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Abstract— Metric depth estimation from visual sensors is
crucial for robots to perceive, navigate, and interact with
their environment. Traditional range imaging setups, such
as stereo or structured light cameras, face hassles including
calibration, occlusions, and hardware demands, with accuracy
limited by the baseline between cameras. Single- and multi-
view monocular depth offers a more compact alternative, but
is constrained by the unobservability of the metric scale. Light
field imaging provides a promising solution for estimating
metric depth by using a unique lens configuration through
a single device. However, its application to single-view dense
metric depth is under-addressed mainly due to the technology’s
high cost, the lack of public benchmarks, and proprietary
geometrical models and software.

Our work explores the potential of focused plenoptic cameras
for dense metric depth. We propose a novel pipeline that
predicts metric depth from a single plenoptic camera shot by
first generating a sparse metric point cloud using a neural
network, which is then used to scale and align a dense relative
depth map regressed by a foundation depth model, resulting
in a dense metric depth. To validate it, we curated the Light
Field & Stereo Image Dataset1 (LFS) of real-world light field
images with stereo depth labels, filling a current gap in existing
resources. Experimental results show that our pipeline produces
accurate metric depth predictions, laying a solid groundwork
for future research in this field.2

I. INTRODUCTION

Within the last decades, computer vision has become a

relevant domain as numerous applications demand visual

perception. For example, it allows robots to navigate, under-

stand, and interact with the environment. Particularly, accu-

rate depth estimation becomes critical for applications where

safety and reliability are paramount, such as autonomous

driving [1] and robotic manipulation [2].

From a single pinhole camera, we can estimate the

3D reconstruction of an unknown scene using monocular

structure-from-motion (SfM), but this is subject to scale

ambiguity [3]. In learning-based single-view approaches,

scale is also unobservable for self-supervised models [4],

as their losses are based on the same multi-view geometric

constraints. For supervised ones, the scale accuracy depends

on the training and test data [5]. Multi-sensor setups, such

as visual-inertial, stereo, or multi-camera, do observe the

scale. However, in addition to their higher degree of hardware

complexity, they require a precise alignment and calibration,

and their accuracy is limited by the baseline between the
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Fig. 1: Left: Plenoptic image from a light field camera,

displaying the microlens pattern (see detail in Fig. 2). Center:

Corresponding natural image, synthesized from the central

viewpoint of the plenoptic camera. Right: Our single-shot

metric depth map, at the true scale of the scene.

cameras, which is conditioned by the applications. In the case

of visual-inertial systems, their state may not be observable

for certain motions.

Light field cameras represent a promising alternative for

metric depth estimation. Their inner configuration involves a

microlens array (MLA) placed between the main lens and the

sensor. This allows the acquisition not only of the intensity

but also the direction of light rays that interact with the

sensor, by acquiring range-dependent sub-aperture images

arranged in a grid pattern [6]. This unique internal structure

allows the capture of multiple views and ranges of local

areas with a single device and a single shot, overcoming the

limitations of traditional monocular and multi-sensor setups.

Additional advantages include their higher light capture (as

they produce focused images even with large lens apertures),

the elimination of disocclusion issues (since the scene is

captured in 3D using a single main lens), and the absence

of moving parts (unlike optical refocusing systems). These

features have already found applications in robotics, such as

on-orbit servicing and robotic exploration [7], [8].

In this paper, we explore the potential of a focused plenop-

tic camera for single-view metric depth estimation (see

Fig. 1). Specifically, we present an end-to-end pipeline that

leverages light field images to resolve the scale ambiguity of

a learning-based monocular depth regressor, hence producing

dense metric depth maps. We believe that our approach,

which leverages both, priors from a foundation model with

global receptive fields and geometric cues between multiple

microlenses, is bound to outperform geometric triangulation

methods from local correspondences in plenoptic images.

To benchmark our approach, we curated a novel real-world

Light Field & Stereo Image Dataset (LFS) that we release

with this paper. Our results show that we outperform related

baselines, specifically the manufacturer’s software for depth,
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Fig. 2: Flower stack illustration. Each flower stack is con-

structed by piling a central microlens and another six in the

ring surrounding it. Each stacked microlens is debayered into

a 3-channel RGB image.

Recti�ied Stereo Reprojected RGB Reprojected Depth from Stereo

Fig. 3: Visual results produced through the stereo processing

pipeline to obtain suitable ground-truth depth values from

stereo images, reprojected onto the plenoptic camera’s cali-

brated reference frame.

sparse and presumably based only on geometry, and the state-

of-the-art foundation model Depth Anything.

II. RELATED WORK

Depth estimation is a traditional topic in computer vision.

Multi-view approaches have been extensively studied, offer

improvements by capturing data from multiple vantage points

rather than just two, as in stereo vision [9]. In practice, most

often the sum of squared differences is used to evaluate

differences across images, facing the challenge of balancing

geometric accuracy with robustness to perspective changes of

local image patterns [10], [11]. Techniques such as Kalman

filtering enhance depth estimation by processing sequen-

tial observations, while aggregation methods like sliding

windows or global optimization become necessary when

fewer images are available [12]. Structure-from-motion batch

pipelines like COLMAP [13] further refine depth estimation

by selecting views and ensuring geometric consistency be-

tween multiple depth maps, allowing for better handling of

occlusions [14], [15], [16], [17], [18].

Single-view depth is geometrically ill-posed [19]. Various

computational methods, inspired by human visual perception,

have been developed to tackle this challenge using visual

cues such as perspective and and visual appearance through

lighting and occlusion [20], [21]. Deep neural networks have

shown impressive results at predicting per-pixel depth or

disparity by learning image patterns from databases with and

without supervision [22], [4], [23], [24], [25], [5], [26].

Depth from light field cameras. Capturing light field

images in a single exposure combines the simplicity of

single-shot setups with the depth information coming from

local calibrated multiple views, thereby potentially adding

scale information to single-view methods. They have evolved

from the plenoptic camera 1.0, which focused the main

lens at the microlens array (MLA) plane, allowing for post-

capture processing but at a lower resolution, to the plenoptic

camera 2.0, which focuses the MLA on the main lens’s image

plane, enhancing image quality by balancing spatial and

angular resolution. For both devices, however, a recurring

challenge is the scarcity of available data. This is due

to the limited availability of light field cameras and the

difficulties in setting up ground-truth measuring systems for

supervised learning. While camera arrays offer an effective

answer, they are costly and impractical for widespread use.

Additionally, plenoptic cameras are hindered by their reliance

on proprietary software, high costs, and limited datasets [27],

[28], [29].

Some works have addressed the depth estimation task

using classical methods developed for earlier light field

capturing devices [30], [31], [32], [33]. However, there are

no available depth estimation methods for the plenoptic

camera 2.0, primarily due to the lack of a publicly available

geometric model and the scarcity of available real-world

data, which impedes the development of learning-based

approaches. This shortage stems from the limited availability

of light field capturing devices and from the difficulty of ob-

taining precise ground truth, as it requires an external system

and data registration. Moreover, the technology incorporated

into these cameras is conditioned by the dependence on the

manufacturer’s proprietary camera model and software for

decoding raw data [29]. In addition, both their low-volume

production and their manufacturing complexity contribute to

their elevated cost, preventing widespread adoption [28].

Existing light field datasets, such as the Stanford Light

Field Archives [34], [35], [36], provide valuable resources

but often lack alignment with modern plenoptic 2.0 cam-

eras, limiting their usability. Although other datasets with

similar setups exist [37], [38], their utility is constrained by

insufficient data volume, different data formats and hardware

version. Hence, the lack of real-world datasets for plenoptic

2.0 cameras has led most research to rely on synthetic

datasets, which, while valuable, lack the realism needed for

robust deployment [39], [40], [41], [42], [43], [44].

Depth completion methods generate dense depth maps

from sparse representations, e.g. in the context of LIDAR

data [45]. These methods typically refine and densify sparse

depth maps using unguided techniques, such as interpolation

or hand-crafted features, within the same modality [46],

[47], [48]. However, image-guided methods have proven

more successful, especially with noisy depth data [49], [50],

[51]. In the case of a light field camera, sparse depth maps

are generated from a limited number of microlenses in

the sensor. Integrating foundation models as an analogous

image-guided method offers a promising approach for depth

completion in our domain [52].
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Fig. 4: Overview. The Image Processing Toolkit pre-processes captured data, which is then used to train the Microlens Depth

Network for sparse metric depth estimation. These are used to refine the inference by Depth Anything, producing a dense

metric depth map. Filtered stereo depth serves as the ground truth, following densification and scale alignment.

III. THE LIGHT FIELD & STEREO (LFS) DATASET

Dataset specifications. Our LFS dataset comprises images

captured with a plenoptic camera and a stereo. It includes

59 captures from various static scenes in controlled labo-

ratory conditions. Each set contains a plenoptic image, a

plenoptic virtual depth image,3 and a natural image, as

well as the depth from stereo. Plenoptic images display a

pattern of 8,837 microlenses on the sensor, while natural

images represent the reconstructed image from the camera’s

central point of view. Both plenoptic and natural images are

produced using the manufacturer’s proprietary software, see

an example in Fig. 1. We extract semi-dense metric depth

from the calibrated stereo, that will serve as a ground-truth.

Hardware and software. The cameras are mounted on a

robust mechanical framework made of aluminium profiles.

The setup includes two Allied Vision Mako G-419C cam-

eras [53] and a Raytrix R5 plenoptic camera [54], which is

based on the Baumer HXG40c model. The Mako cameras are

compact, industrial vision cameras, while the Raytrix R5 is a

light field camera with up to 1 MP effective output resolution

and 4.2 Megarays light field resolution. All cameras feature

a CMOS CMV4000 sensor at 4.2 MP resolution, supporting

25 fps under the GigE vision standard. The three cameras

are connected to a notebook through a 2.5G switch and

a 2.5G Ethernet adapter. To ensure overlapping fields of

view between the stereo pair and the plenoptic camera,

they are positioned close together with rigid alignment and

matching lenses. Synchronization is achieved by using the

plenoptic camera’s exposure signal as a master trigger for

the stereo. The configuration, control, and data process-

ing utilizes the vendors’ SDKs, which rely on GenICam

transport layer (GenTL) libraries to communicate with the

3Virtual depths are the measured depths of focused projections within the
camera relative to the MLA plane, expressed in multiples of the (secretive)
sub-millimetric distance between the MLA and the sensor chip. These virtual
images resemble disparity maps in stereo vision, as they are closely tied to
image processing steps while still related to actual metric depth.

cameras. This setup is extended with in-house packages for

concurrent deployment of processes, frame distribution via

shared memory, image post-processing, and efficient storage.

Geometric camera calibration is carried out using the method

by Zhang, Sturm, and Maybank [55], [56] implemented in

the camera calibration toolbox DLR CalLab [57], along with

the stepwise plenoptic camera calibration method [58] and

the extrinsic calibration method by Strobl and Hirzinger [59].

The RxLive software from Raytrix is also utilized to cap-

ture plenoptic images and visualize scene representations,

with custom methods developed for pre-processing plenoptic

images. Metric stereo depth is estimated by an in-house

implementation of the SGM algorithm [60]. Lastly, custom

scripts were developed for stereo image reprojection.

Scene configuration. Our dataset images a variety of

scenes, to benchmark generalization. It includes objects with

diverse shapes and textures placed at multiple distances to

avoid overfitting. The setup optimizes camera positioning

and focal distances across a range of working distances.

Illumination conditions are kept constant.

Plenoptic images. We created an Image Processing Toolkit

that generates a dataset from plenoptic images by modeling

the microlenses pattern for efficient indexing and manipu-

lation. Utilizing a hexagonal grid storage system, it uses

a dual coordinate system to accommodate the microlens

arrangement with interlaced rows (see Fig. 2). A parametric

model calculates the coordinates of each microlens based on

a 2D calibration of the microlenses pattern. First, the original

plenoptic image undergoes debayering into a full-color im-

age. Other key operations include cropping, where images

are extracted based on centroid positions, and stacking,

which arranges cropped microlens images from concentric

rings to create a flower stack (tensor) for enhanced feature

extraction and efficient correspondence search.

Plenoptic depth. The data obtained from RxLive is pro-

cessed as an alternative ground-truth depth source for bench-

marking purposes. This involves decoding the virtual depth
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Fig. 5: Qualitative sparse depth results. Top row: Plenoptic images. Center row: Ground-truth depth from stereo. Bottom

row: Depth from our Microlens Depth Network. Note how our depth values are very close to the ground truth.

values obtained from the manufacturer and transforming

them into metric ones using a thin lens camera model [58].

Depth from stereo. The stereo processing pipeline (Fig. 3)

involves debayering, undistortion, rectification, and the SGM

algorithm (correspondence search, triangulation, and regular-

ization) to produce disparity and metric depth maps. The

resulting RGBD image is then re-projected, as a colored

pointcloud, onto the calibrated light field camera pose,

synthesizing distorted color and metric depth images. While

the resulting images resemble natural images, discontinuities

occur due to occlusions and untextured regions. To reduce

noise in low-texture areas, regularization measures like con-

sistency checks, gradient filters, and hierarchical matching

are applied. Finally, depth values are extracted at microlens

centroid coordinates of the respective plenoptic image using

the Image Processing Toolkit.

IV. SINGLE-SHOT DEPTH FROM PLENOPTIC CAMERAS

We present a complete pipeline to obtain dense, metric

depth maps from a single light field image, that combines

image processing, microlens-scale depth estimation (Section

IV-A), and subsequent densification and refinement to gen-

erate a dense metric depth map (Section IV-B), see Fig. 4.

A. Sparse Depth from Plenoptic Images

Our model follows an encoder-decoder convolutional ar-

chitecture. Flower stacks are provided to the encoder in the

form of 4D tensors Xi of size (N,C,H,W ), for which N

is the batch size, C the number of channels, and H×W

the height and width of each microlens projection onto the

sensor. Our model infers a single metric depth value per

stack, corresponding to the prediction at the centroid of the

main microlens of each stack. This network, which we denote

as Microlens Depth Network, is composed of 2D convolu-

tions, batch normalization, activation functions, and fully-

connected bottleneck layers. It captures spatial relationships

among microlenses, leveraging their redundancy in the flower

stack to enhance depth estimation robustness, e.g. in regions

with occlusions. The estimated depths form a sparse depth

map aligned with the central sub-aperture image at a lower

resolution due to the limited number of microlenses (8,837).

The resulting depth map is inaccurate in regions with weak

textures, which we then remove by applying a texture filter.

B. Dense Depth from Plenoptic Cameras

In order to obtain dense per-pixel metric depth values,

we fuse these results with the pretrained model Depth

Anything [26], which generates dense disparity maps from

monocular images. Depth Anything is trained on extensive

datasets, ensuring robustness across a variety of scenarios,

and showing state-of-the-art performance in the most recent

benchmarks [61]. However, its disparity maps are not in

metric scale. We use a robust regression method to align them

to the sparse metric depth values predicted by our Microlens

Depth Network. We use the Theil-Sen estimator [62], [63] for

this alignment, as it handles outliers in an effective manner.

First, dense disparity values are extracted at locations with

corresponding sparse metric depths (the latter are converted

to disparities for consistency, to achieve a monotonic func-

tion that preserves the order), and then aligned using the

Theil-Sen approach. This non-parametric method calculates

the median slope m from all pairs of points (xi, yi) and

(xj , yj) as follows:

m = median

{

yj − yi

xj − xi

| xi ̸= xj

}

. (1)



TABLE I: Comparison of our Light Field Sparse and Dense depth against 1) A Random Depth generator, 2) the Sparse

Depth provided by the Raytrix manufacturer software, and 3) the foundation model Depth Anything.

MSE [cm2] ↓ RMSE [cm] ↓ MARE ↓ MSRE ↓ δ ↑ δ2 ↑ δ3 ↑ BPR ↓

Random Depth 1551.39 39.27 1403.74 23.45 - - - -

Light Field Sparse Depth (Raytrix) [29] 136.47 10.94 65.43 2.70 88.62 93.04 95.43 0.3043

Light Field Sparse Depth (our Microlens Depth Network) 124.68 5.55 52.75 2.63 84.83 88.40 91.25 0.3949

Depth Anything [26] 129.44 10.96 40.90 5.24 18.30 38.70 65.00 0.8623

Light Field Dense Depth (ours) 83.21 8.50 37.30 3.94 46.40 74.60 90.00 0.4233

The intercept term b is then determined by taking the median

of the individual intercepts

b = median{yi −mxi} , (2)

resulting in the linear model y = mx+b. This linear model is

then applied to scale and offset the depths predicted by Depth

Anything. Finally, disparities are transformed back to metric

depth using the intrinsics of the rectified stereo camera.

C. Implementation Details

Architecture. The encoder of the Microlens Depth Net-

work comprises five convolutional layers with 2D convolu-

tions, batch normalization, and ReLU activations, processing

input tensors of shape Xi = (N,C,H,W ), where the batch

size is N = 128. The flower stacks are of size 23× 23
pixels with seven RGB images each, resulting in C = 21
channels. The bottleneck includes a multilayer perceptron

(MLP) with three fully connected layers, compressing the

encoded data into a lower-dimensional space to capture

high-level features like correspondences and disparities. The

decoder, which mirrors the encoder, uses five transposed

convolutional layers, with the final layer outputting a single

depth channel.

Loss. We use the mean squared error (MSE) between our

per-pixel depth predictions ŷ and their ground-truth values y

MSE =
1

∑n

i=1
Mi

n
∑

i=1

Mi(ŷi − yi)
2 , (3)

where Mi is a binary mask indicating whether the ground-

truth value at pixel i is available (1) or not (0).

V. EXPERIMENTAL RESULTS

A. Data Setup

As detailed in Section III, the LFS dataset consists of

59 images captured, each containing 8,837 microlenses,

resulting in 8,465 flower stacks4 of 7 RGB crops, with a

resolution of 23×23 pixels. We split the dataset image-wise

in train and test with 49 and 10 images respectively. In Tables

I and II we report the standard metrics used by the single-

view depth community, find their definitions here [22].

B. Training Details

We train the Microlens Depth Network for 125 epochs

using batches of 128 flower stacks. This requires around 10

hours using a Quadro FV100 Volta GPU. We optimize using

Adam [64] with a learning rate of 0.001. For Depth Anything,

4The generation of flower stacks is only carried out if all microlenses are
within the image boundaries. Otherwise, the stack is discarded.

we used 1024×1024 RGB images. Theil-Sen regression was

applied to align scale and offset using 11,002 valid depth

values out of 17,321 sparse data points. The process took

1.78 seconds per image on the same GPU.

C. Comparison against Baselines

Our Microlens Depth Network took 10.54 minutes for a

test set of 84,650 flower stacks, representing 20% of the

LFS dataset (10 images). The test images encompass diverse

scenes with elements at varying distances. Table I shows the

aggregated results, along with those of related baselines.

We first report the results of a dummy baseline using

randomly generated depth values, to properly assess the

results of the methods. After that, note how our sparse

depth achieves a RMSE of 5.55 cm, almost halving the

error over the software provided by the camera manufac-

turer (Raytrix) with an additional conversion from virtual to

metric depths [29], [58]. Finally, observe how our metrics

significantly improve the ones of Depth Anything, the state

of the art on single-view depth estimation, as this last model

cannot observe the metric scale of the scene. The accuracy

in the prediction of the scale, compared to that of Depth

Anything, can be clearly observed in the qualitative results

of Fig. 6. The source of this scale accuracy traces back

to the accurately scaled predictions of our Microlens Depth

Network, which can also be qualitatively assessed in Fig. 5.

D. Ablation Study

To validate our design choices, we carried out ablative

experiments that assessed the importance of each. We sum-

marized them below, and results are shown in Table II.

Flower stacks. In addition to our flower stacks, we ex-

perimented with single microlens images and double-ringed

flower stacks. The former lacked multi-view context and

thus produced much worse depth estimates, while the latter

did not improve the accuracy significantly and had a higher

computational cost.

Network’s architecture. We tested a fully-convolutional

architecture with parallel encoders and a bottleneck, which

underperformed compared to our single encoder architecture,

which better captured the global context within the flower

stacks. Integrating an MLP in the bottleneck improved the

model’s ability to learn complex patterns.

Alternative ground-truth. Comparisons between ground

truth depth from the light field camera and the stereo cameras

revealed that the stereo depth, despite requiring additional

pre-processing from our side, yielded better performance due

to a more accurate metric calibration.
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Fig. 6: Qualitative results. From natural images (first row), Depth Anything infers dense depth (yet up-to-scale) (third row).

Then, scale alignment with metric values from our Sparse Light Field Depth transforms it into a dense metric depth (fourth

row). Note our Light Field Dense depth aligns more closely with the ground truth depth (second row) than Depth Anything.

TABLE II: Error metrics for additional methods explored. The first and fourth rows present the proposed methods. Each of

these is then ablated and compared quantitatively. The proposed ones outperform the alternatives.

MSE [cm2] ↓ RMSE [cm] ↓ MARE ↓ MSRE ↓ δ ↑ δ2 ↑ δ3 ↑ BPR ↓

Light Field Sparse Depth (ours) 124.68 5.55 52.75 2.63 84.83 88.40 91.25 0.3949

Parallel encoders 250.18 9.45 104.57 5.13 81.02 89.74 93.03 0.6872

Weighted Mask 171.57 12.30 80.82 3.64 83.43 88.32 93.01 0.3802

Light Field Sparse Depth (ours) 83.21 8.50 37.30 3.94 46.40 74.60 90.00 0.4233

Huber 110.40 9.92 41.30 2.96 38.00 73.10 83.60 0.4758

SGD-Huber 110.75 9.94 27.60 3.12 43.40 73.60 87.90 0.4631

Metric scaling. We adapted the test-time refinement by

Izquierdo and Civera [52], to aggregate our sparse depth

with Depth Anything. However, the method struggled with

the multi-modal noise distribution of stereo data, which

led us to test other regression techniques for robust scale

alignment, including the Huber Regressor and the Stochastic

Gradient Descent (SGD) with Huber loss. The results showed

that Theil-Sen and RANSAC remain most effective for the

specific data distributions in this problem.

VI. CONCLUSION

This work introduces a novel approach for single-shot

depth from a plenoptic camera 2.0. We developed a novel Mi-

crolens Depth Network that successfully infers sparse metric

depth from plenoptic images, we then synthesize a natural

image from the plenoptic one, that we forward pass through

the foundation single-view up-to-scale dense depth model

Depth Anything. Finally, we regress the true scale and offset

values to correct the dense output from our sparse depth. Our

end-to-end pipeline demonstrates the feasibility of generat-

ing dense metric depth maps from single shots. Our work

makes several key contributions, including the design of a

specialized neural network for depth estimation, the creation

and release of the Light Field & Stereo Image Dataset (LFS)

– a new dataset with plenoptic images and corresponding

reprojected metric depth labels – and the development of a

comprehensive image pre-processing methodology suited for

learning-based applications. These contributions advance the

state of the art in light field imaging and single-view depth

estimation, establishing a foundation for further research.

Future work could focus on refining the developed method-

ology by exploring more advanced regression techniques,

that incorporate object segmentation and independent scale

estimation for different image regions, alongside occlusion

handling. This would enable more accurate depth scaling,

improve metric precision, and address the complexities in

the relationships among objects, as opposed to our linear

regression approach.
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