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Abstract

This work investigates whether, and in what manner, online guidance can provide fault tolerance in

the presence of propulsion faults during the landing burn, and to determine the extent to which this

contingency guidance remains effective throughout the descent. To this end, the effect of guidance re-

configuration is analyzed in the presence of engine loss, thrust inefficiencies, and thrust vectoring faults.

A return-to-launch-site scenario is considered, restricted to the landing phase, where the mitigation of

engine faults is paramount to recover the vehicle. In such cases, a new optimal trajectory must be re-

computed, constraining the solution to the new degraded vehicle resources.

To address these challenges, a fault-tolerant landing guidance method for a multi-engine Reusable Launch

Vehicle is developed, formulated through a sequential convex programming framework, where the opti-

mization problem is updated according to the fault information.

Monte Carlo simulations demonstrate that the algorithm is highly effective in generating feasible recovery

trajectories under a wide range of fault scenarios. The results show that the proposed method allows

successful recovery where nominal guidance would otherwise fail.
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ṁ [kg/s] Mass flow rate
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1. Introduction

1 Introduction

1.1 Reusable Launch Vehicles: Historical Context

Space transportation is experiencing a significant change, as substantial global efforts are directed to-

ward the development of Vertical Takeoff Vertical Landing (VTVL) Reusable Launch Vehicles (RLVs).

Reusable rockets are highly valuable assets for the organizations that have the expertise to operate

them [9].

The idea of vertical landing dates back to the very beginning of spaceflight. The first spacecraft to achieve

a survivable landing on a celestial body was Luna 9, which successfully touched down on the Moon on

February 3, 1966 [79], after multiple previous Soviet attempts. This marked the first human-made object

to achieve a soft landing on another celestial body. The Soviets later expanded this success with Venera

7, performing the first soft landing on Venus on December 15, 1970 [76].

On the U.S. side, NASA’s Surveyor I mission achieved the first American soft landing on the Moon

on June 2, 1966 [31], employing a three-legged landing structure and retro-propulsion, unlike the Soviet

Luna landers. Later, Viking I became the first spacecraft to successfully soft-land on Mars on July 20,

1976 [54].

On Earth, interest in reusable rockets was already explored in the Apollo period and resurfaced with the

Space Shuttle program [9]. Recovery concepts can be broadly grouped into two categories: those aiming

for a vertical landing of the reusable stage, and those pursuing horizontal landing [26]. The latter include

the U.S. Shuttle itself or Europe’s Hermes spaceplane, although the project was canceled before it ever

flew [30]. More recently, uncrewed winged demonstrators such as the Deutsche Zentrum für Luft- und

Raumfahrt (DLR) Reusability Flight Experiment (ReFEx ) [10] continue this line of development.

One of the first demonstrations of vertical landing on Earth was achieved in 1993 by the McDonnell

Douglas Delta Clipper Experimental (DC-X ) vehicle [34]. A key milestone followed with the G-FOLD

(Guidance for Fuel-Optimal Large Diverts) algorithm [5], first demonstrated in 2013 on the Masten Space

Systems Xombie VTVL suborbital rocket [74] (see Figure 1.1a), showing the feasibility of onboard real-

time computation of large divert maneuvers. Shortly thereafter, private companies began demonstrating

VTVL at scale. Blue Origin successfully recovered its New Shepard suborbital booster in November 2015

[17] (Figure 1.1b), later reusing it, while SpaceX recovered its first Falcon 9 stage in December 2015 [91]

and reflown it in 2017.

Both companies are now advancing towards heavy-lift reusable launch systems. Blue Origin is developing

New Glenn, a medium-to-heavy lift rocket with a reusable first stage whose maiden flight occurred on

January 16, 2025 [18], reaching orbit though the booster landing attempt failed. SpaceX is developing

Starship and its Super Heavy booster, both fully reusable and capable of autonomous vertical landing.
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On October 13, 2024, the Super Heavy booster demonstrated the first successful “catch” landing using

mechanical arms [84] (Figure 1.1c).

Figure 1.1: Examples of VTVL vehicles. From the left: (a) Xombie demonstrates the G-FOLD algorithm
(2013). (b) Blue Origin’s New Shepard first vertical landing (2015). (c) SpaceX’s Super Heavy booster
performs the first successful catch landing with the Mechazilla arms (2024).

Globally, multiple space agencies are pursuing similar technologies. China is developing a reusable vari-

ant of its Long March 8 [42], while India is progressing with the Reusable Launch Vehicle–Technology

Demonstrator (RLV-TD) [2], aimed at hypersonic flight and autonomous landing validation. In Europe,

the European Space Agency (ESA) and ArianeGroup are developing Themis, a methane-powered VTVL

demonstrator [1], while DLR, the Centre National d’Études Spatiales (CNES), and the Japan Aerospace

Exploration Agency (JAXA) are collaborating on CALLISTO (Cooperative Action Leading to Launcher

Innovation in Stage Toss-back Operations) [29], a small-scale VTVL platform that serves to demonstrate

the manoeuvres and operations required for a reusable first stage, together with validating the potential

economic benefits such a system could bring to the European space sector.

We can see that the renewed interest in rocket reusability in recent years is translating into numerous

products and prototypes that are demonstrating reliable performance. Yet, these efforts may not be

directed toward developing methods for fault compensation [32]. An industry-wide study of international

launches examined 118 failures from 2000 to mid-2024 and analyzed their statistical distribution across

different categories, finding that propulsion issues account for the largest share of mission losses (49.6%)

[38]. Consistent with this trend, another analysis reports that propulsion failures represent 54% of cases

over the last 15 years [33].

Examples of failed landing attempts due to propulsion system failures include: (i) the Falcon 9 landing

attempt on June 15, 2016, where one of the three Merlin engines produced less thrust than expected

during the terminal burn, resulting in a crash on the droneship with a consequent loss of the vehicle [22];

and (ii) the Falcon Heavy test flight on February 6, 2018, in which the center core aimed for a droneship

return but failed to ignite two of its three engines for the landing burn [23].
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1.1.1 Fault-Tolerant Guidance: Motivation and Background

A fault is defined as any unpermitted deviation of at least one characteristic property or parameter of

a system from its standard condition [40]. Fault Detection and Isolation (FDI) consists of determining

whether a fault is present and, if so, locating and characterizing it. It generally relies on redundancy,

which can be provided either by hardware or by analytical methods. Analytical redundancy employs

a mathematical model of the system together with estimation techniques, and can be classified into

quantitative model-based approaches, which use explicit mathematical models to generate residuals, or

qualitative model-based methods, which use artificial intelligence (AI)[39].

On the other hand, hardware redundancy achieves fault detection mainly through cross checks, consis-

tency checks or voting mechanisms [93], for example by comparing measurements of the same signal

coming from multiple sensors.

Building upon FDI, Fault Detection, Isolation, and Reconfiguration (FDIR) is a control strategy that

maintains safe or acceptable system operation in the presence of faults [39]. Assuming a correct and

timely FDI, fault-tolerant control (FTC) enables the system to maintain stability and a limited level of

performance despite the reduced resources caused by the fault. This is achieved by using the remaining

control authority, allowing recovery from adverse flight conditions caused by faults [80]. For instance,

an adaptive controller which generates new control parameters online after a fault occurs is discussed in

[56], while [59] presents several strategies for handling thrust and TVC failures depending on the severity

of the fault. These include switching to a different control allocation scheme, selecting a precomputed

control law designed to be robust against failures, and reconfiguring the TVC inner-loop controller.

When flight conditions are too degraded for FTC to be effective, fault-tolerant guidance (FTG) becomes

necessary. FTG refers to a redefinition of the onboard mission objectives when failures render the orig-

inal plan infeasible. For example, recovery strategies for reentry missions are examined in [52]. While

[57] describes online reconfiguration in the presence of a mid-flight change in the performance of the

propulsion system of a Vertical Take Off and Landing (VTOL) aircraft. The work in [82] motivates FTG

as a recovery strategy for failures that conventional techniques cannot handle, this can be achieved by

changing mission objectives and recomputing a feasible trajectory accounting for the reduced resources,

reshaping the mission autonomously to avoid the total loss of a launcher during ascent. Along these lines,

real-time trajectory replanning for multistage launch vehicles under faults such as thrust drop or mass

flow anomalies is studied in [51, 83]. Here, online optimal control is applied to generate a feasible trajec-

tory after a fault occurs. Trajectory regeneration is carried out online, with the strategy determined by

the severity of the fault: for less severe cases, the mission goal is preserved but the trajectory is adapted

to remain feasible given the degraded resources, while for more severe cases the mission target itself is

modified, switching from the original target orbit to a safe rescue orbit. Finally, when FTC is insufficient

to address severe faults, FTG methods such as those described in [59] allow the continuation of a mission

by regenerating an updated reference trajectory that explicitly accounts for the fault, by computing a

feasible and locally optimal solution around the original nominal trajectory but consistent with the new

faulty dynamics.
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1.2 Guidance Algorithms: State of the Art

Computing guidance means generating a dynamically feasible state and control trajectory that satisfies a

set of constraints while optimizing a mission objective, and such a problem is naturally formulated as an

optimal control problem (OCP). All terms introduced here are meant in a broad sense, and their precise

meaning will be clarified in the remainder of this work.

Trajectory optimization problems can be distinguished between offline and online. Offline formulations

typically rely on indirect optimal control approaches or on direct transcription methods that result in

nonlinear programming (NLP) problems. These approaches are categorized as offline because general

NLP problems provide no guarantees of finding a feasible solution, may converge only to local minima,

and are often sensitive to initial guesses [55]. As a result, they cannot reliably ensure safe guidance in real

time. Furthermore, unpredictable computational time and the absence of assured algorithm convergence

exclude the use of such methods for real-time applications, which demand both reliability and fast onboard

solutions [45]. In contrast, trajectory optimization methods are classified as online-capable if they can

provide onboard guidance commands in real time that satisfy the problem constraints and terminal

conditions, independent of precomputed reference trajectories [81]. These methods generally rely on

direct formulations that exploit convexity to achieve predictable runtimes and guaranteed convergence

properties.

1.2.1 Offline Optimization

A number of software packages have been developed to address offline optimal control problems (OCPs).

FALCON.m [61] provides an object-oriented framework within MATLAB [89] for modeling and solving

general OCPs. Another widely used tool is GPOPS-II [58], which implements variable-order Gaussian

quadrature collocation methods to transcribe the continuous-time problem into a sparse nonlinear pro-

gram. DLR has developed SPARTAN [71], a tool based on pseudospectral transcription capable of

handling complex multi-phase problems. Other well-established packages include DIDO [62], which en-

abled the International Space Station (ISS) to execute an optimal maneuver that saved one million dollars

and marked the first in-flight use of pseudospectral methods [12], and CASADI [7], a flexible framework

for algorithmic differentiation and numerical optimization that has been increasingly adopted for optimal

control applications.

1.2.2 Online Optimization

Unlike nonconvex approaches, convex problems can be solved to global optimality under mild assump-

tions, with guaranteed convergence in polynomial time [20, 41]. This property makes convex optimization

especially suitable for real-time applications where reliability and predictability of solve times are criti-

cal. Unfortunately, many practical trajectory generation problems, such as powered descend and landing

(PDL), are inherently nonconvex and thus not directly compatible with convex optimization methods.

Since trajectory generation problems are almost always nonconvex, online guidance methods typically

rely on some form of convexification[49].

State of the art algorithms address this challenge by reformulating the original nonconvex guidance

problem into one that can be solved using a convex optimizer. Two main strategies exist:
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1. Lossless Convexification (LCvx). LCvx reformulates certain classes of nonconvex (OCPs)

into higher-dimensional convex problems. Crucially, it can be shown that the solution of the

convex problem is also an optimal solution to the original nonconvex problem, without excluding

any feasible solutions [4]. This “lossless” property ensures that if a feasible solution exists, the

convexified problem will find it [3]. However, LCvx formulations for more realistic lander models,

such as full six-degree-of-freedom (6-DoF) dynamics or cases including complex aerodynamic forces,

remain underdeveloped, with only simplified examples studied to date.

2. Sequential Convex Programming (SCP). When LCvx cannot be applied, convex optimization

can still be used through SCP methods. These approaches iteratively solve a sequence of convex

subproblems obtained by linearizing the nonconvexities around the solution at the previous iteration.

Well-known algorithms include Successive Convexification (SCvx) [50] and GuSTO [19], which

represent two variants of this general methodology.

Further research has explored hybrid approaches combining pseudospectral optimal control methods

with convex optimization techniques. For example, a framework integrating pseudospectral methods

with convex formulations for powered descent guidance was introduced in [65].

Several of these algorithms have already been demonstrated on real missions. LCvx was deployed on the

Masten Space Systems Xombie rocket via the G-FOLD algorithm [5], showing that convex optimization

could solve precision landing problems in real time. NASA has also tested SCvx onboard Blue Origin’s

New Shepard as part of the SPLICE (Safe and Precise Landing Integrated Capabilities Evolution) program

[53]. Lastly, the European CALLISTO demonstrator is set to carry convex optimization algorithms

onboard for guidance and control [69].

1.3 Research Questions

The objective of this thesis is to propose and analyze the effect of guidance reconfiguration in the presence

of engine loss, thrust inefficiencies, or thrust vectoring faults. The study focuses on a return to launch site

scenario, limited to the landing phase, where the mitigation of engine faults is paramount to recover the

vehicle. To this purpose, a new optimal trajectory must be recomputed while constraining the solution

to the degraded vehicle resources, which makes the formulation of the underlying optimization problem

critical. The thesis builds upon an RLV mission benchmark based on [77], modified to include a cluster

of rocket engines rather than a single-engine configuration. This not only provides additional redundancy

in thrust capability but also better aligns to the future needs of commercial vehicles. For these reasons,

the first research question is:

Research Question 1: How can an online guidance provide fault tolerance in presence of

faults affecting the engines in reusable launch vehicles during the landing burn?

Once a functioning algorithm has been established, the next step is to examine both its robustness and

its limits. This means subjecting it to a wide range of fault scenarios and operating conditions in order

to identify the envelope within which a safe landing can still be guaranteed. To this end, extensive

Verification and Validation is carried out, which motivates the second research question.

Research Question 2: In which measure (namely, until when across the descent) is the

contingency guidance effective?
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1.4 Thesis Overview

Chapter 2 outlines the overall research methodology. Chapter 3 introduces the mathematical prelimi-

naries, beginning with a general classification of optimization problems and concluding with an overview

of methods for solving (OCPs). Chapter 4 presents the mission profile and the VTVL model, including

the derivation of the equations of motion. Building on this foundation, Chapter 5 defines the reference

trajectory, which serves as the basis for the rest of the thesis, and describes the controller used to track

it.

The core contribution of the work begins in Chapter 6, where the convex formulation of the guidance

algorithm is derived in detail. This formulation is subsequently extended to account for engine and thrust

vectoring faults, directly addressing the first research question. Chapter 7 answers the second research

question by testing the algorithm through extensive Monte Carlo simulations, leading to conclusions on

the impact of faults on mission success and the validation of the algorithm’s robustness.

Finally, Chapter 8 states the conclusions of the thesis and points out directions for future work.
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2 Methodology

The objective of this chapter is to give an overview on the decisions that have led to the choices made

throughout the thesis, how the models, algorithms, and simulation environment are developed in order

to addresses the research questions posed in Chapter 1.

Multiple surveys have shown that propulsion-related anomalies represent one of the most frequent causes

of launch vehicle failure. For this reason, this work focused on propulsion and TVC related failures.

2.1 Methodology for Research Question 1

Research Question 1 (RQ1): How can an online guidance provide fault tolerance in presence

of faults affecting the engines in reusable launch vehicles during the landing burn?

The formulation of RQ1, which explicitly requires an online solution, motivated the investigation of guid-

ance algorithms suitable for real-time implementation, leading to the choice of a convex method. As with

all OCPs, the process began with the definition of an appropriate flight dynamics model.

A 3-DoF translational model with a cluster of engines was selected. The multi-engine setup is essential to

allow for fault-tolerance, as one engine would not be enough, while the 3-DoF formulation was preferred

over a full 6-DoF model for two reasons: (i) real-time applicability requires reduced computational bur-

den, and (ii) the simplified translational model coupled with the engine cluster had not yet been explored

in the literature.

Once the nonlinear dynamics had been defined, a convexification strategy was required. Among the

available methods, LCvx could not be applied, as existing formulations do not cover the selected flight

dynamics model. Therefore, SCP was adopted, since it is a more general method able to tackle the

nonconvexities of the problem while still offering opportunities for further development beyond the scope

of this thesis.

The guidance problem was thus formulated through SCP, where nonlinearities are linearized at each iter-

ation until convergence is achieved. Details of the algorithm are provided in Chapter 6. First, a standard

SCP algorithm was developed, and its correctness was verified by comparing its solutions with those

obtained from the well-known OCP solver GPOPS-II [58]. The convex optimization problems that are

solved in the SCP framework in each iteration were written using CVX, a MATLAB library for specifying

and solving convex programs [24, 35] and solved using the convex optimization solver MOSEK [8]. Once

the baseline SCP algorithm was validated, it was then augmented to provide guidance reconfiguration in

the presence of faults. This was achieved by appropriately updating the OCP components based on the

fault acting on the system. The resulting algorithm, named Fault-Tolerant Sequential Convex Program-

ming (FT-SCP), was then tested on a range of representative cases for all the considered faults, thus

addressing RQ1.
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2.2 Methodology for Research Question 2

Research Question 2 (RQ2): To what extent, i.e., until when across the descent, is the

contingency guidance effective?

Answering RQ2 served multiple purposes. First, it enabled a robustness assessment of the algorithm

developed to address RQ1 with respect to dispersions in initial conditions. Second, it allowed an inves-

tigation of how the occurrence of different propulsion faults at different times during the descent affects

the landing success. RQ2 was addressed in Chapter 7 through a series of Monte Carlo campaigns that

combined the FT-SCP algorithm with a feedback controller designed to track the computed trajectories.

For this purpose, a simple Linear Quadratic Regulator (LQR) was employed, since the focus of the thesis

lies on the guidance aspect rather than on controller design.

In conclusion, this chapter outlined the motivation behind the choices made to address the research

questions, which will be explained in greater detail in the following chapters.
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3 Mathematical Preliminaries

This chapter introduces the mathematical background required throughout the thesis. It starts with

basic notions from optimization theory and then moves to the formulation of OCPs and their numerical

solution methods.

3.1 Parametric Optimization

3.1.1 Nonlinear Optimization

Nonlinear optimization, or nonlinear programming (NLP) problems take the general mathematical form [11].

Let z = (z1, . . . , zn) ∈ Rn denote the vector of decision variables. The problem can be written as

minimize f(z) (objective function)

subject to gi(z) ≤ 0, i = 1, . . . ,m (inequality constraints)

hj(z) = 0, j = 1, . . . , p (equality constraints)

(3.1)

where

g(z) =


g1(z)
...

gm(z)

 ∈ Rm, h(z) =


h1(z)

...

hp(z)

 ∈ Rp. (3.2)

and

f : Rn → R, g : Rn → Rm, h : Rn → Rp. (3.3)

The objective of problem (3.1) is to determine the variables z1, . . . , zn that satisfy the equality and

inequality constraints defined by h and g, while minimizing the objective function f .

3.1.2 Convex Optimization

Before discussing what makes an optimization problem convex, it is useful to introduce the basic com-

ponents of such problems. We begin with the definition of convex sets, followed by the notion of convex

functions, and finally arrive at the structure of a convex optimization problem.

Let z1, z2 ∈ Rn. Any combination of these points of the form

z = λ1z1 + λ2z2 (3.4)

is also an element of Rn. This concept extends naturally to any number of vectors i = 1, . . . ,K.
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Depending on what restrictions we place on the coefficients λi, we obtain different types of combinations

[20]:

1. Linear combination: coefficients are arbitrary real numbers

z = λ1z1 + λ2z2, λi ∈ R (3.5)

2. Affine combination: coefficients sum to one

z = λ1z1 + λ2z2, λi ∈ R, λ1 + λ2 = 1 (3.6)

3. Convex combination: coefficients are nonnegative and sum to one

z = λ1z1 + λ2z2, λ1 + λ2 = 1, λi ≥ 0 (3.7)

4. Conic combination: coefficients are nonnegative

z = λ1z1 + λ2z2, λi ≥ 0 (3.8)

A set C ⊂ Rn is affine if, for any z1, z2 ∈ C and λ ∈ R,

λz1 + (1− λ)z2 ∈ C (3.9)

That is, C contains all affine combinations of its points [20].

A set C ⊂ Rn is convex if, for any z1, z2 ∈ C and λ1, λ2 ≥ 0 with λ1 + λ2 = 1,

λ1z1 + λ2z2 ∈ C (3.10)

Equivalently, C includes the line segment connecting any two of its points [20].

Convexity is preserved under several operations [37]. Let C1, C2 ⊂ Rn be convex sets, then:

• Intersection:

C1 ∩ C2 is convex (3.11)

• Algebraic sum:

C1 + C2 = {z ∈ Rn : z = z1 + z2, z1 ∈ C1, z2 ∈ C2}

is convex
(3.12)

• Affine transformation: for f(z) = Az+ b, with A ∈ Rm×n and b ∈ Rm,

f(C1) = {y ∈ Rm : y = Az1 + b, z1 ∈ C1}

is convex
(3.13)

Having discussed convex sets and operations that preserve convexity, it is natural to extend the concept
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to functions defined on these sets. A function f : C → R, defined on a convex set C ⊂ Rn, is said to be

convex [20] if, for all z1, z2 ∈ C and λ ∈ [0, 1],

f(λz1 + (1− λ)z2) ≤ λf(z1) + (1− λ)f(z2). (3.14)

In the context of the general nonlinear programming problem introduced in (3.1), the optimization

problem is classified as convex when its components satisfy the following conditions [20]:

• The objective function f(z) is convex.

• Each inequality constraint function gi(z) is convex.

• Every equality constraint is affine

hj(z) = aTj z− bj , j = 1, . . . , p, (3.15)

where aj ∈ Rn and bj ∈ R.

3.1.3 Second Order Cone Programming

Second-order cone programming (SOCP) is a subclass of convex optimization in which the objective

function is linear, subject to a combination of linear equality constraints, linear inequality constraints

and second-order cone (SOC) constraints. A generic SOCP can be written as [20]

min
z∈Rn

f⊤z

s.t. ∥Aiz+ bi∥2 ≤ c⊤i z+ di, i = 1, . . . ,m,

Fz = g

Gz ≤ h

(3.16)

Ai ∈ Rℓ×n, bi ∈ Rℓ, ci ∈ Rn, di ∈ R, F ∈ Rp×n, g ∈ Rp, G ∈ Rq×n, h ∈ Rq. (3.17)

In problem (3.16), the constraints consist of SOC constraints of the form ∥Aiz+bi∥2 ≤ c⊤i z+di, together

with linear equality constraints Fz = g and linear inequality constraints Gz ≤ h. Each SOC constraint

is of dimension ℓ+ 1, where the standard second-order cone is defined as

Kℓ+1 =
{
(u, t) ∈ Rℓ, t ∈ R

∣∣∣ ∥u∥2 ≤ t
}
. (3.18)

Thus, each SOC constraint can equivalently be written as [47]Ai

c⊤i

 z+

bi

di

 ∈ Kℓ+1, i = 1, . . . ,m. (3.19)

This condition defines a second-order cone in Rℓ+1 for the variables (u, t) obtained through the affine

transformation

u = Aiz+ bi, t = c⊤i z+ di. (3.20)
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A graphical interpretation is given in Figure 3.1: in the case ℓ = 2, the admissible pairs (u, t), with

u ∈ R2, occupy the region lying above the boundary of a cone in R3.

Figure 3.1: Second order cone constraint in R3: ∥u∥2 ≤ t.

3.2 Optimal Control

The trajectory design goal is to determine a sequence of control inputs such that a given performance

index is minimized, while ensuring that the resulting state trajectory evolves according to the differential

equation governing the system dynamics. Both the state and control trajectories must satisfy boundary

conditions and path constraints.

The problem can be formulated as an OCP, whose fundamental building blocks are:

• The state vector x(t), which defines the state of the system at time t.

• The control vector u(t), which allows to influence the dynamic behavior of the system at time t.

• The system dynamics defined by the differential equation

ẋ(t) = f(t,x(t),u(t)),

which governs the evolution of the state.

• The objective function to be minimized.

• State and control constraints that must be satisfied along the trajectory.

• The boundary conditions.
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The optimal control problem is formally stated as [60]:

Minimize ϕ
(
x(t0),x(tf ), t0, tf

)
+

∫ tf

t0

f0
(
t,x(t),u(t)

)
dt

subject to ẋ(t) = f
(
t,x(t),u(t)

)
c
(
t,x(t),u(t)

)
≤ 0

ψ
(
x(t0),x(tf ), t0, tf

)
= 0

(3.21)

OCPs must be solved numerically, and the available numerical methods are commonly divided into two

groups: indirect and direct methods, which are described in the following sections.

3.2.1 Indirect Methods

Indirect methods follow a ”first optimize, then discretize” approach, they solve optimal control problems

by first applying the necessary conditions for optimality from Pontryagin’s Minimum Principle [16]. This

leads to a boundary value problem (BVP) involving both the state and adjoint differential equations.

The main idea is to construct the Hamiltonian, apply the necessary optimality conditions, and then solve

the resulting BVP numerically, typically using single or multiple shooting methods [14].

While indirect methods can produce highly accurate solutions, they are often very sensitive to initial

guesses and can struggle with path inequalities [15]. In practice, it can be useful to combine direct and

indirect methods, for example, using a direct method first to generate a good initial guess for the indirect

method.

Indirect methods are outside the scope of this thesis. This section serves only as a brief introduction,

and they will not be discussed further.

3.2.2 Direct Methods

Direct methods approximate the state and/or controls of the OCP in a suitable way. A method is

referred to as control parametrization method when only the control is approximated, while it is denoted

as state and control parametrization method when both state and control are approximated. In both cases

the OCP is discretized and transcribed into a finite-dimensional NLP. A second distinction arises from

the manner in which the dynamics are enforced: shooting methods advance the dynamics by numerical

simulation of the initial value problem (IVP) on some interval, while collocation methods impose the

dynamics as constraints at a set of collocation points [15, 60].

To introduce these methods, we first recall some fundamental notions from the numerical solution of

differential equations.

We consider IVPs of the form

ẋ(t) = f(x(t), t), x(t0) = x0. (3.22)

and introduce a time grid

t0 < t1 < · · · < tN = tf , ti ∈ {t0, . . . , tN}. (3.23)
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Numerical methods for solving such problems can be mainly divided into one-step methods (e.g., Runge–

Kutta methods [63]) and multi-step methods. Their distinction lies in what the method exploits to

calculate the value of the state at the next time step. For one-step, the value xi+1 depends only on the

value xi at the previous grid point. On the other hand, multi-step methods also use previous values

xi−1,xi−2, . . . [14].

A common family of one-step methods are the Runge–Kutta methods, which can be defined as [14, 63]:

xi+1 = xi + hi

K∑
j=1

βjfij , (3.24)

where

fij = f

xi + hi

K∑
ℓ=1

αjℓfiℓ, ti + hiρj

 . (3.25)

The coefficients ρj , βj , αjℓ are known constants, typically organized in the Butcher diagram

ρ1 α11 α12 · · · α1k

ρ2 α21 α22 · · · α2k

...
...

...
. . .

...

ρk αk1 αk2 · · · αkk

β1 β2 · · · βk

For the trapezoidal method with k = 2, the Butcher tableau is

0 0 0

1 1
2

1
2

1
2

1
2

which leads to

xi+1 = xi +
hi
2

(
f(xi, ti) + f(xi+1, ti+1)

)
. (3.26)

For simplicity, the following discussion will be restricted to one-step methods, although analogous con-

siderations apply to multi-step methods as well.

The control u must also be discretized on the grid. Common parametrizations include piecewise-constant

or piecewise-linear functions, as well as higher-order representations such as B-splines.

For example, a piecewise-constant parametrization results in

ui ≈ u(ti), ti ∈ {t0, . . . , tN} ⇒ uh = (u0,u1, . . . ,uN )⊤ ∈ R(N+1)nu . (3.27)

Given a choice of control parametrization, the state samples xi ≈ x(ti) are computed using the one-step

method, which produces the state approximation

xh = (x0,x1, . . . ,xN )⊤ ∈ R(N+1)nx . (3.28)
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Direct Collocation

Given the discretization of state and control, direct collocation treats both {xi}Ni=0 and {ui}Ni=0 as decision

variables, and enforces the dynamics through a set of defect constraints ξi that are imposed on each

discretization interval [15].

For example, under trapezoidal discretization, the defect at time step i is given by

ξi = xi+1 − xi −
h

2

(
f(ti,xi,ui) + f(ti+1,xi+1,ui+1)

)
(3.29)

leading to the following NLP:

min
z

J(z)

s.t. H(z) = 0,

G(z) ≤ 0.

(3.30)

The equality constraints can be written as

H(z) :=



ξ0 = x1 − x0 −
h

2

(
f(t0,x0,u0) + f(t1,x1,u1)

)
...

ξN−1 = xN − xN−1 −
h

2

(
f(tN−1,xN−1,uN−1) + f(tN ,xN ,uN )

)
Cequality(z)

Ψ(x0,xN )


= 0. (3.31)

while the inequality constraints are

G(z) :=


c(t0,x0,u0)

...

c(tN ,xN ,uN )

 ≤ 0. (3.32)

The resulting NLP is large-scale but sparse, a property that many NLP solvers are able to exploit for

efficiency [60].

Direct Single Shooting

The fully discretized OCP that results from direct collocation can be reduced in size by integrating

the differential equations using any numerical method for IVPs. In fact, by solving the IVP, the state

trajectory is fully characterized by the initial state x0 and the control parametrization, leading to the

following vector of optimization variables:

z = (x0,u0, . . . ,uN )⊤, ui ∈ Rnu (3.33)

The direct single shooting method proceeds iteratively. Starting from an initial guess for the initial

state and controls along the trajectory, the system dynamics are integrated from t0 to tf to obtain a

candidate trajectory. The resulting state at the final time is then compared with the imposed terminal
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state constraint, and the unknown initial state and controls are updated by driving the cost to a lower

value. This procedure is repeated until convergence, that is, until the cost is minimized and all constraints

are satisfied [60].

Direct Multiple Shooting

The direct single shooting method suffers from convergence problems due to the sensitivity of the states

with respect to initial states and preceding control variables. In fact, any slight alteration to these can

lead to large, non-linear variations in the subsequent states [14]. To tackle this, in direct multiple shooting

the time interval is divided into m + 1 subintervals and the previously mentioned direct single shooting

method is used over each subinterval, with the values of the state at the beginning of each shooting

segment and the coefficients in the control parametrization being optimization variables [60].

z = (x0,xMS,1, ...,xMS,m, u0, ...,uN )⊤ (3.34)

Furthermore, in order to enforce continuity, the shooting defects are imposed to be zero at each shooting

node (see Figure 3.2), such that the terminal state of a segment coincides with the initial state at the

segment that follows:

x(t−j ) = xMS,j−1 +

∫ tMS,j

tMS,j−1

f(x(t),u(t)) dτ (3.35)

x(t−j )− xMS,j = 0, j = 1, . . . ,m (3.36)

where xMS,j denotes the optimization variable for the initial state at shooting node j, and x(t−j ) is the

solution of the IVP obtained by integrating the dynamics over the interval [tMS,j−1, tMS,j ] starting from

xMS,j−1. The direct multiple shooting method increases the size of the optimization problem, as the

state values at the shooting nodes are introduced as optimization variables. However, this larger problem

is acceptable because integrating over shorter subintervals decreases sensitivity to errors in the unknown

initial conditions. As a result, the states become sensitive only to the preceding shooting nodes and the

control variables within each subinterval [60].

Pseudospectral Methods

Pseudospectral (PS) methods are a global form of orthogonal collocation. In this approach, the state is

approximated by a global polynomial, and collocation conditions are enforced at specific points, chosen

as the roots of orthogonal polynomials [60]. In PS methods, the number of mesh intervals is fixed, while

the degree of the polynomial is varied. Increasing the number of collocation nodes p raises the degree of

the polynomial approximation, and the solution accuracy improves accordingly. The main benefit of PS

methods is that convergence is spectral (i.e., quasi exponential) with the number of nodes. An additional

property of the Gauss pseudospectral method is that the Karush–Kuhn–Tucker (KKT) conditions of the

NLP can be mapped to the costates of the continuous-time OCP [13], a property that will be exploited

in Chapter 5.

hp pseudospectral methods extend this idea by dividing the time domain into multiple subdomains,

over which the equations of motion are collocated. Two parameters are then defined: h, the number

of segments, and p, the number of nodes per segment. These methods were first introduced in optimal
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Figure 3.2: Multiple shooting defects.

control by [25], who proposed an adaptive version where the number of segments, segment widths, and

polynomial degrees are varied. Such a scheme is implemented, for example, in the optimal control software

GPOPS-II [58]. More recently, [64] proposed a hybrid framework combining hp pseudospectral methods

with convex optimization, applied to the powered descent and landing (PDL) problem.
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4 Modeling

4.1 Recovery Strategies for Reusable Launch Vehicles

Two primary recovery strategies are commonly considered for the first stage of reusable launch vehicles

(RLVs): Return to Launch Site (RTLS) and Downrange Landing (DRL) [26] (Figure 4.1).

The DRL scenario is the simplest to execute and the most fuel-efficient, as the reusable stage follows its

ballistic or initial trajectory and lands at a designated point, typically an offshore landing platform. The

recovery sequence after Main Engine Cut-Off (MECO) can be summarized as follows:

• Tilt-over maneuver: The rocket is reoriented in the direction of flight using gas thrusters.

• Ballistic flight: The rocket follows its ballistic trajectory.

• Entry burn: The engine is reignited to adjust the ballistic trajectory such that the impact point

aligns with the landing pad. The engine is then shut down again.

• Aerodynamic phase: The vehicle uses aerodynamic control surfaces to steer and reduce disper-

sions.

• Powered descent and landing: At a low altitude, the engines are reignited to perform a precise,

soft landing.

The RTLS scenario involves a more complex sequence of maneuvers but offers the advantage of eliminating

the need for an offshore recovery platform. The primary benefit is that the reusable stage can return and

land near the launch site. The recovery sequence following MECO is as follows:

• Tilt-over maneuver: The rocket is reoriented in the direction of flight using gas thrusters.

• Boostback burn: The engine is reignited to reverse the horizontal velocity, redirecting the rocket

back toward the launch/landing site.

This is followed by a coast phase, re-entry, and a powered descent and landing phase, which are similar

to those in the DRL profile.

4.2 Vehicle Configuration & Mission Profile

The focus of this thesis is on the PDL phase, which begins after the final engine ignition. As such, earlier

mission stages such as the boostback burn or aerodynamic coasting are not considered in the analysis.

Therefore, the results presented here are not limited to a specific recovery strategy, since the PDL from

the guidance and control perspective formulation is identical for both RTLS and DRL. The RLV under

study is based on the benchmark proposed in [77]. Within the scope of the mission, only the first stage
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Figure 4.1: Recovery strategies for RLVs.

is considered, with the single-engine configuration replaced by a cluster of five engines. The first stage is

shown in Figure 4.2. In addition, the rocket is equipped with two pairs of steerable fins mounted near

the top of the vehicle.

The analysis is restricted to the terminal portion of the propulsive landing maneuver, starting at an

altitude of 5 km, with the engines assumed to be already ignited. The maximum and minimum total

thrust values are evenly distributed among the five engines, obtained by dividing the total values by five.

A summary of the main vehicle parameters used in the modeling is provided in Table 4.1. The center of

mass (CoM) position is measured from the gimbal point of the central engine. The reference surface area

corresponds to the booster cross-section, derived from its diameter. The maximum thrust corresponds

to 13.5 times the initial mass, while the minimum thrust is limited to 30% of this value. The thrust rate

is obtained from the difference between these bounds, divided by 1.5.

Table 4.1: Rocket parameters

Parameter Symbol Value
Dry mass mdry 2750 kg
Initial mass m0 4300 kg
Specific impulse Isp 282 s
Booster diameter d 3.0m
Reference surface area Sref 7.07m2

Booster length L 11.7m
CoM position xCoM 4.6m
Maximum total thrust Tmax 58 kN
Minimum total thrust Tmin 17.4 kN

Thrust rate limit Ṫmax 27.1 kN/s
Maximum TVC angle βmax

y,i , βmax
z,i 8◦

Maximum TVC rate β̇max
y,i , β̇max

z,i 4◦/s
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Figure 4.2: Vehicle body axes and aerodynamic angles.

4.3 Equations of Motion

The equations of motion are formulated in an Up-East-North (UEN ) frame considered inertial and

denoted as I, centered at the landing pad (see Figure 4.3). The validity of treating this frame as inertial

will be discussed later. External forces are defined in the body–fixed frame B, whose origin is placed at

the CoM, which is assumed constant during PDL, since fuel consumption in this phase is small compared

to other flight phases, such as ascent. The xB axis coincides with the rocket longitudinal axis pointing

toward the tip, while yB and zB complete a right–handed triad. The adopted convention is illustrated in

Figure 4.3. Detailed expressions for aerodynamic and propulsive forces are given in the following sections,

for now, they are represented in compact form as a resultant force vector.

The rocket is modeled as a point mass with variable mass, moving in three–dimensional space with respect

to the inertial reference frame I fixed at the landing pad. The system state is composed of the position,

velocity, and mass:

r =
[
x y z

]⊤
∈ R3 (4.1)

v =
[
vx vy vz

]⊤
∈ R3 (4.2)

m ∈ R>0 (4.3)

Here, r and v denote the rocket position and velocity expressed in the UEN frame I, whose axes are

aligned with the local up, east, and north directions.

The translational dynamics are expressed as

ṙ = v (4.4)

v̇ = agrav +
1

m
FI (4.5)
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Figure 4.3: Reference frames: inertial UEN frame I centered at the landing pad and body–fixed frame
B.

where agrav is the gravitational acceleration and FI is the sum of aerodynamic and propulsive forces

expressed in the inertial frame.

The application of thrust leads to propellant consumption, and under the assumption of negligible back-

pressure losses in the engines, the corresponding mass variation is described by the classical rocket

equation [86]:

ṁ = − T

g0Isp
(4.6)

where T denotes the total thrust magnitude.

The gravitational acceleration is modeled using the central-body assumption:

agrav = −µ r+ rE

∥r+ rE∥32
(4.7)

where µ = 3.986 × 1014 m3/s2 is Earth’s gravitational parameter, and rE = [RE , 0, 0]
T is the position

vector of the Earth’s center, with RE = 6371 km the mean Earth radius.

The orientation of the body frame with respect to the inertial frame can, under the assumption of zero

bank angle, be fully described by the angle of attack and sideslip [70], illustrated in Figure 4.2. Based on

this, aerodynamic and propulsive forces are expressed in the inertial frame through a Direction Cosine

Matrix (DCM), constructed as two consecutive rotations:

MIB = MIWMWB (4.8)

where MIW and MWB represent the DCM from wind axes to inertial reference frame and from body to

wind axes, respectively. The transformation MWB can be written in terms of the aerodynamic angles of
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attack α and sideslip β (Figure 4.2) [85]:

MWB =


cosα cosβ sinβ sinα cosβ

− cosα sinβ cosβ − sinα sinβ

− sinα 0 cosα

 (4.9)

Once the relationship between the body axes and the wind frame is established, the second rotation

from wind to inertial must be defined. As anticipated earlier, under the flat–Earth assumption the local

UEN frame can be treated as inertial, which justifies its use here. This allows the wind–to–inertial

transformation to be parameterized by the flight–path and azimuth angles commonly used in aeronautics

[70]:

γ = tan−1

− vz√
v2x + v2y

 , ψ = tan−1

(
vy
vx

)
(4.10)

where vx, vy, vz are the velocity components along the north-east-down NED axes. For a rocket landing

problem, however, these definitions become unsuitable: during a nearly vertical descent the flight–path

angle approaches −π/2, which makes the associated rotation matrix singular. To avoid this ambiguity,

following [70], the angles are redefined as the vertical flight–path angle and the vertical azimuth angle,

which can be used directly to construct the wind–to–NED transformation. In this formulation, the

orientation of the wind axes is expressed without encountering the singularities of the classical definitions,

and the vertical flight–path and vertical azimuth angles (Figure 4.4) are given by

γv = tan−1

(
vz
vx

)
, ψv = tan−1

(
vy√
v2x + v2z

)
(4.11)

Since the inertial frame I is taken to coincide with a local UEN frame, the conversion from the standard

NED frame to UEN must also be specified. This transformation is represented by the constant matrix

MUEN,NED =


0 0 −1

0 1 0

1 0 0

 (4.12)

With these definitions, the resulting DCM from wind to inertial reference frame is

MIW =


cos γv cosψv − sinψv cos γv − sin γv

sinψv cosψv 0

sin γv cosψv − sin γv sinψv cos γv

 (4.13)
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Figure 4.4: Vertical flight-path and azimuth angles.

Finally, by combining the gravitational model with the general representation of aerodynamic and propul-

sive forces, and applying the frame transformations introduced above, the equations of motion of the

system can be written as 
ṙ = v

v̇ = agrav +MIB(TB + FB)/m

ṁ = − T

g0Isp

(4.14)

where TB and FB denote the propulsive and aerodynamic force vectors expressed in the body frame,

respectively.

4.3.1 Aerodynamic Characteristics

The rocket model makes use of lookup tables for aerodynamic parameters, and the corresponding mapping

to body forces follows the approach in [72]. The lookup tables define the axial and normal aerodynamic

coefficients, as well as the x-component of the center of pressure (CoP) relative to the thrust application

point of the vehicle. The aerodynamic data is organized as a two-dimensional set, and due to the axial

symmetry of the booster, the coefficients extend to a three-dimensional representation.

The axial coefficient is evaluated using the Mach number and the effective angle of attack, defined as:

αeff =
√
α2 + β2 (4.15)

The axial aerodynamic coefficient is obtained from the lookup table:

CA,B = CLU
A (αeff,M) (4.16)

Since drag acts along the velocity vector, the body-axis x-component of the aerodynamic coefficient is:

Cx,B = −CA,B (4.17)
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The y- and z-components of the aerodynamic coefficients are computed using the normal coefficient

lookup table and the angles of attack and sideslip:

Cy,B = −sign(β) · CLU
N (|β|,M) (4.18)

Cz,B = −sign(α) · CLU
N (|α|,M) (4.19)

The aerodynamic force vector in the body frame is then given by:

FB =
1

2
ρv2Sref

[
Cx,B Cy,B Cz,B

]T
(4.20)

Using the CoP lookup table, two CoP values associated with α and β are computed:

Xα
CoP = XLU

CoP(α,M) (4.21)

Xβ
CoP = XLU

CoP(β,M) (4.22)

The corresponding lever arms from the CoM to each CoP are:

rαCoM→CoP =
[
Xα

CoP 0 0
]⊤

− rCoM (4.23)

rβCoM→CoP =
[
Xβ

CoP 0 0
]⊤

− rCoM (4.24)

with

rCoM =
[
xCoM 0 0

]⊤
(4.25)

The torque contributions with respect to the CoM are then:

τα
B = rαCoM→CoP × Fα

B (4.26)

τβ
B = rβCoM→CoP × Fβ

B (4.27)

with the force components defined as:

Fα
B =

[
FB,x 0 FB,z

]T
(4.28)

Fβ
B =

[
FB,x FB,y 0

]T
(4.29)

Finally, the total torque with respect to the CoM is:

τ aero
B = τα

B + τβ
B (4.30)

The atmosphere model is the U.S. Standard Atmosphere 1976 [78], which provides atmospheric density,

temperature and ambient pressure as a function of altitude.
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4.3.2 Propulsive Characteristics

Figure 4.5: Cross-section of the engine cluster.

The vehicle is controlled by adjusting both the magnitude and direction of the thrust vector produced

by each of its five rocket engines, which all share the same thrust characteristics with identical limits on

both magnitude and rate. The four lateral engines are equipped with TVC, each with two actuators that

deflect the nozzle of each engine along the body-frame y- and z-axes by the angles βy and βz, respectively.

The central engine’s thrust is aligned with the body-frame x-axis, and thus does not contribute to the

torque. Its force and torque expressions are given by:

TB,1(t) = T1(t) · iB (4.31)

τ prop
B,1 (t) =

[
0 0 0

]⊤
(4.32)

where iB is the unit vector along the body-frame x-axis.

The thrust force vector of a lateral engine i ∈ {2, 3, 4, 5}, with nozzle deflections βy,i(t) and βz,i(t), is

given by

TB,i(t) = Ti(t)


cos
(
βy,i(t)

)
cos
(
βz,i(t)

)
cos
(
βy,i(t)

)
sin
(
βz,i(t)

)
− sin

(
βy,i(t)

)
 (4.33)

and the associated torque relative to the CoM is

τ prop
B,i (t) =

[
rPVP,i − rCoM

]⊤
×TB,i(t) (4.34)

where rPVP,i is the position vector of the pivot point of engine i. The total thrust and torque in the body

frame are then obtained as the sum of the contributions from all engines:

TB(t) =

5∑
i=1

TB,i(t) (4.35)
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τ prop
B (t) =

5∑
i=1

τ prop
B,i (t) (4.36)

4.4 Equations of Motion Summary and Assumptions

Collecting the gravitational, aerodynamic, and propulsive contributions, and applying the frame trans-

formations introduced above, the complete equations of motion are
ṙ = v

v̇ = agrav +MIB(TB + FB)/m

ṁ = −
∑5

i=1 Ti
g0Isp

(4.37)

The following assumptions are made in the modeling framework:

• Only 3-DoF translational dynamics are modeled, attitude dynamics are represented implicitly

through aerodynamic angles, whose values are assumed to be instantly tracked by a lower level

controller.

• The CoM position is considered static.

• Flexible body effects, propellant sloshing, actuator dynamics, and structural bending modes are

neglected.

• The atmosphere is represented by the U.S. Standard Atmosphere 1976 [78].

• Gravity is modeled using the central-body assumption, valid for the short flight times considered.

• Earth is considered to be flat due to limited horizontal distance that the rocket has to cover.
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5 Nominal Guidance & Control

5.1 Nominal Guidance

The nominal landing trajectory is obtained by solving a nonlinear OCP. The goal is to compute a feasible

trajectory that drives the vehicle from the initial conditions specified in the mission profile (Section 4.2)

to a soft landing at the designated pad, located at the origin of the inertial reference frame. The OCP is

constructed using the vehicle dynamics defined in Chapter 4, together with path constraints and a suitable

cost function. In the following, each of these elements is introduced, after which they are collected into

the formal OCP definition. The problem is subsequently scaled and solved numerically to obtain the

reference trajectory.

5.1.1 State and Control Augmentation

The equations of motion used for the guidance problem are those defined in (4.37). To enforce explicit

bounds on the control rates and to obtain smooth control sequences, the controls are reformulated such

that the original control variables become states, while their time derivatives serve as the new control

inputs in the OCP.

This augmentation introduces 15 additional first-order differential equations:

Ṫi = uTi
, i = 1, . . . , 5 (5.1)

β̇y,i = uβy,i , i = 1, . . . , 4 (5.2)

β̇z,i = uβz,i
, i = 1, . . . , 4 (5.3)

α̇ = uα (5.4)

β̇ = uβ (5.5)

The angle of attack during the descent phase is defined around π. For the OCP formulation, it is instead

expressed in its tail formulation (see Figure 4.2), defined as

αtail = π − α (5.6)

which shifts the variable close to zero, and the aerodynamic lookup tables are reparameterized accordingly.

In the guidance dynamics, the transformation between the body and wind frames, given by (4.9), remains

unchanged and continues to use the original angle of attack by remapping αtail back to α. However, αtail

is used to access the reparameterized lookup tables. This approach simplifies the OCP implementation,

since α can now be constrained to values around zero. In the remainder of this work, the symbol α is
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used for simplicity to denote the tail formulation αtail.

5.1.2 Path Constraints

A glideslope constraint is included to guide the rocket during descent by constraining the ratio of hori-

zontal to vertical distance reduction during landing [67]:

x√
y2 + z2

≥ tan γgs. (5.7)

The glideslope angle is fixed at 45◦, and the trajectory is constrained to lie within the corresponding

cone.

5.1.3 Boundary Conditions

The initial state corresponds to the conditions at the start of the powered descent phase. In particular,

the mission begins at an altitude of 5 km with lateral displacements of 200 m and 300 m in the y and z

directions, respectively. The terminal state enforces a soft landing at the pad, with the vertical position

constrained to 1 m above ground, zero lateral displacements, zero lateral velocities, and a vertical velocity

of −1 m/s to avoid a singularity in the definition of the vertical flight path angle (4.11). At landing, the

aerodynamic angles and TVC deflections are required to return to zero, while they are unconstrained

at the beginning. Both the final mass and final time remain free. All boundary conditions and box

constraints are summarized in Table 5.2.

5.1.4 Objective Function

The objective is to minimize the integral of a stage cost composed of several weighted terms:

ℓ(x,u) = wTJT + wṪJṪ + wβ̇yβ̇z

(
Jβ̇y

+ Jβ̇z

)
+ wα̇β̇

(
Jα̇ + Jβ̇

)
+ wprop

τ Jτprop + waero
τ Jτaero . (5.8)

Each component in (5.8) serves a specific purpose in shaping the solution, and the corresponding weights

are listed in Table 5.1.

Table 5.1: NLP integral weights

Weight Value
wT 1
wṪ 10−3

wβ̇yβ̇z
5 · 10−1

wα̇β̇ 6

wprop
τ 10−2

waero
τ 10−4

Thrust magnitude: A quadratic penalty on the thrust magnitude leads the optimizer to avoid unnec-

essarily high thrust levels. Since propellant consumption is directly related to thrust through the mass
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depletion equation (4.6), this term effectively promotes fuel efficiency.

JT =

5∑
i=1

T 2
i . (5.9)

Control rates: The sum of squares of the control rates promotes smooth control trajectories:

JṪ =

5∑
i=1

Ṫ 2
i (5.10)

Jβ̇y
=

4∑
i=1

β̇2
y,i, Jβ̇z

=

4∑
i=1

β̇2
z,i (5.11)

Jα̇ = α̇2, Jβ̇ = β̇2 (5.12)

Torques: Finally, quadratic penalties are imposed on the torques generated by the propulsive and aero-

dynamic forces:

Jτprop =
3∑

i=1

τpropB (i)2 (5.13)

Jτaero =

3∑
i=1

τaeroB (i)2 (5.14)

The inclusion of the propulsive and aerodynamic torque penalties in the cost function is motivated by the

fact that, despite a 3-DoF formulation, we want to ensure that the resulting solution remains compatible

with a full six-degree-of-freedom (6-DoF) model. In other words, the computed trajectory must be

trimmable.

Table 5.2: NLP box constraints and boundary conditions

Variable Units Lower Bound Upper Bound IC FC

t s 5 100 0 –
x m 0 5000 5000 1
y m −5000 5000 100 0
z m −5000 5000 −200 0
vx m/s −500 500 −219.43 −1
vy m/s −0.1 500 −13.17 0
vz m/s −500 500 −8.78 0
m kg mdry m0 m0 –
Ti kN 1.1Tmin,i 0.9Tmax,i – –
βy,i deg −5 5 – 0
βz,i deg −5 5 – 0
α deg −10 10 – 0
β deg −10 10 – 0

Ṫi kN/s −Ṫmax Ṫmax – –

β̇y,i deg/s −β̇max
y,i β̇max

y,i – 0

β̇z,i deg/s −β̇max
z,i β̇max

z,i – 0

α̇, β̇ deg/s −5 5 – 0
Integral – 0 100 – –
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5.1.5 Problem Statement

Collecting the elements defined above yields the following OCP:

Problem 1: Continuous-Time Free-Final-Time Non-Convex Problem

Minimize over x,u, tf

J =

∫ tf

0

ℓ(x,u)dτ

Subject to Dynamics:

ṙ = v

v̇ = agrav +MIB

(
TB + FB

)
/m

ṁ = −
∑5

i=1 Ti
g0Isp

Path Constraints:
x√

y2 + z2
≥ tan γgs

Box Constraints:

x(t) ∈ [xmin,xmax]

u(t) ∈ [umin,umax]

Boundary Conditions:

r(t0) = r0 v(t0) = v0 m(t0) = m0

r(tf ) = rf v(tf ) = vf

α(tf ) = 0 β(tf ) = 0

βy,i(tf ) = 0 βz,i(tf ) = 0 i = 1, . . . , 4

5.1.6 Initialization

For the initial guess, the position and velocity states are obtained by linear interpolation between the

boundary conditions, while the mass is initialized by linear interpolation between the initial and dry

mass. The thrust states are also initialized by linear interpolation between their minimum and maximum

bounds, and all remaining variables are set to zero when no prior information is available.

5.1.7 Scaling

One important aspect that strongly influences the performance of an optimization algorithm is the scaling

of the problem. A problem is considered poorly scaled if changes in one optimization variable lead to

significantly larger variations in the cost function than those caused by variations in another variable

[55]. In such cases, the numerical optimizer may struggle, leading to slow convergence or even failure to

converge. In comparison, a properly scaled NLP can be solved much more efficiently.

Scaling issues typically arise when the relative magnitudes of variables or constraints differ significantly,

or when their values deviate significantly from unity. A standard approach is to apply a transformation
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of units so that optimization variables lie approximately within the range [−1, 1].

Four fundamental scaling quantities are typically selected: length, speed, time, and mass. All other scales

are derived from these [60]. In this work, the length, speed, and mass scales are set to their maximum

values, while scales for other variables are obtained by combining these fundamental quantities. The

adopted scaling is summarized in Table 5.3.

Table 5.3: Scaling of fundamental and derived quantities

Quantity Symbol Definition Value

Length L - 5000m
Speed V - 500m/s
Time T L/V 10 s
Mass M - 4300 kg

Acceleration a V/(L/V ) 50m/s
2

Area A L2 2.5× 107 m2

Volume Vol L3 1.25× 1011 m3

Density ρ M/Vol 3.44× 10−8 kg/m
3

Thrust F MV/(L/V ) 2.1× 105 N

Once the scaling factors are defined, all bounds, initial guesses, and problem parameters are expressed

in the scaled domain, which allows the NLP solver to handle variables of comparable magnitudes and

thereby improves convergence.

5.1.8 Nominal Trajectory Solution

The OCP defined in Problem 1 is solved using GPOPS-II [58], a MATLAB package that implements

variable-order Gaussian quadrature collocation methods, transforming the continuous-time OCP into a

sparse NLP, which is then solved using IPOPT [90]. Although GPOPS-II provides automatic scaling

options, manual scaling is often preferred as it ensures better conditioning of the problem.

Figure 5.1a shows the position and velocity profiles, while Figure 5.1b illustrates the mass consumption.

Figures 5.2a and 5.2b show the propulsive and aerodynamic augmented states, which correspond to the

actual control inputs to the system as the augmentation introduced in Section 5.1.1 is applied solely for

numerical reasons and does not alter the physical interpretation of the controls. The vehicle lands with

approximately 970 kg of fuel remaining, corresponding to about 1% of the total propellant mass, which

is consistent with the 0.7% margin reported in the benchmark [77].

5.1.9 Solution Verification

Optimality Check

One of the defining properties of the Gauss pseudospectral method is that it enables the Karush–Kuhn–Tucker

(KKT) of the NLP to be mapped to the costates of the continuous-time OCP [13]. Therefore, the opti-

mality of the solution can be verified a posteriori via the same procedure as in [70]. The costate vector

is defined as

λ =
[
λT
r λT

v λm λT
T λT

βy
λT
βz

λα λβ

]T
∈ R22 (5.15)
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Figure 5.1: GPOPS states: position, velocity, and mass.
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Figure 5.2: GPOPS controls.

Chair of Space Mobility and Propulsion | Technical University Munich 35



5. Nominal Guidance & Control

and the Hamiltonian can be formulated as

H = λT
r v + λT

v fv(x,u)− λm

∑5
i=1 Ti
Ispg0

+

5∑
i=1

λT,i Ṫi +

4∑
i=1

λβy,i β̇y,i+

+

4∑
i=1

λβz,i β̇z,i + λα α̇+ λβ β̇ + ℓ(x,u)

(5.16)

with fv(x,u) given by (4.5).

Since the Hamiltonian does not depend explicitly on time, it remains constant along the optimal trajec-

tory. Moreover, as this is a free final time problem, the transversality condition [21] requires

H(tf ) = 0 (5.17)

Hence, the Hamiltonian along the optimal trajectory satisfies

H(t) = 0, t ∈ [t0, tf ] (5.18)

The optimality check therefore consists of reconstructing the Hamiltonian using the costates returned by

GPOPS-II and verifying that it remains close to zero. As these costates are approximations of those of

the original OCP, this procedure provides an a posteriori validation of the computed solution. Figure 5.3

shows the reconstructed Hamiltonian, which remains close to zero throughout the trajectory, thereby

confirming the optimality of the solution.
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Figure 5.3: Optimality check: reconstructed Hamiltonian.
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Feasibility Check

An a posteriori feasibility check of the solution consists in verifying that the state trajectories obtained

through a Runge–Kutta 45 propagation (ode45 in MATLAB, implementing the Dormand–Prince method

[27, 75]) of the initial conditions, using the interpolated controls from the numerical solution of the OCP,

remain within a specified accuracy of those computed by the numerical optimization [43]. This validation

confirms that the optimized trajectory satisfies the full nonlinear dynamics, with errors on the order of

2m in position, as shown in Figure 5.5. Figure 5.4 compares the Runge–Kutta propagation with the

GPOPS-II solution for the position and velocity states.
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Figure 5.4: Validation of GPOPS solutions: discrepancy between Runge-Kutta and GPOPS states.

5.2 Nominal Controller

The trajectory optimization described in the previous section provides an open-loop guidance solution,

i.e., a sequence of states and control inputs that satisfy the dynamics. However, in practice such an

open-loop approach cannot be followed accurately due to modeling limitations, parameter uncertainties,

and external disturbances. A feedback controller is therefore required to track the reference trajectory

and ensure robust performance under these nonideal conditions, as illustrated in the block diagram of

Figure 5.6. The design of the controllers follows a methodical procedure [68], summarized below:

1. Select the number of operating points at which controllers will be synthesized.

2. Identify a parameter that changes monotonically along the trajectory to serve as the scheduling

variable. In this work, time is chosen.

3. Sample the states and control inputs of the reference trajectory at discrete points along the schedul-

ing parameter.
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Figure 5.5: Validation of GPOPS solutions: position error over time.

4. Linearize the nonlinear equations of motion numerically at each sampled point, yielding a family of

linear time-invariant (LTI) systems.

5. Design and analyze controllers for each of these LTI models.

6. Evaluate the individual controllers in both frequency and time domains.

7. Implement a gain-scheduled controller by interpolating between the gain matrices according to the

current time.

8. Assess the closed-loop performance of the overall nonlinear system under the scheduled control law.

In this work, 13 operating points are distributed along the reference trajectory, at which a Linear

Quadratic Regulator (LQR) [6] is synthesized. LQR is adopted due to its simplicity, as the primary

focus of this thesis lies on the guidance aspects. Its objective is to track the nominal trajectory by mini-

mizing a quadratic performance index that penalizes deviations in the states as well as the control effort.

The weighting matrices Q and R determine the trade-off between tracking performance and actuation

usage. The resulting feedback gains are applied in a state-feedback fashion, where the control action

depends on the deviation from the reference trajectory. The controller consists of a single loop regulating

translational motion by commanding thrust magnitudes, TVC deflections, and aerodynamic angles based

on errors in position and velocity, while actuator saturation limits are imposed separately on each control

channel as LQR does not explicitly account for constraints.

The controller design is based on a reduced-order system, obtained by eliminating the mass row and col-

umn from the A matrix and the mass row from the B matrix of each LTI model derived in Step 4. This
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Nominal guidance Nominal LQR

PLANT

+- +-

Figure 5.6: Block diagram: nominal closed-loop.

reduction is motivated by the fact that vehicle mass cannot be directly measured or influenced through

feedback, and its inclusion in the control law would therefore be meaningless. From this procedure, 13

gain matrices of dimension 15× 6 are obtained, leading to the following control law:

u = uref −KLQR (x− xref), (5.19)

where the reference control vector is

uref =
[
T1, T2, T3, T4, T5, βy,1, βy,2, βy,3, βy,4, βz,1, βz,2, βz,3, βz,4, α, β

]⊤
, (5.20)

and the state vector is

x =
[
rT vT

]⊤
, xref =

[
rTref vT

ref

]⊤
. (5.21)

5.2.1 Linear Analysis of the Closed-Loop System

The sensitivity and complementary sensitivity transfer functions of the closed-loop system, consisting of

the controller in feedback with the plant, are considered.

Frequency Domain Analysis

The Nichols chart is a standard tool for assessing the stability and robustness of a control system, as

it allows the gain and phase margins to be read directly [36]. These margins quantify how close the

system operates to instability, which occurs when the gain reaches 0 dB or higher while the phase

simultaneously equals −180◦. By providing a visual representation of this relationship, the Nichols chart

offers a convenient way to evaluate robustness. Figure 5.7 presents the Nichols chart for the synthesized

controllers. No instabilities are observed, and, because the system dynamics resemble those of a double

integrator, the gain margins for all input channels are infinite.

The output sensitivity transfer function So indicates good disturbance rejection at low frequencies, with

no significant peaks present (Figures 5.8a and 5.8b).
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Figure 5.7: Closed-loop stability analysis: Nichols charts.

Time Domain Analysis

Step responses of the position and velocity outputs are computed to evaluate the closed-loop behavior

in the time domain. For command tracking, the steady-state values are expected to converge to unity,

whereas for disturbance rejection they should remain close to zero. Figures 5.9a and 5.9b confirm these

expectations, showing accurate tracking performance in both position and velocity for the vertical and

lateral channels.

5.2.2 Nonlinear Analysis

The controller is evaluated in a simulated closed-loop environment on a plant that evolves according

to (4.37) and accounts for uncertainties in the initial conditions and aerodynamic parameters, which

are summarized in Table 5.4, with N denoting normally distributed variables and U denoting uniformly

distributed variables.

Uncertainties in the initial conditions are summed to the nominal ones while perturbations in air density

and aerodynamic coefficients are introduced multiplicatively:

ρ = (1 +∆ρ) ρnom (5.22)

Cx = (1 +∆Cx)Cx,nom, Cy = (1 +∆Cy)Cy,nom, Cz = (1 +∆Cz)Cz,nom (5.23)
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Figure 5.8: Frequency domain analysis.
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Figure 5.9: Time domain analysis: step responses for x- and y-position.
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Table 5.4: Initial conditions and parameter uncertainties

Variable Distribution Units

∆ry,z N (0, 100) m

∆vx,y,z N (0, 20) m/s

∆m U(−2%, 2%) kg

∆ρ N (0, 10%) kg/m3

∆Cx,y,z N (0, 10%) -

To evaluate the performance and robustness of the controller, a Monte Carlo campaign of 1000 cases is

conducted with uncertainties sampled according to Table 5.4. A simulation is considered successful if the

landing requirements listed in Table 5.5 are satisfied.

Figure 5.10 illustrates the results, showing adequate trajectory tracking under uncertainties, with ap-

proximately 70% of the cases resulting in a successful landing.

Table 5.5: Successful landing requirements

Requirement Value
Vertical velocity at touchdown vx(tf ) ≥ −2.5m/s
Lateral velocities at touchdown |vy(tf )|, |vz(tf )| ≤ 1.5m/s
Lateral position error at touchdown |y(tf )|, |z(tf )| ≤ 10m

Figure 5.10: Closed-loop Monte Carlo campaign: successful landings.

In conclusion, the nominal trajectory provides the baseline against which the solutions of the follow-

ing chapter are compared, while the gain-scheduled LQR controller is included to enable closed-loop

simulations presented in Chapter 7.

Chair of Space Mobility and Propulsion | Technical University Munich 43





6. Online Guidance

6 Online Guidance

6.1 Sequential Convex Programming: Theoretical Overview

Sequential Convex Programming (SCP) is an iterative approach that tackles nonconvex optimization

problems by repeatedly solving convex subproblems. The key idea is to retain the convex parts and replace

nonconvex components with convex approximations [28]. Consider a general nonlinear optimization

problem of the form

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(6.1)

In this formulation, the objective function f(x) and the inequality constraints gi(x) can be nonconvex,

and the equality constraints hj(x) are generally non-affine, making the resulting optimization problem

non-convex. SCP solves this problem iteratively by constructing an approximation of the solution x(k),

while confining the optimization problem to a convex trust region around it [28]. Within this trust region:

• The nonconvex functions f(x), gi(x) are replaced by convex approximations f̂(x), ĝi(x) within the

trust region P(k).

• The nonlinear equality constraints hj(x) are replaced by affine approximations ĥj(x) within the

trust region P(k).

These approximations define the convex optimization subproblem:

min
x

f̂(x)

s.t. ĝi(x) ≤ 0, i = 1, . . . ,m

ĥj(x) = 0, j = 1, . . . , p

x ∈ P(k)

(6.2)

with the trust region defined as

P(k) =
{
x ∈ Rn

∣∣∣ ∥x− x(k)∥2 ≤ ρ(k)
}
. (6.3)

While affine approximations obtained through linearization are the most common approach to handle

nonlinear equality constraints, linearization about the current estimate does not always guarantee con-

vergence of the iterative scheme. To address the shortcomings of pure linearization, the convex–concave

decomposition (CCD) method has been shown to perform well for certain classes of problems with non-
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linear equality constraints [48], however, for other types of problems it may suffer from infeasibility,

particularly in the early SCP iterations. To overcome this limitation, [73] introduced the augmented

convex–concave decomposition (ACCD), which guarantees feasibility from the very first iteration.

Although these methods represent important developments, they are outside the scope of this thesis, and

the present work adopts the standard SCP framework instead.

6.2 Algorithm Derivation

This section derives the SCP algorithm step by step from the nonconvex OCP introduced in Chapter 5

and summarized in Problem 1, and Figure 6.1 provides an overview of the procedure.

Linearize
nonconvexities

Address artificial
infeasibility and
unboundedness

Discretize continuous
time problem

Initial
Guess Solve convex

subproblem

Convex
Solver:
-Mosek

CVX
transcription

true

Convergence
Check

True

False

Iteration

Convex Subproblem Creation

STOP

START

Figure 6.1: SCP algorithm schematic.

Problem 1 is a nonconvex optimal control problem because of nonlinearities in the system dynamics,

and cost function. To understand which parts make the problem nonconvex, we analyze each component

separately, separating convex and nonconvex terms. The analysis proceeds in three parts: the system

dynamics, the cost function, and the path constraints. Finally, the formulation is extended to account

for the free–final–time nature of the problem.

The system dynamics can be equivalently written by explicitly separating the convex and nonconvex

terms:

ẋ = fnc(x) + fc(x) +Bu (6.4)

where the convex terms are represented by

fc(x) =


v

03×1

−
∑5

i=1 Ti

Ispg0

015×1

 = Acx (6.5)
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with

Ac =



03×3 I3×3 03×16

03×3 03×3 03×16

01×7 − 1
Ispg0

11×5 01×10

015×3 015×3 015×16


(6.6)

The control input matrix is defined as

B =

07×15

I15×15

 (6.7)

Since Ac and B only contain constant terms, they need to be computed only once.

In Chapter 5, we motivated the choice of augmented states and control rates as inputs by noting that

this formulation allows us to impose explicit bounds on the rates and to obtain smooth control sequences.

In SCP, an additional benefit of using a system that is affine in the controls is that there is no need to

compute Jacobians with respect to the control variables. According to [46], linearization with respect to

the control variables introduces high-frequency chatter in the control profile due to numerical instability,

which is generally detrimental to the convergence of the successive solution process. Small oscillations in

un−1 propagate into the elements of the linearized dynamics, and as a result the updated control un is

likely to amplify these chattering effects.

The nonconvex terms are therefore limited to the velocity states

fnc(x) =


03×1

agrav + aprop + aaero

015×1

 (6.8)

and finally, the overall dynamics can be expressed as

ẋ = f(x,u) = Acx+ fnc(x) +Bu (6.9)

The glideslope constraint (5.7) is conic by nature and therefore does not require convexification, it can

in fact be expressed as SOC constraint [66].([
y, z

]
,

x

tan γgs

)
∈ K3 (6.10)

which, as discussed in Section 3.1.3, is equivalent to∥∥∥∥[y z
]⊤∥∥∥∥

2

≤ x

tan γgs
(6.11)

The box constraints are linear inequalities and therefore fully compatible with convex optimization.

The remaining source of nonconvexity arises from the objective function, which, as with the dynamics,

can be separated into convex and nonconvex terms:

ℓ(x,u) = ℓc(x,u) + ℓnc(x,u) (6.12)
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The convex term includes all sums of squares of states and controls (5.9)–(5.12) and since each term is a

convex function, their sum preserves convexity (3.12).

ℓc(x,u) = wTJT + wṪJṪ + wβ̇yβ̇z

(
Jβ̇y

+ Jβ̇z

)
+ wα̇β̇

(
Jα̇ + Jβ̇

)
(6.13)

On the other hand, the propulsive and aerodynamic torques are formulated through nonlinear expressions

of the optimization variables, thus their relative cost terms represent another source of nonconvexity.

ℓnc(x,u) = ℓτ (x,u) = wprop
τ Jprop

τ + waero
τ Jaero

τ (6.14)

Lastly, to account for the free final time in the problem, the dynamics are expressed in terms of a

normalized trajectory time τ ∈ [0, 1], following the approach in [87]. The original time derivatives can

then be related to the normalized time via the chain rule:

dx(t)

dt
=
dτ

dt
· dx
dτ

(6.15)

Introducing the time–dilation coefficient σ, which maps τ to the actual time t, gives

σ :=

(
dτ

dt

)−1

=
dt

dτ
= tf − t0 = tf (6.16)

With this definition, the dynamics in normalized time become

x′(τ) = σ · f(x(τ),u(τ)) (6.17)

where the time–dilation coefficient σ is treated as an optimization variable.

6.2.1 Convexification Procedure

To construct a convex subproblem, we begin by eliminating all nonconvex components of the original

problem. This is achieved by replacing each nonconvex term with its first-order approximation around a

reference denoted as {x̃(τ), ũ(τ), σ̃}, quantities that will be explicitly defined in Section 6.2.2. Through

the separation of convex and non-convex terms, we can apply a partial linearization and apply sequential

convex programming by leveraging the difference between convex and non-convex terms.

Therefore, the normalized time dynamics (6.17) can be rewritten as:

ẋ(τ) = f(x̃(τ), ũ(τ))σ +A(τ)x(τ) +Bσ u(τ) + z(τ) (6.18)

with

A(τ) =
(
Anc(τ) +Ac

)
σ̃ (6.19)

Bσ = B σ̃ (6.20)

and

Anc(τ) =
∂fnc(x,u)

∂x

∣∣∣∣
x̃(τ), ũ(τ)

(6.21)

Chair of Space Mobility and Propulsion | Technical University Munich 48



6. Online Guidance

z(τ) = −A(τ) x̃(τ)−Bσ(τ) ũ(τ) (6.22)

Because of linearization, the resulting subproblem may become infeasible, even if the original nonconvex

problem is feasible. This phenomenon, known as artificial infeasibility [49], typically occurs when the

intersection of the convexified constraints is empty, which would prematurely terminate the algorithm.

Artificial infeasibility is most common in the early iterations, often caused by a poor initial guess. For

instance, if the initial estimate of the final time is far from a realistic value, the linearized dynamics may

fail to admit any feasible solution.

A common remedy is to relax the linearized dynamics equality constraints by introducing slack variables,

known as a virtual controls, which are left unconstrained but penalized heavily in the cost function [87].

ν(τ) ∈ R22 (6.23)

With this modification, the linearized dynamics become

ẋ(τ) = f(x̃(τ), ũ(τ))σ +A(τ)x(τ) +Bσ u(τ) + z(τ) +Cν (6.24)

where the matrix C is a parameter that determines which virtual controls are introduced to assist the

convergence process. In our case, we set

C = I22 (6.25)

which implies that the virtual controls are applied to all the states. Intuitively, the virtual controls serve

as auxiliary inputs that are only activated when necessary to prevent infeasibility. For the final solution

to be feasible and physically consistent with the original problem, the virtual control terms must vanish.

Following [87], each virtual control vector is bounded by a corresponding slack variable κ:

∥ν(τ)∥2 ≤ κ(τ) (6.26)

and to progressively eliminate them during the optimization, an additional slack variable is used to bound

the norm of κ:

∥κ∥2 ≤ sκ, sκ ∈ R (6.27)

where sκ is included in the cost function and weighted according to its corresponding penalty term.

The remaining nonconvex terms, specifically the torques in the cost function, can also be expressed in a

convex form through linearization around the reference. The integrand is convexified by expanding the

nonlinear torque terms to first order:

ℓconvex(x,u) = ℓc(x,u) + ℓτ (x̃, ũ) +
∂ℓτ
∂x

∣∣∣∣
x̃,ũ

(x− x̃) +
∂ℓτ
∂u

∣∣∣∣
x̃,ũ

(u− ũ) (6.28)

Since the torques only depend on the augmented states, the final integral expression becomes

ℓconvex(x,u) = ℓc(x,u) + (Aprop
τ +Aaero

τ )(x− x̂) (6.29)

with

Aprop
τ =

∂τ prop
B (x)

∂x

∣∣∣∣∣
x̃

, τ prop
B (x) =

[
03×8 ∗ 03×2

]
(6.30)
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where the nonzero block ∗ corresponding to the columns from 9 to 20, and

Aaero
τ =

∂τ aero
B (x)

∂x

∣∣∣∣
x̃

, τ aero
B (x) =

[
03×20 ∗

]
(6.31)

where the nonzero block ∗ corresponding to the columns from 21 to 22.

Linear approximations are only accurate in the vicinity of the trajectory about which the system is

linearized. For this reason, the subproblem solution must be kept reasonably close to the linearization

point characterized by the reference solution, which in the case of SCP, is the solution at the previous

iteration. This motivation leads to the use of trust region constraints. Different formulations have been

proposed in the literature. One option is to prescribe a constant, user-specified trust region radius [44].

This approach decreases the optimization subproblem size since the radius is treated as fixed input rather

than an optimization variable. Another strategy is to define update rules for the trust region radius,

expanding or contracting it according to measures of how well the linear model captures the nonlinear

dynamics [50, 92]. This approach comes with the benefit of still keeping the optimization problem size

contained, as the radius is constant with respect to the optimization problem that is being solved, while

taking into account other information and updating its value between iterations. A further alternative is

to embed the trust region bounds directly into the optimization problem itself [67, 88].

Adopting the latter idea, we constrain the change between consecutive solutions by augmenting the

problem with a slack variable that limits the maximum allowable deviation. In particular, we require∥∥∥X(τ)− X̃(τ)
∥∥∥ ≤ η(τ) (6.32)

where X(τ) = [x(τ),u(τ)] collects states and controls, X̂(τ) = [x̃(τ), ũ(τ)] denotes the corresponding

values at the reference about which the linearization occurs, and η(τ) specifies the allowable deviation,

which is penalized in the cost through a corresponding slack variable:

∥η∥2 ≤ sη, sη ∈ R (6.33)

Lastly, the time-dilation coefficient is bounded through a fixed size trust region.

∥σ − σ̃∥ ≤ ησ = const. (6.34)

In order to obtain a fully linear cost function, as required for the SOCP formulation, the integral term

is bounded by an additional slack variable s∫ , which is then penalized in the cost through a weighting

factor w∫ : ∫ 1

0

ℓconvex(τ) dτ ≤ s∫ (6.35)

The augmented cost function then becomes

J = w∫ s∫ + wη sη + wκ sκ + wσ σ (6.36)

where the last term penalizes the time–dilation coefficient σ, whose role will be clarified later.

With these modifications, the formulation results in a free-final-time, continuous-time convex optimal

control problem, summarized as Problem 2.
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Problem 2: Continuous-Time Fixed-Final-Time Convex Problem

Minimize over x,u,ν,η,κ, sη, sκ, σ

J = w∫ s∫ + wη · sη + wκ · sκ + wσ · σ

Subject to Linearized Dynamics:

ẋ(τ) = f(x̂(τ), û(τ))σ +A(τ)x(τ) +Bσ u(τ) + z(τ) +Cν

Path Constraints: ([
y, z

]
,

x

tan γgs

)
∈ K3

State and Control constraints:

x(τ) ∈ [xmin,xmax]

u(t) ∈ [umin,umax]

Virtual Control and Trust Region Constraints:

∥ν(τ)∥2 ≤ κ(τ)

∥κ∥2 ≤ sκ∥∥∥X(τ)− X̃(τ)
∥∥∥ ≤ η(τ)

∥η∥2 ≤ sη

∥σ − σ̃∥ ≤ ησ∫ 1

0

ℓconvex(τ) dτ ≤ s∫
Boundary conditions:

r(0) = r0, v(0) = v0 m(0) = m0

r(1) = rf v(1) = vf

α(1) = 0 β(1) = 0

βy,i(1) = 0 βz,i(1) = 0 i = 1, . . . , 4

6.2.2 Discretization

To solve the continuous-time optimal control problem, we transcribe it into a finite-dimensional parameter

optimization problem. This is achieved through temporal discretization, carried out using the trapezoidal

scheme. The normalized time variable τ ∈ [0, 1] is partitioned uniformly into K − 1 intervals with K
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nodes {τ1, τ2, . . . , τK−1, τK}, where τ1 = 0, τK = 1. The step size is therefore

∆τ =
1

K − 1
. (6.37)

and normalized time at node k is

τk =
k − 1

K − 1
, k = 1, 2, . . . ,K (6.38)

Here, the subscript k denotes the time step, while the superscript n indicates the iteration number. The

discretized optimal control problem at iteration n is defined by the following dynamics:

xk+1 = xk +
∆τ

2

[
fn−1
k σ +An−1

k xk +Bσuk + zn−1
k +Cνk

+ fn−1
k+1 σ +An−1

k+1xk+1 +Bσuk+1 + zn−1
k+1 +Cνk+1

]
,

k = 1, . . . ,K − 1

(6.39)

with

fn−1
k = f(xn−1

k ,un−1
k ) (6.40)

An−1
k =

(
An−1

nc,k +Ac

)
σn−1 (6.41)

Bσ = Bσn−1 (6.42)

An−1
nc,k =

∂fnc(x)

∂x

∣∣∣∣
xn−1

(6.43)

zn−1
k = −An−1

k xn−1
k −Bσu

n−1
k (6.44)

The continuous-time glideslope constraint in (6.10) is enforced at each discretization node through K

SOC constraints: (
[yk, zk],

xk
tan γgs

)
∈ K3 (6.45)

As highlighted in Rao’s survey [60], the quadrature used for the Lagrange term, that is, the integral

term in the cost function, should match the numerical integration scheme adopted for the dynamics.

Accordingly, the trapezoidal rule is also used to approximate the integral term.

K−1∑
k=1

∆τ

2

[
ℓnconvex,k(xk,uk) + ℓnconvex,k+1(xk+1,uk+1)

]
≤ s∫ (6.46)

with

ℓnconvex,k(x,u) = ℓc(xk,uk) + τB(x
n−1
k )σ +An−1

τ,k xk + zn−1
τ,k (6.47)

An−1
τ,k =

(
An−1,prop

τ,k +An−1,aero
τ,k

)
σn−1 (6.48)

zn−1
τ,k = −An−1

τ,k xn−1
k (6.49)

An−1,prop
τ,k =

∂τ prop
B (x)

∂x

∣∣∣∣∣
xn−1
k

(6.50)
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An−1,aero
τ,k =

∂τ aero
B (x)

∂x

∣∣∣∣
xn−1
k

(6.51)

The virtual control vector at time step k, denoted by νk ∈ R22, is bounded by the corresponding slack

variable κk, where κ = [κ1, . . . , κK ]⊤ ∈ RK . The vector κ is itself bounded by the slack variable sκ ∈ R:

∥νk∥2 ≤ κk (6.52)

∥κ∥2 ≤ sκ (6.53)

Similarly, the trust region variable ηk at time step k bounds the deviation between the current optimiza-

tion variables and their values at the previous iteration n− 1. Collecting all ηk into the vector η ∈ RK ,

we impose the following bounds:

∥xk − xn−1
k ∥22 + ∥uk − un−1

k ∥22 ≤ ηk (6.54)

∥η∥2 ≤ sη (6.55)

The complete set of optimization variables, together with their dimensions, is summarized in Table 6.1,

whereas Problem 3 presents the final discrete-time, fixed-final-time convex formulation, and 6.2.2 provides

a high-level description of the SCP algorithm.

SCP Pseudocode

Input: Select weights wη, wκ, w∫ , wσ, tolerances ϵη, ϵν , maximum iterations Nmax, and initial

guess z0 = {x0,u0, σ0}.
for n ∈ {2, . . . , Nmax} do:

1. Linearize torques about zn−1 = {xn−1,un−1, σn−1} → An−1
τ , zn−1

τ using (6.48)–(6.51)

2. Linearize dynamics about zn−1 → An−1, fn−1, zn−1 using (6.40)–(6.44)

3. Solve Problem (3) → zn = {xn,un, σn}
4. if (6.56) & (6.57):

STOP

5. else:

continue with the next iteration
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6.2.3 Convergence Check

After each convex subproblem is solved, convergence is verified. If the criteria are satisfied, the algorithm

terminates and the current solution is accepted. Convergence is declared when both of the following

conditions hold:

sκ ≤ ϵν (6.56)

sη ≤ ϵη (6.57)

Condition (6.56) ensures that the virtual controls vanish, reflecting the fact that they are introduced

only to aid convergence and to prevent infeasibility in the early iterations. Condition (6.57) requires the

solution to remain sufficiently close to the one obtained at the previous iteration, which guarantees that

the update lies within the region where the linear approximation is valid.

Table 6.1: SCP Optimization variables

Variable Dimension Description
x [22×K] State trajectory
u [15×K] Control trajectory
σ [1] Time-dilation coefficient
ν [22×K] Virtual controls
η [K] Trust region size
κ [K] Virtual controls vector slack
sκ [1] Virtual controls slack
sη [1] Trust region slack
s∫ [1] Integral slack

6.2.4 Initialization

The initial guess for the position and velocity states is obtained by linearly interpolating between the initial

and final boundary conditions. The thrust magnitudes are initialized and held constant at their minimum

value, while the TVC and aerodynamic angles are set to zero. All control rates are also initialized to zero.

This simple initialization scheme is chosen to validate the performance of the algorithm by comparing it

with the results obtained with GPOPS-II in Chapter 5.
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Problem 3: Discrete-Time Fixed-Final-Time Convex Problem

Minimize over x,u,ν,κ,η, sη, sκ, s∫ , σ
J = w∫ s∫ + wη · sη + wκ · sκ + wσ · σ

Subject to linearized dynamics:

xk+1 = xk +
∆τ

2

[
fn−1
k σ +An−1

k xk +Bσuk + zn−1
k +Cνk

+ fn−1
k+1 σ +An−1

k+1xk+1 +Bσuk+1 + zn−1
k+1 +Cνk+1

]
,

k = 1, . . . ,K − 1

Box constraints:

xk ∈ [xmin,xmax], k = 1, . . . ,K

uk ∈ [umin,umax], k = 1, . . . ,K

Path constraints: (
[yk, zk],

xk
tan γgs

)
∈ K3, k = 1, . . . ,K

Virtual control and trust region constraints:

∥νk∥2 ≤ κk, k = 1, . . . ,K

∥κ∥2 ≤ sκ

(xk − xn−1
k )⊤(xk − xn−1

k ) + (uk − un−1
k )⊤(uk − un−1

k ) ≤ ηk, k = 1, . . . ,K

∥η∥2 ≤ sη

∥σ − σ̃∥ ≤ ησ

K−1∑
k=1

∆τ

2

[
ℓnconvex,k(xk,uk) + ℓnconvex,k+1(xk+1,uk+1)

]
≤ s∫

Boundary conditions:

r(0) = r0, v(0) = v0, m(0) = m0

r(1) = rf v(1) = vf

α(1) = 0 β(1) = 0

βy,i(1) = 0 βz,i(1) = 0 i = 1, . . . , 4
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6.2.5 Nominal SCP Validation

The problem is initialized with the line approach described earlier, and the resulting trajectories are

evaluated to assess the performance of the SCP algorithm. Position, velocity and mass (Figures 6.2a

and 6.2b) together with propulsive and aerodynamic controls (Figures 6.3a and 6.4a) closely match the

nominal results. All constraints remain satisfied, and the final integral value differs by only 0.48% as

shown in Table 6.3, confirming the validity of the proposed approach.

Small discrepancies appear in the control profiles: most notably, a lower thrust rate during the first and

only thrust bang, which results from the higher penalization weight for the thrust derivative in SCP

(Table 6.2), and small differences in the TVC and aerodynamic angles at the beginning of the trajectory,

which remain well below 0.5◦. Both the thrust and TVC rate profiles (Figure 6.3b) appear noisier than in

the nominal case, despite the thrust rate integral being penalized more heavily in SCP. These differences

can be attributed to several factors, including the distinct linearization and dynamics approximations,

the convergence conditions, and the discretization schemes; in particular, whereas SCP applies a uniform

trapezoidal discretization, GPOPS-II employs an hp-adaptive pseudospectral method and directly solves

the original nonconvex formulation using the NLP solver IPOPT [90].

A further distinction arises in the cost function formulation. While the NLP directly minimizes the inte-

gral cost in (5.8), the SCP objective also includes penalty terms associated with virtual controls and trust

region slack. In addition, a small penalty on the final time is introduced, as numerical experimentation

showed that this improves the agreement with the GPOPS-II solution. The treatment of the integral

itself differs in two ways: the torque contributions are included in linearized form, and the weight on the

thrust-rate term is increased from 10−3 to 10−1. Figure 6.5 shows the evolution of the slack variables for

the virtual controls, trust region, and integral, together with the value of σ, across the SCP iterations.

Starting from the initialization at σ = 1, the time-dilation coefficient increases to its realistic value of

about 6 within the first eight iterations. During this phase, the virtual-control slack variable remains

non-negligible, since the discretized dynamics constraint in (6.39) cannot be satisfied without artificial

inputs. Once σ stabilizes around 6, the magnitude of the virtual controls rapidly vanishes to essentially

zero (numerical values on the order of 10−18, i.e. machine precision). From that point onward, both the

integral slack and the trust region slack decrease, leading to convergence at iteration 13.

Table 6.2: SCP parameters

Integral weights Slack weights Other parameters
wT 1 wη 10−1 ϵη 10−2

wṪ 2× 10−1 wν 105 ϵν 10−9

wβ̇yβ̇z
5× 10−1 wσ 10−2 Nmax 30

wα̇β̇ 6 w∫ 10 ησ 0.5

wprop
τ 10−2

waero
τ 10−4
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Table 6.3: Integral values comparison

Term GPOPS SCP Difference (%)
Total 3.35× 10−2 3.33× 10−2 −0.48
T 2.39× 10−2 2.41× 10−2 +0.63

Ṫ 9.76× 10−4 5.95× 10−4 −39.05
˙TVC 2.64× 10−3 2.49× 10−3 −5.79
˙aero 5.91× 10−3 6.14× 10−3 +3.79

Propulsive torque 2.7× 10−5 2.4× 10−5 −11.10
Aero torque 1.0× 10−6 1.0× 10−6 +2.66
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Figure 6.2: Comparison of position, velocity and mass states.
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Figure 6.3: Comparison of propulsive quantities: thrust magnitudes, TVC deflections, and rates.
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Figure 6.4: Comparison of aerodynamic quantities: aerodynamic angles and rates.
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Figure 6.5: Evolution of the cost function components across SCP iterations.

6.2.6 Feasibility Check

The same feasibility check described in Section 5.1.9 confirms that the optimized trajectory satisfies the

full nonlinear dynamics, with errors on the order of 3m in position as shown in Figure 6.6a and 6.6b.

6.3 Fault-Tolerant Sequential Convex Programming

In the following, the Fault-Tolerant Sequential Convex Programming (FT-SCP) scheme is introduced.

The objective is to extend the standard SCP formulation so that it can accommodate the degraded condi-

tions resulting from a fault. The description begins with the definition of the fault cases, the information

available at the time of the fault, followed by the modifications applied to the optimization problem

in order to ensure feasibility and robustness under the new system constraints, ultimately allowing the

computation of a trajectory consistent with the degraded system.
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Figure 6.6: Validation of SCP solution: discrepancy between Runge-Kutta and SCP states.

Chair of Space Mobility and Propulsion | Technical University Munich 61



6. Online Guidance

6.3.1 Fault Scenarios

Based on the trends highlighted in [38], and similarly to [59], the failure cases considered in this work are

listed in Table 6.4. Catastrophic failures are excluded, since both FTC and FTG would not be effective

in such cases.

Propulsion failures are modeled as deviations from nominal thrust delivery by the propulsion system. Two

distinct types are considered: total thrust failures (F1), where one engine shuts down and is unable to

deliver any thrust, and partial thrust failures (F2), where one engine operates with degraded performance,

being able to deliver only a certain percentage of its nominal maximum thrust. In addition, TVC actuator

failures with jamming behavior are considered. These are represented as both TVC deflection angles being

stuck at a fixed position (F3).

In [59], severe thrust loss scenarios are handled through an FTG approach, while all other failures, as well

as their combinations, are managed by FTC strategies that integrate control allocation recovery, inner-

loop TVC control recovery, and FTC recovery. In the latter case, the nominal TVC controller is replaced

by an FTC-based controller designed to be robust against propulsion failures. In the present work,

the emphasis is placed on the guidance aspect. Consequently, all failure modes are handled exclusively

through the recovery guidance action.

For the purposes of this study, it is assumed that all types of failures are detected, isolated, and assessed

instantly. In other words, FDI is considered ideal, with the fault type and its location identified without

delay. Furthermore, guidance reconfiguration is assumed to occur immediately after FDI, and the recovery

guidance is considered capable of delivering a solution with no time delay.

Table 6.4: Failure Cases

Name Identifier
Total engine loss F1
Thrust degradation F2
TVC jamming F3

To inform the guidance algorithm, the relevant information is passed at the time of the fault. This is

achieved through the Fault Information Bus, which collects the parameters required for the problem

reconfiguration and is summarized in Table 6.5.

Table 6.5: Information contained in the fault information bus.

Parameter Units Description

Fault time s Time of fault occurrence

Thrust motor identifier – Index of faulty engine (1–5)

TVC motor identifier – Index of faulty actuator (1–4)

Thrust status – 0 = Nominal, 1 = F2, 2 = F1

TVC status – 0 = Nominal, 1 = F3

Thrust degradation % Value between
( Tmin,nom

Tmax,nom
, 0.95

)
of nominal thrust

TVC stuck angles deg Fixed deflections [βjam
y , βjam

z ]
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6.3.2 Final Position Relaxation

Similarly to the approach in [66], the standard SCP formulation is modified in the treatment of the

horizontal components of the final position. Instead of enforcing them as hard constraints, they are

relaxed into soft constraints of the form

|y(tf )| ≤ sy (6.58)

|z(tf )| ≤ sz (6.59)

with the corresponding slack variables added to the cost function multiplied by a weight:

J = wpos(sy + sz) + wηsη + wκsκ + wσσ + w∫ s∫ (6.60)

This modification maximizes feasibility at the expense of allowing a potential error in the final horizontal

landing position. The relaxation is motivated by the fact that, if the initial state error is larger than

expected and resources are degraded due to the fault, it may be preferable to tolerate a bounded horizontal

error rather than risk non-convergence. For this reason, the glideslope constraint is modified accordingly

such that the origin of the cone shifts with the final lateral position.∥∥∥∥[y − y(tf ) z − z(tf )
]⊤∥∥∥∥

2

≤ x

tan γgs
(6.61)

6.3.3 Box Constraints & Final Boundary Condition Update

A complete thrust loss in one engine (F1) is handled by setting the minimum and maximum thrust of

the affected engine to zero. In addition, the corresponding thrust rate, TVC deflection, and TVC rate

constraints are also set to zero.

T i
min = T i

max = 0, Ṫ i
min = Ṫ i

max = 0 (6.62)

βmin
y,i = βmax

y,i = 0, βmin
z,i = βmax

z,i = 0 (6.63)

β̇min
y,i = β̇max

y,i = 0, β̇min
z,i = β̇max

z,i = 0 (6.64)

A thrust degradation failure (F2) is addressed by scaling the box constraint on the maximum thrust of

the affected engine according to the degradation factor ξi. For instance, if engine 3 experiences a partial

thrust fault with 50% degradation, then its maximum thrust is limited to 50% of the nominal value.

T i
max = ξi T

i
max,nom,

T i
min,nom

T i
max,nom

< ξi < 1 (6.65)

In the event of a TVC actuator jamming fault (F3),with jammed values βi
jam,y and βi

jam,z, the correspond-

ing deflection angles are fixed at the values reported in the fault information bus, and the box constraints

on the affected TVC angles and rates are updated accordingly to reflect the jammed condition.

βmin
y,i = βmax

y,i = βjam
y,i , βmin

z,i = βmax
z,i = βjam

z,i (6.66)

β̇min
y,i = β̇max

y,i = 0, β̇min
z,i = β̇max

z,i = 0 (6.67)
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As a consequence, the final boundary condition on the TVC angles specified in Table 5.2 is removed,

allowing the healthy actuators to land with nonzero deflections to compensate for the jammed actuator

even at touchdown, as illustrated in Figure 6.7.

6.3.4 Initialization

At tfault, the FT-SCP receives as input the current augmented state, which includes the vehicle position,

velocity, and mass, together with the control inputs applied by the controller. These quantities are scaled

according to Table 5.3 and are then used as initial boundary conditions (IBCs) for the SCP problem. To

better reflect the actual system behavior, the formulation enforces not only the state of the rocket at the

time of the fault but also constrains the augmented state variables to coincide with the commands being

applied by the controller. This prevents the guidance solution from returning control profiles that differ

significantly from the current commanded values.

In order to accelerate convergence, the standard line-initialization approach is replaced with a scheme

that exploits the nominal trajectory. Specifically, the algorithm is initialized using slices of the nominal

state and control trajectories from tfault to the final time, modified to reflect the specific fault condition.

The final time guess is also initialized with the corresponding nominal value.

6.3.5 Performance Under Fault Scenarios

The performance of FT-SCP is evaluated by comparing its solutions under the different fault scenarios

with the nominal solution from Chapter 5. In this case, the objective is not to reproduce the nominal

trajectory, but to analyze how the state and control profiles evolve under the imposed fault conditions.

F1 – Total Thrust Loss

At tfault = 15 s, engine 4 shuts down completely. To compensate for the lost engine, the remaining healthy

engines ignite approximately 10 s earlier than in the nominal case, reach maximum thrust, and sustain

it for a longer duration, as shown in Figure 6.9a, which results in an additional propellant consumption

of about 200 kg (Figure 6.8b). The resulting position and velocity profiles (Figure 6.8a) demonstrate

that, despite the degraded propulsion system, the vehicle achieves a soft landing at the pad center, with

vertical touchdown velocity of −1 m/s and negligible lateral velocity components.

Chair of Space Mobility and Propulsion | Technical University Munich 64



6. Online Guidance

In
iti

al
iz

at
io

n

F2F1 F3

Fa
ul

t I
nf

o
B

us

x 0
Sc

al
e

C
on

st
ra

in
ts

 U
pd

at
e 

F2F1

Fi
na

l B
C

F3
F3

En
gi

ne
 ID

Th
ru

st
 S

ta
tu

s

TV
C

 S
ta

tu
s

Fa
ul

t T
im

e

SC
P

D
es

ca
le

FT
-S

C
P

Figure 6.7: FT-SCP algorithm: integration of fault information.
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Figure 6.8: FT-SCP solution under F1 (total thrust loss): position, velocity, and mass evolution.
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Figure 6.9: FT-SCP solution under F1 (total thrust loss): controls evolution.

F2 – Partial Thrust Loss

A thrust degradation fault with degradation factor ξ1 = 60% occurs in engine 1 at tfault = 25 s. The

healthy engines respond by transitioning to the maximum thrust immediately at the fault time, while

the degraded engine approximately 10 s later, reach maximum thrust, and sustain it for a longer dura-
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tion, as shown in Figure 6.11a, which results in an additional propellant consumption of about 30 kg

(Figure 6.10b). The resulting position and velocity profiles are shown in Figure 6.10a.
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Figure 6.10: FT-SCP solution under F2 (thrust degradation): position, velocity, and mass evolution.
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Figure 6.11: FT-SCP solution under F2 (thrust degradation): controls evolution.

F3 – TVC Jamming

This case considers a fault occurring at tfault = 5 s, where the TVC angles of engine 5 become stuck

at 2.9◦ and −3.8◦ in the y and z axes, respectively. As a result, the thrust behavior of the remaining

healthy engines remains essentially unchanged, leading to a final mass very close to the nominal case
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(Figure 6.12b). The TVC angles of the healthy engines adapt accordingly: the βy angles take slightly

smaller values to counteract the positive βy,5, while the βz angles increase slightly to offset the negative

βz,5. In contrast, the thrust profile of the faulty engine deviates significantly from the nominal one. Its

thrust never reaches or maintains the maximum value and gradually decreases, returning to the minimum

at touchdown (Figure 6.13a).
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Figure 6.12: FT-SCP solution under F3 (TVC jamming): position, velocity, and mass evolution.
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Figure 6.13: FT-SCP solution under F3 (TVC jamming): controls evolution.
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7 Verification & Validation

The performance of the FT-SCP algorithm is evaluated in a closed-loop simulation environment. The

plant model corresponds to the one described in Chapter 4, while the nominal controller and reference

trajectory are those presented in Chapter 5. Uncertainty in aerodynamic parameters, atmospheric con-

ditions, and initial states is introduced according to the dispersions listed in Table 5.4.

7.1 Implementation Details

The closed-loop simulations are implemented in Simulink and the FT-SCP algorithm is realized as a

MATLAB [89] system block inside a triggered subsystem, with the trigger defined by the fault time. When

the simulation time reaches tfault, the subsystem is activated and the FT-SCP is executed. Problem 1

is assembled with CVX, a package for specifying and solving convex programs [24, 35] and the resulting

SOCP is solved using the convex optimization solver MOSEK [8].

The plant dynamics evolve in continuous time, while guidance and control operate in discrete time

at a frequency of 50 Hz. Each simulation trial begins with sampled aerodynamic uncertainties, initial

dispersions, and fault. At t = tfault, the plant model is updated to reflect the appropriate faulty dynamics.

The FT-SCP is then triggered through the corresponding subsystem and computes a new reference

trajectory, once it returns a feasible solution, the nominal reference trajectory used by the LQR controllers

is switched to the FT-SCP generated one. Both the state and control trajectories are stored in lookup

tables scheduled with respect to time. The scheduling parameter is reset to zero at t = tfault and

synchronized with the time vector produced by FT-SCP.

7.2 Study 1: Single Faults

7.2.1 Goal

The objective of this study is to evaluate the impact of individual faults on mission success. Each fault

type (F1, F2, F3) is analyzed separately in order to:

• Assess the robustness of the FT-SCP algorithm against initial dispersions.

• Gain insight into how specific fault modes influence the mission outcome.

• Investigate the effect of a realistic guidance computation delay on landing performance.
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7.2.2 Setup

In each campaign, the fault time tfault is varied as a percentage of the reference trajectory duration. For

every fault type, three Monte Carlo campaigns are performed under the same aerodynamic uncertainties

and initial condition dispersions:

Nominal: The FT-SCP is not executed; the closed-loop simulation runs with the constant nominal ref-

erence trajectory and controller.

Recovery: The FT-SCP is triggered at tfault; once the guidance has converged, the reference trajectory

is immediately switched to the recovery solution.

Recovery Delay: The FT-SCP is triggered at tfault; once the guidance has converged, the reference

trajectory is switched to the recovery solution only after a simulated delay of tdelay.

A mission is considered successful if it results in a soft pinpoint landing, defined by the requirements

listed in Table 5.5.

The randomized parameters for each fault type are summarized in 7.1.

Table 7.1: Randomized parameters for single-fault cases F1–F3

Parameter F1 F2 F3

Fault time U(0, 80% tref) U(0, 80% tref) U(0, 80% tref)

Engine number U(1, 5) U(1, 5) U(2, 5)
Fault-specific parameter – U

( Tmin,nom

Tmax,nom
, 0.95

) [
U(−5◦, 5◦), U(−5◦, 5◦)

]

F1: One Engine Loss

Figure 7.1 summarizes the results for fault type F1. As expected, no nominal cases achieve a successful

landing, since tracking the original reference trajectory becomes impossible with only four engines. The

nominal LQR controller therefore fails, as it continues attempting to follow a trajectory that cannot be

realized after an engine loss. The FT-SCP guidance converges in approximately 78% of the runs, i.e.

a feasible solution is found. However, only 65% of the closed-loop simulations satisfies the soft landing

requirements. This discrepancy can be attributed to the limited authority of the nominal LQR controller,

which is unaware of the engine failure. As a result, the controller continues issuing commands in terms

of thrust increments and TVC deflections to the inoperative engine, and this, in combination with large

aerodynamic uncertainties, leads to a fraction of feasible guidance solutions that cannot be successfully

tracked, resulting in missed landings. The effect of guidance delay is relatively minor, reducing the overall

success rate by only about 1.5%. Figures 7.2a and 7.2b show the 3D position trajectories of converged

cases. The missed landings in the recovery cases can already be seen here, and even more clearly in

Figure 7.3a, which shows the lateral positions at landing color-coded by touchdown vertical velocity.

This highlights once again the difference with the guidance solutions in Figure 7.3b, where the relaxation

of the final lateral position constraints introduced in (6.58) and (6.59) is in practice not exploited, as

all converged FT-SCP solutions remain very close to the landing pad center. It can be observed from

Figure 7.4, which shows the final mass at landing for all converged cases, that the average final mass is
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Figure 7.1: F1 (total thrust loss): Soft landing success rates for nominal, recovery, recovery-delay, and
converged FT-SCP cases.
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Figure 7.2: F1 (total thrust loss): 3D landing trajectories of all converged cases.
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(a) Closed-loop recovery cases.
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(b) FT-SCP solutions.

Figure 7.3: F1 (total thrust loss): Lateral touchdown positions at the landing pad color-coded by vertical
touchdown velocity.
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about 200 kg lower than in the nominal case. Nevertheless, sufficient propellant remains at touchdown,

since the dry mass of the vehicle is 2750 kg.
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Figure 7.4: F1 (total thrust loss): Final mass at landing versus fault time for all converged cases.

Figure 7.5a highlights a clear dependency between guidance convergence and fault time: beyond 60%

of the nominal flight duration, the algorithm fails to converge in most cases. This behavior does not

indicate a weakness of the algorithm but reflects the physical infeasibility of the problem itself. As

shown in Figure 6.9a, the total loss of one engine is compensated by firing the remaining healthy engines

in advance (when compared to the nominal case) and for a longer duration. By the time 60% of the

trajectory has elapsed, however, the nominal profile has already commanded the engines to ramp from

minimum to maximum thrust (Figure 5.2a). Given the vehicle’s altitude and vertical velocity at this

stage, even firing all four remaining engines at full thrust cannot generate sufficient deceleration to

ensure a safe landing. The lack of convergence therefore stems from the absence of a feasible solution

rather than numerical difficulties. This interpretation is further supported by the behavior of the virtual

control slack variables shown in Figure 7.5b. For the non-converged cases, the slacks remain large at the

final iteration, preventing satisfaction of the convergence criterion (6.56). In other words, the discretized

dynamics in (6.39) cannot be enforced without substantial artificial inputs, confirming that the underlying

problem is infeasible.

It is important to note that the orange (non-converged) dots with values well below 0, similar to those of

the blue converged cases, can be misleading. This does not mean that the algorithm failed to converge

despite a feasible solution.

One must recall that in order to converge, the algorithm also includes the condition on the trust-region
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difference between subsequent iterations (6.57). If this difference is not sufficiently small, the algorithm

is considered to have not converged. This is precisely the case here: although a trajectory with negligible

virtual controls is found, it is obtained through a large deviation in states and controls from the previous

iteration rather than through a small step within the linearized region. For this reason, the solution is

still considered infeasible and therefore the algorithm does not reach convergence.

(a) Convergence versus fault time.
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10-20
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10-10
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100

(b) Virtual controls slacks.

Figure 7.5: F1 (total thrust loss): FT-SCP convergence analysis.

All cases with a fault occurring at tfault ≳ 60% tref for which the guidance converges can be explained by

looking at Figure 7.6, which shows the state error at the fault time, i.e. the deviation between the simu-

lation state (the FT-SCP initial condition) and the nominal reference trajectory. Figure 7.6a illustrates

this error in terms of vertical position, while Figure 7.6b shows the corresponding vertical velocity error.

From Figure 7.6a, it is clear that all converged cases share a common feature: the vertical position error

is significant, on the order of several hundred meters. At the same time, Figure 7.6b indicates that these

cases exhibit higher downward velocity, though not excessively large. In practice, this means that the ve-

hicle is descending faster but still retains additional altitude margin compared to the nominal trajectory.

This combination provides more space and time for the remaining healthy engines to be fired in order to

decelerate, which explains why the algorithm converges in these scenarios.
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(a) Vertical position error.
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Figure 7.6: F1 (total thrust loss): State errors at fault time for converged and non-converged cases.
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F2: Degraded thrust

Figure 7.7 summarizes the results for fault type F2. In this case some nominal cases are still able to land,

mainly those with a mild thrust degradation factor that can be compensated by the controller. Figure 7.8a

Figure 7.7: F2 (thrust degradation): Soft landing success rates for nominal, recovery, recovery-delay,
and converged FT-SCP cases.

highlights how the dispersions at landing are much smaller than for F1 and track the guidance results

(Figure 7.8b) much better. The reason is that in this failure mode the faulty engine is never completely

inoperative. Even at maximum degradation (i.e., when the faulty engine can only deliver its minimum

thrust), the corresponding TVC still provides some control authority, though with reduced effectiveness.

This contrasts with F1, where the fault disables the engine entirely and removes the contribution of its

TVCs.
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(a) Closed-loop recovery cases.
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(b) FT-SCP solutions.

Figure 7.8: F2 (thrust degradation): Lateral touchdown positions at the landing pad color-coded by
vertical touchdown velocity.
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F3: TVC jamming

Figure 7.9 summarizes the results for fault type F3. As in the case of F2, some nominal runs are still

able to achieve a successful landing. These are mainly cases with low aerodynamic uncertainties, small

initial dispersions, and mild TVC faults, conditions under which the feedback controller is still able to

compensate effectively.

Figure 7.9: F3 (TVC jamming): Soft landing success rates for nominal, recovery, recovery-delay, and
converged FT-SCP cases.

Figure 7.10b shows the FT-SCP solution’s lateral positions at landing, in which it can be noticed that

the final position, even if with limited deviation, is actually exploited for this case, with some solutions

landing around 1-2 meters from the origin. Figure 7.11a shows that the sensitivity of convergence to

the fault time is reduced compared to F1, with many runs still converging even towards the end of the

interval, close to 80% of the flight time. At the same time, a higher number of early-fault cases (in terms

of tfault) fail to converge. Most of these can be attributed to situations where large TVC stuck angles are

combined with significant lateral dispersions, preventing the algorithm from finding a feasible solution

capable of steering the vehicle back to the landing pad.

As an example, a representative early non-converged case is summarized in Table 7.2. The combination

of the initial conditions and the angles at which the TVC is stuck makes the problem of returning, or

even approaching the landing pad, infeasible. Such a set of initial conditions can nonetheless produce

a solution if the weight on the final lateral position relaxation is reduced. For instance, decreasing this

weight from its original value of 50 to 1 leads to the results shown in Figure 7.12, where the algorithm

is able to converge to a feasible solution with lateral touchdown positions of 100 m and 150 m in the y

and z directions, respectively. The corresponding propulsive and aerodynamic control inputs are shown

in Figure 7.13.
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(a) Closed-loop recovery cases.
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(b) FT-SCP solutions.

Figure 7.10: F3 (TVC jamming): Lateral touchdown positions at the landing pad color-coded by vertical
touchdown velocity.
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Table 7.2: Representative failed case (F3): Initial conditions and fault parameters

Parameter Value Unit
r0 [43459, 489.2, 485.6]T [m]
v0 [−165.5, 1.2, 10.2]T [m/s]
m0 4233 [kg]
TVC motor ID 4 [–]
TVC stuck angle [2.9, −3.8] [deg]
Fault time 3.49 [s]

(a) Convergence versus fault time.
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Figure 7.11: F3 (TVC jamming): FT-SCP convergence analysis.
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Figure 7.12: F3 (TVC jamming) relaxed solution: position and velocity.
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Figure 7.13: F3 (TVC jamming) relaxed solution: controls.
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7.3 Study 2: Multiple Faults

The goal of this study is to characterize the impact of simultaneous thrust loss from multiple engines on

the mission outcome. To this end, a dedicated Monte Carlo campaign is executed in which, at the fault

time, three different thrust degradation factors are applied to three distinct engines, as summarized in

Table 7.3. Apart from the fault model, the simulation setup remains identical to the single-fault cases.

Table 7.3: Randomized parameters for multiple-fault case F4

Parameter Distribution
Fault time U(0, 80% tref)
Engine numbers distinct samples from U(1, 5)
Thrust degradation factors ξ1, ξ2, ξ3 U

(
Tmin,nom

Tmax,nom
, 0.95

)

Figure 7.14 shows that the FT-SCP converged in about 55% of the runs, with the recovery and recovery-

delay cases displaying similar results.

Figure 7.14: F2 (thrust degradation on multiple engines): Soft landing success rates for nominal,
recovery, recovery-delay, and converged FT-SCP cases.

Figure 7.15 highlights the key difference compared to the single-fault cases: the convergence trend with

respect to fault time is much weaker. This can be attributed to the fact that severe thrust degradations

may be unrecoverable even from the very beginning of the mission. To better understand how these faults

affect the outcome, Figure 7.16 shows, in blue bars, the minimum thrust (as a percentage of the maximum

nominal one) with which the rocket is able to land, plotted as a function of fault time, together with

the number of converged runs for each interval. It is clear that as the fault occurs later in the descent

(i.e., closer to the landing pad), the minimum thrust required for a successful landing increases, in other

words, the engines cannot be too degraded. At the very beginning of the mission, even severe thrust
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Figure 7.15: F4 (thrust degradation on multiple engines): Soft landing success rates for nominal,
recovery, recovery-delay, and converged FT-SCP cases.

degradations remain recoverable. In fact, some cases in which three faulty engines can only fire at their

nominal minimum thrust, thereby reducing the overall available thrust to about 60%, still result in a safe

landing.
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Figure 7.16: F4 (thrust degradation on multiple engines): Critical thrust as a function of fault time.
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8 Conclusions & Future Directions

This thesis set out to investigate how fault-tolerant guidance can be achieved for reusable launch vehicles

during the powered descent and landing phase. To this end, two research questions were posed:

RQ1: How can an online guidance provide fault tolerance in presence of faults affecting the

engines in reusable launch vehicles during the landing burn?

RQ2: To what extent (i.e., until when across the descent) is the contingency guidance effective?

The following sections provide direct answers to these questions, summarize the main contributions of

the thesis, and outline directions for future research as well as the limitations of the approach.

In the first half of Chapter 6, the foundation of the convex framework for trajectory optimization was

established, leading to the standard SCP algorithm that provided the baseline for a general online guid-

ance method. This formulation was then expanded in the second half of the same chapter in order to

address the first research question. In response to the first research question, this thesis has shown that

sequential convex programming, extended to a fault-tolerant SCP (FT-SCP) formulation, enables the re-

computation of feasible landing trajectories even in the presence of faults. By appropriately updating the

OCP formulation based on the fault information, the algorithm is able to compute a trajectory adapted

to the reduced resources caused by the fault.

The second research question concerned the extent to which such contingency guidance remains effective

across the descent. Extensive Monte Carlo campaigns revealed that the FT-SCP approach achieves

safe landings for a wide range of fault scenarios, provided that faults occur with sufficient altitude and

time margin. For faults that resulted in a complete engine loss, it was shown that without guidance

recomputation none of the runs concluded with a successful landing. After the introduction of recovery

guidance, however, many of the previously failed runs became successful, although recovery guidance

alone was not always sufficient to guarantee a soft landing. In these cases, the baseline controller,

designed under nominal conditions, was unable to track some of the feasible FT-SCP trajectories when

aerodynamic uncertainties were significant. For other types of faults, such as partial thrust degradation

and TVC jamming, the results demonstrated that recovery guidance was highly effective even when using

the baseline controller.

The effectiveness of the approach decreases when faults occur later in the descent, as the combination of

altitude, vertical velocity, and degraded conditions can make it physically impossible for the vehicle to

decelerate sufficiently before touchdown. Overall, the method substantially extends the safe operating

envelope of the vehicle, even though it cannot guarantee success in every possible scenario.
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8.1 Limitations

Despite the promising results, several limitations of the present work must be acknowledged. First, the

FT-SCP algorithm was only tested on a simulation model in which the plant dynamics closely matched

those used in the OCP formulation. A more thorough verification against full 6-DoF simulations is

required to ensure that the generated trajectories are physically feasible when all degrees of freedom are

considered. Furthermore, results in Chapter 7 showed that guidance computation delay had a minor

impact on the outcome of the mission. However, it remains unknown whether this conclusion would be

altered with the inclusion of attitude dynamics.

Second, the algorithm is highly sensitive to the numerical values chosen for the cost function weights.

Small variations in these values can drastically alter the solutions, and in some cases represent the

difference between convergence and divergence. This sensitivity complicates the tuning process and

raises questions about robustness.

Third, although convex optimization was selected for its predictable runtime and convergence guarantees,

the current implementation is not yet online-capable. Convergence times remain too long for real-time

applications, primarily due to (i) numerical computation of Jacobians via finite differences, and (ii)

reliance on CVX as an intermediate modeling layer. Both aspects introduce significant computational

overhead.

Finally, the entire work assumes instantaneous and error-free FDI. This assumption is clearly unrealistic

and may lead to an overestimation of the practical effectiveness of the proposed approach.

8.2 Future Work

Several directions emerge naturally for future work. First, extending the algorithm to a full 6-DoF

formulation of the dynamics would allow more realistic verification and potentially reveal new limitations

of the current approach.

Second, reducing computational effort is critical for enabling online use. Promising directions include:

• Replacing aerodynamic lookup tables with polynomial approximations to allow for analytical ex-

pressions of the Jacobians, or applying automatic differentiation instead of computing Jacobians

through finite differences.

• Implementing the algorithm in C and directly interfacing with the SOCP solver, removing CVX as

a middle layer.

Third, combining trajectory reconfiguration with FTC strategies remains an open question. A systematic

analysis is required to determine the range of faults for which a full guidance recomputation is beneficial,

and the conditions under which a simpler FTC strategy would be sufficient, as well as how much the

overall performance would improve from combining the two approaches. Simulations with an actual

FDI module could provide further insight into how imperfect and delayed FDI would affect the mission

outcome.

Finally, the mission scope considered in this thesis was restricted to the final PDL phase. Expanding the

envelope to earlier mission stages, such as from the first descent burn, would provide more freedom and a
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larger solution space for recovery. Likewise, allowing for adaptive mission objectives, such as diverting to

an alternate landing pad in case the nominal site is no longer reachable, would significantly enhance the

practical utility of the method. Along similar lines, the concepts explored here may also find applicability

in the ascent phase, for example in connection with rescue-orbit strategies that have been proposed in

the literature.
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