenwerk zur Modellierung plausibler Systemstrukturen.pdf.

Kim, G., Humble, J., Debois, P., & Willis, J. (2016). The devOps handbook: How to cre-
ate world-class agility, reliability, & security in technology organizations. IT Revolution
Press, LLC.

Krupa, G. P. (2019). Application of Agile Model-Based Systems Engineering in aircraft
conceptual design—Full. The Aeronautical Journal, 123(1268), 1561-1601.
https://doi.org/10.1017/aer.2019.53

Li, Z., Faheem, F., & Husung, S. (2024). Collaborative Model-Based Systems Engineer-
ing Using Dataspaces and SysML v2. Systems, 12(1), 18. https://doi.org/10.3390/sys-
tems12010018

Madni, A. M., Augustine, N., & Sievers, M. (Eds.). (2023). Handbook of Model-Based
Systems Engineering. Springer International Publishing. https://doi.org/10.1007/978-3-
030-93582-5

May, M., & Zerwas, T. (2025). Enabling broader access to MBSE system models using
collaborative engineering platforms and SysMLv2.

Nyembe, F. H., Van Der Poll, J. A., & Lotriet, H. H. (2023). Formal Methods for an Agile
Scrum Software Development Methodology. Proceedings of the International Confer-
ence on Advanced Technologies, ICAT23. https://doi.org/10.58190/icat.2023.35

OMG Systems Modeling Community. (n.d.). Systems-Modeling/SysML-v2-Release: The
latest incremental release of SysML v2. Start here. Retrieved April 21, 2025, from
https://github.com/Systems-Modeling/SysML-v2-Release

Literaturverzeichnis Seite 92

OMG Systems Modeling Language. (2024). SysML v2.0, Part 1: Language Specification
(Version Version 2.0 Beta 2). https://www.omg.org/spec/SysML/2.0/Beta2/Lan-
guage/PDF

prostep ivip Association. (2023). Recommendation_SysML WF-IF. https://www.ps-ent-
2023.de/fileadmin/prod-download/Recommendation SysML_ WF-IF.pdf

SAE Aerospace Recommended Practice. (2023a). ARP4754B - Guidelines for Develop-
ment of Civil Aircraft and Systems.

SAE Aerospace Recommended Practice. (2023b). ARP4761A - Guidelines for Conduct-
ing the Safety Assessment Process on Civil Aircraft, Systems, and Equipment. SAE Inter-
national.

Schwaber, K., & Sutherland, J. (2020, November). Der Scrum Guide—Der giiltige Leit-
faden fiir Scrum: Die Spielregeln. https://scrumguides.org/docs/scrumguide/v2020/2020-
Scrum-Guide-German.pdf

Spinellis, D. (2012). Git. IEEE Software, 29(3), 100-101.
https://doi.org/10.1109/MS.2012.61

Walden, D. D. & International Council on Systems Engineering (Eds.). (2023). INCOSE
systems engineering handbook (Fifth edition). John Wiley & Sons Ltd.

Wouters, L., Creff, S., Bella, E. E., & Koudri, A. (2017). Collaborative systems engineer-
ing: Issues & challenges. 2017 IEEE 21st International Conference on Computer Sup-
ported Cooperative Work in Design (CSCWD), 486-491.
https://doi.org/10.1109/CSCWD.2017.8066742

Anhang Seite 93
Anhang

Inhaltsverzeichnis Seite
A1 — Gesamtiiberblick ISO/IEC 15288:2023-Prozessecceuunt 94
A2 - Ubersicht verschiedener Git-Befehlecccceeueeeennnnnnnnns 95
A3 — Ergebnisse der Teamumfragecccoeviiiiiiiiiiececeeen, 97
A4 - Ubersicht der SysML-Kernel-Kommandos in Jupyter Notebook 103
A5 — Screenshots zu Testszenario #1 — Export und Commit-Validie- 104
[T T

jﬁ — Screenshots zu Testszenario #2 — Anzeige und Bearbeitung im 107
A7 — Screenshots zu Testszenario #3 — Multi-Tool-Kompatibilitat 111
A8 — Screenshots zu Testszenario #4 — Versionierung und Roll- 113
o 7= 1] G

A9 - Screenshots zu Testszenario #5 — GitHub Flow Test 116
A1 0_—_Screensh_ots ur_\d Pyth_on-Skript zu Testszenario #6 — Auto- 118
matisierte Konfigurationsprifungcccocoviiiiiiiiiiiiiicneinens

A1 1_—_Screenshots I_J_nd Python-Skript zu Testszenario #7 — Auto- 123
matisierte Syntaxpriufungcoooviiiiiiii

A12 — Screenshots und Python-Skript zu Testszenario #8 — Au-to- 128

matisierte Dokumentenerstellungcocooiiiiiiiiiiiici s

A1 Gesamtiiberblick ISO/IEC 15288:2023-Prozesse

Cat. ISO ID # | Prozess (Engl.)

AP 6.1.1 Acquisition Process

AP 6.1.2 Supply Process

OPEP | 6.21 Life Cycle Model Management Process
OPEP [6.2.2 Infrastructure Management Process
OPEP [6.2.3 Project Portfolio Management Process
OPEP [6.24 Human Resource Management Process
OPEP [6.25 Quality Management Process

OPEP [6.2.6 Knowledge Management Process

TMP 6.3.1 Project Planning Process

TMP 6.3.2 Project Assessment and Control Process
TMP 6.3.3 Decision Management Process

TMP 6.3.4 Risk Management Process

TMP 6.3.5 Configuration Management Process
TMP 6.3.6 Information Management Process

TMP 6.3.7 Measurement Process

TMP 6.3.8 Quality Assurance Process

TP 6.4.1 Business or Mission Analysis Process
TP 6.4.2 Stakeholder Needs and Requirements Definition Process
TP 6.4.3 System Requirements Definition Process
TP 6.4.4 System Architecture Definition Process
TP 6.4.5 Design Definition Process

TP 6.4.6 System Analysis Process

TP 6.4.7 Implementation Process

TP 6.4.8 Integration Process

TP 6.4.9 Verification Process

TP 6.4.10 Transition Process

TP 6.4.11 Validation Process

TP 6.4.12 Operation Process

TP 6.4.13 Maintenance Process

TP 6.4.14 Disposal Process

A2 Ubersicht verschiedener Git-Befehle

Git-Befehl

Funktionsbeschreibung

git init

Initialisiert ein neues Git-Repository im aktuellen Verzeichnis

‘git clone <repo
URL>"

Klont ein entferntes Repository lokal

‘git status’ Zeigt den aktuellen Status des Repositories / Zeigt den Status der Dateien
(staged, unstaged, untracked)

‘git add <file>" Stellt eine bestimmte Datei fur den ndchsten Commit bereit

‘gitadd .’ Stellt alle Anderungen im aktuellen Verzeichnis bereit

‘git commit -m
llmsgll’

Commit der vorgemerkten Anderungen mit einer Nachricht

‘git log” Zeigt die Historie der Commits an

“git diff” Zeigt Anderungen zwischen Arbeitsverzeichnis und Index oder Commits
“git branch’ Listet alle lokalen Branches auf

‘git branch Erstellt einen neuen Branch mit dem angegebenen Namen

<name>’

‘git checkout Wechselt zu einem anderen Branch

<branch>’

‘git checkout -b

Erstellt und wechselt zu einem neuen Branch

<name>’

“git merge Fihrt den angegebenen Branch in den aktuellen zusammen
<branch>’

“git pull’ Holt und integriert Anderungen vom Remote-Repository

‘git push” Ubertragt lokale Commits zum Remote-Repository

‘git remote -v’ Zeigt die URLs der konfigurierten Remotes an

‘git fetch” Holt Anderungen vom Remote-Repository ohne zu mergen

‘git reset <file>"

Entfernt eine Datei aus dem Staging-Bereich

‘git reset -- Setzt den Stand auf den letzten Commit zurlick (Vorsicht: destruktiv)
hard”
“git rm <file>" Entfernt eine Datei und merkt die Léschung fir den nachsten Commit vor

‘git stash”

Speichert temporar nicht committete Anderungen

‘git stash pop”

Wendet die zuletzt gespeicherten Anderungen wieder an und entfernt sie

‘git tag” Zeigt alle Tags im Repository an
‘git tag Erstellt einen neuen Tag
<name>’

‘git config”

Zeigt oder andert die Git-Konfiguration (z. B. Benutzername, E-Mail)

A3 Ergebnisse der Teamumfrage

1. Team- und Projektinformationen

1.1 Wie viele Projekte bearbeiten Sie derzeit?

ml

w2 his 3

= 4 bis 5

= Mehrals 5

1.2 Arbeiten Sie eher alleine oder im Team?

= |ch arbeite alleine

m [ch arbeite hauptsachlich alleine,
aber mit gelegentlicher
Abstimmung

= |ch arbeite in einem kleinen Team
(2-3 Personen)

1.3 Wie oft tauschen Sie sich mit anderen (iber Systemmodelle aus?

u Taglich
s Wochentlich
= Monatlich

» Selten oder nie

2. Rollen und Verantwortlichkeiten in der Systementwicklung

Anforderungsanalyse
Systemarchitektur & Design
Sicherheit & Zuverlassigkeit

Validierung & Verifizierung
Modellierung mit SysmML

[Other]:

2.1 Welche Aufgaben (ibernehmen Sie hauptséachlich in der
Systementwicklung? (Mehrfachauswahl moglich)

I 2

0 1 2 3 4 5 6 7 8

Other: Klappen-system Design und Integration + Entwurfssprache/Ontologien

2.2 Sind |hre Verantwortlichkeiten bei der Modellierung klar

definiert?

w ® Ja, ich habe eine klar definierte
Rolle

s Teilweise, einige
Verantwortlichkeiten sind unklar

= Nein, Verantwortlichkeiten sind
nicht klar definiert

2.3 Mit wem stimmen Sie sich ab, wenn Sie Systemmodelle
aktualisieren? (Mehrfachauswahl moglich)

® Niemand, ich arbeite unabhingig

= Direkt mit meinem Vorgesetzten

» Mit Kollegen aus meinem
Projektteam

= Mit mehreren Teams oder
externen Partnern

3. Modellierungspraxis und SysML-Nutzung

3.1 Wie oft erstellen oder aktualisieren Sie SysML-Modelle?

= Taglich
n Wachentlich
= Monatlich

s Selten oder nie

3.2 Welche Werkzeuge nutzen Sie flr Systemmodellierung?
(Mehrfachauswahl méglich)

“ = Cameo Systems Modeler
s Dymola / Open Modelica
= DesMo

= Matlab/Simulink
= [Other]:

3.3 Folgen Sie einem vordefinierten Modellierungsprozess oder
entscheiden Sie selbst?

u |ch folge einem klar definierten
Prozess

= |ch orientiere mich grob an einem
Prozess, entscheide aber vieles
selbst

u Ich entscheide vollstiandig selbst

3.4 Wie dokumentieren Sie die Rickverfolgbarkeit zwischen
Anforderungen, Modellen und Verifikationsdaten?

s Automatisch durch
Modellierungstools

= Teilweise manuell (Excel, Word,

i etc.)
= Hauptsachlich manuell ohne
Standardprozesse
w [Other]:

Other: unautomatisch durch Modellierungstools + Durch das manuelle Hinzufiigen von Satisfy-, Derive-,

refine-, Verify-, Trace-Verbindungselementen zwischen Anforderungen, Modellelementen, etc.

4. Kollaboration und Versionskontrolle

4.1 Was sind die gréten Herausforderungen bei der
Zusammenarbeit an Systemmodellen? (Mehrfachauswahl moglich)

w m Veraltete Modelle
= Inkonsistente Anderungen

= Fehlende klare Prozesse
= Fehlende geeignete Tools

= [Other]:

Other: Zeitlicher Mehraufwand im Forschungsbereich

4.2 Wie verwalten Sie aktuell Anderungen an Systemmodellen?

@ = Keine spezielle Strategie
= Manuell durch Dokumentation
» Versionskontrolle mit
Modellierungstools
= Git oder andere
Versionskontrollsysteme

4.3 Haben Sie Probleme mit widerspriichlichen Modellversionen
erlebt? Falls ja, wie l6sen Sie diese?

= Nein, bisher keine Probleme

= Ja, durch manuelle Abstimmung
® Ja, durch Meetings & Absprachen
s [Other]:

Confluence
Jira
SharePoint
Git
OpenMBEE

[Other]

4.4 Welche Kollaborationstools nutzen Sie? (Mehrfachauswahl

moglich)

I 1

0

I
I ©

0

I 2
0 1 2 3 4 5 6 7

Other: Mattermost, GitLab- Git Instanz + Fiir Cameo bislang die Teamwork-Cloud

5. Erwartungen und Verbesserungsideen

5.1 Was wiirden Sie gerne an der Verwaltung und gemeinsamen
Nutzung von Systemmodellen verbessern? (Mehrfachauswahl
maoglich)

= Bessere Versionierung
= Klare Rollen &
Verantwortlichkeiten

= Automatisierte Synchronisierung

u [Other]:

5.2 Wiirde eine Git-basierte Versionskontrolle fiir Systemmodelle
Ilhren Workflow verbessern?

= |a, das ware eine gute Losung

» Vielleicht, wenn es einfach zu
benutzen ist

= Nein, ich sehe keinen Mehrwert

5.3 Glauben Sie, dass agile Methoden (z. B. Backlogs, Sprints) die
Zusammenarbeit in der Modellierung verbessern konnten?

W ® Ja, das wire eine hilfreiche

Ergdnzung

= Vielleicht, aber ich bin mir unsicher

= Nein, agile Methoden passen nicht
zu unserer Arbeitsweise

Ant- | 5.4 Kennen Sie weitere Losungen zur Versionskontrolle oder Synchronisation

wort | von Systemmodellen neben Git? Falls ja, welche und welche Erfahrungen haben

Sie damit gemacht?

1 Team Work Cloud

2 TWC (Hauseigene "Cloud" fiir Cameo Systems Modeler. Versionierung eher rudimen-
tar, fehlende Funktionalitat. Okay zum sharen von modellen, medium zum kollaborieren
in meiner Erfahrung)

3 Cameo (Team Work Cloud), Interessant ware eine Bearbeitung von Modellen im Stil
von Google Docs, die das parallele Arbeiten an Modellen ermdoglicht und vereinfacht.

4 Neben Git hat die Verwendung der Teamworkcloud fiir die Versionskontrolle von

SysML-Modellen gut funktioniert. Diese habe ich bislang verwendet. Mit dem Update
von Cameo von 2021 aufwarts bin ich mir aber nicht sicher, ob die Teamworkcloud noch
genutzt werden kann. Hierzu miisste man sich nochmal mit Malte Rahm absprechen.

A4 Ubersicht der SysML-Kernel-Kommandos in Jupyter Note-
book

Befehl Funktionsbeschreibung
Y%eval Eine gegebene Expression auswerten
Y%export Eine Datei mit der JSON-Reprasentation des abstrakten Syntaxbaums ei-

nes benannten Elements speichern

Y%help Eine Liste verfigbarer Befehle anzeigen oder Hilfe zu einem bestimmten
Befehl aufrufen

Ylist Geladene Bibliothekspakete oder die Ergebnisse einer Abfrage auflisten
Y%show Den abstrakten Syntaxbaum eines benannten Elements ausgeben
%publish Die Modellelemente, die in einem benannten Element verwurzelt sind, in

das Repository veréffentlichen

Yoview Die durch die benannte View Usage definierte Ansicht rendern

%viz Die benannten Modellelemente visualisieren

A5 Screenshots zu Testszenario #1 — Export und Commit-Va-
lidierung

CSM mit SysML v2-Plugin:

x | @ 505 Requi | @ system_Requirements |
et vl o e
]
—
curtomar_mauraments
i e —— — e
<1_1>pubtc satty & Emerganey Srvces < <t agr “ oressionas <1 Enorgy 8 s
The UAV shal o aperatins w thin 2 mindes The LAV shal generste 30 mags w iha The LAV shal ncldo mib specta sensors Tho UAV shal fosture 3 gt sisbikzed The UAV shal dotct siruckurs
o Covati =
p— e e e e e e e
=
(®) part P et
e — o e
& port =] et [aeroe) =
] e < 2 Enorg 8 Uen
@i . Sy i e e T st e Lot b
o el Ty o e St 150 . St e dalc o e s ey
. <1_2> pubtc satty & Emerganey Sorvices e e
(2) attribute - s) ot s Rt o
The UAV shal provido ive stream video with 3 an accuracy of 41 meter
(=) timeslice - e D S
. a .5 agricuture |
lent e i ——
The UAV Tom UAY s ek et d . ot <53+ Energ 8 iten
e = s
Comedons______ e Ty i3 fgte il e e e =y S—
i e
I connection + i
R ;. Ipla—— erequrements erogquiroments
¢ allocation - <13 Public Satety & Emergency Services 5 [cee] =
2 i rocter — e
31 bind e ey bt e, e e e s
el e s 2 v wibin e Wi S oo e e B £ bl . e ay
e e
S flow < o UAV sral ey 8
s e S
3J€ interface - Rew— e) R) S
1o puvie santy servens & .5 Agriuture = —
x . v = 2 =
memracsnn The UAY st fave s s operaionsl S e Tho LAV shal achieve 20% energy savinge (e et
o et e g s S ity i i Gmvice s oy of et B 03 <552 Enwrgy 8 titen
Actions Frgery s s 2 o g ——— s
action vl A raxRange > Bt rose s teryeies
perform action rexRanga >~ 10 i
(3 inref = L S
<1_$> Public Safety & Emergancy Services
) out ref -
() inout ref 2
o Ancidn X,

Bild A5-1 Customer Requirements

x '7@ System_} i |

“requrereni dels ‘ l

ot .
s08007
At dsta samamiind botw oen
AV, onrl sysiems, 3nd
o 25 -
febsbmetny
B port <
3 < e
() item - 08008 s08-008
- Tho UAV Sysiam shalrgrate Tho UAY Sysim shal comely
(@) attribute - oMl el il wih 180 29384 4 for e P U e B
(AT\D systems T ro e Sirage, rovieval e]
(=) timeslice - iz = e
@ v [rrr—
rr— -
el sovac eran
e e AV Syatemaar o — =
< : ~ [exppos s Detecs s L | meunvahiumaravios Tho UAV shal have secure
connection Sl Avod (DAR) sysiems a3 per perations using salle 't APk for dotn exchange wih
i 150215843 e Ao exirmal aysiens, nsorng
31 allocation - = e
2T bind
- { oo g ‘ e J | oot el |
+ flow > L
et
4I€ interface -
P v sosaiz
Frpveor The UAV aysiom shall meet

Tho LAV system shat aperatansl porlormance.
Actions i Tty B
;
=

action < fal o

perform action —

o e Sosats s

(D inref - s05013 —— Sosos

e V iyl e —

) out ref - e Fosires = spechas 50 by
= T o]

neutrer = et oy e reevei

e
- S
Other Actions sosa1e
States
Cases ...
Requirements

“och 22 communcasen snd
oo

Bild A5-2 SOS Requirements

& Customer | @) s0s | x q
i a fesin
Selection
Re| ©, 85 - =
satem masrements
Tools
) | 9 e | [M| o et e [S| e
Common — : = | | 2 - =
Items/Ports/Attributes e | |2 | :
(®) part o
B port - — —— —
ca | L L) [_ue [rec wrcre ey
@ item - T - [l :
(@ attribute = : o
Lt J -
timeslice -
O ret o | e 5 esas [— = —
e wrcres e
[5] enum def v e 2 i ‘ . | [-
Connectors | ey pou e i . 5
5I° connection ¥ ; 5 i
i€ allocation car |
3 bind il Lot
+# flow -) - -
+I¢ interface - oL

Bild A5-3 System Requirements

Git CLI:

\Windows\System32\cmd.exe
Microsoft Windows [Version 10.0.19045.5854]
(c) Microsoft Corporation. All rights reserved.

C:\Users\Zohai\UAV Civil Drone\uav-civil-drone>git pull
Already up to date.

C:\Users\Zohai\UAV Civil Drone\uav-civil-drone>git status
On branch main

IYour branch is up to date with ‘origin/main’.

Untracked files:
(use "git add <file>..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)

C:\Users\Zohai\UAV Civil Drone\uav-civil-drone>git add .
warning: in the working copy of 'Requirements.sysml’', LF will be replaced by CRLF the next time Git touches it

i\UAV Civil Drone\uav-civil-drone>git status
On branch main

[Your branch is up to date with ‘origin/main’.

Changes to be committed:
(use "git restore --staged <file>..." to unstage)

C:\Users\Zohai\UAV Civil Drone\uav-civil-drone>

Bild A5-4 Git CLI(1)

C:\Windows\System32\cmd.exe
nothing added to commit but untracked files present (use "git add" to track)

C:\Users\Zohai\UAV Civil Dronel\uav-civil-drone>git add .
warning: in the working copy of ‘Requirements.sysml’, LF will be replaced by CRLF the next time Git touches it

C:\Users\Zohai\UAV Civil Drone\uav-civil-drone>git status
On branch main
[vour branch is up to date with ‘origin/main’.

Changes to be committed:
(use "git restore --staged <file>..." to unstage)

C:\Users\Zohai\UAV Civil Drone\uav-civil-drone>git commit -m "added requirmenets"
[main 6d3cf2b] added requirmenets

1 file changed, 254 insertions(+)

create mode 180644 Requirements.sysml

C:\Users\Zohai\UAV Civil Drone\uav-civil-drone>git push

Enumerating objects: 4, done.

Counting objects: 100% (4/4), done.

Delta compression using up to 4 threads

Compressing objects: 100% (3/3), done.

Mriting objects: 180% (3/3), 3.89 KiB | 1.94 MiB/s, done.

Total 3 (delta @), reused © (delta @), pack-reused @ (from ©)

To https://gitlab.com/test9862913/uav-civil-drone.git
ab6f1d2..6d3cf2b main -> main

C:\Users\Zohai\UAV Civil Drone\uav-civil-drone>

Bild A5-5 Git CLI(2)
GitLab UL

U UAV Civil Drone & #e
¥ main v uav-civil-drone + v Find file :

7%y added requirmenets

»iiie i
b4 zohair9t

6d3cf2bs | [History

Name Last commit Last update

README.md Initial commit

Requirements.sysml

Bild A5-6 GitLab Ul nach Testabschluss

A6 Screenshots zu Testszenario #2 — Anzeige und Bearbei-
tung im JN

JN SysML-Kernel:

: File Edit View Run Kernel Tabs Settings Help
[- [+] 1+ Cc £ Requirements.sysml X | @ Launcher X [+
| Fin _ Q
o B8 / UAV CGivil Drone / uav-civil- UAV Civil Drone/uav-civil-drone
drone /
Name - Last Modified IE Notebook
M README.md 10 days ago
* [Requireme 18 hours ago p S
Python 3 SysML
(ipykemel)
Console
Python 3 SysML
(ipykemel)
Bild A6-1 SysML-Kernel in JN
£ Requirements.sysml X | [%) UAV_JN.ipynb X &k

B + XDO O » m C » Makdwnv B

Run "%help" command for an overview of SysML v2 commands

[s 1 %help

The following SysHL v2 magic commands are available.
For help on a specific command, use "¥help <COMMAND>" or "¥<cmd> -h".

%eval Evaluate a given expression.
Fexport Save a file of the JSON representation of the abstract syntax tree rooted in the named element.
%help Get a list of available commands or help on a specific command

%list List loaded library packages or the results of a given query

Eshow Print the abstract syntax tree rooted in a named element

%publish Publish to the repository the modele elements rooted in a named element

Kview Render the view specified by the named view usage

Fviz Visualize the name model elements

Step 1: Paste and Run .sysml file

UAV Requirements

1 package Customer_Requirements {
2 requirement '<1_1> Public Safety & Emergency Services' {
3 doc /* The UAV shall be operational within 2 minutes of activation to support time-sensitive emergencies.*/
4 require constraint 'activationTime <= 2 [min.]';
5 attribute ‘activationTime :> ISQ::Time';
6 }
7 requirement '<1_2> Public Safety & Emergency Services' {
doc /* The UAV shall provide live-stream video with a resolution of at least 4K for effective situational awareness.*/

8

9 attribute 'videoResolution :>';

10 require constraint 'videoResolution <= 4000 [pix.]";

11

12 requirement ‘<1_3> Public Safety & Emergency Services' {

13 doc /* The UAV shall include thermal imaging capabilities to support night-time search and rescue operations.*/
14 }

Bild A6-2 UAV Requirements in JN (1)

Package Customer_Requirements (8cc442f6-f8d8-44ea-838a-be6b23797eda)
Package SOS_Requirements (334c9c27-9d6a-4be7-bd20-43beefc@354b)
Package System Requirements (6fcdc2d2-6615-42da-bdd8-68336b2fced7)

Step 2: Choose Package to view and run “%viz" command

%viz Customer_Requirements

Customer_Requirements \

|

t0 60°C.

<5_5> Energy & Utilities

doc
The UAV shall withstand exposure to dust,
moisture, and temperatures ranging from -30°C

«requirements «requirement»

<5_4> Energy & Utilities Sleqimmencs

<5_3> Energy & Utilities

doc
The UAV shall encrypt all transmitted data
using AES-256 standards to ensure secure
 communications.

doc
The UAV shall support up to 1 hour of flight
time for prolonged inspection tasks.

Bild A6-3 UAV Requirements in JN (2)

doc /* The UAV shall be portable, weighing less than 2 kg and fitting into a standard backpack.*/

doc /* The UAV shall autonomously track and follow a subject within a 20-meter radius, maintaining a stable frame.*/

doc /* The UAV shall stream video to a mobile device with a latency of less than ©.5 seconds.*/

doc /* The UAV shall detect structural anomalies on power lines and turbines with a minimum resolution of 1 mm at 10 meters.*/

doc /* The UAV shall autonomously follow pre-programmed flight paths around infrastructure with an accuracy of 1 meter.*/

doc /* The UAV shall support up to 1 hour of flight time for prolonged inspection tasks.®/

doc /* The UAV shall encrypt all transmitted data using AES-256 standards to ensure secure communications.*®/

doc /* The UAV shall withstand exposure to dust, moisture, and temperatures ranging from -30°C to 60°C.*/

= Requirements.sysml X | [A] UAV_N.ipynb X |+

B + XO O » m ¢ » Code v B
63 requirement "<4_3> Media & Creative Protessionals™ {
64
65 }
66 requirement ‘'<4_4> Media & Creative Professionals’ {
67
68
69 requirement '<4_5> Media & Creative Professionals’ {
70
71 ¥
72 requirement °'<5_1> Energy & Utilities' {
73
74 }
75 requirement °<5_2> Energy & Utilities' {
76
77
78 requirement °<5_3> Energy & Utilities' {
79
80 }
81 requirement '<5_4> Energy & Utilities' {
82
83 }
84 requirement '<5_S5> Energy & Utilities' {
85
86 require constraint 'minTemp <= -30 [°C]';
87 require constraint ‘maxTemp >= 60 [°C]';
88 attribute 'minTemp :> ISQ::Temp';
89 attribute 'maxTemp :> ISQ::Temp';
% }

Bild A6-4

Manuelle Eingaabe der Constraints und Attribute fiir ,, requirement
<5 5> (Zeile 86-89)“

Step 2: Choose Package to view and run "%viz" command

%viz Customer_Requirements

Customer_Requirements\

<5_5> Energy & Utilities

«requirement»

«requirement»
«requirement»

doc
The UAV shall withstand exposure to dust,

<5_4> Energy & Utilities

moisture, and temperatures ranging from -30°C

doc
10 60°C. The UAV shall encrypt all transmitted data

using AES-256 standards to ensure secure
. communications.

maxTemp :> ISQ:: Temp

attributes ‘
_minTemp :> 1SQ::Temp
7

’ \
’ \
 «require» \ «require»
\
{ N
p 2 p <
(«constraints

’ «constraint»

|minTemp <= -30 [°C] ‘ maxTemp >= 60 [°C]

<5_3> Energy & Utilities

The UAV shall support up to 1 hour of flight
time for prolonged inspection tasks.

Bild 46-5

Ergebnis nach der manuellen Anpassung von ,, requirement <5_5>*

Git CLI:

C:\Windows\System32\cmd.exe

Microsoft Windows [Version 10.8.19845.5854]
(c) Microsoft Corporation. All rights reserved.

C:\Users\Zohai\UAV Civil Drone\uav-civil-drone>git pull
lAlready up to date.

IC:\Users\Zohai\UAV Civil Drone\uav-civil-drone>git status
On branch main
our branch is up to date with ‘origin/main’.

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

Untracked files:
(use "git add <file>...

to include in what will be committed)

no changes added to commit (use "git add" and/or "git commit -a")

sers\Zohai\UAV Civil Drone\uav-civil-drone>

Bild A6-6 Git CLI(1)

CA\Windows\System32\cmd.exe

C:\Users\Zohai\UAV Civil Drone\uav-civil-drone>git add UAV_JN.ipynb
warning: in the working copy of 'UAV_JN.ipynb', LF will be replaced by CRLF the next time Git touches it

C:\Users\Zohai\UAV Civil Drone\uav-civil-drone>git status
On branch main
Your branch is up to date with ‘origin/main’.

Changes to be committed:
(use "git restore --staged <file>.. to unstage)

Untracked files:
(use "git add <file>.. to include in what will be committed)

C:\Users\Zohai\UAV Civil Drone\uav-civil-drone>git commit -m "updated Req <5_5>"
[main @4dcbfe] updated Req <5_5>

2 files changed, 1000 insertions(+)

create mode 100644 UAV_JN.ipynb

C:\Users\Zohai\UAV Civil Drone\uav-civil-drone>git push
Enumerating objects: 6, done.

Counting objects: 186% (6/6), done.

Delta compression using up to 4 threads

Compressing objects: 100% (4/4), done.

Writing objects: 160% (4/4), 33.60 KiB | 4.8 MiB/s, done.
Total 4 (delta 1), reused @ (delta @), pack-reused @ (from ©)
To https://gitlab.com/test9862913/uav-civil-drone.git

Bild A6-7 Git CLI(2)

GitLab UI:

Commit 84dcbfe® [3y authored 5 minutes ago by zohair95

updated Req <5_5>
-0 parent 6d3cf2bS
¥ Branches main
© No related tags found

39 No related merge requests found

Changes 2
Showing 2 changed files v with 1000 additions and O deletions

v [Requirements.sysml [}

}
requirement '<5_5> Energy & Utilities' {
doc /* The UAV shall withstand exposure to dust, moisture, and temperatures

@
I

17

o o ™
o

require constraint 'minTemp <= -30 [°C]';

7 require constraint 'maxTemp >= 68 [°C]';

88 attribute 'minTemp :> ISQ::Temp';

89 attribute 'maxTemp :> ISQ::Temp';

9€ }

91 }.

88 92 package SO0S_Requirements {
Bild A6-8 Versionierung der Anderungen von ,, requirement <5 5> in GitLab

U UAV Civil Drone & e
¥ main v | uav-civil-drone + v || Findfile :

v updated Req <5_5>
£47 zohair95 authored 4 hours ago

04dchfed [y | History

Name Last commit Last update
~+ README.md Initial commit 1week ago
[% Requirements.sysml updated Req <5_5> 4 hours ago
% UAV_JN.ipynb updated Req <5_5> 4 hours ago

Bild A6-9 GitLab Ul nach Testabschluss

A7 Screenshots zu Testszenario #3 — Multi-Tool-Kompatibili-
tat (CSM und JN)

CSM mit SysML v2-Plugin:

%B Containment
Containment

a g x
B Q Lo

B- 23 UAV Civil Drone_SysML v2
&- @ namespace [Customer_Requirements...]
4 P package Customer_Requirements
#- [package SOS_Requirements
& 7 package System_Requirements
8- namespace Behavior
& F5) namespace Requirements
-') package Customer_Requirements
B package SOS_Requirements
&= B package System_Requirements
B 5] namespace Structure
=B namespace View & Viewpoint
i (&) view Customer_Requirements
() view SOS_Requirements
- (&) view System_Requirements
(&) view SOI_Use_Cases
() view SOS
i (@) view SOI
- [5] Used Projects

Bild A7-1 Containment-Baum nach import der ,, Requirements.sysml “-Datei
[©5) Req_ New X
TN S e e e
Selection
’ [} ‘ nq ag ~ —l
Tools «package»
& -% z Customer_Requirements
Common
3 G 7 N
Items/Ports/Attribu... «requirement» «requirement»
—‘_@ B <5_5>Energy & Utilities <5_5>Energy & Utilities
pa i documentation documentation
E] port = The UAV shall w ithstand The UAV shall w ithstand
exposure to dust, exposure to dust,
(@) item - moisture, and moisture, and
) temperatures ranging temperatures ranging
(@) attribute + from-30°C to 60°C. from-30°C to 60°C.
[=) timeslice =) attributes
) minTemp :> ISQ:: Temp

(7 vt maxTemp > ISQ: Temp
Connedors require constraints

< i A Temp <=-30 [°C]

connecti.. ¥ minTemp

:[C maxTemp >= 60 [°C]

3¢ allocation

¢ bind —
2 flow S

€ interface

M. - A

Bild A7-2

Vergleich der urspriinglichen (Links) und modifizierten (Rechts) Anfor-
derung ,, Requirement <5 5> im View-Diagramm ,,Req New

@ Customer_RequirememsI (=) Req_New ¢fx;] Customer_Requirements X

wE A
A package Customer_Requirements {
] +Oquan wne Nw_sr U Lrcutave rvieosaunuas
71 }
72 requirement '<5_1> Energy & Utilities' {
73 doc /* The UAV shall detect structural anomalies on power lines and turbines with a minimum resolution of 1
74 }
75 requirement '<5_2> Energy & Utilities' {
76 doc /* The UAV shall autonomously follow pre-programmed flight paths around infrastructure with an accuracy
77 }
78 requirement '<5_3> Energy & Utilities' {
79 doc /* The UAV shall support up to 1 hour of flight time for prolonged inspection tasks.*/
80 }
81 requirement '<5_4> Energy & Utilities' {
82 doc /* The UAV shall encrypt all transmitted data using AES-256 standards to ensure secure communications.*
83 }
84 requirement '<5_5> Energy & Utilities' {
85 doc /* The UAV shall withstand exposure to dust, moisture, and temperatures ranging from -30°C to 60°C.*/
86 require constraint ‘minTemp <= -30 [°C]’;
87 require constraint ‘maxTemp >= 60 [°C]";
88 attribute ‘minTemp :> ISQ::Temp';
89 attribute ‘maxTemp :> ISQ::Temp';
90 }

Bild A7-3

Importierte ,, Requirements.sysml“~-Datei als textuelle Notation in CSM

A8 Screenshots zu Testszenario #4 — Versionierung und Roll-
back
CSM mit SysML v2-Plugin:

SOIl_Use_Cases X
iR O R fe -
Selecti...
R]
«package»
E SOl_Use_Cases
Tools «use case» «include use case» «use case»
G‘l Data Colletion ~ |----------3 Real-Time Data Trans mission Mission Planning and Control
g2, actors
- Regulatory Authority Operator
- Ground Control Station
el Operator «include use case»
Comm... Data Analyst Onboard data storage
Environmental Sensors «use case»
Items/... Navigation and Obstacle Avoidance
&~ :
Operator
Cw «use case» Environmental Sensors
o Regulatory Compliance and Reporting
-
(cw Regulatory Authority AT
b Ground Control Station : s 2
p— Diagnostics and Maintenance
S 3 actors
S e g : Ground Control Station
Maintenance Technician
It «include use case» «include use case» :
< Flight Logging Geo-Fencing
¥ -
i «use case»
ad Flight Control
Actions actors
= Ground Control Station
ol A
& Operator
{re

Bild A8-1 SOI Use Cases in Behavior.sysml

Git CLI:

¥ C:\Windows\System32\cmd.exe
1-drone>git log

HEAD -> main,
man@campus.tu-berlin.de>

added-behavior

Zohair S. Sueiman <zohair.sheikh.suleiman@campus.tu-berlin.de>

Date: Wed May 21 13:25:02 2025 +0200

updated Req <5_5>

man@campus.tu-berlin.de>

Zohair S. Sueiman <zohair.sheikh.su

Author:
Tue May 20 18:21:06 2025 +0200

Date:

added requirmenets
1d z " SERAA &
zohair95 <zohair.sheikh.suleiman@campus.tu-berlin.de>
Sun May 11 13:24:17 2025 +0000

Initial commit

sers\Zohai\UAV Civil Drone\uav-civil-drone>

Bild A8-2 ‘git log -Befehl

GitLab UI:

main v uav-civil-drone

May 23, 2025

AR .
Ly, deleted last commit
®4° 70hair95 authored 11 minutes ago

y added-behavior
"»4° 70hair95 authored 48 minutes ago

May 21, 2025

1"3 updated Req <5_5>

»00
"»4° 70hair95 authored 1day ago

May 20, 2025

Ly added requirmenets

"»4° 70hair95 authored 2 days ago

May 11, 2025

AR s o
Fizy Initial commit
*&4° 70hairg5 authored 1 week ago

Bild A8-3 Commit-Verlauf nach Testabschluss

U UAV Civil Drone & e
¥ main v | uav-civil-drone + v Find file :

™ s .
+ updated-Behavior 7486231e | [B

©4" zohair95 authored 12 seconds ago Histary
Name Last commit Last update
[Behavior.sysml updated-Behavior 13 seconds ago
m+ README.md Initial commit 1week ago
[Requirements.sysml updated Req <5_5> 1day ago
% UAV_JN.ipynb updated Req <5_5> 1day ago

Bild A8-4 GitLab Ul vor 'git revert’

U UAV Civil Drone & s

¥ main v | uav-civil-drone

Yy deleted last commit
zohair95 authored 11 minutes ago

v

Name
++ README.md
B Requirements.sysml

[UAV_JN.ipynb

+ v

Last commit

Initial commit

updated Req <5_5>

updated Req <5_5>

Find file :

b429efc7 | [y || History
Last update
1week ago
1day ago
1day ago

Bild A8-5

GitLab Ul nach ‘git revert’

A9 Screenshots zu Testszenario #5 — GitHub Flow Test (Kol-
laborationsworkflow)

GitLab UI:
Active branches
feature/add-new-uc [f | .
@ ol | fANew || & v i

569666b7 - updated-uc - 1 minute ago

main [y default protected

‘i‘v

7486231e - updated-Behavior - 1 hour ago

Bild A9-1 Branches-Ubersicht in GitLab Repository

New merge request
From feature/add-new-uc into main Change branches
Title (required)

updated-uc-Behavior.sysml

Mark as draft
Drafts cannot be merged until marked ready.
Description
Preview B I § 1= Q=EEEWE BeO

Updated use cases in Behavior.sysml file.

Switch to rich text editing

Bild 49-2 GitLab Merge Request (1)

Merge can start
Anytime v

Requires that merge checks pass.

Merge options
Delete source branch when merge request is accepted.
| Squash commits when merge request is accepted. ?

Create merge request Cancel

Bild A9-3 GitLab Merge Request (2)

updated-uc-Behavior.sysml

3% Open zohair95 requested to merge ‘feature/add-new-uc [3y into main just now
Overview 0 Commits - Pipelines 0 Changes 1

Updated use cases in Behavior.sysml file.

[a:](ee]le

zohair95 authored 3 hours ago

8~ Approval is optional (® v
© Ready to merge! v
Delete source branch () Squash commits ® () Edit commit message
* 1commit and 1 merge commit will be added to main.

Activity Allactivity v | 1=
Prevew B I § 1=« @ = ==8 B @ 5] “
Write a comment or drag your files here..

Switch to rich text editing CT)

(7) Make this an internal note 3
Comment v Start review Close merge request

Bild 49-4 GitLab Merge Request (3)
[0 Test / UAV Civil Drone / Commits
main v uav-civil-drone Author v Search by message N
May 23, 2025
A " "

v Merge branch 'feature/add-new-uc' into 'main’ «e« 97b76012 % By
zohair95 authored 24 minutes ago .
updated-uc 569666b7 [y B2
zohair95 authored 37 minutes ago
updated-Behavior 7486231e e B
zohair95 authored 2 hours ago =
deleted last commit b429efc7? [B
zohair95 authored 2 hours ago .
added-behavior 89adfb82 & b

Bild A9-5 Commit-Verlauf nach Testabschluss

A10 Screenshots und Python-Skript zu Testszenario #6 — Auto-
matisierte Konfigurationspriifung

CSM mit SysML v2-Plugin:

1

«package»
SOl

«parts
Hybrid :> Wing type

«parts
Roraty Wing :> Wing type

«parts
Fixed Wing :> Wing type

1

«package»
SOS

[«part» \g

Airframe
«part»
«part» Return to Home
C

. . irt;
ommunication System e

Safety System
«parts
«part» Propulsion System
SOl
«part»
Payload Sensor System

«parts
Emergency Landing

«part» «parts
Communication RF Communication
«part»
Power System
«parts
Payload System
«part»
Flight System
«part» «parts
Navigation System GPS

«part» §
sol §

«parts
Environmental Sensors

«part»
Ground Control Sytem

«part»
Air Traffic Management

«parts
Delivery Meachnism

Bild A10-1 SOS und SOI aus Structure.sysml in CSM mit SysML v2-Plugin

JN mit Python 3-Kernel:

[J Scanning ‘Behavior.sysml'...

No issues found.

[D Scanning ‘bracket_issue.sysml'...

A Line 2: unknown term 'Unknown term: ‘nospace'’
-+ requirement nospace;

/A Line 4: unknown term 'Unknown term: 'nospace"'’
-+ part nospace;

[J Scanning 'Requirements.sysml’...

No issues found.

Scanning 'Structure.sysml'...
No issues found.

B8O

Bild A10-2 Ergebnisse nach lokaler Ausfiihrung von fix_config.ipynb in JN

GitLab CI/CD mit .gitlab-ci.yml:

check_config:
stage: check-config
image: python:3.10 # Lei
before_script:
- pip install jupyter # Jupyter wird fir die Konvertierung bendtig
script:
- jupyter nbconvert --to script fix_config.ipynb
- python fix_config.py

only:
changes:
- System_Models/*.sysml ei e g SysML-Dateien
All 9 Finished Branches Tags View analytics | Clear runner caches | (NGRS
Fitter pipelines ’Q | | show pipetine D v
Status. Pipeline Created by Stages Actions.
@ Passed another syntax_check.ipynb update :"!) o~
® 00:00:57 #1833678165 ¥ main o 865e45d7 =)
£ 7 minutes ago latest branch
i o
© Failed Update .gitlab-ci.yml file i) =4
© 000053 #1833672713 ¥ nain o 0e385b4b i e w |
£ 11 minutes ago branch
I -
© railed Update .gitlab-ci.yml file) o ~
e #1833661633 ¥ nain < 6dfedsbd e B
£ 20 minutes ago branch

Bild A10-4 Screenshot nach erfolgreicher CI-Pipeline Funktion

Python-Skript fix config.ipynb:

Python-Skript “fix_config.ipynb’ zur automatischen Formatierung der SysML-Dateien

import os
import re

Pfad zum Verzeichnis, das die zu iberpriifenden SysML-Modelldateien
enthalt

FOLDER PATH = "./System Models"

Gultige Schliisselwdrter (SysML-spezifisch), die ohne Anfiithrungs-
zeichen verwendet werden diirfen

VALID TERMS = ({

'part', 'block', 'requirement', 'constraint', 'package', 'im-
port', 'diagram', 'property', 'flow', 'port', 'interface', 'associa-
tion', 'value', 'type', 'connector', 'relationship', 'actor', 'sig-
nal', 'state', 'transition', 'event', 'operation', 'input', 'out-
put', 'use', 'case', 'subject', 'include', 'first', 'then', 'requi-
re', 'attribute', 'def', 'doc', 'view', 'private', 'in', 'out',
'library', 'item', 'action', 'inout', 'allocation', 'ref', 'end',
'analysis', 'objective', 'loop', 'assert', 'calc', 'stakeholder',
'assume', 'concern', 'connection', 'do', 'exit', 'enum', 'occur-
rence', 'time', 'timeslice', 'exhibit', 'metadata', 'perform', 'as-
sign', 'self', 'send', 'null', 'if', 'while', 'true', 'false',

'join', 'done', 'start', 'fork', 'merge', 'decide', 'verification',

'to', 'accept', 'satisfy', 'connect', 'bind', 'frame', 'for', 'i',
'ISQ', 'dependency', 'comment', 'locale', 'rep', 'language',
'about', 'alias', 'abstract', 'variation', 'wvariant', 'subsets',
'redefines', 'specializes', 'references', 'ordered', 'nonunique',

'individual', 'snapshot', 'message', 'succession', 'via', 'from',

'entry', 'parallel', 'verify', 'filter', 'render', 'expo-
se', 'viewpoint'

}

Regulédrer Ausdruck zum Erkennen korrekt gesetzter Anfihrungszei-
chen

QUOTE REGEX = re.compile(r"'["']*'")
def quote identifier if needed(token):
Prift, ob ein Begriff in Anfilhrungszeichen gesetzt werden muss
if token in VALID TERMS or QUOTE REGEX.fullmatch (token):
return token
return f"'{token}'"

def fix colon _arrow line(line): # Korrigiert fehlerhafte Zeilen mit
dem Operator ':>', wobei Einrickungen beibehalten und doppelte Kor-
rekturen vermieden werden.

if ':>' not in line or ';' not in line:
return line # Zeilen ohne ':>' werden ibersprungen
Einriickung ermitteln
indent match = re.match(r"* (\s*)", line)
indentation = indent match.group(l) if indent match else ""
Reguldrer Ausdruck fiur korrekte Syntax

valid term pattern = '|'.join(re.escape(term) for term in
VALID TERMS)

correct pattern = rf""\s*({valid term pat-
tern}) \s+' [~]+"\s+:>\s+" " [AT]4" (211 [AT]4") ¥y \s*S"
if re.match(correct pattern, line.strip(), re.IGNORECASE):

return line # Format bereits korrekt
Struktur extrahieren und neu zusammensetzen

match = re.match (r"*\s* (\w+)\s+([":]+)\s*:>\s*([*;]1+);",
line.strip())

if not match:
return line # Zeile passt nicht zum erwarteten Muster
keyword = match.group(l) .strip()

lhs = match.group(2) .strip() .replace("'", "")

rhs = match.group(3) .strip() .replace("'", "")
lhs quoted = f"'{lhs}""

rhs quoted = "::".join (f"'{seg.strip()}'" for seg in
rhs.split("::"))

return f"{indentation}{keyword} {lhs quoted} :> {rhs quoted};\n"
def fix line(line):
Hauptfunktion zur Zeilenkorrektur
stripped = line.strip/()
if stripped.startswith("doc /*") or "doc /*" in stripped:
return line # Kommentare bleiben unverédndert
Ignoriere bestimmte "first ... then ...;" Konstrukte

if stripped.startswith("first '") and " then " in stripped and
stripped.endswith ("';"):

return line
Versuche zuerst die ':>'-Struktur zu korrigieren
fixed = fix colon arrow line(line)
if fixed != line:
return fixed
Korrektur von falsch geschriebenen 'include use case'

line = re.sub(r"include\s+'use'\s+case", "include use case",
line)

Quoting von Namespace-Elementen (z. B. package::element)
def replace namespaced(match) :
parts = match.group() .split("::")

return "::".join(quote identifier if needed(p) for p in
parts)

line = re.sub(r"\b(?:[A-Za-z_] [\w\-1*::)+[A-Za-z] [\w\-]*\b",
replace namespaced, line)

Setzt Anfithrungszeichen fiir unbekannte Begriffe nach bekannten
Schliisselwértern

def keyword replacer (match) :
keyword, token = match.group(l), match.group(2)
if token in VALID TERMS or QUOTE REGEX.fullmatch (token) :
return f"{keyword} {token}"

return f"{keyword} '{token}'"

pattern = r"\b (" + "|".join(sorted (VALID TERMS, key=len, re-
verse=True)) + r")\s+ (["\s'; {}\[\]:]+)"

line = re.sub(pattern, keyword replacer, line)
Verschachtelte Anfiihrungszeichen korrigieren

line = re.sub ("' ([""]*)"(["'"]1*)"([~']*)'", lambda m:
f""{m.group(l) } {m.group(2) } {m.group(3) }'", line)

return line
def process file(file path):
Fuhrt die Zeilenkorrektur fiir eine einzelne Datei durch
with open(file path, "r", encoding="utf-8") as f:
lines = f.readlines/()
fixed lines = []
changed = False
fix count = 0
for line in lines:
fixed line = fix line(line)
fixed lines.append(fixed line)
if fixed line != line:
changed = True
fix _count +=1
if changed:
Uberschreibt die Datei mit den korrigierten Zeilen
with open(file path, "w", encoding="utf-8") as f:
f.writelines(fixed lines)

print (f"Fixed {fix count} issues in: {os.path.base-
name (file path)}")

else:
print (f"No changes in: {os.path.basename (file path)}")
def run fix():

Durchlauft das Modellverzeichnis und verarbeitet alle .sysml-
Dateien

for filename in os.listdir (FOLDER PATH) :
if filename.endswith(".sysml"):
process file(os.path.join (FOLDER PATH, filename))

run fix()# Start der automatisierten Korrektur

A11 Screenshots und Python-Skript zu Testszenario #7 — Auto-
matisierte Syntaxpriifung

JN mit Python 3-Kernel:

Scanning 'Behavior.sysml'...
No issues found.

B8O

Scanning 'Customer_Requirements.sysml'...
No issues found.

B0

Scanning 'SoS_Reguirements.sysml'...

B0

Neo issues found.

Scanning 'Structure.sysml'...

Line 4: unknown term 'Unknown term: 'patt''
+ patt '"UAV Civil Drone';

Line 13: unknown term 'Unknown term: 'past''

B> B0

+ past 'Payload System : EO';

Bild Al11-1 Konsolenausgabe des Syntaxpriifskripts
GitLab CI/CD mit .gitlab-ci.yml:

syntax_check:
stage: syntax-check
image: python:3.10
before_script:
- pip install jupyter
script:
- jupyter nbconvert --to script syntax_check.ipynb
- python syntax_check.py # Sy
only:
changes:
- System_Models/*.sysml

Bild A11-2 Ausschnitt aus .gitlab-ci.yml

5.1 traitlets-5.14.3 types-python-dateutil-2.9.08.208250516 typing_extensions-4.13.2 uri-template-1.3.8 v
rl1ib3-2.4.0 wewidth-0.2.13 webcolors-24.11.1 webencodings-8.5.1 websocket-client-1.8.08 widgetsnbextens
ion-4.0.14

WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with

ofwarnings/venv

[notice] A new release of pip is available: 23.8.1 -> 25.1.1
[notice] To update, run: pip install --upgrade pip

$ jupyter nbconvert --to seript syntax_check.ipynb
[NbConvertApp] Converting notebook syntax_check.ipynb to script
[NbConvertApp] Writing 4334 bytes to syntax_check.py

$ python syntax_check.py

m Scanning 'Structure_v2.sysml'...

No issues found.

Scanning 'Behavior.sysml'...

No issues found.

Scanning 'Requirements.sysml’'...
No issues found.

Scanning 'Structure.sysml'...

No issues found.

Job suvcceeded

Bild A11-3 Ausschnitt Pipeline-Skript aus GitLab CI

Python-Skript syntax check.ipynb:

Python-Skript “syntax_check.ipynb’ zur automatischen Qualitdtspriifung der SysML-Dateien

import os
import re
import sys

Definierte Liste aller giiltigen Begriffe in SysML v2 (Referenz fiir
Syntaxprifung)

VALID TERMS = ({

'part', 'block', 'requirement', 'constraint', 'package', im-
port', 'diagram', 'property', 'flow', 'port', 'interface',
'association', 'value', 'type', 'connector', 'relationship', 'ac-
tor', 'signal', 'state', 'transition', 'event', 'operation', 'in-
put', 'output', 'use', 'case', 'subject', 'include', 'first',
'then', 'require', 'attribute', 'def', 'doc', 'view',6 'private',
'in', 'out', 'library', 'item', 'action', 'inout', 'allocation',
'ref', 'end', 'analysis', 'objective', 'loop', 'assert', 'calc',

'stakeholder', 'assume', 'concern', 'connection', 'do', 'exit',
'enum', 'occurrence', 'time', 'timeslice', 'exhibit', 'metadata',
'perform', 'assign', 'self', 'send', 'null', 'if', 'while',

'true', 'false', 'join', 'done', 'start', 'fork', 'merge', 'de-
cide', 'verification', 'to', 'accept', 'satisfy', 'connect', 'bind',
'frame', 'for', 'i', 'ISQ', 'dependency', 'comment', 'locale',

'rep', 'language', 'about', 'alias', 'abstract', 'wvariation', 'wvari-
ant', 'subsets', 'redefines', 'specializes', 'references', 'or-
dered', 'nonunique', 'individual', 'snapshot', 'message', 'successi-
on', 'via', 'from', 'entry', 'parallel', 'verify', 'filter', 'ren-
der', 'expose', 'viewpoint'

}

Funktion zum Entfernen von Text innerhalb von doc-Kommentarbldcken
oder Anfihrungszeichen

def remove ignored sections(line, in doc block):
if 'doc /*' in line:
in doc _block = True
if in doc block:
if '*/' in line:
in doc _block = False
return '', in doc_block # Inhalt wird ignoriert

line = re.sub(x"'[~']*'", '', line) # Inhalte in einfachen An-
fihrungszeichen werden entfernt

return line, in doc block

Funktion zur Identifikation unbekannter oder falsch geschriebener

Begriffe
def find unknown terms(file path, valid terms):
unknown terms = []
in _doc _block = False
with open(file path, 'r') as f:
lines = f.readlines()
for i, line in enumerate(lines, 1):

clean line, in doc block = remove ignored sections(line,

in doc_block)
if not clean line.strip():
continue
Zerlege Zeile in einzelne Worter
words = re.findall (r'\b\w+\b', clean line)
for word in words:
word lower = word.lower ()
if word lower in valid terms:
GroB-/Kleinschreibungsfehler erkennen
if word != word lower:

unknown terms.append((i, f"Capitalization
error: '{word}' should be lowercase", line.strip()))

elif word lower.isalpha():
Unbekannter Begriff

unknowniterms.append((i, f"Unknown term:

'{word}'", line.strip()))
return unknown terms

Funktion zur Uberpriifung auf Klammernfehler und fehlende Semiko-

lons
def check braces and semicolons(file path):

issues = []

brace stack = [] # Stack zur Uberpriifung von geschachtelten

Klammern

in doc _block = False

with open(file path, 'r') as f:

lines = f.readlines/()

for i, line in enumerate(lines, 1):
raw line = line.strip()

clean line, in doc block = remove ignored sections(line,
in doc block)

if not clean line.strip():
continue
Uberpriifung auf geschlossene/geéffnete Klammern

for char in clean line:

if char == "{':
brace stack.append((i, '{'"))
elif char == '}':

if brace stack:
brace stack.pop ()
else:

issues.append((i, "Unmatched closing brace
'}'", raw line))

Uberpriifung auf fehlende Semikolons bei bestimmten
Schlisselwortern

if re.match(r'\s* (actor|subject|include)\b', clean line,
re.IGNORECASE) :

if not clean line.strip() .endswith(';"):

issues.append((i, "Missing semicolon",
raw_line))

Noch offene geschweifte Klammern melden
for brace in brace stack:

issues.append ((brace[0], "Unmatched opening brace '{'",
lines[brace[0]-1].strip()))

return issues
Flag zur Kennzeichnung, ob ein Fehler gefunden wurde
any issues found = False

Hauptfunktion zur Durchsuchung aller .sysml-Dateien im angegebenen
Verzeichnis

def scan sysml files(folder):

global any issues found # Erméglicht globale Anderung des Feh-
ler-Flags

for filename in os.listdir (folder):

if filename.endswith(".sysml"):

file path = os.path.join(folder, filename)
print (f"\nScanning '{filename}'...")
Durchfihrung der Priifungen

unknown term issues = find unknown terms(file path,
VALID TERMS)

syntax issues = check braces and semicolons (file path)
Auswertung der Ergebnisse
if unknown term issues or syntax issues:
any issues found = True # Fehler gefunden
for line num, word, line in unknown term issues:
print (f"Line {line num}: unknown term '{word}'")
print (£" - {line}™)
for line num, msg, line in syntax issues:
print (f"Line {line num}: {msg}")
print (£" - {line}™)
else:
print ("No issues found.")
Ordner mit den SysML-Modellen
FOLDER_PATH = "./System Models"
Start der Analyse
scan_sysml files (FOLDER PATH)

Abbruch der Pipeline mit Fehlercode, falls Probleme gefunden wur-
den

if any issues found:

sys.exit (1)

A12 Screenshots und Python-Skript zu Testszenario #8 — Auto-
matisierte Dokumentenerstellung

GitLab CI/CD mit .gitlab-ci.yml:

4 === GitLab CI/CD-Pipeline fir SysML-Modelle ===
Diese Pipeline besteht aus drei Stufen:

1. Konfigurationsprifung

2. Syntaxprifung

3. Berichtserzeugung in Jupyter Notebook

stages:
- check-config # Stufe 1: Prifung und Korrektur von Konfigurationsfehlern
- syntax-check # Stufe 2: Prifung der SysML-Syntax
- generate-report # Stufe 3: Automatische Erstellung eines Jupyter-Berichts

Bild A12-1 Ausschnitt aus .gitlab-ci.yml (1)

generate_report:
stage: generate-report
image: jupyter/scipy-notebook # Jupyter-Umgebung mit vorinstallierten Paketen (z. B. Pandas, Matplotlib)
before_script:
- pip install nbformat # Paket zur Bearbeitung von .ipynb-Dateien
script:
- jupyter nbconvert --to notebook --execute generate_render_notebook.ipynb # Ausfihrung des Notebooks
artifacts:
paths:
- SysML_Reports/sysml_report_vx.ipynb # Exportiertes Notebook als Artefakt bereitstellen
only:
changes:
- System_Models/*.sysml

Bild A12-2 Ausschnitt aus .gitlab-ci.yml (2)

GitLab UI:
Status Pipeline Created by Stages
@ passed Added Req. and updated System_Models 00
@ 00:03:14 #1897915738 ¥ main © 6c5¢9642
£ 3 days ago latest branch
ixed syntax check to accept package names ...
@ Passed fixed sy heck kag E N
@ 00:03:27 #1844877965 ¥ main <o bldceeaB 5}
B 1month ago branch

Bild A12-3 Die drei Pipelinestufen nach erfolgreichem CI-Durchlauf

Name Last commit Last update
B3 .ipynb_checkpoints Added Req. and updated System_Mod... 3 days ago
B3 SysML_Reports Added Req. and updated System_Mod... 3 days ago
3 System_Models Added Req. and updated System_Mod... 3 days ago
&) _gitlab-ci.yml added comments to .gitlab-ci.yml file 3 days ago
~+ README.md Initial commit 1 month ago
3 fix_config.ipynb Added Req. and updated System_Mod... 3 days ago
[generate_render_notebook.ipynb Added Reg. and updated System_Mod... 3 days ago
[syntax_check.ipynb Added Req. and updated System_Mod... 3 days ago

Bild A12-4 Aufbau des Repositories nach der Testdurchfiihrung

Python-Skript generate render notebook.ipynb:

Python-Skript "generate_render_notebook.ipynb" zur automatischen Berichterstellung der
SysML-Dateien in Jupyter Notebook

import os
import re
import nbformat
import hashlib
import json

from nbformat.v4 import new notebook, new markdown cell,
new code cell

=== KONFIGURATION ===

model dir = "System Models" # Eingabeverzeichnis mit .sysml-
Modellen

output dir = "SysML Reports" # Ausgabeverzeichnis fiir gene-

rierte Notebooks

os.makedirs (output dir, exist ok=True) # Erstelle das Ausgabever-
zeichnis, falls nicht vorhanden

version file = os.path.join(output dir, "version metadata.json") #
Datei mit Versionsinformationen

base output = os.path.join(output dir, "sysml report") # Basisname
fir generierte Reports

Funktion zur Erzeugung eines Hash-Werts fiir den Inhalt einer Datei
def hash file content (content):
return hashlib.sha256 (content.encode ("utf-8")) .hexdigest ()

=== VORHERIGE VERSION LADEN (falls vorhanden) ===

if os.path.exists(version file):

with open (version file, "r") as f:
prev_state = json.load(f)

prev_version = prev_ state(["version"]

prev_files = prev state["files"]
else:

prev_version = "v1.0.0" # Initiale Version, wenn keine vor-
handen

prev_files = {}
=== AKTUELLE .sysml-DATEIEN EINLESEN UND HASHEN ===
current files = {} # Datei-Hashs zur Anderungserken—
nung
sysml models = [] # Gesammelte Inhalte aller SysML-
Dateien

for filename in os.listdir(model dir):
if filename.endswith(".sysml"):
path = os.path.join(model dir, filename)
with open(path, "r", encoding="utf-8") as f:
content = f.read()

sysml models.append(content)

current files[filename] = hash file content (content)
=== ANDERUNGEN ZWISCHEN VERSIONEN DETEKTIEREN ===
added = set(current files) - set(prev files) # Neue Da-
teien
deleted = set (prev_files) - set(current files) # Geloschte
Dateien
modified = {f for f in current files if f in prev files and cur-
rent_files[f] != prev_files[f]} # Gednderte Dateien
=== NEUE VERSION BESTIMMEN (Semantische Versionierung) ===
major, minor, patch = map(int, prev version.lstrip("v").split("."))

if added or deleted:
minor += 1 # Anderung in Struktur - Minor-Bump
patch = 0

elif modified:
patch += 1 # Nur inhaltliche Anderung - Patch-Bump

new version = f"v{major}.{minor}.{patch}"

print (f"Version updated: {prev_version} — {new version}")
=== NOTEBOOK ZUSAMMENSTELLEN ===
nb = new notebook()

nb.cells.append (new markdown cell (f"# SysML Report\nVersion:
{new version}")) # Titelseite

joined models = "\n\n".join(sysml models) # Alle Modelle in eine
Code-Zelle einfiigen

nb.cells.append(new code cell (joined models))

nb.cells.append(new markdown cell ("## Visualized Models")) # Trenn-
Uberschrift fir Visualisierungen

=== PAKETNAMEN AUS MODELLEN EXTRAHIEREN ===

package pattern = re.compile(r"packagel\s+(?:'([""]+) "] (\wt))",
re.IGNORECASE)

package names = set ()

for model text in sysml models:
matches = package pattern.findall (model text)
for quoted, plain in matches:

package names.add(quoted or plain) # Entweder der in Anfih-
rungszeichen oder der einfache Name

Fir jedes Paket eine Visualisierungszelle (%viz)
for package in sorted(package names) :

nb.cells.append(new code cell (f"%viz --view=DEFAULT --style=DE-
FAULT {package}l"))

=== NOTEBOOK MIT VERSIONSNUMMER SPEICHERN ===
output notebook = f"{base output} {new version}.ipynb"
with open (output notebook, "w", encoding="utf-8") as f:
nbformat.write (nb, f)
print (f"Saved: {output notebook}")
=== AKTUALISIERTEN ZUSTAND DER VERSION SPEICHERN ===
with open(version file, "w") as f:
json.dump ({
"version": new version,
"files": current files

}, £, indent=2)

