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Abstract— Metric depth estimation from visual sensors is
crucial for robots to perceive, navigate, and interact with
their environment. Traditional range imaging setups, such
as stereo or structured light cameras, face hassles including
calibration, occlusions, and hardware demands, with accuracy
limited by the baseline between cameras. Single- and multi-
view monocular depth offers a more compact alternative, but
is constrained by the unobservability of the metric scale. Light
field imaging provides a promising solution for estimating
metric depth by using a unique lens configuration through
a single device. However, its application to single-view dense
metric depth is under-addressed mainly due to the technology’s
high cost, the lack of public benchmarks, and proprietary
geometrical models and software.

Our work explores the potential of focused plenoptic cameras
for dense metric depth. We propose a novel pipeline that
predicts metric depth from a single plenoptic camera shot by
first generating a sparse metric point cloud using a neural
network, which is then used to scale and align a dense relative
depth map regressed by a foundation depth model, resulting
in a dense metric depth. To validate it, we curated the Light
Field & Stereo Image Dataset' (LFS) of real-world light field
images with stereo depth labels, filling a current gap in existing
resources. Experimental results show that our pipeline produces
accurate metric depth predictions, laying a solid groundwork
for future research in this field.”

I. INTRODUCTION

Within the last decades, computer vision has become a
relevant domain as numerous applications demand visual
perception. For example, it allows robots to navigate, under-
stand, and interact with the environment. Particularly, accu-
rate depth estimation becomes critical for applications where
safety and reliability are paramount, such as autonomous
driving [1] and robotic manipulation [2].

From a single pinhole camera, we can estimate the
3D reconstruction of an unknown scene using monocular
structure-from-motion (SfM), but this is subject to scale
ambiguity [3]. In learning-based single-view approaches,
scale is also unobservable for self-supervised models [4],
as their losses are based on the same multi-view geometric
constraints. For supervised ones, the scale accuracy depends
on the training and test data [5]. Multi-sensor setups, such
as visual-inertial, stereo, or multi-camera, do observe the
scale. However, in addition to their higher degree of hardware
complexity, they require a precise alignment and calibration,
and their accuracy is limited by the baseline between the
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Fig. 1: Left: Plenoptic image from a light field camera,
displaying the microlens pattern (see detail in Fig. 2). Center:
Corresponding natural image, synthesized from the central
viewpoint of the plenoptic camera. Right: Our single-shot
metric depth map, at the true scale of the scene.

cameras, which is conditioned by the applications. In the case
of visual-inertial systems, their state may not be observable
for certain motions.

Light field cameras represent a promising alternative for
metric depth estimation. Their inner configuration involves a
microlens array (MLA) placed between the main lens and the
sensor. This allows the acquisition not only of the intensity
but also the direction of light rays that interact with the
sensor, by acquiring range-dependent sub-aperture images
arranged in a grid pattern [6]. This unique internal structure
allows the capture of multiple views and ranges of local
areas with a single device and a single shot, overcoming the
limitations of traditional monocular and multi-sensor setups.
Additional advantages include their higher light capture (as
they produce focused images even with large lens apertures),
the elimination of disocclusion issues (since the scene is
captured in 3D using a single main lens), and the absence
of moving parts (unlike optical refocusing systems). These
features have already found applications in robotics, such as
on-orbit servicing and robotic exploration [7], [8].

In this paper, we explore the potential of a focused plenop-
tic camera for single-view metric depth estimation (see
Fig. 1). Specifically, we present an end-to-end pipeline that
leverages light field images to resolve the scale ambiguity of
a learning-based monocular depth regressor, hence producing
dense metric depth maps. We believe that our approach,
which leverages both, priors from a foundation model with
global receptive fields and geometric cues between multiple
microlenses, is bound to outperform geometric triangulation
methods from local correspondences in plenoptic images.
To benchmark our approach, we curated a novel real-world
Light Field & Stereo Image Dataset (LFS) that we release
with this paper. Our results show that we outperform related
baselines, specifically the manufacturer’s software for depth,
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Fig. 2: Flower stack illustration. Each flower stack is con-
structed by piling a central microlens and another six in the
ring surrounding it. Each stacked microlens is debayered into
a 3-channel RGB image.
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Fig. 3: Visual results produced through the stereo processing
pipeline to obtain suitable ground-truth depth values from
stereo images, reprojected onto the plenoptic camera’s cali-
brated reference frame.

sparse and presumably based only on geometry, and the state-
of-the-art foundation model Depth Anything.

II. RELATED WORK

Depth estimation is a traditional topic in computer vision.
Multi-view approaches have been extensively studied, offer
improvements by capturing data from multiple vantage points
rather than just two, as in stereo vision [9]. In practice, most
often the sum of squared differences is used to evaluate
differences across images, facing the challenge of balancing
geometric accuracy with robustness to perspective changes of
local image patterns [10], [11]. Techniques such as Kalman
filtering enhance depth estimation by processing sequen-
tial observations, while aggregation methods like sliding
windows or global optimization become necessary when
fewer images are available [12]. Structure-from-motion batch
pipelines like COLMAP [13] further refine depth estimation
by selecting views and ensuring geometric consistency be-
tween multiple depth maps, allowing for better handling of
occlusions [14], [15], [16], [17], [18].

Single-view depth is geometrically ill-posed [19]. Various
computational methods, inspired by human visual perception,
have been developed to tackle this challenge using visual
cues such as perspective and and visual appearance through
lighting and occlusion [20], [21]. Deep neural networks have
shown impressive results at predicting per-pixel depth or
disparity by learning image patterns from databases with and
without supervision [22], [4], [23], [24], [25], [5S], [26].

Depth from light field cameras. Capturing light field
images in a single exposure combines the simplicity of
single-shot setups with the depth information coming from
local calibrated multiple views, thereby potentially adding
scale information to single-view methods. They have evolved
from the plenoptic camera 1.0, which focused the main
lens at the microlens array (MLA) plane, allowing for post-
capture processing but at a lower resolution, to the plenoptic
camera 2.0, which focuses the MLA on the main lens’s image
plane, enhancing image quality by balancing spatial and
angular resolution. For both devices, however, a recurring
challenge is the scarcity of available data. This is due
to the limited availability of light field cameras and the
difficulties in setting up ground-truth measuring systems for
supervised learning. While camera arrays offer an effective
answer, they are costly and impractical for widespread use.
Additionally, plenoptic cameras are hindered by their reliance
on proprietary software, high costs, and limited datasets [27],
[28], [29].

Some works have addressed the depth estimation task
using classical methods developed for earlier light field
capturing devices [30], [31], [32], [33]. However, there are
no available depth estimation methods for the plenoptic
camera 2.0, primarily due to the lack of a publicly available
geometric model and the scarcity of available real-world
data, which impedes the development of learning-based
approaches. This shortage stems from the limited availability
of light field capturing devices and from the difficulty of ob-
taining precise ground truth, as it requires an external system
and data registration. Moreover, the technology incorporated
into these cameras is conditioned by the dependence on the
manufacturer’s proprietary camera model and software for
decoding raw data [29]. In addition, both their low-volume
production and their manufacturing complexity contribute to
their elevated cost, preventing widespread adoption [28].

Existing light field datasets, such as the Stanford Light
Field Archives [34], [35], [36], provide valuable resources
but often lack alignment with modern plenoptic 2.0 cam-
eras, limiting their usability. Although other datasets with
similar setups exist [37], [38], their utility is constrained by
insufficient data volume, different data formats and hardware
version. Hence, the lack of real-world datasets for plenoptic
2.0 cameras has led most research to rely on synthetic
datasets, which, while valuable, lack the realism needed for
robust deployment [39], [40], [41], [42], [43], [44].

Depth completion methods generate dense depth maps
from sparse representations, e.g. in the context of LIDAR
data [45]. These methods typically refine and densify sparse
depth maps using unguided techniques, such as interpolation
or hand-crafted features, within the same modality [46],
[47], [48]. However, image-guided methods have proven
more successful, especially with noisy depth data [49], [50],
[51]. In the case of a light field camera, sparse depth maps
are generated from a limited number of microlenses in
the sensor. Integrating foundation models as an analogous
image-guided method offers a promising approach for depth
completion in our domain [52].
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Fig. 4: Overview. The Image Processing Toolkit pre-processes captured data, which is then used to train the Microlens Depth
Network for sparse metric depth estimation. These are used to refine the inference by Depth Anything, producing a dense
metric depth map. Filtered stereo depth serves as the ground truth, following densification and scale alignment.

ITII. THE LIGHT FIELD & STEREO (LFS) DATASET

Dataset specifications. Our LFS dataset comprises images
captured with a plenoptic camera and a stereo. It includes
59 captures from various static scenes in controlled labo-
ratory conditions. Each set contains a plenoptic image, a
plenoptic virtual depth image,> and a natural image, as
well as the depth from stereo. Plenoptic images display a
pattern of 8,837 microlenses on the sensor, while natural
images represent the reconstructed image from the camera’s
central point of view. Both plenoptic and natural images are
produced using the manufacturer’s proprietary software, see
an example in Fig. 1. We extract semi-dense metric depth
from the calibrated stereo, that will serve as a ground-truth.

Hardware and software. The cameras are mounted on a
robust mechanical framework made of aluminium profiles.
The setup includes two Allied Vision Mako G-419C cam-
eras [53] and a Raytrix RS plenoptic camera [54], which is
based on the Baumer HXG40c model. The Mako cameras are
compact, industrial vision cameras, while the Raytrix RS is a
light field camera with up to 1 MP effective output resolution
and 4.2 Megarays light field resolution. All cameras feature
a CMOS CMV4000 sensor at 4.2 MP resolution, supporting
25 fps under the GigE vision standard. The three cameras
are connected to a notebook through a 2.5G switch and
a 2.5G Ethernet adapter. To ensure overlapping fields of
view between the stereo pair and the plenoptic camera,
they are positioned close together with rigid alignment and
matching lenses. Synchronization is achieved by using the
plenoptic camera’s exposure signal as a master trigger for
the stereo. The configuration, control, and data process-
ing utilizes the vendors’ SDKs, which rely on GenlCam
transport layer (GenTL) libraries to communicate with the

3Virtual depths are the measured depths of focused projections within the
camera relative to the MLA plane, expressed in multiples of the (secretive)
sub-millimetric distance between the MLLA and the sensor chip. These virtual
images resemble disparity maps in stereo vision, as they are closely tied to
image processing steps while still related to actual metric depth.

cameras. This setup is extended with in-house packages for
concurrent deployment of processes, frame distribution via
shared memory, image post-processing, and efficient storage.
Geometric camera calibration is carried out using the method
by Zhang, Sturm, and Maybank [55], [56] implemented in
the camera calibration toolbox DLR CalLab [57], along with
the stepwise plenoptic camera calibration method [58] and
the extrinsic calibration method by Strobl and Hirzinger [59].
The RxLive software from Raytrix is also utilized to cap-
ture plenoptic images and visualize scene representations,
with custom methods developed for pre-processing plenoptic
images. Metric stereo depth is estimated by an in-house
implementation of the SGM algorithm [60]. Lastly, custom
scripts were developed for stereo image reprojection.

Scene configuration. Our dataset images a variety of
scenes, to benchmark generalization. It includes objects with
diverse shapes and textures placed at multiple distances to
avoid overfitting. The setup optimizes camera positioning
and focal distances across a range of working distances.
[lumination conditions are kept constant.

Plenoptic images. We created an Image Processing Toolkit
that generates a dataset from plenoptic images by modeling
the microlenses pattern for efficient indexing and manipu-
lation. Utilizing a hexagonal grid storage system, it uses
a dual coordinate system to accommodate the microlens
arrangement with interlaced rows (see Fig. 2). A parametric
model calculates the coordinates of each microlens based on
a 2D calibration of the microlenses pattern. First, the original
plenoptic image undergoes debayering into a full-color im-
age. Other key operations include cropping, where images
are extracted based on centroid positions, and stacking,
which arranges cropped microlens images from concentric
rings to create a flower stack (tensor) for enhanced feature
extraction and efficient correspondence search.

Plenoptic depth. The data obtained from RxLive is pro-
cessed as an alternative ground-truth depth source for bench-
marking purposes. This involves decoding the virtual depth
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Fig. 5: Qualitative sparse depth results. Top row: Plenoptic images. Center row: Ground-truth depth from stereo. Bottom
row: Depth from our Microlens Depth Network. Note how our depth values are very close to the ground truth.

values obtained from the manufacturer and transforming
them into metric ones using a thin lens camera model [58].

Depth from stereo. The stereo processing pipeline (Fig. 3)
involves debayering, undistortion, rectification, and the SGM
algorithm (correspondence search, triangulation, and regular-
ization) to produce disparity and metric depth maps. The
resulting RGBD image is then re-projected, as a colored
pointcloud, onto the calibrated light field camera pose,
synthesizing distorted color and metric depth images. While
the resulting images resemble natural images, discontinuities
occur due to occlusions and untextured regions. To reduce
noise in low-texture areas, regularization measures like con-
sistency checks, gradient filters, and hierarchical matching
are applied. Finally, depth values are extracted at microlens
centroid coordinates of the respective plenoptic image using
the Image Processing Toolkit.

IV. SINGLE-SHOT DEPTH FROM PLENOPTIC CAMERAS

We present a complete pipeline to obtain dense, metric
depth maps from a single light field image, that combines
image processing, microlens-scale depth estimation (Section
IV-A), and subsequent densification and refinement to gen-
erate a dense metric depth map (Section IV-B), see Fig. 4.

A. Sparse Depth from Plenoptic Images

Our model follows an encoder-decoder convolutional ar-
chitecture. Flower stacks are provided to the encoder in the
form of 4D tensors X; of size (N,C, H,W), for which N
is the batch size, C the number of channels, and H x W
the height and width of each microlens projection onto the
sensor. Our model infers a single metric depth value per
stack, corresponding to the prediction at the centroid of the
main microlens of each stack. This network, which we denote

as Microlens Depth Network, is composed of 2D convolu-
tions, batch normalization, activation functions, and fully-
connected bottleneck layers. It captures spatial relationships
among microlenses, leveraging their redundancy in the flower
stack to enhance depth estimation robustness, e.g. in regions
with occlusions. The estimated depths form a sparse depth
map aligned with the central sub-aperture image at a lower
resolution due to the limited number of microlenses (8,837).
The resulting depth map is inaccurate in regions with weak
textures, which we then remove by applying a texture filter.

B. Dense Depth from Plenoptic Cameras

In order to obtain dense per-pixel metric depth values,
we fuse these results with the pretrained model Depth
Anything [26], which generates dense disparity maps from
monocular images. Depth Anything is trained on extensive
datasets, ensuring robustness across a variety of scenarios,
and showing state-of-the-art performance in the most recent
benchmarks [61]. However, its disparity maps are not in
metric scale. We use a robust regression method to align them
to the sparse metric depth values predicted by our Microlens
Depth Network. We use the Theil-Sen estimator [62], [63] for
this alignment, as it handles outliers in an effective manner.
First, dense disparity values are extracted at locations with
corresponding sparse metric depths (the latter are converted
to disparities for consistency, to achieve a monotonic func-
tion that preserves the order), and then aligned using the
Theil-Sen approach. This non-parametric method calculates
the median slope m from all pairs of points (z;,y;) and
(xj,y;) as follows:

m:median{yj_yi|xi7éxj} . (D
T; — X ’

J



TABLE I: Comparison of our Light Field Sparse and Dense depth against 1) A Random Depth generator, 2) the Sparse
Depth provided by the Raytrix manufacturer software, and 3) the foundation model Depth Anything.

[ [ MSE [em?] | [ RMSE [em] | | MARE | [ MSRE | [ 61 [ 6°1 [ 651 [ BPR] |
| Random Depth | 1551.39 | 39.27 | 140374 | 2345 [ - | - | - ] - |
[ Light Field Sparse Depth (Raytrix) [29] I 136.47 I 10.94 [ 6543 | 270 [ 88.62 ] 93.04 [ 9543 | 0.3043 |
[ Tight Field Sparse Depth (our Microlens Depth Network) | 12468 | 555 [ 5275 | 2.3 | 8483 | 8840 | 91.25 | 0.3949 |
[ Depth Anything [26] [ 12944 | 1096 | 4000 | 524 [ 1830 | 38.70 | 6500 | 0.8623 |
| Light Field Dense Depth (ours) | 83.21 | 8.50 | 3730 | 394 [ 46.40 | 74.60 | 90.00 | 0.4233 |

The intercept term b is then determined by taking the median
of the individual intercepts

2)

resulting in the linear model y = ma+-b. This linear model is
then applied to scale and offset the depths predicted by Depth
Anything. Finally, disparities are transformed back to metric
depth using the intrinsics of the rectified stereo camera.

b = median{y; — ma;}

C. Implementation Details

Architecture. The encoder of the Microlens Depth Net-
work comprises five convolutional layers with 2D convolu-
tions, batch normalization, and ReLU activations, processing
input tensors of shape X; = (N, C, H, W), where the batch
size is N = 128. The flower stacks are of size 23 x 23
pixels with seven RGB images each, resulting in C' = 21
channels. The bottleneck includes a multilayer perceptron
(MLP) with three fully connected layers, compressing the
encoded data into a lower-dimensional space to capture
high-level features like correspondences and disparities. The
decoder, which mirrors the encoder, uses five transposed
convolutional layers, with the final layer outputting a single
depth channel.

Loss. We use the mean squared error (MSE) between our
per-pixel depth predictions ¢ and their ground-truth values y

1 n
MSE = ——— Y Mi(i —yi)* (3)
>im1 Mi ;
where M; is a binary mask indicating whether the ground-
truth value at pixel ¢ is available (1) or not (0).

V. EXPERIMENTAL RESULTS
A. Data Setup

As detailed in Section III, the LFS dataset consists of
59 images captured, each containing 8,837 microlenses,
resulting in 8,465 flower stacks* of 7 RGB crops, with a
resolution of 23x23 pixels. We split the dataset image-wise
in train and test with 49 and 10 images respectively. In Tables
I and II we report the standard metrics used by the single-
view depth community, find their definitions here [22].

B. Training Details

We train the Microlens Depth Network for 125 epochs
using batches of 128 flower stacks. This requires around 10
hours using a Quadro FV100 Volta GPU. We optimize using
Adam [64] with a learning rate of 0.001. For Depth Anything,

4The generation of flower stacks is only carried out if all microlenses are
within the image boundaries. Otherwise, the stack is discarded.

we used 1024 x1024 RGB images. Theil-Sen regression was
applied to align scale and offset using 11,002 valid depth
values out of 17,321 sparse data points. The process took
1.78 seconds per image on the same GPU.

C. Comparison against Baselines

Our Microlens Depth Network took 10.54 minutes for a
test set of 84,650 flower stacks, representing 20% of the
LFS dataset (10 images). The test images encompass diverse
scenes with elements at varying distances. Table I shows the
aggregated results, along with those of related baselines.

We first report the results of a dummy baseline using
randomly generated depth values, to properly assess the
results of the methods. After that, note how our sparse
depth achieves a RMSE of 5.55 cm, almost halving the
error over the software provided by the camera manufac-
turer (Raytrix) with an additional conversion from virtual to
metric depths [29], [58]. Finally, observe how our metrics
significantly improve the ones of Depth Anything, the state
of the art on single-view depth estimation, as this last model
cannot observe the metric scale of the scene. The accuracy
in the prediction of the scale, compared to that of Depth
Anything, can be clearly observed in the qualitative results
of Fig. 6. The source of this scale accuracy traces back
to the accurately scaled predictions of our Microlens Depth
Network, which can also be qualitatively assessed in Fig. 5.

D. Ablation Study

To validate our design choices, we carried out ablative
experiments that assessed the importance of each. We sum-
marized them below, and results are shown in Table II.

Flower stacks. In addition to our flower stacks, we ex-
perimented with single microlens images and double-ringed
flower stacks. The former lacked multi-view context and
thus produced much worse depth estimates, while the latter
did not improve the accuracy significantly and had a higher
computational cost.

Network’s architecture. We tested a fully-convolutional
architecture with parallel encoders and a bottleneck, which
underperformed compared to our single encoder architecture,
which better captured the global context within the flower
stacks. Integrating an MLP in the bottleneck improved the
model’s ability to learn complex patterns.

Alternative ground-truth. Comparisons between ground
truth depth from the light field camera and the stereo cameras
revealed that the stereo depth, despite requiring additional
pre-processing from our side, yielded better performance due
to a more accurate metric calibration.
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Fig. 6: Qualitative results. From natural images (first row), Depth Anything infers dense depth (yet up-to-scale) (third row).
Then, scale alignment with metric values from our Sparse Light Field Depth transforms it into a dense metric depth (fourth
row). Note our Light Field Dense depth aligns more closely with the ground truth depth (second row) than Depth Anything.

TABLE II: Error metrics for additional methods explored. The first and fourth rows present the proposed methods. Each of
these is then ablated and compared quantitatively. The proposed ones outperform the alternatives.

MSE [cm?] | [ RMSE [em] | | MARE | | MSRE | | § 1 21 [ 651 [ BPR ]
Light Field Sparse Depth (ours) 124.68 5.55 52.75 2.63 84.83 | 8840 | 91.25 | 0.3949
Parallel encoders 250.18 9.45 104.57 5.13 81.02 | 89.74 | 93.03 | 0.6872
Weighted Mask 171.57 12.30 80.82 3.64 83.43 | 88.32 | 93.01 | 0.3802
Light Field Sparse Depth (ours) 83.21 8.50 37.30 3.94 46.40 | 74.60 | 90.00 | 0.4233
Huber 110.40 9.92 4130 2.96 38.00 | 73.10 | 83.60 | 0.4758
SGD-Huber 110.75 9.94 27.60 3.12 4340 | 73.60 | 87.90 | 0.4631

Metric scaling. We adapted the test-time refinement by
Izquierdo and Civera [52], to aggregate our sparse depth
with Depth Anything. However, the method struggled with
the multi-modal noise distribution of stereo data, which
led us to test other regression techniques for robust scale
alignment, including the Huber Regressor and the Stochastic
Gradient Descent (SGD) with Huber loss. The results showed
that Theil-Sen and RANSAC remain most effective for the
specific data distributions in this problem.

VI. CONCLUSION

This work introduces a novel approach for single-shot
depth from a plenoptic camera 2.0. We developed a novel Mi-
crolens Depth Network that successfully infers sparse metric
depth from plenoptic images, we then synthesize a natural
image from the plenoptic one, that we forward pass through
the foundation single-view up-to-scale dense depth model
Depth Anything. Finally, we regress the true scale and offset
values to correct the dense output from our sparse depth. Our

end-to-end pipeline demonstrates the feasibility of generat-
ing dense metric depth maps from single shots. Our work
makes several key contributions, including the design of a
specialized neural network for depth estimation, the creation
and release of the Light Field & Stereo Image Dataset (LFS)
— a new dataset with plenoptic images and corresponding
reprojected metric depth labels — and the development of a
comprehensive image pre-processing methodology suited for
learning-based applications. These contributions advance the
state of the art in light field imaging and single-view depth
estimation, establishing a foundation for further research.
Future work could focus on refining the developed method-
ology by exploring more advanced regression techniques,
that incorporate object segmentation and independent scale
estimation for different image regions, alongside occlusion
handling. This would enable more accurate depth scaling,
improve metric precision, and address the complexities in
the relationships among objects, as opposed to our linear
regression approach.
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