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Abstract MErcury Surface, Space ENviroment, GEochemistry, and Ranging (MESSENGER) observations
suggest that sulfur-bearing minerals are key components of Mercury's surface. These minerals have been
proposed to explain the strong concave downward curvature between 300 and 600 nm in MESSENGER
reflectance spectra of the hollows. We investigated the spectral curvature of the entire surface of Mercury and its
relationship with surface temperature. High spectral curvatures map the youngest terrains: hollows, bright spots
and very bright craters within the Mercury cold poles. These results demonstrate that freshly exposed materials
are spectrally similar to hollows-forming material and sulfides. High spectral curvature is muted by thermal
processing near Mercury's hot poles. The optical effect of thermal weathering that we observed on Mercury are
consistent with laboratory measurements on weathered CaS and includes a flattening of the reflectance in the
visible. This suggests Mercury's crustal composition to be rich in sulfur-bearing minerals.

Plain Language Summary Reflectance measurements are used to investigate the composition,
alteration and physical properties of planetary surfaces. On Mercury, spectroscopic observations from previous
missions lack asbsorption features to identified minerals. However, the overall shape of the spectrum in the
near-ultraviolet to near-infrared is used to differentiate the different terrains types and spectral units. Here, we
investigated the spectral curvature—that is, the concavity - of Mercury in the near-ultraviolet to visible. We
found that the temperature and aging of the surface strongly alter this spectral property previously related to
surface composition only.

1. Introduction

Spectral reflectance is a key measurement for investigating the composition and space weathering processes of
airless planetary bodies. On the Moon and Mercury, space weathering alters spectral signatures at visible (VIS) to
near-infrared (NIR) wavelengths by (a) darkening (lowering the spectral albedo), (b) reducing spectral contrast
(decreasing the strength of absorption features), and (c) reddening of the spectrum (increasing the slope of the
continuum reflectance with increasing wavelength) (e.g., Fischer & Pieters, 1994; McCord & Adams, 1972a,
1972b; Pieters & Noble, 2016; Vilas, 1985). These spectral changes are the results of the production of sub-
microscopic iron-metal particles (e.g., Hapke, 2001; Lucey & Riner, 2011), the formation of impact glasses and
agglutinates (e.g., Horz & Cintala, 1997), and the physical fragmentation of regolith into finer grains (e.g., Pieters
et al., 1993). Because of Mercury's proximity to the Sun, space weathering processes such as irradiation, impact
gardening and thermal weathering are expected to be significantly stronger and the formation of space weathering
products faster (e.g., Cintala, 1992; Domingue et al., 2014; Noble & Pieters, 2003; Pieters & Noble, 2016). The
MErcury Surface, Space ENviroment, GEochemistry, and Ranging (MESSENGER) mission provided the most
complete in-situ dataset of spectroscopic observations of Mercury's surface and therefore information on Mer-
cury's space weathering products. The Visible and InfraRed Spectrograph (VIRS), the surface component of the
Mercury Atmospheric and Surface Composition Spectrometer (MASCS) (McClintock & Lankton, 2007),
sampled Mercury's reflectance in the wavelength domain from 300 to 1,450 nm with a spectral resolution of 5 nm.
Spectroscopic observations of Mercury's surface lack absorption features of mafic minerals such as pyroxene or
olivine (Izenberg et al., 2014; Murchie et al., 2015). However, fresh material exhibits a higher spectral albedo and
less red continuum slope (Blewett et al., 2009; Domingue et al., 2014; Izenberg et al., 2014; McClintock
et al., 2008; Murchie et al., 2015; Robinson et al., 2008). Brightest units on Mercury are fresh craters and hollows
(Murchie et al., 2015). Fresh craters exhibit bright ejecta rays and crisp morphology and are dated to Kuiperian-
age (<1 Ga) (Blewett et al., 2018; Murchie et al., 2015). Hollows have been dated by crater counting or by dating
their host craters to very recent time: around hundreds of thousands of years (Blewett et al., 2018; Wang
et al., 2020). Multispectral images from the MDIS/WAC (Mercury Dual Imaging System Wide Angle Camera)

BARRAUD ET AL.

1 of 10


https://orcid.org/0000-0002-9985-1109
https://orcid.org/0000-0002-1052-5439
https://orcid.org/0000-0001-9325-6889
mailto:oceane.barraud@dlr.de
https://doi.org/10.1029/2024GL113933
https://doi.org/10.1029/2024GL113933
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2024GL113933&domain=pdf&date_stamp=2025-05-03

V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Geophysical Research Letters 10.1029/2024GL113933

(Hawkins et al., 2007) camera revealed, in addition to reflectance levels higher by twice the average surface of
Mercury, that some hollows exhibit a weak absorption feature centered around 630 nm (Lucchetti et al., 2018,
2021; Vilas et al., 2016). Sulfides (Vilas et al., 2016), chlorides (Lucchetti et al., 2021), or a mix of pyroxenes and
sulfides (Lucchetti et al., 2018) or graphite and sulfides (Vilas et al., 2016) are commonly proposed to explain this
absorption feature. Mercury Atmospheric and Surface Composition Spectrometer/VIRS spectroscopic mea-
surements of several hollows do not exhibit such an absorption feature (Barraud et al., 2020). Moreover, MASCS/
VIRS spectra of hollows exhibit a strong concave downward curvature between 300 and 600 nm that makes it
possible to spectrally differentiate the hollows from several other spectral and/or geological units (Barraud
et al., 2020). Comparison with laboratory spectra of Mercury analogue minerals shows that sulfides and/or
chlorides are the best compounds to explain the curvature of hollows (Barraud et al., 2023). The hollows spectral
curvature is approximately 3—4 times higher than the spectral curvature of the Low-reflectance Material (LRM,
dark material enriched in carbon, Klima et al., 2018) and High-reflectance Red Plains (HRP, products of effusive
volcanism) (Barraud et al., 2020). Here, we performed an analysis of the spectral curvature at the planet scale. Our
main objectives are (a) identify the geological features with the highest values of curvature and (b) investigate
their spatial distribution. We then discuss the relationship between spectral curvature, composition, and space
weathering, especially the thermal processing of the surface.

2. Dataset and Methods

Mercury Atmospheric and Surface Composition Spectrometer/VIRS is composed of two detectors: a visible
(VIS) detector operating between 300 and 1,050 nm and a NIR detector sensitive to wavelengths between 900 and
1,450 nm (McClintock & Lankton, 2007). In this study, only the reflectance measured by the VIS detector is used.
We downloaded the VIRS Derived Data Record (DDR) data products available on the Planetary Data System
(PDS) radiometrically and photometrically calibrated by the MESSENGER team. Additional processing is
applied to the DDR data by first removing the outliers deviating by more than 2 sigma (less than 1% of the VIS
channels) and then smoothing the spectrum by an average window of three points.

In order to obtain the better MASCS/VIRS dataset, the data are filtered by instrument temperature (see Supporting
Information S1) and incidence angle. The data recorded in the highest temperature regime of the instrument
(temperature exceeding 40°C) are removed in order to avoid the possible effect of high instrument temperatures
on the reflectance. Illumination and viewing geometry affect the spectral reflectance which is more sensitive to
the effects of topography at high phase angles. MASCS/VIRS spectra obtained at incidence angles higher than
75° are discarded from the study. This work, which includes around 14,000 observations of MASCS/VIRS,
allows us to identify observations with strong increase or drop off in reflectance at the edges of the VIS detector
wavelength domain. The signal-to-noise ratio (SNR) of the VIS detector decreases after 800 nm (Besse
et al., 2015; Holsclaw et al., 2010; Izenberg et al., 2014). Therefore, some of the MASCS/VIRS spectra exhibit
strong reflectance variability beyond 800 nm. However, we also identified spectra with a strong increase of
reflectance at the shorter wavelengths (UV domain) of the VIS detector. The reason for these variations remains
undefined, however, they may be due to changes of instrument sensitivity, artifacts of the instrument or intro-
duced during calibration. Therefore we decided to remove all the MASCS/VIRS spectra that contain strong
variation of reflectance at the boundaries of the detector (before 350 nm and after 800 nm). For this purpose, we
calculated three slope ratios across the VIS detector wavelength range:

UV1 = S300-350/S250-300
UV2 = S300-350/S350-500

VIS = S700-900/S500-700

Each slope S;;_ 4, is calculated by a linear fit across the wavelength range A1 fo A2 in nm (see Figure S1 in
Supporting Information S1).

Spectra are used in this study if the UV1 ratio is strictly higher than 0 and lower than 1.5, the UV2 ratio is strictly
higher than O and lower than 3.5 and the VIS ratio is strictly higher than 0 and lower than 2. These values have
been defined empirically based on the sub-dataset of around 14,000 spectra and removed around 10% of the sub-
dataset. Some examples are shown in Figure S1 in Supporting Information S1.
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Figure 1. Mercury Atmospheric and Surface Composition Spectrometer/Visible and InfraRed Spectrograph spectra between
300 and 800 nm with various values of spectral curvature. The curvature is normalized to the reference spectrum (Izenberg
et al., 2014) in gray. The reference spectrum has a curvature value of 1 and is almost linear between 300 and 600 nm.

After applying the filtering, we calculated the curvature parameter as defined in Figure 1 of Barraud et al. (2020).
The curvature parameter corresponds to the coefficient of the squared power of the polynomial fit (degree 2) of
the spectrum between 300 and 600 nm:

Reflectance = cA* + bA+a (c = curvature)

The curvature (coefficient of the squared power of the polynomial fit) is then normalized to the curvature of an
average spectrum of 850,000 spectra of Mercury's surface (Izenberg et al., 2014). Thus, curvature parameter
equals to one is representative of Mercury's mean surface. Barraud et al. (2020) showed that the curvature
parameter ranges between around —5 and 5 in LRM and HRP and from around 2 to 7 in the faculae analyzed by
Barraud et al. (2021). For the hollows, the curvature parameter ranges from 5 to 17 (Barraud et al., 2020, 2023).
Therefore, in this study we selected the MASCS/VIRS observations with a curvature parameter higher than five in
order to map the geological units with curvature values comparable to the hollows or higher. Figure 1 shows
artifact-free spectra in the visible domain with various values of the curvature parameter.

3. Results

Artifact-free observations with high curvature represent 11,834 footprints (Figure 2), that is, 0.32% of the
MASCS/VIRS data obtained under the best instrumental conditions. These 11,834 footprints map 693 different
features on Mercury's surface. We classified these features in 6 categories using the MDIS/WAC global base map
at a spatial resolution of 166 m/pixel (which is in average 30 times better than the MASCS spatial resolution):
hollows, bright spots, very bright craters, crater rims, crater floors, and faculae (Figure 3). Features are classified
as hollows when MASCS/VIRS footprints are in a region/crater where hollows have been mapped by Thomas
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Latitude [°N]

Figure 2. Distribution of high spectral curvature on Mercury's surface. The figure shows the 11,834 Mercury Atmospheric
and Surface Composition Spectrometer/Visible and InfraRed Spectrograph footprints with curvature value higher than 5
between 300 and 600 nm (black dots). The size of the dots is not the size of the footprints. The background mosaic is the
MDIS/WAC global base map (166 m/pixel) used for the classification. Mercury's smooth plains (Denevi et al., 2013) are
highlighted in pink and the Low-reflectance Material (Klima et al., 2018) are highlighted in orange.

et al. (2014a) (Figure 3a). Impact craters with a diameter smaller than 10 km or bright regions smaller than 10 km
(without visible impact crater at the MDIS/WAC base map spatial resolution) with reflectance level comparable
to fresh impact craters (reflectance at 750 nm > 0.06) are classified as bright spots (Figure 3b). Craters larger than
10 km in diameter with fresh morphology and bright ejecta are classified as very bright craters (Figure 3c). Units
located inside craters with a diameter higher than 10 km without fresh and bright ejecta are classified in two
different categories according to their location inside the crater. Features located on the crater rims/walls are
classified as “crater rims" while features located inside the floor and impact structures such as peak rings or central
peaks are classified as “crater floors” (Figures 3d and 3e). Finally, features located inside previously identified
faculae and/or volcanic pits (Thomas et al., 2014b) are classified as faculae (Figure 3f).

Among the 693 features, 73% represent the youngest features on Mercury: bright spots, hollows and very bright
craters (Figure 4a) (e.g., Blewett et al., 2009, 2018; Robinson et al., 2008). 25% of the features are located in crater
floors or crater rims without previously identified hollows but many of these locations include craters with wall
collapses or overlying secondary craters which might have been responsible for the exposure of fresh materials.
Recent work on the localization of hollows inside impact craters indicates that a significant percentage of hollows
are formed within superposed impact craters which might be key drivers in excavating hollow-forming volatiles
(Giroud-Proeschel et al., 2024). Around 2% of the features are classified as faculae. All the footprints inside
faculae are located in or cover part of the volcanic pits. Analysis of MDIS images inside the Lermontov crater
have shown some hollows inside volcanic pits (Pajola et al., 2021). Galiano et al. (2023) identified MASCS/VIRS
spectra with a different behavior from faculae inside the volcanic vents of Nathair Facula and Picasso impact
crater. The high curvature detected inside the volcanic pits may be therefore due to other geological units such as
hollows or freshly exposed material inside the pits. Among the hollows mapped by Thomas et al. (2014a), 14% are
mapped in this study. This relatively low percentage of hollows mapped may be explained easily by the low
coverage of the MASCS/VIRS instrument which strongly decreases the probability to observe small features such
as the hollows. The spatial resolution of MASCS/VIRS footprints is generally inadequate for the size (few
hundreds of km to several km) of small geological units (hollows, bright spots, etc.).

The features with high curvature are not found preferentially in one major geological or global spectral unit. They
are found inside smooth plains, LRM (Klima et al., 2018), large basins such as Caloris, and intercrater plains
(Figure 2). The longitudinal distribution of those features with high curvature is shown in the histogram in

BARRAUD ET AL.

4 of 10

A '6 'S20Z 'L008¥Y6T

wouy

dny) SUoNIPUOD pue S | 8L} 89S *[5202/0T/20] U0 ARIqITBUIUO AB|IM “UBWSS ZJOYWRH A U] Muyed wrey "N-4n "4 Wnnuez yasid Aq EE6ETT 19¥202/620T OT/I0P/L00" A3 1M

fonm

35UB0 |7 SUOWILLIOD dAIa.D 3|aedt|dde ayy Ag pausenob e sajoie YO ‘asn JO Sa|n. 0y Ariq i auluQ AS[IAA UO (SUOTIPUOO-PI



. Yedl
ra\ 1% i
e Geophysical Research Letters 10.1029/2024GL113933
Class: Hollows Class: Bright spots
30 43 |
2 42
'OE' 28 ? 41
° o
o© 27 ]
2 240
= B
= 26 ~ 304
25 55
24 37
115 116 117 118 119 120 121 122 123 34 35 36 37 38 39 40 41 42
Longitude [°E] Longitude [°E]
Class: Very bright crater Class: Crater Rim

Latitude [°N]
Latitude [°N]

18 19 20 21 22 23

Longitude [°E] Longitude [°E]

Class: Crater Floor Class: Faculae
29.5 ¥

29.0
28.5

28.0

Latitude [°N]
N
~
[9,]
Latitude [°N]

- 25.0 -
-120 -119 -118 -117 -116 -115 —62.5 —62.0 —61.5 —61.0 —60.5 —60.0 —59.5 —59.0 —58.5
Longitude [°E] Longitude [°E]

Figure 3. Examples of Mercury Atmospheric and Surface Composition Spectrometer/Visible and InfraRed Spectrograph footprints with high spectral curvature
mapping 6 classes of geological units. The footprints are smaller than the size of the dots. The background mosaic is the MDIS/WAC global base map (166 m/pixel)
used for the classification. The MDIS/WAC enhanced color mosaic (R: second principal component, G: first principal component, B: 430 nm/1000 nm ratio) shows the
MDIS spectral variation of each region.
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Figure 4. (a) Percentage of high curvature features in each class, and (b) longitudinal distribution of the features with high
curvature values. The gray shaded regions show Mercury's cold poles (C) and the white regions show Mercury's hot poles
(H). The color code is the same between the two panels. The features are mainly concentrated around Mercury's cold poles.

Figure 4b. Due to the orbital parameters of Mercury (obliquity, resonance, rotation period), its surface undergoes
large temperature variations. Thermal modeling predicts the presence of “cold” poles around 90°E and —90°E and
“hot” poles around 0°E and 180°E (Bauch et al., 2021). At cold poles longitudes, the surface temperatures reach
560 K on equatorial latitudes at local noon while at hot poles longitudes the surface temperature reaches 700 K at
local noon around the equator (Bauch et al., 2021). In our study, the highest occurrence of high spectral curvature
features is observed at longitudes around the cold poles (Figure 4b). An in-depth study of the MASCS/VIRS
dataset shows no instrument or observational bias in the longitudinal distribution of the high curvature features
(see Supporting Information S1). The hollows, bright spots, and faculae are not preferentially found around the
Mercury's cold or hot poles but occur widely across Mercury (e.g., Kerber et al., 2011; Klima et al., 2013; Thomas
et al., 2014a) which confirms that the distribution of the mapped features around the cold poles is mainly due to
their spectral curvature and not biased by the occurrence of these geological units across Mercury. In addition, the
smallest hollows are concentrated in colder terrains excluding observational bias due to the spatial resolution in
the longitudinal distribution of their detections (Thomas et al., 2014a). These results demonstrate a strong cor-
relation between the curvature of Mercury's reflectance spectra and the extreme temperature regime of its surface.

4. Implications for Composition and Thermal Weathering

The spectral curvature in the visible has been described by Barraud et al. (2023) as a composition effect by
analyzing hollows spectra. Comparison with laboratory measurements (e.g., Varatharajan et al., 2019) shows that
the best analogs to reproduce the high spectral curvature of MASCS/VIRS spectra are CaS, Na,S, MgS, CaCl,
and MgCl, (Barraud et al., 2023). In fact, spectral modeling shows that the hollows spectra can be reproduced by
adding sulfides and/or chlorides to the background material of the hollows (Barraud et al., 2023). Here, the high
curvature spectra are not limited to hollows but mainly map the brightest and youngest features of Mercury:
hollows, bright spots and very bright craters. This result demonstrates a relationship between spectral curvature in
the visible and the age of the sampled features. Fresh/young impact craters at Mercury's surface therefore expose
fresh material with a composition similar to that of the hollows.

MESSENGER observations with the X-Ray spectrometer (XRS) revealed that the Mercury surface is enriched in
volatile elements such as Cl and S compared to the surface of the Moon (e.g., Nittler et al., 2018). X-Ray
spectrometer observations have shown that there is a ubiquitous correlation between the concentrations of S and
Ca on Mercury's surface (Nittler et al., 2011; Weider et al., 2012, 2014, 2015) interpreted as evidence for an
abundance of Ca-bearing sulfide minerals (e.g., oldhamite) (Nittler et al., 2011; Weider et al., 2012, 2014). By
combining the results obtained from MASCS/VIRS (Barraud et al., 2020, 2023) and XRS (Nittler et al., 2011;
Weider et al., 2012, 2014) instruments, CaS appears to be the best candidate as fresh material exposed by young
geological units (hollows, bright spots, very bright craters) with a high spectral curvature.

The features mapped in this study, hollows, bright spots, faculae, and very bright craters are widely found on
Mercury's surface (e.g., Klima et al., 2013; Thomas et al., 2014a, Thomas et al., 2014b) yet in this study the high
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curvature values are found preferentially in the cold poles. The spatial distribution of the high curvature values
around the cold poles demonstrates the major role played by thermal weathering in the behavior of this spectral
characteristic. The spectral curvature of MASCS/VIRS observations seems strongly affected by high temperature
(700 K) around the hot poles. Laboratory measurements on thermally processed sulfides (Helbert et al., 2013;
Varatharajan et al., 2019) have shown changes in their overall spectral characteristics compared to fresh sulfides
in the visible to NIR (slopes, reflectance level, contrast of spectral signatures). However, the spectral properties of
each sulfide behave differently to the thermal processing under Mercury's surface temperature (773 K during
30 min) (Helbert et al., 2013; Varatharajan et al., 2019). For example, MgS is slightly brighter and shows a more
blueish (reflectance decreasing with increasing wavelength) continuum after thermal processing while CaS is
darker and slightly redder (Helbert et al., 2013). The curvature parameter of some sulfides measured by Vara-
tharajan et al. (2019) before and after thermal processing has been calculated by Barraud et al. (2023). The
curvature of CaS and MgS is reduced after the thermal processing while the curvature of Na,S increases after
thermal processing. The thermal stability of chlorides, such as MgCl, and CaCl,, is unknown. These compounds
are also good candidates for explaining the spectral curvature in the extreme surface environment of Mercury.
However, following the current hypothesis that S and Ca are mainly under the state of CaS at the surface of
Mercury (Nittler et al., 2011; Weider et al., 2012, 2014) the thermal processing at the temperature of the hot poles
may explain the detection of high curvature values mainly around Mercury's cold poles. Oldhamite exposed by
the youngest features (hollows, bright spots and very bright craters) may therefore have its curvature muted by the
extreme temperature regime at Mercury's hot poles and would therefore no longer be spectrally detectable in these
regions. The hypothesis of CaS is compatible with recent analysis of MDIS and Mercury Laser Altimeter data that
shows a decrease in reflectance by 7%—12% in the hot poles compared to the 90°E cold pole in the low to mid-
latitudes (Deutsch et al., 2024). As mentioned previously, CaS is darker after thermal processing at the tem-
perature of Mercury's hot poles (Helbert et al., 2013; Varatharajan et al., 2019). However, spectral curvature of
CaS appears to be more affected by thermal weathering than reflectance at about 750 nm (Varatharajan
et al., 2019; Barraud et al., 2023 Figure S1 in Supporting Information S1) which can explain why bright features
are ubiquitously observed across Mercury.

Deutsch et al. (2024) suggests that the relatively lower reflectance of the hot poles may be the result of Ostwald
ripening process by which nanophase Fe-metal particles coalesce and grow into larger particles at high tem-
peratures (e.g., Noble et al., 2007; Noble & Pieters, 2003). Trang et al. (2017) investigated the amount of
nanophase and microphase particles needed to model the MASCS/VIRS spectra by using radiative transfer
modeling (e.g., Hapke, 2001; Lucey & Riner, 2011). They assumed that the regolith of Mercury consists of a silica
matrix (i.e., the host material) with a constant reflectance of ~80% throughout the visible and NIR domain and add
different mixtures of nanophase to microphase particles of Fe and C to fit the MASCS/VIRS spectra. The mean
submicroscopic Fe abundance derived from Trang et al. (2017) model to reproduce MASCS/VIRS spectra ex-
ceeds the range of the XRS- and Gamma Ray Spectrometer-derived Fe estimates. They suggest that this result is
due to assumptions about the composition of the host material and propose to improve the results by including
darker minerals such as sulfides or graphite. The optical effects of space weathering may therefore be explained
by a combination of weathered sulfides, such as CaS, and submicroscopic Fe particles. The addition of CaS in the
model would therefore reduce the submicroscopic Fe content needed to darken and flatten the Mercury's spectra
and fit with MESSENGER elemental data. Consequently, the optical effects of space weathering are not only a
darkening and reddening of the spectra, as demonstrated in previous studies (e.g., Blewett et al., 2009; Domingue
et al., 2014; Izenberg et al., 2014; McClintock et al., 2008; Murchie et al., 2015; Robinson et al., 2008), but also a
flattening of the spectra between 300 and 600 nm, as demonstrated here.

5. Conclusions

Mercury's surface is iron-poor and undergoes extreme weathering which complicate the investigation of surface
mineralogy by spectroscopic observations. Previous analyses show that the youngest features on Mercury exhibit
higher albedo and less red spectral continuum. Here, we investigated the spectral curvature of Mercury's spectra
between 300 and 600 nm, previously reported as a spectral characteristic of hollows. We showed that high
curvature values map the youngest features at the surface of Mercury: hollows, bright spots and very bright
craters. This result demonstrates a ubiquitous correlation between the spectral curvature and the freshness of the
surface.
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Furthermore, we investigated the spatial distribution of the high curvature features at the surface of the planet. We
found that the highest occurrences of features with high spectral curvature are located at longitudes around 90°E
and —90°E. The extreme thermal environment of Mercury and its peculiar orbit around the sun imply that the so-
called Mercury's hot poles (0°E and 180°E) experience temperatures around 700 K over the course of a day. Our
results demonstrate that around Mercury's cold poles (—90°E and 90°E, 560 K) the spectral curvature is less
affected by thermal weathering while around the hot poles the curvature is muted and not detectable even on what
appear to be fresh and recent geological features.

Previous work on the spectral curvature of the hollows demonstrated that this spectral feature is related to
composition and especially the presence of sulfides and/or chlorides. Our results therefore lead us to the
conclusion that bright spots and very bright craters exposed fresh material similar to the hollows-forming material
and that thermal weathering reduced the curvature of this material. MESSENGER observations (spectral and
chemical) suggest that oldhamite (CaS) is the best candidate to explain this spectral behavior. Laboratory
measurements on CaS after thermal processing at Mercury's hot poles temperatures are consistent with our results
and show a darkening, reddening and flattening between 300 and 600 nm of the spectra after heating. We
demonstrated that thermal weathering played a major role in the behavior of visible reflectance on Mercury and
must be considered when attempting to determine planet surface composition from remote sensing observations.
Our study also demonstrates that laboratory investigations of thermally processed minerals are crucial for the
future interpretation of BepiColombo observations.

Data Availability Statement

The data used in this study are available at the PDS Geosciences Node of Washington University, St. Louis, MO,
USA. The dataset used contains the latest calibration provided by the MESSENGER science team (https://pds-
geosciences.wustl.edu/missions/messenger/mascs.htm).
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