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ABSTRACT Autonomous vehicles have to interact with their environment with the goal to fulfill their
tasks while respecting all desired constraints such as not causing dangerous situations, driving comfortable
maneuvers, enabling a smooth traffic flow, or avoiding overly polluting driving behavior. All steps require
a suitable perception of the environment conditions, such as the estimation of the own position, a prediction
of the trajectories of other traffic participants, or the assessment of parameters corresponding to vehicle
dynamics. However, classical estimation algorithms are known to be easily distorted by outliers in the
data. In addition, apart from rule-based systems, it becomes more convenient to train autonomous agents
by machine learning algorithms. Again, such algorithms need to be robust in order to cope with model
misspecification or outliers in the data. Robust Statistics is a discipline of statistics which exactly addresses
these challenges. This paper provides an extensive and systematic overview of current applications of Robust
Statistics in autonomous driving in a unified notation, discusses different notions of the term “robustness”

and identifies directions for future work.

INDEX TERMS Autonomous driving, contaminated data, outliers, robust statistics.

I. INTRODUCTION

Autonomous vehicles in operation have to interact with their
environment by repeatedly successfully performing three
tasks: Perceiving the current environment state, predicting the
future states of all relevant traffic participants up to some
prediction horizon, and planning their own maneuvers and
therefore necessary control actions. Apart from rule-based
systems, which operate according to a deterministic plan,
works such as [19] have demonstrated that an autonomous
agent can also be trained via machine learning (ML), here
Imitation Learning (IL).

A major drawback of IL is the necessity to provide
expert trajectories according to which the agent is trained.
An alternative class of algorithms is given by Reinforcement
Learning (RL), where no training data are required but
where the agent learns by trial-and-error. However, while
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knowledge about correct maneuvers is implicitly encoded in
the expert trajectories in IL training, and while traffic rules
can be implemented in rule-based systems, RL agents learn
according to a reward function which assigns a real value
to a state-action pair, so that the agent learns by experience
which actions were useful (i.e., resulted in higher rewards)
for which states. Projects such as KI Wissen! consider the
formalization of prior knowledge and their integration into
Artificial Intelligence (Al) training for autonomous driving,
see [331] for an extensive overview of knowledge integration
into AL

The perception, the prediction and, for an agent trained
by machine learning, even the training is based on statis-
tical estimation, which is well-known to be vulnerable to
contamination of the data in the sense that the true model
differs from the assumed model, the “ideal model”, so that
observations from the real distribution may appear as outliers

1 https://www.kiwissen.de/
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(w.r.t. the “ideal model”), with the potential to severely
distort a statistical estimator (see, e.g., [121], [153], [213]).
Robust Statistics has provided numerous techniques in order
to safeguard against such perturbations in the sense that the
estimator still works reasonably well, even in the presence of
a certain fraction of contaminated data.

Due to the rising interest in autonomous systems and
the constant progress made in robustifying estimation and
machine learning algorithms, this paper aims at systemat-
ically collecting concrete applications of Robust Statistics
in autonomous driving, to formalize these approaches
in a consistent mathematical notation, and to identify
possible extensions and directions for further research.
Although this paper is not accompanied with own exper-
iments, it also makes suggestions for future experimental
studies.

This paper is organized as follows. Sec. II provides a
description of each tasks considered in this paper, a placement
into the “sense, plan, act” workflow, and a roadmap across the
different application areas considered in this paper. Moreover,
potential sources of contamination are identified and how
such contamination appears in the data. Sec. III collects
the necessary concepts from Robust Statistics and relates
them to other notions of robustness that one encounters
in the autonomous driving literature. Sec. IV is devoted
to approaches from Robust Statistics in perception tasks
such as tracking, point cloud detection, or state estimation.
Sec. V reviews robustifications for planning/prediction tasks,
in particular for RL, IL, and model-predictive control (MPC)
algorithms. In Sec. VI, potential topics for future work are
discussed.

Il. OVERVIEW

A. GENERAL TASKS

An autonomous vehicle has to continuously observe its
surroundings (perception, ‘“‘sense”). This is realized in
practice by potentially multiple types of sensors such as
cameras, LiDAR or radar sensors. The collected information
is used in order to predict the movements of the surrounding
traffic participants, such as other vehicles or pedestrians,
which is necessary in order to plan its own maneuvers
(“plan”/“think”). The planning outcomes are finally used in
order to perform the correct actions so that the planned next
state is reached (“act”). A graphical illustration, including
selected tasks corresponding to each of these phases,
is provided in Fig. 1.

In the following subsections, we briefly describe each
task which has already been addressed by techniques from
Robust Statistics that we review in greater detail later. They
should provide a quick overview for the reader and already
collect the main challenges corresponding to the respective
task concerning sources of contamination and the impact of
contamination on inference and optimization. Mathematical
formulations of the respective optimization problems and the
methodology are postponed to the main sections Sec. IV and
Sec. V.
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B. SIMULTANEOUS LOCATION AND MAPPING
Simultaneous location and mapping (SLAM) consists of
two main tasks: Tracking the position of the robot (strictly
speaking, the sensor) and estimating its ego-motion; and
computing the map of the unknown surrounding environment
(e.g., [168]). The robot may use different types of sensors
such as camera, LiDAR, sonar or infrared. Camera-based
SLAM is referred to as visual SLAM (e.g., [353]).

In odometry, the goal is to estimate the ego-motion of
the robot. In contrast to SLAM, which requires global
consistency of the estimated trajectory in regard of a
localization of the agent within its environment, odometry
considers local consistency and incrementally estimates the
robot’s trajectory. Odometry can be considered as part of
SLAM, e.g., [128].

In particular, one has to distinguish between different types
of sensors that are used for odometry, e.g., wheel odometry,
GNSS/INS (global navigation satellite system/ intertial
navigation system), GPS, sonar, LiDAR or camera (e.g.,
[13]). Using camera data corresponds to visual odometry
(VO), using LiDAR data to LiDAR odometry (e.g., [177]).

Depending on the used sensor type and the actual task, one
may find different types of contamination in the collected
data, which we specify in the following subsections.

1) VISUAL ODOMETRY

As for camera models in VO, the most common is the
perspective camera model (e.g., [353]). All camera models
map the 3D world into an 2D image plane. In the perspective
model, more distant objects appear smaller. For 2D image
coordinates (u, v) and 3D coordinates (x, y, ), the perspective
model is given by

u i 0 ¢ X
AMyv]=10 f/ ¢ v,
1 0o 0 1 Z

where ) is a depth factor and where the matrix is referred to
as the intrinsic calibration matrix, with the focal lengths f;
and f, and the projection center (cy, cy).

In general, cameras are vulnerable to illumination changes
(e.g., [63]). Other sources of contamination can be self-
shadowing, camera saturation, camera shaking or rotation,
motion blur or defocus [219].

In direct odometry, the image data are used as they
are and a projection of the images on reference images is
computed. The quality is then quantified via the photometric
errors [125]. Alternatively, [62] use brightness intensities at
the positions instead of the position coordinates themselves.
In the sample consisting of the collected 2D points, contam-
ination manifests itself in points that are not in accordance
with the rest of the sample, resulting in high photometric
and/or geometric errors when comparing the source and
the reference image. A robust approach allows to cover
situations (regardless whether photometric or geometric
errors are quantified) where the image taken by the camera
is contaminated, but in principle, it would also allow for
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Perception (" Sense™)
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Control ("Act™)
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FIGURE 1. Overview of perception, planning, and control tasks as well as corresponding sources of contamination.

the usage of contaminated reference images or reference

intensities.

Reference [219] mention that a stereo camera pair
increases the robustness for the cost of slightly increased

computational complexity.

167850

Optical flow estimation slightly differs from VO since the
only goal is to estimate the optical flow, i.e., the velocity
between subsequent images, but not necessarily the camera
position itself. According to [155], the optical flow can be
related to the position, translational and rotational velocity
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of the camera. Therefore, one can extract the positions and
velocities by regression from the sample. Contamination
in the sample is induced by measurement errors of the
optical flow, maybe due to the lack of a visible ground
surface. References [33] and [34] elucidate that optical flow
estimation is usually accompanied by assumptions such as
the brightness constancy assumption which indicates that
the brightness only varies smoothly (w.r.t. to both position
and time), or a spatial coherence assumption that indicates
that neighboring pixels are likely to be part of the same
object, and hence change similarly. Note that drifts of the
sensors usually do not violate these assumptions as they do
not affect the relative correspondences between the pixels.
Those assumptions however are violated in the presence of
reflections, shadows, or motion boundaries, which imply
outliers in the data in the sense that they violate these
assumptions. In other words, outliers are likely to produce
large loss values and therefore capable to let the estimation
break down. Therefore, robust approaches are required.

2) LIDAR ODOMETRY/POINT CLOUD REGISTRATION
LiDAR data are usually point clouds. In contrast to cam-
eras, LiIDAR has the advantage to be immune to light
variations [177], but the analysis of 3D data may cause
high computational costs [13]. When using LiDAR data,
contamination may result from occlusions [381], moving
objects [62], [63], perspective and perceptual aliasing, i.e.,
different but similar places cannot be distinguished [210],
or from environments with self-similar structures where false
associations are generated that appear as outliers [4]. [245]
argue that outliers not only occur due to measurement errors
but also due to changes in the object itself or overlapping
point clouds in the sense that they represent overlapping
but not the same details of an object. Reference [330] point
out that moving objects appear as dynamic obstacles and
hence occlude the static environment from the sensors of
an autonomous vehicle, inducing outliers. See [187] for an
overview of potential sources of contamination in point cloud
data.

Point cloud registration addresses the registration of sets
of 2D or 3D points in computer vision. One of the best
known algorithms for this problem is the iterative closest
point algorithm (ICP). Here, one has some reference surface
(a “model” point cloud), with which the observed point
cloud, the “data” point cloud, has to be aligned. To this
end, the goal is to find a parametric transformation between
the points of both point clouds. In the simplest form, this
is done iteratively by finding the closest model point for
each data point, respectively, for the current parameter, and
to update the transformation parameter by minimizing the
sum of squared distances over all data points (e.g., [93]).
Note the similarity of this approach to transform data points
in order to match model points and the transformation of
2D positions or brightness values in order to match their
reference counterparts in VO.

VOLUME 13, 2025

Such outliers potentially induce large values of the loss
function that is to be minimized, in particular, when using
the squared loss as in the standard ICP algorithm. A typical
robustification is to use a robust loss function that allows for
a certain fraction of such erroneous points without significant
distortion of the matching procedure.

3) NAVIGATION

For satellite data, contamination may occur due to occlusion,
i.e., where the line-of-sight between emitter and receiver
is blocked [231], [237], [269]. Reference [9] argue that
a common source of contamination in GNSS data is the
multi-path effect, i.e., the signals from satellites in a low
orbit can reach the receiving antenna by multiple paths
due to reflection on the ground or on surrounding objects.
Reference [65] additionally mention partial sky visibility and
non-line-sight as sources of contamination. Another source
of contamination can be electromagnetic propagation in the
sensors [334]. Radar data may be contaminated due to the
multi-path effect and interference [192].

In odometry, although the models may receive sequential
data, they usually do not include a time component in the form
of a time series or state space model. All navigation or track-
ing approaches where time series data are used are discussed
separately and are therefore contained in the individual
section Sec. IV-A3. The often used filtering approaches
assume a state space model where the observations at time
t depend on the current system state, and the current system
state depends recursively on the system state at time (f —
1). In contrast to localization problems that are solved via
regression or image translation where contamination appears
statically in the responses, regressor matrices, or point
clouds/images, contamination can propagate through the
recursive state space model, and the error distribution may
be non-stationary.

Usually, one assumes outliers that only affect the observa-
tions, indicating that the observations can be drawn from a
different than the assumed ideal distribution with a certain
probability (cf. [269]). However, contamination may also
appear in the state equation, indicating that the state at time
(t+ 1) is drawn from a different than the assumed conditional
distribution w.r.t. the current state at time ¢. This phenomenon
is referred to as innovation outliers (cf. [269]), and results, due
to the recursivity of the state equation, also in contamination
in the subsequent states.

Filtering approaches mostly amount to the application of
the standard or an extended Kalman filter (which covers
non-linear state and observation equations), or by noise mod-
eling, usually by variational inference. Inference in Kalman
filtering can be identified with least squares regression,
opening the path for robust approaches by performing robust
regression instead. In variational inference, assumptions on
the measurement and process noise distributions are required.
By using a heavy-tailed distribution for each type of noise,
both additive and innovation outliers can be adequately
captured when computing the posterior state distributions.
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Reference [343] point out that many approaches try to
achieve robustness by focusing on high-level features such
as lines and edges, however, the computational burden can
hinder real-time performance. Reference [211] point out that
robust features (e.g., [27], [203]) that are constructed in order
to be less invariant towards illumination changes are not
suitable for realistic situations where the spectrum and the
direction of the light can change.

In SLAM, the data may consist of relative information
such as (pseudo)range measurements, i.e., distances between
the receiver and the emitter, collected from GPS or radar.
By a regression model, one can infer the vehicle (i.e.,
receiver) location from the range data. Since the measurement
function that quantifies the relative information is usually
non-linear, a good initial guess for the true positions is
required in order to find the global optimum (cf. [141]).
Contamination appears not only from measurement errors but
is also implied by bad initial guesses, and their location may
be random or grouped (e.g., [4]). Contamination in the sense
of measurement errors of the ranges appear as outliers in the
responses. A robust (regression) approach therefore not only
safeguards against measurement errors but also against bad
initializations (maybe resulting from measurement errors in
the data) and allows for contamination in the regressor matrix,
maybe due to erroneous receiver coordinates or clock offsets.

C. BOUNDING BOX ESTIMATION

Bounding box estimation is crucial in object detection and
tracking. The goal is to find a box which completely sur-
rounds the desired object and which is as tightly as possible.
Typical approaches for bounding box detection invoke both
a classification loss, because the object corresponding to the
box needs to be identified, as well as a regression loss that
quantifies the quality of the bounding box coordinates (e.g.,
[108]).

A source of contamination could be errors made by the
annotators, which is a known problem and has been studied
for example in [224] and [306]. Suppose that an annotator
provided a bounding box that is much wider or narrower
than it should be. This could induce wrong patterns during
training, maybe when there are many similar objects in the
data, so that the neural network learns to fit reliable bounding
boxes for the similar objects and, therefore, also for the
object with the wrong bounding box, which implies a large
regression loss for this particular bounding box. However,
if for some reason a reference bounding box immensely
differs from the optimal one, it could have a leverage effect,
similarly as one large outlier in least-squares regression,
and distort the whole model. Having already annotated data,
is seems implausible that they would be checked again by the
data scientist, so in this case, one could find contamination
by inspecting the losses during neural network training or
during testing, and may identify such “outliers”. By a robust
approach, even large outliers may not result in a distorted
model. Reference [154] provided another argumentation why

167852

contamination may appear, namely that object detection is
accompanied with an uncertainty that grows as a function of
time, i.e., when performing tracking and iteratively predicting
a bounding box for a future time step. In this sense, the
true bounding box coordinates could appear as outliers
under the assumption of the current predictive model for the
coordinates.

D. ESTIMATION OF VEHICLE PARAMETERS
Vehicle parameters need to be inferred in order to operate
a vehicle safely. Such parameters can correspond to vehicle
dynamics like longitudinal and lateral velocities, moments of
inertia, or tractive forces, or be related to electric vehicles
only, which are voltages or the state of charge of batteries.
Contamination appears once measurement errors occur,
either in the training data for the parameters of inter-
est, resulting in errors in the response variables, or for
the regressor variables, which leads to contamination in
the features. Outliers in the responses or regressors can
be identified individually by outlier detection procedures,
applied onto the response column or the regressor matrix,
however, in a regression setting, both procedures alone would
not find outliers that are inconsistent with the regression
model. In other words, if for example a response variable
has been measured wrongly but still lies within the range
of the majority of response values, it would not appear
as outlier when considering the response column alone.
However, if the contamination is inconsistent with an
assumed underlying regression model, it is detected when
computing the residuals. Robust procedures hence allow to
deal with even large measurement errors, which may never
be completely avoidable, and can provide models that only
marginally suffer from contamination.

E. DETECTION OF ROAD FEATURES

Road feature detection includes to find the position of road
features such as road markings or to even extract road surfaces
from measured 3D point clouds. This is achieved by a
regression approach.

A typical source of contamination are measurement errors
and false positives of the tracker (e.g., [302]). In road surface
detection, contamination may arise from non-surface points
in the point cloud [234], which would imply large residuals.

F. PREDICTION AND PLANNING

Apart from the applications of Robust Statistics in perception
tasks as illustrated in the previous subsections, robust proce-
dures also entered approaches for prediction and planning,
i.e., RL, IL, and MPC.

In most of these approaches, one either considers adver-
sarial robustness or robustness against noise induced by
measurement errors, where either the observed state is
perturbed (e.g., [282]) or even the true state [316]. Robust
approaches usually amount to a minimax game, where
one does not optimize the expected future reward, but a
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worst-case future reward under unfavorable transitions [131],
maybe induced by adversarial agents that are trained in order
to hinder the ego-agent to reach its goal (e.g., [256]). Even
perturbations of the ego-actions have been considered [298].

However, as RL does not need data but uses the data
generated during training, finding a reasonable amount of
contamination is more difficult than in settings where one can
just use contaminated real-world data. One challenge, when
training adversarial agents, is to ensure that these agents at
least behave plausibly, i.e., that the ego-agent is not trained
solely on extreme edge cases that are very unlikely to be
encountered in the real world.

In IL, reference trajectories are given, where contam-
ination can appear by random perturbations [19]. With
annotation errors from bounding box estimation in mind,
one can interpret such perturbations as a manifestation of
a non-perfect human driver, similarly to annotation errors
due to non-perfect human annotators. Alternatively, single
state-action pairs may be contaminated [198], a fraction
of transitions [366] or even a fraction of transitions and
rewards [365].

IIl. KEY CONCEPTS OF ROBUST STATISTICS
This section provides the necessary notions and concepts of
Robust Statistics.

A. CONTAMINATION MODELS
Contamination models formalize mismatches of the assumed
(“ideal”) and the real distribution. They are given by sets of
probability distributions whose distance, quantified in some
metric, to the ideal distribution is bounded by some constant.
Before we start with formal definitions, we provide small
examples in order to illustrate how the contamination models
have to be understood and how they deviate from adversarial
attacks.

Example 1: Consider the regressor matrix
2 03
-1 12 . .
X = 210 and the following perturbed versions:
4 —13
1 -1 2 8 —46
-2 0 1 -1 12
I — @ _
=m0 -1 521 0]
3 -2 2 4 —13
203
3 _| 898
XT=1210
9 811

Let us start with adversarial attacks. Here, we interpret the
perturbed matrices as sums of the form X® = X + v®),
k = 1,2, 3, for perturbation matrices V&) These matrices
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are therefore given by

-1 -1-1
-1 -1-1
-1 -1-1}"
-1 -1-1
000

986

000

598

|
n

SO O W

v — v —

SO O
S O O

v —

Can these perturbation matrices stem from an adversarial
attack scheme? It depends on the budget, usually quantified
in the Frobenius norm. The Frobenius norm of a matrj

M € R™" is defined as ||M||f = (Z;":l Py |m,~j|2)

Therefore, we have ||[VD||r = V12, |IV@||r = V61,
IIV®||F = +/351. In other words, with a perturbation budget
of 7 for an adversarial attack scheme on X, it is possible to
generate X1, but it is impossible to generate X® or X©®.
With a budget of 20, it is possible to generate each of the
perturbed matrices.

Now, consider a probabilistic contamination model in the
sense that with a certain probability, 1 — r, a row of X
stems from its original distribution, and with probability
r, from some other distribution G. The first consequence
is that the V® are no longer needed here, as there is no
additive perturbation matrix. We assume for simplicity in this
example that when a row of X®) equals the respective row
of X, it stems from the original distribution. We start with
X®. Only the first row differs from X. In this simplified
example, it follows that for r = 0.1, the probability
that only one row stems from another than the original
distribution is 4 - 0.1 - 0.9%. However, whether realizing X®
is possible and its likelihood also depends on the distribution
G. If G is a N3((6, —4, 3), ¥)-distribution for some positive
semi-definite matrix ¥, the realization of X is certainly
possible and its likelihood is given by the density of G
at (6, —4, 3). However, if G has zero density at (6, —4, 3),
realizing X ®) under this contamination scheme is impossible.
A similar argumentation can be done for X®. As for X(D,
under our simplifying assumptions, having four rows realized
from G is very improbable for a low r, but not impossible.

This example should emphasize that the main difference
in the geometric distances used in adversarial attacks and the
probabilistic distances that are encountered in contamination
settings from Robust Statistics is that the former are
deterministic in the sense that a certain adversarial contam-
ination is either possible or impossible, while distributional
contamination is more subtle and allows for a large variety of
possible realized perturbations.

For the following definition, see [259, Sec. 4.2].

Definition 1: Let (2, A) be a measurable space. Let P :=
{Pgp | & € ©} be a family of parametric distributions Py €
Py on (2, A), where Py, denotes the “ideal distribution”.
Let ® C R’ be a parameter space. A contamination
model is given by the set Uy(6g) := {U.(@o,r) | r €
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[0, 00]} of contamination balls U.(6y,r) = {Q €
Mi(A) | d(Py,, Q) < r}, where M;(A) denotes the set
of probability distributions on .4. One refers to r also as the
“contamination radius”.

One can consider the “ideal distribution” to be the
distribution that one assumes for the underlying data, often
idealized, e.g., Gaussian.

Example 2: The convex contamination model I4.(6) con-
siders a convex combination of distributions, leading to
convex contamination balls of the form

Uc(8o, r) = {(1 — r)+Pg, + min(1, )Q | Q € M;(A)}.

The convex contamination model is intuitive in the sense
that with a probability of min(1, r), an instance in a dataset,
a gradient in neural network training, an action of an
agent, or whatever the data consist of, is contaminated, i.e.,
in expectation, a min(1, r)-fraction of the considered objects
is not generated from the ideal distribution. In Ex. 1, convex
contamination has been considered.

B. BREAKDOWN POINT

The breakdown point (BDP), roughly speaking, quantifies the
amount of contamination that is necessary in order to achieve
a breakdown of the estimator in the sense that the estimator
may output unreasonable values. For a given dataset, the
so-called finite-sample BDP [78] is the relative fraction of
instances that have to be contaminated in order to achieve
such a breakdown. For regression, let the dataset consist of
instances (X;, ¥;) € RPt! and assume the model E[Y;] =
h(X;)B for some unknown coefficient vector 8 € R”. The
BDP is then defined as follows.

Definition 2: Let Z, = {Xy1,Y1),...,X,, Yy)} for
instances (X, Y;). The case-wise finite-sample breakdown
point of an estimator B for the regression parameter § is
defined by

m
n

e"(B. Zn) =min[ SZu’y(llﬂ(Zf,")ll)= OO]- (1)
n

Here, the set Z)" denotes any sample that has exactly (n — m)

instances in common with Z,. The coefficient B (Z,) denotes

the estimated parameter on Z].

Note that the fraction given by the BDP is deterministic
in the sense that, for example, in federated learning, one
assumes that exactly m out of n gradients can be intercepted
and manipulated by an attacker. In contrast, the convex
contamination balls are stochastic in the sense that even if the
contamination radius r is fixed, the number of contaminated
objects follows an B(n, min(1, r))-distribution. The BDP of
many estimators has already been computed in the literature
on Robust Statistics.

We continue the Ex. 1 in order to illustrate the contamina-
tions that are covered in BDP examinations.

Example 3: Consider the matrices X, X", X and X®
from Ex. 1. In contrast to the modeling approach with ideal
and contaminating distributions as in Ex. 1, we inspect
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the situation where a breakdown point of some algorithm
operating on X should be discussed. For comparison, we first
consider adversarial attacks. Here, the question is whether
some adversarial attack that can be crafted using the allowed
budget can lead to a large deviation in the output of a trained
model. Usually, one has a classification model and tries to
find adversarial perturbations that cause the model to predict
a different label for the perturbed input than for X (e.g., [42],
[111]).

When dealing with poisoning attacks, one does not
assume an already trained model as when considering
adversarial attacks, but examines the impact of an adversarial
perturbation w.r.t. some budget on the trained model itself,
i.e., whether adversarial perturbations can distort the model
during training.

For BDP inspections, the goal is similar as when con-
sidering poisoning attacks. Here, one is also interested in
the impact of perturbations on the training process, but the
contamination is injected differently. While poisoning attacks
consider perturbations that are bounded by a geometric argu-
ment, e.g., the Frobenius norm, BDP discussions consider
the fraction of perturbed observations only. In this sense,
the perturbed matrices X*) can appear in poisoning attack
settings provided that the budget is sufficiently high. For
BDP discussions however, the set Z)" is considered. In this
example, the set Z" consists of all 4 x 3—matrices for which
exactly (n — m) rows are identical with the respective rows
of X. In this sense, the matrix X® lies in the set Z)" for all
m =1, ...,4, while the matrix X® can only be considered
for m > 1. The matrix X! would correspond only to
m = 4, however, in nearly all settings, one would not allow
for m > n/2 = 2, so one can assume that X’ would not
appear in BDP discussions.

The BDP concept has also been formulated, e.g., for
classification (rotation of decision boundaries; [370]), rank-
ing (order inversion; [325]), and clustering (dissolution of
clusters; [136]).

In particular, in the context of high-dimensional data, [10]
propose to consider the contamination of single cells. As one
contaminated cell already contaminates the corresponding
instance, in high-dimensional settings, one can easily con-
taminate each instance with a few outlying cells. One can
nevertheless consider the relative fraction of contaminated
cells as (cell-wise) BDP concept, see, e.g., [310], when
analyzing cell-wise robust algorithms that are tailored to this
setting.

C. INFLUENCE CURVE

Robust Statistics interprets estimators as statistical function-
als, i.e., functionals which take a distribution as input. For
example, the expected value of some distribution P can be
denoted by the mean functional 7™¢*"(P) = f xP(dx). The
influence curve goes back to [123]. The goal is to determine
the local behavior of an estimator in a neighborhood around
the ideal distribution by a suitable linearization of the
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underlying functional. Given such a linearization, i.e., a van-
Mises expansion [311] of the statistical functional in the sense

T(Q) —TP) = / T'(P)d(Q — P)(x) + rem

for some stochastic remainder term rem, the (Géateaux-)
deritative can be identified with the influence curve, i.e.,
T'(P) =1C(x, T, P).

Formally, the influence function is defined as follows (e.g.,
[259)).

Definition 3: Let Z be a normed function space. Let
further the parameter space ® be a normed real vector space
andlet T : Z — O be a statistical functional. The influence
curve of T at x for a distribution P on Z is given by

T((1—r)P+réx)— T(P))

IC(x,T,P) = lirrz)(
r— r

= 3 [T((1 — )P+ r8,)]

r=0

for the Dirac measure J, at x.

The influence curve determines the infinitesimal impact
of a single observation on the estimator. Robustness of the
estimator in the sense of the influence curve requires that
[IC(x,T,P)] < oo for all x. This property is called B-
robustness.

D. ROBUST LOSSES AND AGGREGATION METHODS
Let a general M-estimator be given by

~ 1 n
" _ argmin, (; Zi:l p(ri(0)))

for a loss function p R — R and residuals r;(#).
If p is differentiable, one can equivalently consider the
corresponding Z-estimator

1
zerog (; D wm(o)))

for ¥y = p’. The influence function of an M-estimator is (e.g.,
[121])

¥ (x)
Ep, [¥'(X)]
Therefore, a robustification of an M-estimator can be done by

bounding the derivative ¥ of the loss function, which leads to
“robust loss functions”. A popular example is the Huber loss

1CGx, 8", Pyy) = — 2

P2, Irl <k

PH(r) = {ka ey

Irl =k

for a hyperparameter k. One can interpret location
M-estimators as weighted means of the form (e.g., [213])

2 iwiXi
Zi wi
w; = wX; — 0).

> WX =X, —0)=0, b=
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In the case of the Huber loss, the weight function is given by

o(157)
wg(r)=min |1, — ).
|7]

A disadvantage of the Huber loss is that the loss function
is still unbounded, which makes Huberized M-estimators
vulnerable against large outliers or heavy-tailed distributions.
In order to cope with such situations, one uses loss functions
which are bounded, implying that their derivatives ¥ tend to
zero again in the sense lim,|— oo (¥ (7)) = 0. Therefore, such
derivatives are sometimes called “redescenders”. A popular
loss function of this type is the Tukey-biweight loss, given by

(1)) =

Lo fri=k

pr(r) =

Further losses with redescending derivative are the Welsch

loss
1 /r\2
pw(r) = 1—exp (—5 (z) ) ,

the Geman-McClure loss
2
r

oem(r) = m,

and the Cauchy loss
2

pc(r) = %ln (1 + (%)2) .

Another technique, which still allows for using standard
loss functions such as the squared loss, is to robustify the
aggregation of the losses corresponding to the individual
instances. This is done by trimming, leading to approaches
such as the least median of squares [262]

argming (med(7;(6))).

Due to a slow convergence rate, [262] proposed the least
trimmed squares (LTS) estimator

argming (Zl’.’zl(ﬂ(e))i;n) ,

where z;., denotes the smallest element of a vector z € R”,
z2-n the second smallest element and so forth. In other words,
the LTS estimator intends to minimize the sum of squares for
the n < n observations with the smallest squared residuals
(the set of these instances is sometimes called “clean subset™).
Due to the computational complexity of LTS, [264], [265]
proposed an iterative algorithm that starts with an initial
subset I,(lo) of size h so that the parameters of the model are
computed solely using the instances / }(10)- Then, the residuals
for all instances are computed, leading to the next iterate / }(ll)
that consists of the & instances with the smallest residuals.
Due to only attaining a local minimum, this algorithm is
repeated for several initial sets, so that the final h-set with
the smallest sum of residuals (over this A-set) is taken. This
technique has been extended to high-dimensional models by
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the Sparse LTS (SLTS) method [7] where Lasso models are
computed in each iteration.

Inregression, one may have to estimate both the regression
parameter B and a scale 6. This can be done by first
estimating & and by solving

1 i
argming (; zip (ri}ﬂ))) .

for a bounded loss function p. The idea of MM-estimators is

to first compute a consistent and highly robust estimator ﬁ(o),
to compute a robust scale estimator 6 and to find a solution
of the problem above, allowing for both robustness and high
efficiency.

E. OTHER NOTIONS OF ROBUSTNESS IN AUTONOMOUS
DRIVING

The term “robustness” is often used in the Al literature,
including that on autonomous driving, in a dictionary-sense
such as robustness against error propagation by the sim-
plification of computation steps or against hyperparameter
settings of a certain algorithm. Robustness can also be
understood as a better accessibility of model parameters (e.g.,
[811).

The closest understanding of robustness to that from
Robust Statistics is the consideration of challenging environ-
ment conditions such as GPS in the presence of tunnels and
canyons [219], sensor fusion in “hostile environments” [339]
or rain [360], or in general the gap between a simulation and
the real world, e.g., [8], [11]. Sensors such as LiDAR or Radar
that can cope with varying lightning or weather conditions are
also called “robust” [89].

In deep learning in general, the term “robustness” is often
understood as adversarial robustness (e.g., [156]; see, e.g.,
[24], [266] for details on adversarial robustness), which
is not the core understanding of robustness in the sense
of Robust Statistics, because the perturbation occurs after
model training, while Robust Statistics considers the effect
of contamination onto the estimator, i.e., the contamination
appears before training and therefore potentially affects
the trained model. Reference [104] point out that there
are different understandings of the term “robustness” and
focus themselves on the classical robustness in terms of
the breakdown point. Moreover, they correctly emphasize
that robustness in the sense of the BDP does not guarantee
adversarial robustness.

At least two measures for adversarial robustness have been
proposed in the literature, the error-rate-based measure [212]
where adversarial samples are generated given a certain
perturbation radius and the relative number of errors is
investigated, or the radius-based measure [296] where one
searches for the minimum perturbation radius in order to
generate a misclassification. In the adversarial setting, one
uses the term “certified robustness” which indicates some
guarantee that an adversary does not have success provided
that the perturbation norm is smaller than some threshold.
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The counterpart from Robust Statistics is the property of a
non-zero BDP in order to guarantee global robustness here.

Sometimes even the convex contamination setting is
interpreted as adversarial setting [371]. Reference [382]
use the terminology “robust loss” for a worst-case loss in
adversarial training. Reference [338] call the property that
machine learning models perform well even in the presence
of adversarial attacks as “robust accuracy” or “robust gen-
eralization”. Reference [112] define “over-robustness” (for
Graphical Neural Networks (GNNs)) as unwanted robustness
in the sense that even the semantic context has changed due to
the perturbations, the robust classifier does not react, which
they call “robust beyond the point of semantic change”. The
term ““trigger/backdoor robustness” has been coined in [118]
who consider backdoor and poisoning attacks.

Reference [135] speak of “common corruptions” of images
such as blur, Gaussian noise or due to certain weather
conditions such as fog. They propose not to only consider
the worst-case situation when assessing robustness as in
adversarial attacks (and, notably, also in BDP computations)
but to also take these common corruptions into account. They
introduce the term “corruption robustness” which does not
refer to the minimum probability that the classifier predicts
the correct class over a perturbation ball as in adversarial
robustness but which refers to the expectation over a set of
corruptions. Note that this idea is similar to the expected
finite-sample BDP from [268] where one abstains from
considering the worst-case contamination in the context of
heavy-tailed distributions.

F. RANSAC

A popular algorithm that entered autonomous driving appli-
cation is RANSAC (random sample consensus), going back
to [92]. The idea of RANSAC is to iteratively identify the
worst points (usually time points) and to remove them from
the data. More precisely, RANSAC samples m < n instances,
computes a model f; and determines the consensus set, which
is given by the instances for which the loss is smaller than
some threshold. If the size of this set is larger than & for
some A, one uses this set to re-compute the model, otherwise,
one samples another random subset of size m and repeats the
procedure. At the end, the largest consensus set (which one
may again interpret as “clean” subset) observed is reported.
The elements of this consensus set are interpreted as inliers
here. This procedure can be interpreted as a brute-force
counterpart of the iterative algorithm for the computation of
the LTS.

For example, [349] use the RANSAC algorithm in order
to address ego-motion estimation, segmentation, and moving
object detection. They point out that RANSAC is tailored
to environments with rapid changes. Reference [178] apply
RANSAC for robust pose estimation of vehicles.

Reference [291] point out that on data corresponding to
rotation search or point cloud registration, one can even have
more than 95% outliers, see also [239], and work with up
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to 99% outliers in their experiments. The reason is that for
two point clouds P = (P)!_,, P* = (P}),, Pi, P} € R,
mismatched keypoints or localization errors can result in a
lot of false correspondences (P;, P7) [178], [291]. From the
perspective of Robust Statistics, such a high contamination
radius is uncommon, and most concepts can at most deal
with contamination radii of 0.5 because the BDP of an
equivariant estimator cannot exceed 0.5 asymptotically [71].
There are however at least two cases where the number
of outlying instances is allowed to be higher. First, when
aggregating models, e.g., [326] proposed a trimmed Stability
Selection where only the models corresponding to the
smallest out-of-sample losses are considered for aggregation,
theoretically allowing for a higher rate of outliers in the data
set than 0.5 because resampling can result in sufficiently
clean training batches (where the outlier ratio is at most
0.5). On the other hand, an instance is considered to be
outlying if at least one cell is contaminated [10]. In such
situations, cell-wise robust algorithms provide an alternative
to classical robust algorithms as they can deal with the
situation that each instance is contaminated, provided that
the cell-wise contamination rate is lower than their cell-
wise BDP. However, this requires sufficiently many predictor
variables, e.g., in the setting of point cloud registration, the
data set only consists of the pairwise point correspondences,
making the notion of cell-wise robustness obsolete.

RANSAC has disadvantages, such as the long computation
time, the dependence on the minimum number of instances
that is required for defining a model [254], the problem
to apply it to data with only a few samples due to
sparse measurements or many dropouts [210], the increased
complexity for large outlier fractions [283], the sensitivity
to the outlier threshold [210], its non-deterministic nature
(e.g., [239], [280]), and the difficulty to apply it to high-
dimensional problems [280]. RANSAC clearly depends
on the error threshold, which leads to the problem that,
in contrast to trimming approaches such as LTS where the
trimming rate (i.e., o such that h = [(1 — «a)n]) is fixed,
defining a threshold does not provide ex ante information to
how many non-trimmed instances it corresponds. According
to [341], RANSAC can deal with 80% outliers but becomes
very expensive due to re-adaptations when the outlier rate is
higher than 90%.

Reference [210] experimentally compare different M-
estimators with the squared, absolute, Huber, Cauchy,
Geman-McClure, the dynamically scaled covariance loss [4]
and a clipped squared loss on a dataset for visual localization,
with the result that the Geman-McClure loss, optionally
combined with clipping in the sense that the last iterations
are done w.r.t. the clipped squared loss as loss function
instead of the Geman-McClure loss, lead to the best results
in the presence of large contamination radii. RANSAC
cannot be applied due to the large contamination radius,
resulting in too few correct correspondences in each images.
Reference [225] showed that RANSAC in combination with
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robust base estimators such as LTS or LMS performs better in
the presence of contamination than RANSAC with standard
least squares. The methods were evaluated by the number of
inliers they identified on simulated data where this number
is known. Reference [182] point out that the iterative closest
point algorithm (ICP), which is the standard tool for point
cloud registration, heavily depends on the initializations of
the transformations and that it cannot deal with cross-source
point clouds, for example, from multiview stereo. They
combine RANSAC with the Tukey biweight in order to
overcome the problem of a very high required number of trials
of RANSAC.

Reference [140] propose VODRAC (voting-based double-
point random sampling with compatibility weighting). The
idea is to overcome to computational complexity of RANSAC
by using the pairwise compatibility constraint. That is, for the
model p¥ = Rp,+f+¢; forp, and p; from point clouds P, P*,
respectively, a rotation operator R € SO(3) and a translation
fe R3, the constraint is

ry =B — Bl — 1B — b1l < 2n

for the inlier threshold 5. This norm difference equals
2||e; — €j|| under the model above. This allows for checking
whether two correspondences are compatible, then, one can
check whether a third correspondence is compatible with
each of these two correspondences and so forth, facilitating
the search for the inlier set. This technique is referred to
a double-point random sampling. In addition, they aim at
putting more weight onto clear inliers, i.e., for which r;; is
small, by invoking Tukey’s biweight loss function, leading to
the weights

2\
| U o2 < )
wij = ( (2n>2) i = @)

0. r;>@n?

which allows a sorting of the correspondence set in the sense
that the minimal subset is formed by the correspondences
with the highest weights.

IV. APPLICATIONS IN AUTONOMOUS DRIVING:
PERCEPTION

This section collects approaches based on Robust Statistics in
perception tasks for autonomous driving. In each subsection,
we address one of the sub-tasks that we already listed in
Fig. 1. Robust perception refers to strategies that allow
for corrupted data, such as outliers in camera or LiDAR
data, that may result from challenging weather conditions,
light reflections, occlusions, or just measurement errors. The
extraction of realiable state information from those data is
vital in order to suitably predict the maneuvers of other traffic
participants and to plan own maneuvers.
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A. SLAM
Reference [141] propose to use the Cauchy loss for a robust
graph-based SLAM for the model

zj = hij(p;. p)) + €;j

for a non-linear measurement function #;;, positions p;, errors
€;; and measurements z;; from p; to p;. The goal is to estimate
the true locations p;, so the residuals that enter the Cauchy
loss function are
1/2
rij = 155> @j — hi@;. )12

for the covariance matrix Ei/_' 1 of the ideal model € ~
N(O, Eij_.l). The objective is then

argmin(l’la--wl’n) (Z(i,j)eE pC(rij))

for the edge set E of the corresponding SLAM graph.
Reference [4] also consider a graph-based approach of the
SLAM model which aims to minimize

2
Zt ||ht,t+1(p[apt+1) _Zt,t+l||2,
2
+ E . E t,“f(Pt’Pt/)_zt,z’HAt't,

where the indices ¢ and ¢’ correspond to time steps. The
covariance matrices of the odometry and sensor measure-
ments are given by X, and A, ,, respectively. The goal is to
find the positions p, that minimize the loss. They propose the
dynamically scaled covariance loss,

D M@ pi) =zl
+ 20 20 G @ p) =20l

+ 2 > =gl

where the ¢; » € [0, 1] are switching variables, ¥ : [0, 1] —
[0, 1]is a scaling function and where &, , is a switching prior.
This loss is minimized w.r.t. both the p, and the & ;. They
show that the solution is given by

(. 28, )
G =min| 1, — +||ht,t/(pzvpz’)_zt,t'”A”/ .

:‘l,t’

References [3] and [210] show that, inserting the uncon-
strained solution for the ¢; ;41 (so that they are not upper
bounded by 1) for dynamically scaled covariance into
the loss function, one replicates the Geman-McClure loss
function, up to a constant factor. Reference [210] identify the
dynamically scaled covariance loss therefore with a variant
of the Huber loss where the squared loss is used for small
residuals, and the Geman-McClure loss for large residuals.

Reference [3] propose a Bayesian approach for estimating
the posterior of the state (position) variables, so that robust
loss functions can be implicitly encoded via corresponding
distributions such as corrupted Gaussian in a mixture
approach. They test their procedure using real data from
Google StreetView maps from which the necessary poses and
3D points are extracted.
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Reference [303] use the truncated least squares loss for
location estimation, i.e.,

2
> 2 e e = [ o

for the geodesic distances rg between the average poses and
the measured poses.

Reference [202] consider multimodal motion prediction
and propose a loss function composed by several losses, one
is aregression loss w.r.t. the coordinate offsets for which they
use the Huber loss. The goal is to predict trajectories until a
given horizon.

Many SLAM approaches consider GPS or GNSS data,
where one usually has the (pseudo)range as response
variable.

Reference [96] compare several robust regression methods
for positioning estimation in challenging areas such as urban
canyons or city centers. Their model is given by

Yi=XiB+e 3)

Irl <k

Ir] >k

)

where the Y; are the differences between measured and
predicted pseudoranges, the X; are the geometry matrices
and B is a vector consisting of the receiver coordinates and
the clock offset of the receiver and the satellite, scaled with
the speed of light. As for the robust methods, LTS and
M-estimation with the Huber loss and the IGGIII weight
function

L, rl<k
ki (ko —1rl\°
w N=1—=—), b<irl<k .
IGGIII |r|(k2—k] 1Zrl <k
0, Irlzk

respectively, are applied.

Another comparison has been made in [173] who compare
several robust regression and outlier detection methods,
including LTS, LMS, robust M-estimators, S-estimators, and
MM-estimators, on simulated GPS data where the response
variable is the pseudorange. The goal of [173] was to
study how many outliers were correctly detected by the
individual methods. They point out that the robust methods
are time-consuming and may hinder real-time performance.

Reference [9] apply robust regression methods on GNSS
data, where they consider the linear model Eq. 3 where X;
at least contains information about the satellite ID, the epoch
and the elevation and where Y; are the pre-fit pseudoranges.
They apply LTS, LMS and a forward search, where one
starts searching for a clean subset of size & and increases
this number iteratively. They achieve real-time capability
on a real-world dataset and propose to not analyze large
chunks of data at once but to use a sliding-window approach.
Reference [6] consider MM-regression.

Reference [12] propose to apply the Huber M-estimator for
GPS position estimation. The underlying model is given by

V=X 4+x" 4,
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where Y is a pseudorange measurement, X ) is the geometric
distance from satellite to receiver and X® is a receiver
clock offset. In the linear model Eq. 3, the parameter vector
B contains the incremental corrections to the unknown
variables (receiver coordinates and clock offsets). Due to
linear relationships of the residuals and measurement errors,
they compute the redundancy matrix which is used to
modify the residuals. See also [64] for an application of
robust M-estimators for GNSS in urban scenarios, where a
three-satellite constellation is considered, which is reflected
by three clock offsets in the features. References [216], [217],
and [218] consider the regression problem from [12] with
the tropospheric and ionospheric corrections as additional
features in the model above and also use S- and MM-
estimators. Reference [40] also integrate ionospheric and
tropospheric corrections and replace the WLS estimation
by an estimation based on the Huber loss. Reference [361]
additionally include multi-path delays and ionospheric and
tropospheric corrections in the pseudorange model. Using
real-world data from open-sky, semi-urban and dense-urban
environments, they apply different robust loss functions,
including the Huber, Tukey, Cauchy, Geman-McClure and
Welsch loss.

Reference [114] propose to adapt the threshold of Tukey’s
biweight loss for GNSS position estimation. This is done in
dependence of the detected fraction of multi-paths in the data
when applying a CNN. The higher this fraction, the lower
the threshold, which is chosen in order to maintain a given
efficiency or BDP. Alternatively, they propose a robust M-
estimator, which is computed via IRWLS.

Reference [358] aim at discarding pseudorange and
Doppler measurements in GNSS. They point out that Doppler
measurements are also affected by reflections from buildings
or trees, although to a smaller extent than pseudorange
measurements. Based on the NFA (number of false alarms)
criterion, i.e.,

1 5p/0%)
NFA(D) = n———— / e~ IPV2 gy,
I(D1/2) Jo

for the set D of observations, a normalization constant 7, the
variance o2 of the underlying assumed normal distribution
of the measurement noise, and the sum of squares SLZ) of the
standardized residuals, they propose an iterative algorithm in
order to find a “clean subset” of the data that minimizes this
criterion.

Reference [320] propose a cross-view localization based
on both satellite and ground views. Given feature maps
extracted by a CNN from the satellite and ground-view
images, the residuals r; between the components of these
feature maps are computed. Then, the individual points are
weighted according to weights that are proportional to the
derivative of some robust loss function so that points with
large residuals are downweighted.

VOLUME 13, 2025

Reference [237] consider robust range estimation and
propose to use a tanh-type robust loss function of the form

A 1 C(Yi—?i)z
p(Y;, Y;) = —tanh| >——— ),
c 2

o2

where the Y; are the measured ranges, Y; their predicted
counterparts, and where o > 0 is a scale parameter. The
parameter c is estimated by LMS, o by the MAD. They also
propose a robust Bayesian algorithm, which is initiated by the

weights
A 1 of (Y — ?,‘)2
W(Yl‘, Yt) = ;sech T ,

computed from the M-estimation.
Reference [323] propose the GNSS measurement model

Yij = 1X; —ajl|| + C(5is —8)+1ij+Tj+bij+ei

for the pseudorange between vehicle i and satellite j, where a;
is the position of satellite j, where 5; and §; are the clock offset
of vehicle i and satellite j to the satellite system s, respectively,
and where ¢; ; is the measurement noise, which appears as
a stochastic noise term for which some distribution needs
to be assumed. Furthermore, ¢ denotes the speed of light
and I; ; and T;; denote measurement errors that are induced
by the ionosphere and the troposphere, respectively. Lastly,
b; ; are latent variables for modeling unknown measurement
biases. As for vehicle to vehicle measurements, they use
the model

Yij = h(Xi, X)) + bjj + €5,

for latent variables b;, measurement noise €; and the
states X; and X; of vehicle i and vehicle j, respectively.
Assuming that the measurement noise is Gaussian, any
contamination is modelled by the latent variables. To this
end, Gaussian-Gamma prior distributions are assumed, and
the joint distribution of the states and latent variables
are approximated via variational inference. They apply
their method on a real-world data set with three vehicles.
Reference [40] consider the same GNSS model, but without
latent variables. In a differential GNSS approach, the
differences

p” = h(X) — h(X") + €

are modelled, where X b denotes the position of the base
station. First-order linearization leads to

o’ ~ h(Xo) + H,8 — h(X?) + €,

for 8§ = X¢ — X and geometry matrix H,. The residuals
are given by r’ ~ H,8 + €” and modelled by a Gaussian
distribution. In the collaborative localization setting, the
measurements of all individual vehicles are concatenated.
Denoting the concatenated counterparts of the quantities
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above by 7, H, and 8, the Gaussian assumption allows for
a WLS formulation of the form

§ = argming ((? - ﬁrS)TVV(F — f{rg)) ,

where the weight matrix is the inverse joint covariance matrix.

Reference [107] propose a baro-radar odometry approach
based on barometry and radar and use robust loss functions
for the barometry and Doppler residuals. Radar data are also
considered in [192] who propose to use a truncated least
squares loss function.

1) VISUAL ODOMETRY/EGO-MOTION ESTIMATION

Many approaches intend to find a linear transformation
that relates the 2D images collected from the camera and 2D
reference images.

References [62] and [63] consider dense visual tracking
under large illumination changes. Given a stereo camera pair,
making n intensity measurements each, these observations
are stored into two sets I and I’. Let Z = (I,I)T be the
current view pair, let Z* be the reference view pair, and let
P* = {p,p’} be a set of stereo image correspondences (the
pixel locations) from a pair of reference templates from the
set P = {{p*, @)*}1. ..., {p*, @)*}.). Let f be the motion
model, which is quadrifocal warping in [62], represented by a
transformation T € SE(3). If T is the true transformation, and
if 7 is the estimated transformation until time step (t — 1), the
tracking problem then amounts to estimating the incremental
transformation 7'(£) at the current time step 7, under the
assumption that there exists & such that 7' (Eo)f" = T. Then,
the standard criterion based on the least-squares cost is

* T * (¥ \\\2
2 e {S P TET) = T (P2,

where the quadratic loss is replaced by the Huber loss in [62]
and [63]. Experiments on real-world data show that their
approach allows for real-time performance. They also make
suggestions for further computational improvement.

Reference [219] propose a hybrid approach between
model-based optimization, where the error between the cur-
rent model and the transformed current image is minimized,
and VO, which minimizes the distance between the previous
and current transformed image. More precisely, for model-
based tracking, they assume the relation

i*(P*) = ai(f(P*,T) — y

between the reference image intensities, i*, and the current
image intensities i; at time f, leading to the Huberized
objective

> o, PHEIE P TET) —y = *(PH))

In the VO approach, they consider augmented reference
images that include the warped image i’:_ | from the previous
time step, where

"{71(7)*) =i 1(f(P*, T;—1)),

167860

leading to a similar objective as above but where i*(P*) is
replaced by i’;_l(P*). As the model-based approach suffers
from illumination changes (apart from the fact that it requires
an a priori model, which may be very difficult to obtain,
as pointed out in [63]), and the VO approach is prone to drift
due to the accumulation of errors during feature extraction
and matching [63], [219] combine both approaches, the
robust loss functions corresponding to both approaches are
stacked so that a joint optimization is performed. Reference
[219] achieve near real-time performance on real-world data
with a stereo camera pair.

Reference [229] propose a Huberized approach in
model-based visual tracking by downweighting the contri-
bution of all pixels whose photometric error is higher than
some iteratively decreasing threshold. The standard average
photometric error is given by

1
Cipd) == Dy lirndp. DI,

ron,p.d) =I*(p) = I(x (KT~ (p, d))

for inverse depth d, a set J* of indices of reference images
from the set Z*, I* e I* pixel p = @, ), T €
SE(3), a camera-intrinsic transformation matrix K, and back-
projection 7 ~! (p, d) of the inverse depth value to a 3D point.
The robustification now invokes the Huber norm

2
713
- 2 <€
llrlle = 7 2€ )
il = 5. lIrlla = €

which enters the energy functional
Ex = /W(u)IIVN(u)IIE + AC(u, R(w))du

for the map N that assigns a depth value to a pixel, and
a pixel weight function w. Similar approaches based on
robust loss functions can be found in [238], where the Huber
function is directly applied to the rpp, and [110], [172],
who consider the IRWLS formulation of the minimization
problem w.r.t. the photometric error, where they use robust
weight functions such as the Huber of Tukey weight
function. Experiments on real-world datasets confirm real-
time capability. References [169] and [171] consider the
photometric residuals rp, and formulate the MAP estimation
problem

argmaxg (P(T (§)|(rpn, u, d))1e 7+))

searching for the transformation 7'(§) that maximizes the
posterior probability of the residuals. Here, they allow for
heavy-tailed distributions such a z-distribution. Reference
[171] apply their approach on data from an autonomous flight
experiment and achieve real-time performance.

Reference [343] propose to minimize the geometric
projection error instead of the photometric error due to a
higher resistance against illumination changes. The idea is to
find a distance transform map D, that computes the Euclidean
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distance to the closest edge for each pixel. For an edge pixel
e; from the current frame I;, it should therefore hold that
D.(e;) = 0. Let the reprojection residual for an edge pixel
e} from a reference image I* be

r(ef) = De(@)

for the reprojection position €; computed by the underlying
rotation and translation model. The objective is

D e eIl

for the Huber norm || - ||¢ and the set £* of all edges in
I*. Real-time performance has been shown on real-world
datasets.

Reference [17] consider dense VO [169], which does not
only use matched features as sparse VO does, i.e., dense
VO uses all pixels, resulting usually in a higher precision
but at higher computational costs. They point out that using
a t-distribution for both geometric and photometric errors
ignores the physical process, resulting in photometric errors
not being well-represented by such a noise model. Therefore,
they propose to use a t-distribution for photometric errors
but a probabilistic sensor noise model for geometric errors
(which in turn is not suitable for photometric errors),
and estimate the transformation between the 3D camera
coordinates and 2D image points.

Reference [381] argue that photo bundle adjustment
(PBA), which estimates scene geometry and camera motion
in VO, is usually done by minimizing the photometric
error. Motivated by works such as [169], they point out
that PBA must be robustified against outliers that may
arise due to widely separated active key frames so that the
photo-consistency assumption may be violated by occlusions
and reflections. In [381], their PBA error function for the total
photometric error has the form

DD wrort @)

for the parameters &, the squared residuals rl.2 and weights
w(r;), where the quadruple sum goes over all pixels in all
points corresponding to the active keyframes. The problem
is that the usually used Levenberg-Marquardt algorithm in
order to optimize this objective picks keyframes according
to photometric consistency, so that frames with occlusions
or reflections are prone to be ignored here. Although [381]
consider sparse VO, they conclude that a ¢-distribution is also
suitable for the photometric errors as in dense VO considered
in [17]. They first derive that the approach based on the #-
distribution is also suitable here, and also make experiments
with the Huber weights

0_2, |ril <k

w(ri) = o
’ ko2 rl 7t Il =k

where o2 is the variance of the ideal Gaussian distribution
of the photometric errors. Experiments reveal that the #-
distribution leads to even better performance because the
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weights drop even faster at the tails. In their experiments,
they also flag points as outliers if the number of outlying
pixels (flagged as such if the photometric error exceeds
the 95%—quantile of the error in the respective keyframe)
exceeds some threshold and delete them from the set of
observations. The Huber loss is also used in [94] and [221].
Experiments on KITTI and other datasets confirm real-time
performance.

Reference [155] consider the problem of camera
ego-motion estimation and propose a robust ego-motion
estimation procedure. They argue that the noise in real-time
flow data is often non-Gaussian and that violations of
the scene-rigidity assumption due to objects moving
independently result in outliers. The underlying model is

u@p;) = dp)Ap;v: + B@;)v,

for the optical flow u(p;) at image position p; € R?, the
translational velocity v; € R3, the rotational velocity v, € R3,
the inverse 8 of the scene depth and linear transformations A
and B. Motivated by [363], who already proposed a robust
ego-motion estimation procedure based on IRWLS, they
write the problem as a regression problem as [363], i.e.,

min (||Av/8 + By, — ull?),

v, ,v:,8
with the linear transformations Av; and B in matrix notation,
but they allow for confidence weights for each individual
flow vector. For a least-squares estimate v, of v, and a
re-formulation that allows to drop §, this leads to

min(|[v, o AT(0)' (BY, (1) —w15)-

In an expected residual likelihood approach, they directly
estimate these confidence weights, based on an assumed
Laplacian distribution of the residuals.

Reference [251] first derive a model for a monocular
visual-inertial system and aim at making robust state
estimations, where the states consist of positions and depths.
To this end, the residuals for the visual measurement are
minimized, but they are robustified in advance by the function
o(r) = I(r > 1)+ 247 — DI(r < 1). On a real-world
dataset, they achieve real-time performance. See [272] for a
similar robustness approach. Reference [372] include 3D to
2D reprojection errors, which enter via the Huber norm.

The Huber loss is also used in [51] where the reprojection
error of the estimated trajectory from a linear projection of
feature points w.r.t. the estimated trajectory from tracking key
points.

References [33] and [34] use robust loss functions for
optical flow estimation. Let (X, y;) be an image point at time
t and let v, € R? be the vector containing the horizontal and
vertical image velocity. For the image intensity I = I(x, y, t)
of pixel (x, y) at time ¢, the objective suggested by [33] is

Zg:(x,y) ZRS p1(0xIvy + 0yIvy + 0,1, 01)

+A ZENS (02091 —v D3, 09) + 020, —v D5, )],
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where N containts all neighboring pixels of pixel s, where
Rs is some local neighborhood of s, for 01,02, A > 0,
and where p1, pp are loss functions. The objective has to
be optimized w.r.t. vy, p(5) 1 and v(s)g. The first summand
encourages the data conservation constraint that the intensity
structure of small regions should persist over time, while
the second summand encourages the local optical flow of a
pixel to be close to that of neighboring pixels. Alternatively,
they consider a line-process approach where discontinuities
between pixels are modelled separately by binary variables,
which leads to a similar objective, and also consider a robust
alternative where the truncated squared loss is taken as loss
function.

2) LIDAR ODOMETRY/POINT CLOUD REGISTRATION
Reference [93] robustify ICP by using the Huber loss
function, aiming to minimize the distance

2, wimin(or (15} = TE@)ID,

where the w; are just indicator variables that take the value
one if and only if there is a match between reference and data
points.

Welsch’s loss function has been applied as a robust error
metric for ICP in point cloud registration in [73] in order to
quantify the distance between a set of intersection points on
the source surface and the target surface, respectively, i.e.,

D(x,y) = pw(llx —yl3).

Reference [31] consider the objective
min (3, p(IRp; +7 —P"ID)

for a rotation matrix R € R3**3 and a translation vector
t € R for point cloud registration and use IRWLS with the
Huber, the Tukey or the Cauchy loss function as robust loss
functions p.

The Huber loss is applied in [333] for motion-prediction
from point clouds, where it is used as motion-prediction loss,
spatial and temporal consistency loss.

Reference [125] propose a LiDAR-based direct odometry
method with the goal to efficiently find the matching points
for the point clouds extracted from the LiDAR data. Direct
odometry methods usually compare 2D images, therefore,
they first project the 3D LiDAR point to a 2D sphere. As a
re-projection of the entire projected 2D image would be time-
consuming, this re-projection is only done on selected key
points. Let p* € R? be the 2D image coordinates of the
reference data and let f be a parametric conversion function
between sensor and reference data so that f = f(T' (&), F)
for a parameter § that encodes rotation and translation,
a frame F, and a translation 7'(§) from the Lie group SE(3).
Let the residuals from the 2D image coordinate map be
r(Fy, F*, T(&)) for a sensor frame Fy and a reference frame
F*. Then, let a new frame F( be given with the goal to adjust

167862

the corresponding 7o (&), which is done by minimizing

2 2 (Fs, FY Too)T; )

at the key points, where the 7;, j = 1,...,n, are frame-
specific transformations. Afterwards, the 7} are updated sim-
ilarly, but where Tukey’s biweight loss is used. Experiments
on KITTI data and real-world data with an autonomous
vehicle confirm real-time performance.

Reference [144] use the Huber loss function when com-
puting functional map matrices that parameterize pairwise
correspondences of point clouds in order to better deal with
occlusions or deformations. The objectives

T K K
> ealllefy —ofdcl)

have to be minimized w.r.t. the map C for all (k, /), which
represent the edges in the point cloud graph, and where CD;(kl)
are the matrices that represent the matched points from point
cloud Pk to point cloud 7, for the number /; of matches.

The squared loss in the ICP algorithm has been replaced
with the LMS criterion in [214] and [375], and with the
LTS criterion for example in [59] and [243]. Reference [245]
proposed the so-called fractional root mean squared distance
as distance measure for ICP, which is essentially an LTS
criterion, up to taking the square root. Reference [145]
consider a truncated absolute loss. Reference [115] propose
a differentiable variant of the Huber loss. Reference [68] use
the family of parametrized robust loss functions from [23]
and propose an algorithm where one alternatingly optimizes
for the parameters of this loss function and the actual
regression parameter. Reference [346] propose a graduated
non-convexity approach where a non-convex robust loss is
optimized by iteratively optimizing a sequence of surrogates,
which are initially convex but gradually become non-convex.
This method is applied to point cloud registration with the
Geman-McClure and the truncated least squares criterion.

Reference [193] consider matching a data and a reference
point cloud, resulting in the objective

argming g 3) 7er’ (Zl Zj p(r(@; — Rp; — Z)))

for arobust loss function p. Experiments on different data sets
confirm a total computational time of less than one second,
confirming real-time performance.

A similar approach has been used in [335] for point-to-
plane matching, where the distance between a point from
the point cloud and the nearest point from a local plane on
the map is considered. They use the Huber loss function.
In [376], the truncated least squares loss is used in order to
find a transformation that aligns points from a LiDAR frame
with points from a local map for ego-motion estimation.
Experiments on KITTI data and real-world data collected
from a robot confirm real-time performance of their overall
LiDAR-only odometry and mapping pipeline.

Reference [143] propose a loss function that can be
interpreted as a soft counterpart of a truncated least squares
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loss, namely p(r, k, w) = w?||r||> + (I — w)*k?. In other
words, each residual is accompanied with a weight which
decides the trade-off between the squared loss and a constant
loss. This loss function is not used directly as objective for
the estimation of the optimal transformation 7 € SE(3) but
as a penalty term, i.e., the objective is

2NN+ 0w, 1P,

where (7)* denotes the residuals w.r.t. a reference point
cloud and where ) denotes residuals from the LiDAR point
cloud. The objective is optimized w.r.t. the weights and
the transformation alternatingly. The optimization w.r.t. the
weights leads to the closed-form solution wj’.‘ = k2(| |r(/')||2 +
k2)~1, implying the loss p(|[r?[1%, k, wj) = k2[r9||2(k? +
[[r?||2). This is just a scaled Geman-McClure loss. They
achieve real-time performance on different real datasets. A
similar objective function has been proposed in [373]. On
real-world data from urban areas in Hong Kong, they achieve
real-time performance.

Reference [330] use the Huber kernel loss as loss function
in laser localization. The objective is then

D wipn(r(TE)@). P).

where w; an indicator which is zero if p; is considered to be an
outlier, which is done by comparing the median of the error of
the posterior predictive corresponding to this point with the
population median of the error.

3) NAVIGATION/TRACKING VIA FILTERING
An important class of state estimation techniques are Kalman

filters (KF). The linear KF assumes a state space model of the
form (e.g., [269])

Xi=FX1+v:, Yi=ZX; +e¢,

with transition matrices F; € RP*P Z, € R9*P, and
noise variables €, ~ N,(04, V), v; ~ N,(0p, Q;). The
first equation is the state equation, describing the evolution
of the states of the system, while the second equation is
the measurement equation that describes the generation of
noisy measurement outputs from the underlying true states.
In control theory, one would also include a controller input
in the state equation (see Sec. V-C). The state space model
described here is time-discrete and time-variant. In the
less general time-invariant settings, one has static transition
matrices F' and Z. The goal in Kalman filtering is to estimate
the true states X; when measuring the Y,. There are several
ways how to robustify the KF, for example, by robustifying
the loss function is the least-squares interpretation of the KF,
by assuming a different noise distribution that is capable to
model large errors which would appear as outliers under the
Gaussian assumption, or outlier detection. In this paper, since
we are not aware of any robust approach for autonomous
driving in a continuous-time setting, we always have a
discrete-time setting.
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Reference [269] distinguish between additive outliers
(AQs), which affect the observations, i.e.,

€ ~ (1 — rap)L(e) + raoL(e]"),
and innovation outliers (I0), which affect the innovations,
ie.,

vy ~ (1= rio) Lo + rio L"),
where E(eitd), L(e"), E(vi,d), L(vi*) denote the distributions
of the ideal and contaminated noise terms, respectively, and
where r40, 110 € [0, 1] are the respective contamination
radii. The main difference is that IOs affect subsequent
states, covering level shifts or linear trends, so that not
only the current observation is affected. One can also define

substitutive outliers (SO), which directly manipulate the
observation distribution and not the noise distribution, i.e.,

Y ~ (1 — rso) LYY + rgoL(YT™).

The Kalman filtering algorithm, going back to [164],
is given by the following recursive scheme (here, in the
notation of [269]): Initialization

Xojo =aop, Xoj0 = Qo, @
prediction

Xo—1 = FXi—1j—1, Zop—1 = B S F + 0 (5)
and correction

X =Xp-1 +KAY,, 2 =y, — KiZ)Zg-1,  (6)
for

AX: =X; — Xyi-1, AY: =Y, —Z X111 = ZAX; + €,

@)

and
Ay =Z 28 + Vi, Ko=Z1Z2f A7 (8)

Here, the quantity K; is referred to as the Kalman gain.
This recursive scheme can also be interpreted as a
least-squares approach (e.g., [288]). In the notation of [65],

denoting
Y, Z €;
= X
() = (1) (7)

ry =Xt\t—1 - X,

for

one can compactly write
1?t = ZIX t + ¥,

where 7, has a block diagonal covariance matrix 1~€,. The
estimation of the states via a squared loss leads to a
least-squares solution with prediction

XAvt“ == (ZtTkt_lzt)_thTkl_lyt. (9)
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In non-linear dynamics, suitable versions of the linear KF
have been proposed in the literature, where the state-space
model is given by

Xi=fXi—1)+v,, Y, =hX;)+e,

for differentiable functions f and h. In the recursive KF
scheme however, the linear maps F; and Z; are required. For
the EKF, a first-order linearization of f is done at X;_1,—1,
while a linearization of /4 is done at X,_1.

The unscented Kalman filter (UKF) also allows for
non-linear transformations but does not perform a linear
approximation as the EKF. Instead, a so-called unscented
transformation [162], [312] in order to approximate the
posterior mean and variance of the underlying function is
computed.

The cubature Kalman filter (CKF) uses the radial-
spherical cubature rule [14] instead of the unscented transfor-
mation as in the UKF in order to estimate the posterior mean
and variance.

The following approaches consider robust loss functions.

Reference [49] propose to replace the squared loss of the
linear KF by the maximum correntropy (MMC) criterion,
which is a local similarity measure and therefore insensitive
to large outliers. The MMC criterion is given by

/K(x,y)dF(x,y)

for a shift-invariant Mercer kernel «, e.g., the Gaussian kernel
k(x,y) = Gy(r) = exp(—rz/(202)). Given residuals r;, one
can therefore estimate the correntropy by the arithmetic mean
of the G, (7;). In the KF context, they define the errors

€ = (_(Xt _et}?tltl))

and denote ]E[?,E,T] = BtBtT with a matrix B; that can
be computed by a Cholesky decomposition of IE[E,%,T].
It follows that D, = W, X; + r; for

_ A _ I 1.
D[:Bl ! (Xl‘lt—l Yt)v Wl:Bt ! (Ht), rt:Bl IGI,
(10)

where r; is white noise. Now, the correntropy objective leads
to

S 1 +

Riy-1 = argmax, (qu > Go(Dy)i - (W»ix)) :
They derive an iterative fixed-point algorithm in order to
find the optimal solution and prove a sufficient condition for
convergence.

A CKEF based on the MMC criterion has been applied
for cooperative localization of underwater vehicles. Refer-
ence [378] apply an MCC-based cubature information filter
for tracking aerial autonomous vehicles. In their numerical
simulations with a step size of 1 s, their filter requires
a computation time of around 0.2 s. Reference [293]
propose to combine a UKF with the MCC criterion based

167864

on the r-kernel with an additional weighting scheme in
order to safeguard the estimation against extreme outliers.
As weight function, applied to the individual components
of the states, they consider the biweight, Huber, Hampel
and Andrews function. On real-world data collected from
an autonomous underwater vehicle, their algorithm achieves
real-time performance. Reference [195] use a KF with the
MCC criterion for pseudorange estimation. They consider
localizing and tracking in real-world experiments and achieve
similar computational efficiency than the standard KF.

Reference [185] consider collaborative localization and
propose an EKF updating scheme with the MCC. Here, as for
the required Mercer kernel, they consider a Cauchy kernel.
Reference [88] consider a Laplacian kernel and apply the
resulting MCC-based EKF for cooperative localization of
autonomous underwater vehicles. In their simulations, the
computation time was around twice as much as for the
standard EKF.

An alternative loss function for robust state estimation with
the KF has been proposed by [72] who consider the residual
least entropy-like loss function

Hi Dy, q1, - - -, qk)
—1 k
=1 #0)- s D, ailn(a).
k
D= lInlP,
o Iml?
qi =

> il

for the residuals r;. This loss function is used as a penalty term
for the weighted least-squares objective which encourages a
large entropy of the residuals and hence many small and few
large residuals.

Reference [65] consider GNSS/INS integration and pro-
pose a robust KF by robustifying the update step with an
M-estimator. They point out that robust methods require a
larger number of measurements than classical ones (which is
a consequence of the efficiency loss, since the least-squares
estimator is the maximum likelihood estimator under Gaus-
sian noise and hence achieves maximum efficiency) but that
GNSS applications usually do not have many satellites in
view. They consider the standardized version W; of R;” ! from
Eq. 9 by standardizing the measurements first. Then, W; is
updated using IRWLS, which is robustified by the Huber
estimation

(Wi = wa ([Y, — Zrﬁ’m]ii)

for the respective standardized measurements Y, and Z,.
In their experiments, they consider different types of
contamination, which are single biases, multiple biases, and
ramps.

Reference [97] consider, in addition to innovation and
observation outliers, so-called structural outliers, i.e., where
the linear mapping Z; resp. F; in the state space model
may be misspecified. They assume that the observations
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are synchronized, otherwise, delayed observations may be
treated as outlying data. First, they aim at robustly estimating
the covariance matrix in the least-squares interpretation of the
KF. To this end, they consider the Stahel-Donoho estimator

|k u — med;(h] w)|
sup T
llul|=1 MAD;(h; u)

for the data points k&, which are here the matrices (Z!, I)7.
However, they argue that applying the estimator in each
time step would detect only structural outliers and therefore

propose to use the vector ¥, = (YtT,)A(zlfl)T instead of
the h; as it already captures the effects of all three types
of outliers. Points whose value s of the Stahel-Donoho
estimator is larger than some threshold t are downweighted
in the sense that their new weight is 72 /s2, where T =
1.5 in [97]. As structural outliers appear as leverage points
in the least-squares interpretation of the KF, a GM-estimator
with the Huber loss function and the weights arising from the
Stahel-Donoho estimator is applied, i.e., one minimizes

Zi wipg (7;),

with the residuals 7 = rl-s_lwi_1 with the MAD s of the
vector of residuals r;. Due to non-linearity, this problem is
solved using IRWLS. Finally, the update filter error has to be
adapted. They therefore compute the IC of the GM-estimator,
given by

v(x)
Ep[y'(x)]
for ¥ = xs~!w~!, which enables to compute the asymptotic
covariance matrix %;; = Ep[IC(x, X, P)IC(x, X, P)T1.

Reference [364] propose distributionally robust filtering,
where a minimax problem is solved. Let Z, = (X;, Y,) and

let Fz,y,_, denote the conditional joint state-measurement
distribution at time step z. The new state is estimated by

(E[(X; — )X, —$)'1),

IC(x,X,P) = AT 'xw

1

max

X¢+1 = min(
s Fel(Fzy,_))

for an uncertainty set U(Fz,y,_,) around Fz,y, ,. In their
algorithm, they construct this set by mean and covariance
constraints around a nominal distribution. The problem can
be re-written as a nonlinear semi-definite program. In their
experiments, they consider tracking a hypersonic vehicle.
Reference [284] replace the least-squares regression prob-
lem arising in the KF by a minimax problem. In particular,
they propose to minimize the worst-case expected squared
residuals over an uncertainty set. As for this uncertainty
set, they either use all normal distributions with the same
mean as the ideal distribution but whose covariance lies
within a certain radius around the ideal covariance, or a
Wasserstein-based contamination ball containing all normal
distributions whose W,-distance from the ideal distribution
is bounded by the contamination radius. On real-world data,
the performance of their algorithm is comparable to that of
the standard EKF, thus allowing for real-time performance.
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Reference [74] consider aircraft ground inspection, which
is vulnerable to large GNSS positioning errors. They consider
a robust EKF based on M-estimation. They essentially
robustify the KF in the same manner as [49], but where the
r; from Eq. 10 do not enter the correntropy criterion but a
weighted least squares objective, i.e.,

min(ry (0)Wr(x)),

for the weight matrix W = diag(wg (r;,;)) with the Huber
weight function wy . Reference [75] propose a grid search in
order to select the hyperparameter K of the Huber function
in a data-driven way, according to the horizontal accuracy.
More precisely, the hyperparameter is chosen according to
a difficulty level of the scenario, and this level is predicted
using a neural network. In order to make the predictions more
interpretable, [76] replace the neural network by a SVM.

Reference [28] propose a robustification of the EKF
by downweighting measurement outliers. They use the
formulation

X, = argming, (1X; = fX—DIF + 1Y, — h&DIIZ)
for Q; = A}/2W_1Q,T/2. Here, Q,l/2 is the Cholesky
factorization of ;. The weight matrix W is given by
W = diagw(Q/*(Y; — h(X,)))) for a weight function w
corresponding to a robust loss function. In their experiments,
they use the Huber weight function. Reference [270] integrate
feature maps into the EKF for GNSS positioning. Those
feature maps contain information about, for example, satellite
visibility or spatio-temporal features, allowing for a prior
distribution of the pseudorange residuals. In the EKF, obser-
vations whose pseudorange residual deviates considerably
from the expected ones are downweighted. This is done by
applying the weight function corresponding to a robust loss
function, for which the Huber, Tukey and Geman-McClure
loss function are considered, to the predicted pseudorange
residuals.

Reference [119] apply parallel robust EKFs for a Bayesian
approach for robust localization from GNSS data. Instead of
the Gaussian likelihood, they consider densities of the form
p(Y|X;) o exp(—p(r;)) for the residual r, = Y, — h(X;)
and where p is the Huber or the Tukey loss function. The
covariance matrix V; of the measurement equation is updated
via R = (Y ()" 'R; for y(r;) = 3 p(r)ly=r,. However,
due to multi-modal uncertainties in the measurements, single
Gaussian distributions are not suitable. To this end, they
replace the standard posterior,

PX Y1) OCP(Y1|Xt)/P(Xt|Xt—1)P(Xt—l|Y1:t—1)dXt—1,
with
P |X], Y1) o p(Y,|X), X ;)

/ pX XL X Dp(X -1 1XE, Y1 )dX -y,
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for linearization points X! at which the EKF transition and the
robust loss p are linearized. As the selection of linearization
points is accompanied by uncertainties itself, [119] propose
the update rule

P, Y1) o p(¥11XD) / pXUX XY 1 dX! .

In their algorithm, one starts with an initial set of linearization
points and iteratively updates this whole set and correspond-
ing weights that are computed via the posterior p(Y;|X ﬁ),
so that the distribution p(X;|Y1.;) can finally be estimated
using Rao-Blackwellization.

The UKF has been robustified by Huberization in [337].
Given the non-linear dynamics

X =f&X)+v, Y, =hX))+e,

one can write

(Yz+1 ) _ (h(XH—l)) + ( ft )
X1y X AX iy

for the predicted state X t+1| at time (¢ + 1) and its error
AX;1;- For the covariance V; of €; and the covariance X4 1),
of X;41);, one computes

e 12 Y _(V+ O
YH_I - S"H (Xt+1|t) ’ S[—H - (0 Et+1|t ’
172 (X 141) —12 €
§Xi1) = SH—I/ ( Xtt-:_l o &= St+l/ Ai’vttJrllz '

so that f/,+1 = g(X;41) + &, holds. The objective for
finding the prediction X ;41 is then

min (37 pri(ris1,466)

where the residuals are given by ri1(X41) = ?[+1 —
g(X:4+1). Reference [337] use this Huberized UKF for
underwater terrain matching, where X, represents the 2D
coordinates of the vehicle. Reference [46] apply it to tracking.

Reference [322] propose an adaptive variant of the robust
UKEF with an application in vehicle tracking. They consider
the dynamics model error and the measurement model error
simultaneously by treating the respective residuals separately,
ie.,

: % 2 2
H}cln()\t“x = Xype—lly,,_, +I11Fx — Yt||Vt—1)

with a fading factor A\; which is computed by

I, |[AX;| <t
M= AR st
|AX,|
K, =X
AR [1X, tr—1ll

t =
,/tr(E[_ltl_l

for some threshold v > 0.
Reference [21] alternatingly use the Huber and the loss
corresponding to the dynamically scaled covariance approach
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from [3] in the EKF and consider the navigation of
autonomous underwater vehicles. On real-world data, the
computation time is close to that of the standard KF, with at
most around 25% overhead. Reference [22] modify the EKF
by alternatingly optimizing the MSE and the Huber loss in
the sense that in a first iteration, X,|, is estimated using the
updating steps corresponding to the Huber loss. Then, X e
enters as prior X #|s—1 in the updating steps corresponding to
the MSE. The average runtime on real-world data is around
75% higher than for the standard KF.

See further applications of Huberized Kalman Filters for
spacecraft attitude estimation (linear KF; [166]), elliptical
orbit rendezvous and docking (EKF; [167]), navigation
(UKF; [47], [250], CKF; [307]), vehicle tracking (CKF;
[124], [197]), underwater tracking (EKF; [82]), and collab-
orative localization (EKF; [129]).

In contrast to loss-based filters where a robustification
of the loss function is done, noise modeling and covari-
ance scaling approaches consider heavy-tailed distributions,
assuming that the measurements can be contaminated by
heavy-tailed noise, in contrast to the standard KF that
assumes Gaussian noise. This idea essentially goes back
to [328]. It has been shown in [267] that in the ideal,
i.e., Gaussian, model, the usage of a ¢-distribution with
small degrees of freedom leads to a high efficiency loss.
In particular, using variational approximation allows for
learning the real noise distribution in an online manner,
even allowing for non-stationary (e.g., due to changing
environments as argued in [152]) loss distributions.

Reference [2] propose a structured variational approach
where they assume an inverse Wishart distribution of the
covariance matrix V;. As they assume that Y,|X,, R, ~
N(FX,, R;), marginalizing out R; leads to a ¢-distribution as
the conditional distribution of Y;|X;. They derive that the
marginal log-likelihood of the Y, can be expressed as the
sum of a lower bound of the marginal likelihood of the data
and the KL-divergence between the true and the approximate
posterior distribution of (X;, R;) given Y. For iid. noise and
for a slowly-drifting noise model, where the two parameters
of the inverse Wishart distribution of R; themselves obey
a first-order model, they derive an algorithm in order to
compute an approximate posterior. They apply their method
for GPS position estimation of a car. Reference [1] assume

X|X:—1 ~NF'X,—1 +b,0),
Y X:, Vi ~N@Z"X, +d, V)

where the observation noise Vt_l is assumed to follow a
Wishart distribution, again leading to a t-distribution of
Y;|X;. The posterior p(X;|Y1,..,Y;) is approximated by
structured variational filtering. They apply their method for
position estimation from GPS data.

The approach from [1] has been extended to the nonlinear
case in [246] and [273]. Reference [150] argue that these
such variational Bayes approaches as in [273] can handle
slowly time-varying measurement noise covariance matrices
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V:, but that they assume accurate estimation of the process
noise covariance matrices Q;, otherwise, their performance
decreases. Therefore, they propose to assume inverse Wishart
priors for both V; and the prediction error covariance matrix
Py, which, by the prediction step X;;—1 = Fi—1X;—1;—1,
satisfies

Pui—1 = Fi_1Pryp— FL |+ Q.

The new states are then inferred jointly with Py, and V; via
variational approximation. Their method is applied to target
tracking.

Reference [233] assume that the measurement noise is
skewed ¢-distributed and approximate the posterior observa-
tion distribution with variational inference. They apply their
filter for GNNS position estimation. In their experiments,
they report that the computational time of their filter exceeds
that of the standard KF by a factor of around 5 to 10.
Reference [374] consider GNSS positioning and assume ¢-
distributed measurement noise. They propose to estimate the
degrees of freedom outside the variational Bayes iteration
via inversely scaling a baseline degree of freedom with
the Mahalanobis distance of the current innovation to a
Gaussian distribution with the current innovation covariance
matrix. The method is applied in a field test for position
estimation of a vehicle in Beijing. Reference [55] assume
t-distributed process noise, while the measurement noise is
assumed to be Gaussian. They consider SINS navigation in a
real-world car-mounted experiment. Reference [158] model
the measurement noise by a convex contamination model,
where the ideal Gaussian distribution is contaminated with
a Gaussian distribution with a different covariance matrix.
They allow the contamination radius to vary in time. As they
consider a situation where the states are observed by multiple
agents, they have an observation equation for each agent j
with individual transition matrices Z/ and noises €,. In a
sliding window approach, the joint posterior of the states, the
process covariance matrices, the agent-specific measurement
covariance matrices and contamination radii is approximated
via variational inference. They apply their method in a target
tracking simulation with multiple sensors. Reference [170]
argue that a robust filter is less efficient than a filter with
the Gaussian assumption and propose to use two models,
one with Gaussian and one with #-distributed measurement
noise, and to combine them using Bayesian model averaging.
They use their method for target tracking. In their simulations,
they observe a computational time of their filter of around
twice as high as for the standard CKF, while only requiring
around 40% of the time of the CKF where iterative variational
Bayes approximations are used. Reference [126] propose to
use «-stable sub-Gaussian distributions for the measurement
noise in the linear KF, and compare noise modeling with
low- and heavy-tailed noise distributions, such as Gaussian
mixtures or #-distributions. Reference [336] assume a mixture
of a Gaussian and a Gaussian inverse-Gamma distribution
for the measurement noise and apply their algorithm to the
navigation of an underwater vehicle. Reference [191] invoke
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a Gaussian-exponential distribution for the measurement
noise.

Reference [148] propose a Gaussian-inverse-Wishart mix-
ture distribution for the state transition. They argue that such
a mixture has the advantage over a single Gaussian-inverse-
Wishart distribution when only inaccurate prior information
is available. As for the prior, they assume a Dirichlet
distribution. For the conditional observation distribution, they
assume a Gaussian-inverse-Wishart distribution and derive
a variational approximation algorithm of the joint posterior
of the current and previous state, the measurement and
the state covariance matrices and the mixing parameters.
They apply their algorithm to target tracking. Reference [86]
track an autonomous surface vehicle by assuming an inverse
Wishart distribution for the measurement covariance matrix
and computing the posterior distribution of the states
and covariances by variational inference. Reference [207]
first scale the measurement covariance matrix with IGGIII
weights, and propose to model the covariance matrix with
variational Bayes and an inverse Wishart distribution as prior.

Reference [146] argue that the estimation accuracy of
the prediction error covariance matrix, X,,_1, depends on
the state noise covariance matrix, Q;. Therefore, if only
inaccurate prior information about the latter is available, they
propose to not use the one-step prediction-error covariance
matrix directly in their variational Bayesian adaptive KF
algorithm, but estimate a prior scale matrix via the EM algo-
rithm. They apply their strategy for collaborative localization
with two surface vehicles and one autonomous underwater
vehicle.

Reference [66] use the CKF with a sigma-point update rule
for GNSS/INS estimation. In order to deal with measurement
outliers, they propose to include switching variables which
are Bernoulli-distributed, where the presence of an outlier
would correspond to the value O, with Beta prior. The
measurement covariance matrix is scaled with the inverse of
the expectation of the switching variable in the respective
time step. The joint posterior of the states, switching variables
and their priors are updated via variational inference. They
apply their method in a real-world experiment with car-
mounted GNSS/INS.

Reference [147] assume that both the process and mea-
surement noise are f-distributed. In a smoothing approach
with nonlinear dynamics, they infer the trajectory in a fixed
time window via variational inference of the joint posterior,
and apply their technique to target tracking. Reference [317]
consider car tracking and assume z-distributed process noise
and a Gaussian-generalized hyperbolic distribution for the
measurement noise in the EKF. The latter is a mixture
of Gaussian distributions, where the mixture distribution
is a generalized inverse Gaussian distribution, thus a joint
posterior of the states, covariances, distribution and mixture
parameters is computed by variational approximation. Refer-
ence [252] consider target tracking and assume a Gaussian-
exponential-Gamma distribution for both the process and the
measurement noise.
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Reference [152] propose a Gaussian-Student’s ¢ mixture
distribution (GSTM) in order to address non-stationary,
heavy-tailed noise distributions for both the states and the
observations. The GSTM distribution is of the form

p(x|7T) = ﬂN(x, ”’7 E) + (1 - ﬂ)t(x1 ”’7 Ev V),

where 7 is the mixing parameter, which has to be inferred and
for which a Beta distribution is assumed as prior distribution.
While the GSTM distribution has lighter tails than the
corresponding pure ¢-distribution, it has heavier tails than the
corresponding Gaussian distribution. Reference [152] argue,
based on the influence function of the GSTM distribution,
which is close to that of the Gaussian distribution in a vicinity
of the mean and tends to that of the z-distribution outside,
that the GSTM distribution has the same efficiency as the
Gaussian distribution on clean data and the same efficiency
as the 7-distribution on contaminated data. The joint posterior
distribution of the states, the mixing parameters and the
degrees of freedom is approximated via a variational Bayes
approach.

Reference [314] assume time-varying skewness in the
measurement noise, which they argue to result from imperfect
synchronization and a variable nonline of sight. They propose
a so-called shape-parameter mixture distribution of the
measurement noise, which is a mixture of Gaussian scale
mixture distributions w.r.t. the shape parameters, extending
the work of [149] who initially proposed the pure Gaussian
scale mixture for the process and the measurement noise.
As for the mixing prior, they assume a Dirichlet distribution.
They apply their algorithm to robot tracking.

Reference [209] incorporate both heavy-tailed measure-
ment noise and inequality constraints in a variational Bayes
algorithm. First, they assume a skewed ¢-distribution for
the measurement noise and an inverse Wishart distribution
for the predicted error covariance matrix. As for the
inequality constraints, they consider linear constraints of
the form a;, < D;X; < b,, for some constraint matrix
D;. These constraints are integrated into the variational
approximation via truncation of one element of the predicted
state, conditioning the computed distribution onto the feasible
set. In their experiments, they track a mobile robot.

Reference [356] consider target tracking and extend the
state-space model by multiplicative noise in the measurement
equation, leading to the model

Xi=FX,1+v, Yi=mZX; +¢€.

They motivate the multiplicative term m; by the multi-path
effect as well as fading and scattering when considering
underwater acoustics. The two additive and the multiplicative
noise are modelled as generalized ¢-distributions, and the
posteriors are approximated by variational inference.

There is further literature where variational filtering is
used in situations where multiple state-space models have to
be considered, for example, in sensor fusion, collaborative
navigation or centralized estimation settings.
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Reference [281] consider state estimation of autonomous
surface vehicles and propose to perform the estimation
remotely in order to save onboard computational capacities.
To this end, they propose a stochastic event-triggered commu-
nication strategy. Let Y °!9 be the most recent observation that
the USV transmitted to the remote station. For each following
time step 7, one computes ¢; = exp(—0.5(Y,—Y°HTA, (Y, —
Yoy for a symmetric positive-definite matrix A;, and
triggers a new transmission if U; ~ U([0, 1]) realizes a
value larger than ¢;, making a new transmission more likely if
the current observation strongly deviates from the previously
transmitted observation. They assume the GSTM distribution
from [152] for the state distribution p(X,|X;_1, ), where 6
represents the USV model parameter vector. They use VB
in order to compute an approximate joint posterior for X,
and 0. They compare different adaptive and event-triggered
UKEF versions and the standard UKF with their method, which
outperforms its competitors in terms of accuracy, both in
a simulation as well as on a real-world experiment. As for
an adaptive KF, the observation noise covariance parameters
are stochastic, so a joint posterior for the distribution of the
states and parameters must be found, which is done by an VB
approximation in [274].

Reference [368] consider multi-sensor fusion and propose
to robustify the single filters by assuming z-distributed
noise. The posterior state distribution for each filter is
approximated by variational inference. Assuming that each
sensor operates independently, they derive a weighting
strategy which additionally neglects any dependence between
the individual state components, resulting in a diagonal
weight matrix which can be easily computed, as matrix
inverses are avoided, for the price of potentially reduced
accuracy. They compare their algorithm with competitor
robust KF and sensor fusion algorithms in a real-world
experiment with an autonomous driving platform, achieving
better accuracy than its competitors. As for the computational
time, their algorithm requires around 4 times more time than
the standard KF, but around half of the time required for the
federated KF.

Reference [184] consider a leader-follower cooperative
navigation setting where a fleet of follower vehicles with
cheap and low-accuracy sensors is given, and one or multiple
leader vehicles with high-accuracy sensors. As for the
observations, they consider the range between leaders and
followers. The states and measurements are the concatenated
state and measurement vectors. In the resulting EKF, they
model both the process noise and the measurement noises
by ¢-distributions. The joint state and measurement posteriors
are updated recursively via linearization of the state and
the measurement equation. They apply their algorithm for
underwater navigation in a real-world experiment with one
follower and one leader vehicle. Reference [151] consider
t-distributed measurement and process distributions and use
variational inference for approximating the posteriors. They
apply their method for collaborative localization with two
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leader surface vehicles and one autonomous underwater
vehicle.

Reference [297] argue that in collaborative localization
with low overlap between the local maps of the individual
agents, outlier data associations are likely, resulting in
potentially high outlier ratios. Therefore, they compute the
spatial consistency between each two matched point pairs
(xM, yD) 1x@ |y} considering them only as inliers if the
difference [|[x1) — x@ |, — ||y — y@||5| is below some
threshold. Local maps with more inliers are associated with a
higher overall inlier probability in an EM algorithm where the
positions are updated. Their algorithm is applied to a KITTI
dataset and a real-world dataset with three robots.

Reference [344] consider decentralized collaborative
localization, which, in contrast to centralized collaborative
localization where one central entity jointly estimates the
states of all robots based on the transmitted data, allows the
robots to share their own state estimates with each other.
In addition to a robot-individual state equation, [344] define
observation equations for the absolute range measurement
yfl”, between robot i and landmark / at time ¢, given by

Ya = X7, X) + i,

and for the relative range measurements y’r], ; between robots
i and j at time ¢, given by

= O XD 4 v

While using Gaussian distributions for the state equations,
[344] allow for r-distributed noise in the absolute and
relative range measurements and propose a variational
Bayes approach in order to update them for each robot.
Due to shared information, interdependences between each
robot pair have to be integrated into the algorithm, which
themselves are updated iteratively. They apply their method
for collaborative localization of 5 robots.

Reference [200] propose to robustly estimate V; =
Cov(e;) of the KF by scaling the diagonal entries using
different weight functions such as the IGGIII weight function.
A similar idea has been proposed in [188] who scale the
covariance matrix of the CKF using IGGIII weights. See
also [294], [315], [318].

Reference [352] combine an adaptive KF and a robust
KF. In the adaptive KF, the gain and covariance are scaled
with Huber weights. In the robust KF, IGGIII weights are
used in order to scale the measurement covariance matrix.
Finally, the estimated state vector and state covariance matrix
is computed as a convex combination of both predictions
from the adaptive KF and from the robust KF. Here, for small
residuals, the adaptive KF gets more weight, and vice versa
for large residuals. They apply their algorithm for land vehicle
navigation.

Reference [45] assume a linear state-space model and
propose to compute the standard Mahalanobis distance of the
observations and to scale the noise covariance matrix V; in the
KF with a scalar if the Mahalanobis distance exceeds some
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threshold, where the scaling factor is chosen adaptively. They
apply their algorithm to a kinematic positioning problem
where both position and velocity have to estimated.

References [304] and [305] consider the observation
equation Y; = Z,X; + €; + u;, where u; follows a non-
ideal distribution. Note that this contamination scheme is
not a convex contamination, unless one would consider
the distribution of €; + u, as contaminating distribution
and the contamination radius as 1. In particular, they
follow an unknown variance prior approach where u; ~
N(0, ;) where %, itself follows some prior distribution.
The estimation of X; is done via the EM algorithm. They
apply their approach for the localization of a marine vehicle
and a quadrotor. The computation time was around 6 times
higher than that for the standard KF, but lower than for the
KF proposed in [2].

Reference [231] consider object tracking by sequences
of images and propose to apply a Kalman smoother for
each pixel in order to deal with abrupt lightning changes
and occlusions. They propose to replace the square in
the Gaussian distribution by the Huber function, i.e., the
observation model given some template feature vector f, at
time ¢ is given by

p(Y(lf) = RITV 2 exp(—pu(r(Y e, f 1))

for a normalizing constant c, a scale matrix R and the error

F¥0f) = /(¥ —f)TRY, — £,

They then approximate the posterior f,, which is no longer
analytically computable. In their workflow, they first match
templates. Given a set of predicted feature vectors f,(x), they
match them to the current image in order to derive the errors
for the KF at the next time step. Considering translation,
rotation and scaling, they consider the transformation

cos(§3) — Sin(és)) x1 &1
TE)x) =1+ . +
O =+5 (sm(&) coste) ) \is) T &2
with a parameter £ € R* to be estimated, which is done by
robust regression w.r.t. the objective

D oI p, £).f,x)

for the feature vector I,(p(x, &§)) observed at image point
p(x, &). The templates are updated using the robust KF and
lastly, the scale matrix R is updated.

Reference [334] apply a robust particle filter on pedestrian
tracking using radar. They consider a non-linear state space
model and assume €; ~ N (O, W,_lR) for a diagonal weight
matrix Wy = Wy m)m=1,...,q» With Gamma priors

We,m ~ Gamma(wy 1,0 /2, 0 /2),

m=1,...,q.

References [29] and [30] consider joint robust GNSS
position and attitude estimation with the EKF. As the EKF
can be interpreted as the optimization problem

Xy = argming(|lx — Xo-1ll3,,, + [1hGe) = Y, 117,
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they point out that generalized M-estimators such as in [97]
do not allow for redescending losses, hence they use
robust information filters where the optimization problem
is re-formulated by replacing V, by a weighted version

V,2w=1v] 72 for

W = diagw(V, 2(Y, — h(X,))))

for a weight function w, which may be the Huber loss
function or the Tukey loss function. The solution to the
optimization problem above can then be approximated
iteratively. They further adapt this strategy to the situation
where the data points belong to a manifold, as in the joint
position and attitude estimation problem. Experiments are
done on simulated data with an outlier rate of 20% and 25%
in [29] and [30], respectively.

Apart from approaches based on a robustification of
the loss function or modeling heavy-tailed noise, there are
strategies that invoke other techniques for robustification,
such as outlier detection or clipping.

If only AOs occur, [267] propose a Huberization of the
Kalman gain in order to robustify the correction step, i.e., the
Huberization of the Kalman gain is given by

b
Hp(K,AY;) .= K;AY,; mi 1, ——).
p(K; 1) t ,mln( |K,AYZ|)

The clipping height » may be determined so that a certain
Anscombe-efficiency level is attained or by a minimax
criterion w.r.t. a least favorable contamination radius. In the
case of SO-outliers, they assume a convex contamination
model around the true distribution F' ;}1’ of the Y, leading to
a distribution F {,e[, so that, assuming independence with the
distribution Fy, of the X, the ball

Uy = | J (LX,. Y] | FY € UFY . 5)}

0<s<r

is considered. They propose to either minimize the MSE on
USO or to minimize the MSE w.r.t. a bound on the bias on
USO. In the case of 10s, they show that the correction step
can be written as

Xir = Xy—1 + ZE(AY, — E[e;|AY,]),
th = Et\z—lth(Z,TEt\z—lzz)_,

so a robustification is done by Huberizing [E[€;|AY /], which
equals (I — Z;K;)AY; in the ideal model, leading to the
Huberized correction step

Xir = Xoj—1 + ZF[AY, — Hy(( — Z:K)AY )]

In [269], the same clipping strategy is performed for the EKF.
They apply their method to vehicle tracking with the goal
to estimate the change of altitude. Apart from measurement
errors and changes in the road surface, their data also consist
of missings due to signal loss, e.g., in tunnels, leading to
jumps in altitude or speed.

Reference [359] propose an iterated EKF where the
linearization is considered at the updated state X, ;. Then,
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a Huberization of the Kalman gain K,AY,, going back
to [267], is performed. They consider spacecraft navigation.

Reference [91] point out that robust KFs that allow for
heavy-tailed noise distributions and that approximate the
posterior by variational Bayes are only robust to additive
outliers, while a Huberization of the residuals such as done
in [269] also robustifies against IOs. Moreover, they point
out that anomalies are often multi-modal, which cannot be
represented by 7-type distributions.

Reference [38] use a standard KF, but reduce the dataset
to inliers using RANSAC before, for lane detection and
tracking.

Reference [37] consider measurement outliers in collabo-
rative localization and downweight them in an KF scheme
where the weights are computed via the Stahel-Donoho
estimator.

Reference [196] consider additive outliers and propose to
identify them by computing the matrix

B, = ZtPt\t—lth + Z,QtZtT + V.

The i-th component of an observation is flagged as outlier if
the i-th diagonal element of (Y; — Z X1~ 1)(Y; — Z: X 1s—1)"
is larger than Bj;, multiplied with some weight. If an outlier
is detected, the corresponding predicted state and covariance
matrix are corrected via component-wise scaling. Their
method is applied to aircraft tracking. They argue that their
algorithm achieves real-time performance as the computation
time is lower than 100 ms per frame.

Reference [380] integrate outlier detection and suppression
into a variational Bayes approach by using sliding windows.
First, they allow for heavy tails by using a z-distribution
for both the measurement and process noise. In their sliding
window approach, the posterior for each time step in the
window are updated by using a constant measurement and
state covariance matrix within each sliding window. In addi-
tion, in each window, for each covariance matrix, an auxiliary
variable is considered which scales the covariance matrix,
allowing for outlier suppression in the respective window.
The posterior for the states, covariance matrices and auxiliary
variables is approximated jointly by variational inference.
They apply their method to tracking a car in a simulated and
in a real-world experiment.

Reference [87] point out that the EKF performs linear
approximations based on the estimations from the previous
step, so that errors may even increase. They also point out
that the computational complexity dramatically increases
when trying to robustify the EKF. They criticize the Ho-
filtering approach (e.g., [285]; see Sec. V), which interprets
outliers as bounded uncertainty, to be too pessimistic. The
idea in [87] is to detect outliers in the innovations and to clip
them, i.e.,

max(—k, min(k, ¥;,, — (hi(X 1j—1))),

where the clipping height & is adaptively chosen.
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B. ESTIMATION OF VEHICLE PARAMETERS

KFs are used in order to provide an estimation of the true
underlying state X;, based on the observed noisy state Y.
Of course, provided that an underlying state space model
can be formulated, one can estimate vehicle parameters by
considering them to be part of the underlying states X.

A Huberized linear KF has been applied in [83] for position
estimation of vehicles, in [194] who estimate the position
error and mounting angles and yaws as well as lever-arm
residuals between data from the INS and a laser Doppler
velocimeter or VO, respectively.

A Huberized EKF is applied in [332] for center of gravity
estimation, which is done by using a state space model that
relates the height of the center of gravity and its distance to
the front axis with the velocity, [369] consider estimating the
rotor angle and speed of a bus. Reference [68] apply robust
KFs, including a Huberized EKF and a covariance-scaled
EKF, for the estimation of attitude, position and velocity
errors, and acceleration and gyro biases of a rover. Several
robust KFs, including a Huberized KF, the KF from [45] and
several variational filters, have been compared in [69], here
with the application to improve wheel-inertial odometry for
planetary rovers. The state represents the attitude, position
and velocity error, and the acceleration and gyro biases.

Reference [292] use a Huberized UKF with adaptive
covariance for the navigation of coupled vehicles, [313]
consider vehicle state estimation, such as longitudinal and
lateral velocities, yaw rate, mass, center of gravity, and
moment of inertia.

Reference [190] use a Huberized CKF for rotor angle and
speed estimation and confirm real-time performance as their
algorithm only leads to a slight overhead in the computation
time compared to the standard CKF. Reference [189] apply a
Huberized CKF to an INS where the state consists of attitude,
latitude, longitude, height and velocity errors, gyroscopic
drifts, accelerometer biases, and a scale factor error of the
Doppler velocity log. A numerically more stable version of
the CKF, the square-root CKF, has been Huberized in [139],
who use it for state-of-charge (SoC) estimation for lithium-
ion batteries. Here, the state represents the SoC and the
polarization voltage.

The variational filter from [2] has been applied in [277] for
the estimation of the internal resistance in the battery system
of electric vehicles. Reference [357] apply an EKF with #-
distributed observation noise for ship position estimation.
Reference [127] use an adaptive KF with the MCC and allow
for a time-varying noise covariance via variational Bayes in
order to estimate the tire-road forces and the side slip angle
of a vehicle. In numerical simulations, their algorithm only
requires slightly more computation time than the standard
CKFE

Reference [52] use the correntropy criterion for the linear
KF for the navigation of vehicles in an urban environment.
Reference [61] combine the CKF with maximum corren-
tropy for spacecraft attitude estimation, [248] consider the
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estimation of the yaw rate, the lateral and the longitudinal
velocity of a vehicle, [50] consider car mass estimation.
Reference [103] use the MCC for the square-root CKF in
order to estimate velocities, the yaw rate, and wheel rotation
of electric vehicles, [201] consider estimating the yaw rate,
side slip angle and the longitudinal velocity.

Reference [249] scale the covariance matrix corresponding
to the measurement noise of the KF via IGGIII weights and
estimate the SoC of lithium-ion batteries of electric vehicles.

Reference [289] consider, under a static environment
assumption, a linear relation between Doppler velocities
(based on radar measurements) and the ego-velocity. Due
to dynamic features, outliers are generated, which are first
filtered using a sliding window approach where instances
for which the velocity of two subsequent measurements
differs too much or where the velocity differs too much from
the average in the window are discarded. With the filtered
data, robust regression using truncated least squares and the
Cauchy loss is performed.

Robust regression can also be used for velocity estimation,
see, e.g., [300], who consider the objective

n}gin (Zl oH Vi — Xiﬁ)) ,

for the measured velocities v; and variables such as the mean
traffic speed or the road curvature, that are represented by the
Xi;.

Reference [258] apply robust M-estimators such as LTS
and LMS, but also consider robustifications of recursive least
squares, for vehicle parameter estimation. Such recursive
objective are important when considering time-varying
systems so that for each time step #, a solution can be
efficiently computed, which is in particular important for
real-time applications. The objective is

T
min (Z,:m AT (Y, — xtm)

for some forgetting parameter A €]0, 1]. Reference [258]
also propose to additionally regularize recursive least squares.
They apply these algorithms to mass estimation and tractive
force prediction of vehicles in grey-box models. They use the
model X =Y for

4
X = (8005(9), gsin(@) + v/, v, :_2)

Tp
2
B = (mfro, m, &Acx, m—) ,

2 Cyw
for the gravitational constant, g, the gradient angle, 6, the
path radius, rp, the rolling resistance coefficient, f,,, the
mass, m, the vehicle cross-sectional area, A, the longitudinal
drag coefficient, cy, the air density, p,, the wheel-concerning
stiffness, cyw, and the velocity, v. X takes the role of the
measured input and Y represents the tractive force, which
takes the role of the measured output in mass estimation.
Note that a robust estimation of f allows for extracting the
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QCsired vehicle parameters, here the mass, from the estimate
B.In [258], Y itself is computed by the model
Y — Tgr — 1 W@{;{, ’
rw

for the rim torque, Tg, the wheel moment of inertia, Iy, the
dynamic wheel radius, ry, and the second derivative 9",(, of
the wheel rotation angle, Oy . They also provide an overview
of variables that need to be estimated as they cannot be
directly measured. In the above model, the engine torque and
the reduced moment of inertia can be assessed by look-up
tables, while the velocity, the path angle, and the path radius
can be estimated by simple models. They also point out that
in the presence of outliers, the MSE is not the correct criterion
for validation.

Mass estimation has also been considered in [60]. Under
the assumption of a nearly flat road, the model Y = X8 for
the longitudinal acceleration Y is approximately valid, where

X — (TeigifnT _ CxApaVZ’ _g) ’
rw 2
1 For\"
ﬂ = (_’fr() + err) 5
m mg

where T, is the engine torque, i, the transmission gear, i the
final drive ratio, nr the driveline mechanical efficiency, and
where F,,, represents the error of a physical model of the
driving force. They consider recursive regression where the
objective consists of two parts, one for each component of
B. The squared loss is replaced by the three-part redescender
going back to [123] for the first part of the objective. In
their simulations, they confirm real-time capabilities of their
algorithm.

Reference [67] consider the estimation of running resis-
tances of a train. To this end, they invoke the differential
equation

8
0v(t) = u(t) — r(v(t)) — wis(®)), wis(?)) = p—p(S(t))
m
n k
omrT(s(1))’
where u(t) is the tractive and brake effort, r(v(z)) the
running resistance corresponding to the velocity, at time ¢,
respectively, and where p,, is the rotational mass factor,
p(s(t)) the gradient of the track at s(¢), rr(s(¢)) is the radius of
the track at s(¢), and where k is a gauge factor corresponding

to the impact of a curve on the train. For the resistance, they
use the model

r(w(6)) = ro + rv(e) + ravA(o),

for rolling resistance parameters rg, ri, r2. Using time
discretization with time step size Af, one gets the regression
model Y = X8, for

V(tk1) — v(te)

k= U —W(Sg) —ag, Qg =—"- """,
y (sx) A7

B = (ro,r1, )", Xi=(1,v,v}),

167872

with the respective quantities at time step k. They consider
a plethora of non-robust and robust loss functions, including
the Huber, Tukey, Cauchy, and Welsch loss.

Reference [32] consider robust parameter estimation for
electric vehicles, including mass, braking parameters, drag
and resistance, electric parameters of asynchronous machines
(such as resistances, inductivities), and parameters of
lithium-ion cells (voltage, SoC, State of Health). They point
out that contamination may arise from wrong measurements,
disturbed transfer, phases with low system stimulation (when
driving with constant speed), wrongly modelled system
dynamics, or wrong input parameters such as wheel radii,
velocity, driving torque, air density, or acceleration. As for
the longitudinal vehicle dynamics, they consider the model
Y = F4 =X for

4 2 2
X = (ax, g, 8Vx, 8Vy, 0.504v5, ay) ,
m2
B =\ (m, mc, o, me, 1, mey 4, CWAF,g, — |
(4Cypaa)T
YRad

for the longitudinal velocity, vy, the longitudinal acceleration,
ay, the lateral acceleration, ay, the rolling drag forces, ¢, j,
the air drag force, c,, the surface area projected on the y-
z-axis, Ang, and the curve drag force, m? [(4Cyp.q)- Apart
from outlier detection, which has disadvantages when being
applied to embedded systems due to a large memory and
computational burden due to the recursive estimations, [32]
propose a robust version of recursive least squares, including
exponential forgetting, regularization and parameter range
constraints, see [32, Alg. 3.8], which is solved by an IRWLS
procedure. As for the robustness aspect, the weighted RLS
objective

1T _

is considered, where w is a weight function such as the Huber
weight function. As for electric parameters, they consider the
model

2. Y T
02i% + By (npwmiy) OBILS
3tl§ LS E
Y R

Y =0u§ +npwpig = —u , ﬁ

0,15 + npwpig Rg
o Re
ls RsTe

=X8B,

for currents, i, voltages, u, electric resistances, R, and
inductivities, L, where the subscripts S and R refer to the
stator and the rotor, respectively, and where superscripts o
and y refer to the coordinate system of the asynchronous
machine. w,, is the mechanical rotor drive, n;, the number of
pole pairs, and op] the scattering coefficient. Although they
do not apply their robust RLS procedure here, they analyze
problems that arise when applying the non-robust variant and
propose a Savitzy-Golay smoothing of the signal in order to
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compute 82 . In lithium-ion cells, the model
k (k) k=1 () 7(k—1)
YW = UL = (LU Ly Ly B
for B = ((1 — a1Uoc, a1, az, a3) is assumed, for voltage

Uakk, current I and open circuit voltage Upc of the cell,
and quantities ay, az, az that are given in terms of the time
step size, inner resistance R, and resistance R and capacity
Cj of the RC branch, respectively. They apply their robust
RLS variant here.

C. BOUNDING BOX ESTIMATION

Reference [154] propose a robust estimation of future
bounding boxes, including their uncertainty. Given an anchor
box By, let T(t) = [Tx(t), Ty(t), T\(t), Tp(?)] R —
R* be the transformation at time step ¢ from By to the
ground-truth prediction box B*(¢) where the indices represent
the x- and y-position of the center, the width and the
height of the bounding box, respectively. Then, the proposed
confidence-weighted Huber loss is

Hi(u,u',0) =In(c)
N [ (u—1u)?)26%), lu—u|<k

ko 2lu—u| —k*/26%), lu—u|>k

for a normalizing constant ¢ and a scale parameter o > 0.
They propose to set k to the estimated uncertainty &, scaled
by some constant factor. As for the objective, they consider
minimizing the discrepancies of the dimension-individual
means, i.e.,

0r§11n (Z Ha(TE(t), Ta(t, 0%). 64, 0d)))

where Td and 0, are estimators for the transformation and the
uncertainty by a neural network, with individual parameters
0% and Oﬁ, respectively. Experiments were performed on the
KITTI “raw” dataset. The first 20 frames of a tracklet serve
as training sample, the prediction horizon consists of the
following 10 frames.

The Huber loss is also referred to as “smooth /1-loss”, only
up to a scaling, in the deep learning literature. For example,
[53] use this loss function as orientation loss and bounding
box offset loss, [54] for the 3D box regression loss, [175] use
it for all regression losses in 3D object detection. In 2D object
detection, algorithms such as Fast R-CNN [108] use this loss
function. Reference [15] propose to use a convex combination
of the IoU loss and the Huber loss.

D. DETECTION OF ROAD FEATURES

Reference [302] consider the detector YARF (yet another
road follower), which uses Robust Statistics in order to detect
road features. They propose the model

Yi = Bo — By + Bi1Xi + 0.58:X7,

where f) is the offset from the road spine, B the Y -intercept
of the spine arc, 8; the heading w.r.t. the tangent of the spine
arc at By and where B, is the curvature of the spine arc,
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where the positions are given by (X;, Y;). The coefficients are
estimated using LMS.

References [234] and [235] consider the problem of road
surface extraction from 3D point clouds and apply a robust
variant of locally weighted regression based on the Tukey
loss, i.e., they minimize

D prEWX Y — fpX ),

where 7, = r;/6 for & being the MAD of (|r(], ..., |rul),
where the weight function w is the tri-cube weight function

1_( 1X: - X112 )3 e
w(X;) = max;enx,)(|1Xi — Xjll2) ’
0, j¢N),

for a local neighborhood N(X;) of X;, and for some
potentially non-linear function fg. The residuals after the fit
indicate whether the individual points belong to the road
surface or whether they are non-ground/3D surface points.

E. OTHER APPROACHES
Outlier detection is a popular topic in data analysis. It is
therefore out of scope for this paper to list all the literature
where some kind of outlier detection has been performed
in the context of autonomous driving. Just as an example,
consider the work of [345] who have data from n microphone
arrays which are located as known 2D-positions p;, i =
1,...,n, which measure angles of arrival from an object
with the goal to determine its position p,. In an iterative
manner, first the m microphone arrays with the smallest
distance to a particular object are identified based on an
initial estimate p, of the object’s position, which form a
reference set. Then, the matrices P; = @U)jzm—i—l ,,,,,
1,...,m, are formed, where ﬁij is the estimated position
of the object when replacing p; with p;. Using the robust
Mahalanobis distance where the mean and covariance of the
P; are estimated robustly in the spirit of the Gnanadesikan-
Kettenring estimator [109], some instances are flagged as
“outliers”. Finally, the position of the object is estimated
using WLS where the outlying instances are downweighted
accordingly.

Reference [36] use median regression for trend estimation
in GPS time series based on the Theil-Sen estimator

~ Zj—Zi
v:medi<j(] l)
=t

for the velocity, where each z; represents the coordinate at
time #;. As a pre-processing step, outlier detection is done
where the slope is computed for each data pairs, removing all
pairs for which the slope has a distance larger than 2 MADs
from the median.

Reference [204] estimate the orientation changes of a
vehicle based on radar images. After an MAD-based outlier
removal, the surviving pairs of reference and data images
are considered and the rotation and scale is estimated
using Tukey’s biweight function. At the end, the estimation

ns i =
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is refined by minimizing the Cauchy loss, evaluated at
Mahalanobis-type residuals arising from the previous estima-
tion step.

Reference [23] propose a whole family of loss functions,
including robust ones as special cases, given by

/2
=2 (( )
p(raa’f):z +1 _1 9
o o — 2|

with a scale parameter T > 0 and a shape parameter «. The
special cases ¢ = —o0, ¢ = —2, ¢ = 0, « = 2 correspond
to the Welsch loss, the Geman-McClure loss, a smoothed
version of the /1-loss and the squared loss, respectively. They
apply several particular loss functions from this family to
tasks such as monocular depth estimation and fast global
registration.

Reference [347] consider the truncated least squares

problem
min 2 min w 72
z i Uiz ’

for the inlier standard deviation o; corresponding to Y;. They
show that general geometric perception problems such as
pose, rotation or 3D structure estimation can be formulated as
such a problem. They solve it by a convex relaxation. Their
relaxation is extended in [348] to robust loss functions such as
the Huber loss or Tukey’s biweight loss where it is applied to,
for example, point cloud registration, pose estimation, shape
estimation, and rotation averaging.
Reference [241] propose the version

) Vi—Yil, |Vi—Yi|<k
Pk, YD) =1 (Vi = V)2 +k2 .
B | AT

of the Huber loss function for depth estimation, where the
Y; are the pixel values in the ground truth depth-map, the Y;
their predictions, and where the threshold k is given by &k =
0.2 maxi(|f/,~ — Y;]). This loss is one component of an overall
loss that is composed by this pixel loss and a loss function
for structural similarity and for the intensity gradients of the
pixels, respectively. Contamination may arise from inherent
blurs in images.

As for GNNs, which are a backbone of many computer
vision methods, [105] consider a robust aggregation of the
embedded features of neighboring points in GNNs. They
replace the usual sum or mean aggregation, which opens
the door for distorted aggregated embeddings due to single
perturbed points (as the BDP of an arithmetic mean is zero),
by a smoothed medoid aggregation, which is computed by

exp (—571 3, 11X; - X))
>exp (=671 311X, — Xall)

E l.WiXi, w; =

167874

for some parameter § that controls the approximation to the
original solution

argmin,, (Zl [1X; —y||) .

The solution to the smoothed medoid problem approaches the
arithmetic mean for § — oo and the exact medoid for 6 — 0.
They show that the soft medoid procedure has a BDP of
0.5. As for contamination, they assume that an adversary can
perturb a fraction of the aggregation points. Reference [104]
propose the Soft Median aggregation which requires less
memory capacities than the Soft Medoid aggregation while
maintaining the BDP of 0.5. It is given by

softmax(—ca_lp_l/z)TX

for the vector ¢ consisting of components ¢; = | X —-X il and
for the node attributes X € R"*? of the graph to which the
GNN is applied.

Deep fundamental matrix estimation has applications
in 3D perception, for example, for the projected retinal
image coordinates p corresponding to 3D coordinates of
the corresponding point, a fundamental matrix F satisfies
p Fp = 0. Having an initial estimate for F, [367] propose to
refine F' by computing the signed distances ri2 and flagging all
points for which rl.2 is larger than a certain multiple of a robust
scale estimate as outliers and then consider an LTS approach
where only the residuals from the non-flagged instances enter.
Reference [254] propose to estimate the inlier distribution
during the optimization. In their context, the optimization
problem is

min (3 [14p01%) st 11011 = 1.

for some matrix A. This problem can approximately be solved
by solving iteratively

X+ = argmingy _; (|[W/(0)Ax| %)

for a weight matrix W(#). They propose to learn the weights
by a deep neural network, so that they essentially have a
meta-algorithm of IRWLS. Identifying the solution in one
step of the IRWLS problem as a right singular vector of
W(#)A for the weight matrix W(@), they show that @ can
be learned by backpropagation through an SVD layer. This
technique is applied to fundamental matrix estimation.

V. APPLICATIONS IN AUTONOMOUS DRIVING:
PREDICTION AND PLANNING

In this section, we collect robust approaches for prediction
and planning. The first two subsections are devoted to RL
and IL. Here, the ego-vehicle has to learn by experience
(typically, via simulations) how to behave in which situations,
so the own actions and, implicitly, the evolution of the states
of surrounding vehicles, are learned. The third subsection
considers MPC, where models for vehicle dynamics are used
in order to predict the state evolution for the surrounding
traffic participants and the ego-vehicle based on the observed
current state. In all cases, reliable perception is important (see
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Fig. 1). Nevertheless, robust planning approaches may safe-
guard partially against misperception, and can, in addition,
also cope with other types of peculiarities such as adversarial
driving behaviors of the surrounding traffic participants.
The fourth subsection addresses Byzantine robustness, which
becomes important when performing federated or distributed
RL training.

A. REINFORCEMENT LEARNING
RL considers a Markov decision process (S, A, 3, v, R) for
a state space S, an action space A, a set 3 of transitions,
a discount factor y €]0, 1], and a reward function R
S x Ax S — R that assigns a real-valued reward to a
state-action-state triple (s, ar, S;+1), where sy is the state
into which the system is translated in the next time step
after action a; was executed in state s;. The transition model
may either be deterministic, so that I € 3 is a mapping
(s,a) =~ I(s,a) € S, or stochastic, so that a density value
P3(s'|s, a) is assigned to (s, a). The goal is to learn a policy
which is either deterministic, i.e., amap 7 : S — A so that
7 (s) is the action taken when being in state s, or stochastic,
ie., T S x A — [0,00[ so that 7 (s, a) assigns a
density value to the state-action pair (s, ). We abbreviate
R(s;, ar, s;+1) =: R;. The value function for a given state s
is the expected future reward that the agent receives when
following policy 7, i.e.,

St = S:| .

oo /_
V7 (s) = Ex [Zt,zt 'R

The Q-function similarly assigns a value to a state-action pair
(s, @) in the sense that, starting with s, = s, one does not let
the policy choose the initial action a; but starts with a given
action a at the initial state s.

In RL or MPC, the term “robustness” is often understood
as adversarial robustness, hence many robust RL algorithms
perform adversarial training. However, in contrast to adver-
sarial attacks in classical machine learning where a model
is trained on a static dataset and where adversarial attacks
are computed after model training, decoupling them from
the training procedure, adversarial attacks in RL are used
for adversarial training where an adversarial agent challenges
the ego-agent, indeed affecting the training procedure. This
makes the notion of adversarial robustness in RL inherently
close to Robust Statistics.

For example, adversarial RL approaches have been applied
to train an agent for autonomous driving, see [256], who
propose a minimax game where the adversarial agent min-
imizes the objective that the ego agent aims at maximizing
(up to a different regularization parameter). References [247]
and [257] suggest similar minimax games. References [256]
and [257] apply their method to a scenario where the ego
vehicle aims at crossing a 4-way intersection, where adver-
sarial vehicles drive on the lanes the ego vehicle has to cross.
Reference [134] consider adversarial attacks against the
agent’s observations in highway scenarios, which is trained
according to maximizing the Jensen-Shannon divergence
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between the 7 (s, -) and 7 (5, -), for the perturbed state 5 of
s. In [133], the worst-case observational perturbations are
computed by an adversary using the FGSM scheme [111].
They consider highway, intersection, and on-ramp scenar-
ios with episode lengths of 300, 30 and 30 time steps,
respectively. They observe much higher computational costs
than for standard RL algorithms, which is a consequence
of the approximation of the worst-case perturbations by a
Bayesian approach. In [130], the management of a fleet of
electric vehicles is considered, where one has one agent
for each region of the map who can displace vehicles
into adjacent regions or to charging stations. Here, the
adversarial attack is a perturbation of the observed states
of the region’s agents, which consist of the number of
vacant and low-battery vehicles, information about charging
spots, and demand. The objective is a minimax game, and
both the region’s and the adversary’s policies are updated
iteratively. Reference [84] propose to discount the adversary’s
reward and to constrain the number of attacks by an upper
bound, encouraging to only attack in critical situations. Their
method is applied for left-turn in an intersection and on-ramp
merging. Reference [117] consider state attacks and optimize
the worst-case discounted reward, while the adversarial
agents aim at performing the action that minimizes the
victim’s reward. In a simulation framework, they consider
driving scenarios with an obstacle.

In addition, many approaches concerning robust control are
given in the literature. One can distinguish between minimax
games where one searches for the policy the maximizes
the cumulated reward/minimizes the cumulated cost given
the worst-case trajectory or worst-case transition model
(similarly as above in the adversarial RL approaches, but
with the difference that the adversarial agents trained in these
approaches do not necessarily reflect worst-case situations),
risk-sensitive criteria where an individual risk measure is used
as objective, and constrained criteria where the reward should
be maximized subject to several constraints, see [99].

More formally, the worst-case criterion under parameter
uncertainty corresponds to the objective

o
max | min (IE [ 'R ]) ,
well (Pe:l ( P Z,:o v
for a set J of transition matrices, and a set IT of policies, while
the worst-case criterion under inherent uncertainty is given by

o0
in (Ero [>7 'R]))-
max (min (B[22, 1'R:

for a set Q7 of trajectories that are allowed under policy
m [101]. E.g., [232] consider the worst-case criterion under
parameter uncertainty for finite state-action spaces and apply
the method to aircraft routing.

Another example of a minimax criterion is the robust
Bellman TD operator introduced in [279]. The objective is
the expected squared temporal difference

1

5 Bormpo (515w, 00)7]
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for

8O (wy, 00) = YN (0,) — QO (s, ar)

for the weights w’ of the target network, the current parameter

w; of the approximation Q,, (s, a) of the true Q-function, the
distribution Py of the observations, and the nominal targets

YPominal(o,) = R, + y max(Qu (s:41, @)
a

for observation o; = (s, ar, Ry, s;+1) at time ¢. In the robust
Bellman TD formulation, one still considers the squared TD
error but a robust minimax target label

yrobust, )y — R, +y min
tw ( t ) t )/ Tl

(ZS,GS(S,,Q,) :[(S/|Sl, al) HZ%X(QW/(S/, Ll/))) .

for the set S(s;, a;) of all possible states at time (¢ + 1) given
s; and a; under the uncertainty set /.

Reference [44] consider policy gradient descent and
replace the squared differences of the predicted Q-values
for given state-action pairs and the observations by the
absolute differences and the Huber losses. They apply their
algorithm for autonomous parking and consider scenarios
with 100 time steps. In their experiments, the Huber loss
allows for quicker convergence, finally resulting in an
even decreased training time in comparison with training
according to the MSE and the MAE. Other occurences of the
Huber loss in RL include the training of ecological behavior
in front of red traffic lights [223], vehicle control (left/right
turn, acceleration/deceleration, [354]), and in (simulated)
environments for a mountain car and a lunar lander [43].

In contrast to the minimax approach where the adversarial
realization is considered to be the worst from a given
uncertainty set, distributionally robust optimization optimizes
an expectation which is not computed w.r.t. the ideal
distribution but w.r.t. a set of distributions that contains the
ideal distribution. In light of Sec. III, one can interpret this
as an optimization of an expectation w.r.t. a contamination
ball (although, in the literature, one not necessarily uses the
classical contamination balls from Robust Statistics). In [132]
(although actually not an RL approach, as there is no learned
policy but the optimization problem is solved periodically
with new data), the goal is to manage a fleet of electric
vehicles according to the mobility demand and charging
requirements. Here, the worst-case expected cost (w.r.t. sets
of distributions that model the demand and the supply,
respectively) is minimized over the number of dispatched
vehicles across the regions. Here, the sets of distributions are
confidence sets, estimated from historical data.

Reference [282] consider state measurement errors and
formulate the idea of smoothness regularizers that should
encourage the differences between 1y (s) and g (5) to be small
if the difference of s and § is small. Assuming s € R”, the
smoothness regularizer has the form

Ry(mg) = E__,m, [ max (D(mo(s), 79(5))]
S SeB(s,€)

167876

for the state visitation distribution P§ induced by a policy 7
and the /,-ball B(s, €) around s with radius €. For the distance
D, they use the Jeffrey’s divergence

1 1
D;(P|Q) = 5Dki(Pl|Q) + 5 Dkr(QIP)

for stochastic policies and the Euclidean norm for determin-
istic policies. The agent is then trained w.r.t. the objective
to maximize the Q-function, penalized by the smoothness
regularizer.

Reference [131] consider multi-agent RL with electric
vehicles and argue that the individual charging patterns
lead to additional model uncertainties with the goal to
distribute the electric vehicles fairly among different regions
while allocating low-battery vehicles to charging stations,
minimizing the overall costs. For a cost function ¢, denote
the worst-case state value function by

S = S])

o
min E =lees ,a
JEUc(Jo,r)( " [Z’—l 4 (52, ar)
for the uncertainty set Uc(Jo, ) = Qeg gen A5, @) where
each (s, @) is a convex contamination ball around the true
transition distribution Jy(s, @) with contamination radius r,
i.e.,

Ve (s) =

s, @) = {(1 = r)4o(s. @) + min(1, QIQ € M;(S x A)}.
The objective for finding the optimal policy is then

max(vy (Ps)) s.t. vi(s) >t VseS,
g

)

for some threshold 7 and

o0
Viis)= min (IE =R
7 (s) kww)( H[thly A

and v} (Ps) = Espy [V} (s)] for * € {c, r}.

B. IMITATION LEARNING
Robust approaches for RL also carry over to IL.

Random perturbations of trajectories, which can be
understood as an untargeted adversarial training, have been
considered for IL in [19] who trained an autonomous driving
agent based on expert trajectories. In [298], one perturbs
the action selected by the agent by an adversarial action
that should drag the vehicle from the intended path. In their
setting, one is provided with future states by an expert.
An inverse dynamics model (IDM) is applied to find suitable
actions that allow the vehicle to attain these states. The policy
is trained according to the reward function

2
—l|laipm — (ag + aw)ll”,

for the policy’s action ag and the adversarial action a,,, so the
agent should learn to imitate the optimal action by adjusting
for the adversarial action. In order to decourage too harsh
adversarial actions, they only inject an adversarial action with
a certain probability and further restrict the adversarial action
to a certain interval.
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Reference [183] consider a minimax criterion where an
uncertainty set around the true observation is considered. This
uncertainty set is given by coordinate-wise /1-balls around
the true state component. They consider simulated driving
scenarios with traffic lights and intersections.

Reference [138] introduce an IL algorithm based on GANS.
They start with a regularized form of inverse RL with the
objective

argmax(—J (¢)+min(—H (7)+ Ex[c(s, O)]) = Er [c(s, a)]),

where ¢ denotes a cost function, H the y-discounted
causal entropy and mg the expert policy. In order to
prevent overfitting, they propose to regularize this objective
with a convex regularizer J, inducing the additional term
—J(c). Denoting this regularized objective by IL;(;rg), and
considering the RL objective

RL(c) = argmin (H () 4+ E[c(s, a)]),
[138, Prop. 3.2] shows that
RL o ILj(7g) = argmin, (—H () + J*(OMy; — OMy,)),

for the occupancy measure

o0
OMx(s.a) = m(als) D v'P(s; = slm).
Now, [138] connect GANs with RL with the choice
O = { Ex, [g(c(s, )],

c<0
oo, ¢>0

) —x—In(1—-¢%, x<0
x) = ,
§ oo, x>0

for which

J*(OMy — OMj,) =
mgX(lEn [D(s, a)] + Iz [In(1 — D(s, a))]),

where D is taken from the set of all discriminative classifiers
on S x A. This leads to the task of finding a saddle point of

E, [In(D(s, a))] + Ex;[In(1 — D(s, a))] — \H (7).

With parametrizations D,, and g, this task can be solved in
a GAN-style by alternatingly updating the parameters for the
discriminator and the policy, respectively.

Reference [220] propose to induce a Lipschitzness of both
the discriminator and the policy by replacing the entropy
regularizer H (i) with the regularizer

1
RD) = 155 2 g e 1PolS + 35.08) = Dus. ),
85,0 = argmax||5||2§,(|Dw(s +68,a) — Dy,(s, a)|),

for training data D and discriminator network D,. The
motivation is to better cope with observation noise. Their
method is applied to robot locomotion.

Reference [176] train an adversarially robust IL agent via
a minimax game where the adversary aims at minimizing
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the objective the agent aims at maximizing (the entropy-
regularized advantage function). In order to stabilize training,
they suggest regularizing the objective of the ego-agent by a
distillation loss term.

Similarly, [316] propose to alternatingly train an IL agent
and an adversary where the latter learns to perturb the states
in order to let the agent fail. Let the attack policy maqy assign
a density magv(-|s) to a state s in order to produce some
adversarial state s’. They then distinguish between sensory
attacks, where the observed states are perturbed, or physical
attacks, where the state itself is perturbed, resulting in a
perturbation of the observed state and letting the transition
model produce the next state based on the perturbed state. The
objective is then to learn a policy under all possible attacks,
ie.,

min(max(J (T, Tagy)))
g Tadv
for
J (. agy) = E [Zt plar, m(s»)‘

ay ~ T(Wadv(St)), S141 ™~ 3('|5t» ar)]

in the case of sensory attacks, or

J (. agy) = E [Zt plar, mst»‘

ar ~ 7 (Tadv(81)), St+1 NJ('|7Tadv(st)’ ar)]

in the case of physical attacks, respectively, for some loss
function p that penalizes the discrepancy between two
actions.

A typical approach from Robust Statistics, namely a
robustification of the objective, is done in [240] who consider
value function estimation and who point out that this is
usually done by minimizing the squared Bellman error. Le.,
for Bellman operator

(TV)(s) = E[R41 + v ' V(sisDls: = 51,

this objective is given by
. 2
min (3" PsGX(TVa)(s) = Va(s))?)

for some distribution Ps on & and an approximation Vj
of the true function V7 for which (7V”™) = V7 holds.
Reference [240] propose to replace the squared loss by the
absolute or the Huber loss and show how these new objectives
can be minimized.

Reference [198] consider IL if contamination in the
classical Tukey-Huber sense are allowed, i.e., in the pool of
offline demonstration data, a fraction of € of the instances
(state-action pairs) can be arbitrarily corrupted (note that this
fraction is deterministic as in the BDP context, not stochastic
as in convex contamination settings). They propose to
randomly partition the data into B batches and to use the mean
of the likelihoods in each batch as the objective, so the overall
objective is the median of the means for which they propose
a gradient-based optimization algorithm. This contamination
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model has also be considered in [365] and [366] for RL with
policy gradient. More precisely, in [366], an e-fraction of
transitions can be modified arbitrarily while in [365], both
an e-fraction of rewards and transitions can be perturbed
arbitrarily, therefore, they call this contamination scheme
“strong data corruption”.

Reference [366] point out that many of the existing robust
RL methods consider offline RL, where they distinguish
between online RL, i.e., an adversary can adapt their
perturbation in each iteration, and offline RL, where the
contamination must be generated prior to training. In [365],
in contrast, the e-contamination scheme is designed for online
learning in the sense that the adversary can decide in each
iteration whether to replace the current reward and the new
state with arbitrary values, with the restriction that this can
only be done in at most emj, training iterations if mjy is the
maximum number of iterations.

Reference [70] assume that reference trajectories or parts
of reference trajectories are adversarial in the sense that they
accomplish the task with illegal means. Having a small initial
set of guaranteed benign trajectories, they detect adversarial
trajectories by a divergence measure. To this end, they
partition trajectories during training into parts corresponding
to sub-tasks and learn sub-policies (options, see [18], [295])
for each sub-task. In order to be able to detect adversarial
trajectories that only differ from benign ones in some time
steps, they propose to use the occupancy measure w.r.t. the
clean trajectories, i.e.,

7" (ailsi)

clean _
OMT[ (s’ a) - Z(sivai)efclean
Zt VIP(St = ;| Tclean)

for a clean trajectory tcjean generated by a clean policy m¢lean
and for the optimal policy 7*. Because this measure is zero
if two trajectories are very close without overlapping, [70]
combine it with the Fréchet distance

FD(7) = min( max (||t (a(?)) — Tetean(B(1))[[2))
a,B tel0,1]

for functions «,: [0,1] — {0,1,...,|7|}, B,: [0,1] —
{0, 1, ..., |tclean|}. Then, a classifier is trained on the two
distance measures in order to decide whether the trajectory
part is adversarial or benign.

C. MODEL-PREDICTIVE CONTROL
In MPC, one assumes a model for the system dynamics, i.e.,

St+1 Zf(sta U, U[),

where u; are the control inputs to the system, which are
contained in some space U, and control noise v;. In its
simplest form, an MPC problem is given by

Lréi[r]l (Zt p(rt)) St sep1 = f(st, up),

for the control errors r; = d(s:P, s¢ (1)) where sip is the
set-point that the agent should follow at time ¢ and where
d is some distance measure. The objective is potentially
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conditioned on other constraints such as that the states and
control inputs should, at least with a certain probability,
be contained in some subspace of S and U, respectively, that
correspond to safe or comfortable behavior, or penalized by
a term that discourages the control inputs to vary too much
over time.

Similar approaches as for RL and IL have also been
introduced for MPC, e.g., replacing the quadratic loss for the
control errors by the absolute loss as in [79] and [227], by the
Cauchy loss [77] or the dynamically scaled covariance loss
introduced in [4], which has been used in [77] as loss function
for MPC.

A minimax formulation of an MPC in order to deal with
worst-case uncertainties goes back to [41]. Reference [362]
propose another minimax formulization where the objective
contains worst-case losses w.r.t. an uncertainty set on the
(discrete) behavior of surrounding vehicles, given as a
probability simplex. Experiments on simulated data with a
time step of 0.1 s and a planning horizon of 5 s confirm
real-time capability. Reference [226] consider the control
of maritime vessels and aim at avoiding collisions. Here,
the obstacles are overapproximated by balls, and due to
tidal effects, their radius changes, i.e., they are modelled as
random variables. Assuming that an empirical distribution for
each radius exists, their robust MPC approach considers an
uncertainty set in the form of contamination balls around each
empirical distribution, based on the p-th order Wasserstein
distance.

Reference [228] point out that robust control approaches
often include robust optimization where the constraints
are only known up to some noise term with the goal to
keep the constraints satisfied for all possible noise terms
for a given uncertainty set, ie., g(x,&) < 0 for all
& € U for some uncertainty set I/ and some function g,
making the approach rather conservative. The other approach
is distributionally robust optimization where the supremal
expectation of the constraints have to be satisfied w.r.t. a given
set of distributions w.r.t. which the expectation is computed,
ie.,

sup(Ep[g(x,5)]) <0
Ped

for some set 3 of distributions. Motivated by the functional
view from Robust Statistics, [228] consider the supremum
bias due to the decomposition

sup(EEp[g(x, §)]) = Eplg(x, §)] + sup(Bias(P, g, P))
Ped Ped

with
Bias(P, g, P) = / gd(P — P).

They compute the supremum bias for the commonly used 1-th
order Wasserstein and MMD metric, resulting in

sup (Bias(P, g, 13)) =€l
Wi(P,P)<e
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for Lipschitz constant L, of g w.r.t. the first argument, and

sup

(Bias(P, g, P)) = €llglln,
MMD(H,,P,P)<e

for the RKHS H, of g, respectively. Due to L, and
llgll7, being unknown in practice, they propose to control
the distributional robustness for the 1-th order Wasserstein
distance by

€ m[?‘X(Hng(xi’ D,

motivated by L, > sup,(]|Vyg(x, -)||), and for the MMD
distance, they prove that the original inequality w.r.t. the
supremal expectation is satisfied if there exists 7 € H for
some RKHS H such that

max(h(§:)) + €llhll3) = 0 and g(x, §) < h(§) V& € U.

Another common robust MPC strategy is tube-based MPC
where one assumes that there is a function g : 25 x U x 2K
such that g(s;, u;, v;) € g(S,u;, N), where v, € R4, S C §
and N C RY. Furthermore, if S; C S», it holds that
g(S1,u,RY) C g(Sr,u,RY) for all u € U (e.g., [287]).
In other words, the set of all possible forward reachable states
is overapproximated by a tube.

Reference [287] enhance tube-based robust MPC with
collision avoidance constraints and train an autonomous
agent for a car. Reference [26] apply robust tube-based MPC
to the training of an autonomous driving agent in order to
avoid collisions with pedestrians, both uncertain static and
uncertain dynamic pedestrians. Reference [25] consider MPC
that satisfies safety constraints such as collision avoidance
or terminal conditions like a full stop or parking, and allow
for the state and controller inputs being as close as possible
to a reference input. In simulations with a time step size
of 0.05 s and a prediction horizon of 20 s, they confirm
real-time performance of their controller. Reference [230]
consider a robust tube-based MPC for lane keeping of
an autonomous vehicle, [142], [157], [215], [179], [350]
(experiencing quicker convergence than standard MPC in
their simulations), [20], [57] apply it to path tracking,
and [340] to overtaking. Reference [98] consider obstacle
avoidance using tube-based MPC on icy and snowy roads and
confirm real-time capability in their experiments. Reference
[290] use tube-based MPC for collision avoidance with
moving obstacles. Reference [222] use tube-based MPC in
order to let multiple agents satisfy platooning requirements,
i.e., maintaining the same speed. Reference [244] combine
l1-adaptive control, which lets the system behave as a
linear model, disregarding uncertainties and perturbations,
with tube-based MPC. Delay (even time-varying) as an
additional source of uncertainty is also considered, for
example in [199], who apply tube-based MPC to steering,
and [163], who consider uncertainties in timing due to
multiple sources simultaneously, formulate the problem as
tube-based MPC, and perform experiments concerning static
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collision avoidance and overtaking. Reference [329] consider
tube-based robust MPC for autonomous racing.

Ho-control considers the Hyo-norm of the transfer func-
tion G of a linear state space model, i.e.,

[Glloo = sup(omax(G(jw)))

for the maximum singular value opax. Optimal Hyo-control
considers minimizing ||7%,||cc Where T, denotes the upper
left block of the transfer matrix G, however, as the solution
is often not unique and difficult to compute, one usually
relaxes the problem to satisfying ||7T,,(s)|lcc < y for
some y > 0. Reference [275] use Huo-control for adaptive
cruise control and lane change in queues, [116] for path
tracking, cruise control and lane change of electric vehicles,
[159] consider double lane change and serpentine maneuvers
for electric vehicles, [253], [342] steering while driving at
constant speed, [160] path following and lateral stability of
autonomous electric vehicles, [165] path following and lateral
stability of autonomous vehicles, [236] speed and current
control for electric vehicles, [242] collision avoidance, [261]
lane-keeping, [95] lateral control, and [137], [377] path-
tracking.

Reference [278] consider lane change on highways and
model the lane switching behavior of the surrounding
vehicles as Markov jump process. Let w be a set of parameters
that model the uncertainty of the system. Then, for a sample
{®;}, they compute the empirical distribution P, and let the
ambiguity set be the contamination ball around P, wrt.
the TV distance. The robust MPC approach then solves a
minimax problem, i.e., finding the control sequence that
minimizes that maximum cost over all such distributions.

See also [355] for further references on robust MPC
approaches for autonomous driving.

D. BYZANTINE ROBUSTNESS

Federated and distributed (reinforcement) learning is done
for a lot of recent autonomous driving models, see [319]
and references therein. Therefore, it is important to ensure
Byzantine-robustness of those approaches. Reference [319]
themselves craft poisoning attacks against federated learning
in a non-linear, autonomous steering control scenario, [102]
propose attacks against trajectory prediction via federated
learning.

As for distributed RL, [85] consider Byzantine-robustness
and suggest classical outlier detection in each learning round
by computing the mean of the medians of the estimated
policy gradients of each agent and neglecting those which
differ by a least two standard deviations from this estimate.
Reference [80] consider a general bandit algorithm and
allow for a constant e-fraction of agents to be byzantine,
and propose to compute the shortest interval containing
a fixed fraction of rewards so that the mean reward is
then given by the mean of the rewards contained in this
interval. Reference [58] consider also a trimmed mean in
order to estimate the value function in online and offline
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distributed RL. Reference [208] propose a poisoning scheme
for federated RL and assume that the attacker can perturb the
observations of some of the trained RL agents, but has no
information about the underlying MPC. They also consider
corrupted critic networks in actor-critic RL. Note that in these
settings, the individual distributed agents themselves take the
role of the instances in the original understanding of case-
wise contamination.

Further approaches for Byzantine-robustness that are not
directly tailored to federated RL are given in the literature.
For example, [35] show that no linear aggregation is
Byzantine-robust if one single local model is poisoned.
Note that analogy to the non-robustness of the mean or the
non-robustness of Bagging. They propose Krum, a technique
where essentially a variant of the geometric median is
computed, more precisely, the local model with the smallest
distance to its nearest neighbors. They show that Krum
guarantees Byzantine robustness if the fraction of malicious
models is smaller than (n/2 — 1), so one could interpret
the fraction of 0.5 of malicious models as “Byzantine-
BDP” here. The notion of such a BDP has recently been
introduced in [113]. Variants of the geometric median have
also been considered for example in [186], [286], and [321],
or in [56] and [271] where a geometric median of means of
gradients is proposed. Reference [351] consider median and
trimmed-mean aggregation of the coordinate-wise gradients
reported back from the local learners and analyze statistical
error rates. Reference [379] improve their work as the bounds
in [351] depend on the dimensionality so that the rates
may be sub-optimal in high dimensions and also interpret
the minimum fraction of Byzantine models that lead to
unreliability of the federated learning procedure as BDP.

See [309] for a recent overview of robust federated
learning.

VI. OUTLOOK AND FUTURE WORK

In this section, we outline some ideas of robust strategies
that were not yet fully applied to autonomous driving tasks.
Moreover, we provide suggestions for benchmarking studies,
where different robust algorithms for each of the individual
application areas could be compared in order to assess
whether some classes of robust algorithms are better suited
than other, and to get an intuition about the amount of
contamination in typical datasets from the respective area.

A. FURTHER STRATEGIES FROM ROBUST STATISTICS

The concept of influence functions is rarely seen in the
context of autonomous driving in the sense of Robust
Statistics, however, the term “influence function” is often
used in a physical sense, i.e., quantifying the impact of one
physical variable to some property. Influence functions are
used as diagnostic tools in deep learning in general, for
example, in [174], and they are one of many approaches
of XAI (e.g., [16]). [106] propose adversarial attack against
influence functions and show that the interpretation of a
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neural network based on the influence function is also fragile
and highly vulnerable to adversarial attacks.

A particular application in autonomous driving is given
in [301] where influence functions are used in order to predict
the impact of a data point on pedestrian detection. More
precisely, the influence function is used as proxy in order to
predict the differences between the test losses for a model
trained on the original data and a model trained on data where
one instance has been deleted.

Apart from the quantification of the impact of an
observation on the estimator, diagnostics based on influence
curves can be used to generally strengthen the understanding
of the data, for example, whether there are clusters of points
with high impact or by trying to find particular properties that
make data points influential. This strategy may not only be
applied for perception but also for planning in the sense that
certain actions or whole trajectories of adversarial agents are
identified as influential on the RL training result.

Nevertheless, apart from diagnostic purposes, the influence
curve can also be used in order to robustify an estimator
directly through the perspective of local robustness. The
“robust losses” introduced in Sec. III-D themselves induce
bounded influence curves of the corresponding M-estimator
by Eq. 2, however, it is also possible to directly robustify the
influence curves. To this end, a so-called asymptotic linear
expansion of the estimator in the form

N ~ 1 n
0, =00+ - Zi:l IC(X;, T, P) + rem

must be valid, for some consistent initial estimator 90 and a
remainder term rem (see, e.g., [259]). This property holds,
for example, for asymptotically normal M-estimators [259],
SVMs [120], or regularized M-estimators [324]. Given an
influence curve, one can formulate different optimization
problems in order to robustify the underlying estimator, for
example, minimizing the covariance of the influence curve
subject to a bound on the bias, minimizing the MSE [259],
or finding the estimator the achieves maximum asymptotic
relative efficiency even under the worst-case contamination
radius [260]. Such “optimally-robust” estimators do not seem
to have been considered so far for applications in autonomous
driving, but would potentially increase the performance of the
trained models compared to those trained according to the
classical robust losses.

Another topic, which becomes increasingly important
when dealing with high-dimensional data, is variable selec-
tion. Robust variable selection algorithms already have
been proposed in the literature, for example, the sparse
LTS [7], robust Boosting variants [161], [206], or a trimmed
Stability Selection [326]. Such techniques could be applied
in situations with high-dimensional state spaces in order to
identify relevant variables.

In the reviewed literature, except for those considering
Kalman filters where contamination in the innovations
has already been regarded, one does often not distinguish
between contamination in the responses and contamination in
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the regressor variables. This distinction is however important
because one can argue that outliers in the responses, given
clean predictor columns, may naturally be bounded or
that large errors may be detectable in advance, implying
that unbounded loss functions with a bounded gradient
such as the Huber loss function are not problematic here.
However, outliers in the predictor columns are known to
be more challenging. This situation would even be natural,
as the predictor variables are also measurements in some
applications such as location estimation via GPS data, where
coordinates or clock offsets enter as predictor variables,
or vehicle parameter estimation such as tractive forces
or electric parameters, where variables such as velocity
or voltages are used as predictor variables. Moreover,
contamination in the predictor variables occurs when one
cannot assume perfect reference data. For example, bounding
box estimation is often accompanied with ground truth
coordinates, which may be imperfect due to errors done
by human annotators, or the reference trajectories in IL are
corrupted. Here, robust estimation techniques that allow for
this type of contamination, which is more challenging than
just considering contamination in the responses, allow for
addressing such situations.

Large measurement errors that are a source of contam-
ination in the data are especially problematic in data with
a high number of variables and a rather low number of
observations. Here, the fraction of contaminated instances
can quickly become very large, as a single contaminated
cell already makes an instance an outlier (e.g., [10]).
Therefore, cell-wise robust approaches have recently been
proposed in the literature, i.e., algorithms that can cope
with a certain fraction of contaminated cells, even if all
instances would be contaminated. For example, there are
cell-wise robust counterparts of location and scatter matrix
estimation algorithms [5], [180], regression [39], [90], [181],
and clustering [100]. In high-dimensional data with an
admissible cell-wise contamination scheme (which could
be a random selection of perturbed cells as, e.g., having
contamination on the response column only would not
allow for any advantage of cell-wise robust over case-wise
robust algorithms, see [326]), the application of cell-wise
robust procedures could improve the robustness against large
case-wise contamination rates, even potentially becoming an
alternative to RANSAC and its variants.

Outlier detection algorithms have been applied in advance
to the data in many references. Unless one faces univariate
samples, one should be aware of several pitfalls when
trying to detect outliers in multivariate data (see, e.g.,
[121]). A single large outlier in a multivariate sample can
make other outliers invisible, essentially due to deforming
the confidence region in a way that other outliers fall
within this region, which is referred to as “masking effect”.
Similarly, non-contaminated observations can, due to the
same reason, be located outside the confidence region so
that they are incorrectly flagged as outliers, which is referred
to as “swamping effect”. Therefore, one should not apply a
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classical outlier detection algorithm on the dataset once and
consider the non-flagged observations as clean. In addition,
when assuming an underlying model, as in regression, simply
detecting outliers in a model-agnostic way is unlikely to
find instances whose entries are insuspicious but which
appear as outliers w.r.t. the assumed model. In such settings,
model-based outlier detection, which is essentially done
in the iterations of LTS, is necessary. As for cell-wise
contamination, some strategies for detecting and imputing
cell-wise outliers have been proposed, e.g., [255], [263].

B. SUGGESTIONS FOR BENCHMARK STUDIES AND
FUTURE RESEARCH

This survey paper has provided an overview of robust
methods in autonomous driving in a comprehensive way and
in a unified notation. It should not only serve as a detailed
overview for researchers and practitioners, but also pave the
way for organizing and conducting benchmarking studies,
which are of interest on their own, but beyond the scope of
this work.

For nearly each application area, there are already several
robust strategies in the literature. Of course, in the respective
papers, comparisons already have been made, but often
with some selected comptetitors from the literature. The
comparison of a large number of algorithms for one specific
problem would be desirable. In particular, the navigation
section contains a plethora of robust algorithms that fol-
low different strategies: robust criteria, noise modeling or
clipping. While robust criteria and clipping follow a similar
idea as robust regression approaches, namely downweighting
or even neglecting outlying instances during optimization,
noise modeling learns the noise distribution and integrates
it into the computation of the posterior distribution for the
next state. Both strategies are accompanied with advantages
and disadvantages. Noise modeling, in particular when using
online algorithms such as variational inference, allow for
non-stationary noise distributions and have already been
successfully applied in real-world settings where both the
measurement and the process noise were heavy-tailed, i.e.,
both additive and innovation outliers occurred. The computa-
tion of the posterior distribution allows for the quantification
of estimation uncertainty. On the other hand, noise modeling
requires assumptions about the noise distributions, while
robust optimization criteria are usually applicable under
milder assumptions. Therefore, algorithms from each type
should be compared on data with both additive and innovation
outliers and where the noise distributions are non-stationary.
The iterative nature of both variational inference and the
optimization of robust criteria usually induces computational
overheads compared to a non-robust algorithm. It should be
investigated how this overhead scales on real-world data and
in dependence of the amount of contamination.

Benchmarking studies could be both based on simulations
and real data. As for simulations, the advantage is that via data
generation, one can directly control the type and the amount
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of contamination, for example, case-wise contamination with
outliers only in the responses, only in the regressors, or both,
or cell-wise contamination. This would enable to validate
different robust algorithms concerning breakdown. Although
one can compute theoretical breakdown points, one should
be aware of the facts that on the one hand, the breakdown
point corresponds to a worst-case scenario, indicating that
an estimator does not necessarily break down once the
corresponding fraction of instances or cells is contaminated.
On the other hand, the algorithm with which the estimator
is computed usually is not regarded when computing a
breakdown point, therefore, due to numerical pitfalls such
as vanishing gradients, it is possible to have an earlier
breakdown than expected. Such an effect has been observed
in [327] for neural network training.

As for real data, any type of data base with real data and a
benchmarking study on such data is of course also of interest
on its own. A future benchmarking study should focus on
the comparison of the performance of robust algorithms from
each individual subsection in this review paper, including
non-robust competitors. In particular, on real data, one cannot
determine the true underlying contamination model nor the
contamination radius. Therefore, one usually applies both
a robust and a non-robust method and decides to use the
non-robust estimator henceforth if their performance does not
differ much or if the classical estimator performs better. In a
more granular approach, for any algorithm whose robustness
can be controlled, e.g., by the trimming parameter that
decides on the size of the clean subset used for fitting,
one should apply the respective algorithm with different
robustness properties in order to try to implicitly assess the
amount of contamination of the data in the real world.

The same argumentation holds for adversarial and Byzan-
tine robustness. In particular, for Byzantine robustness,
each contaminated gradient/model/input from an adversarial
machine takes the role of one contaminated instance in a
standard dataset. As for adversarial robustness, from the
perspective of Robust Statistics, one could ask whether a
worst-case analysis is possible, and how the amount of
contamination could be quantified. Both questions should be
addressed in future research.

If a worst-case perspective, without any restrictions,
would be pursued, one would likely consider adversarial
actions from an adversarial agent where the worst case
would correspond to the maximum acceleration or jaw.
However, in particular for planning algorithms, there is one
crucial aspect when it comes to perturbations/adversarial
actions: Realism. This property has already been identified as
important in the literature on adversarial attacks on images,
e.g., [308]. It is well-known that training strategies such as
RL fail if the environment is too challenging, e.g., [298].
Although such edge cases are important for the safety
assessment of an autonomous driving system, focusing on
them appears not to be the correct way to assess the robustness
of the learning algorithm itself in the context of breakdown.
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Moreover, one could ask how the amount of contamination
should be quantified here, i.e., whether one should count each
adversarial action or each adversarial trajectory.

In order to define a breakdown for learned policies, one
should check whether the existing definitions of a breakdown
from Robust Statistics can be translated. In Robust Statistics,
when learning a parametrized model, a breakdown indicates
that the learned parameters can be arbitrarily close to
the borders of the underlying parameter set, or made
arbitrarily large. It should be assessed whether this is possible
for the parameters learned when training a parametrized
policy, or the control inputs learned in MPC, as well as
the implications on the behavior of the agent. Moreover,
robustness should not be confused with safety here. For
example, consider an autonomous car and a distribution
that is learned on its action space. If the environment
is extremely challenging, it can learn just not to move.
From the perspective of safety, such a behavior could be
interpreted as excellent, but from the perspective of Robust
Statistics, it could be interpreted as breakdown since it would
correspond to (or be close to, depending on the algorithm) a
Dirac distribution on a particular value (zero acceleration).
Apart from the quantitative robustness that corresponds to
the influence curve and the breakdown point, [122] propose
a notion of qualitative robustness of an estimator, which
indicates that small changes in the underlying distribution
(usually measured in the Prokhorov distance) imply only
small changes in the estimates. Regularity of the trained
policy has already been considered in [220] and [282],
where one focuses on the regularity w.r.t. state perturbations.
A unified approach would consider a joint distribution on the
observed states (e.g., due to measurement errors or in partially
observable settings) and the transitions. An approach in order
to assess qualitative robustness, in a simulated setting, could
be to identify realistic but challenging scenarios, such as
complex urban environments or severe weather conditions,
and to gradually change the underlying distribution to
increase the mass of such challenging situations, or, in other
words, to contaminate an “ideal distribution”, which should
reflect the real world as much as possible, resulting in
a contaminated distribution, similarly as in [131], who
concentrated on the transition distribution. One may be
able to identify when the trained policy starts to deteriorate
in the sense that a certain regularity property of the
underlying policy no longer holds once the distribution
favors challenging situations too strongly. This amount of
contamination could then be interpreted as the BDP.

In the reviewed literature, a robust method for either a
particular perception or planning area has been presented.
A complete autonomous system however is composed by
several modules, at least multiple perception modules and
a planning module. It is vital to consider the robustness
of the whole system. To this end, one would first inspect
each individual module and assess its robustness in order
to have prior information for further inspections in the case
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that the whole system is not robust. Usually, one may argue
that the whole system is not robust if at least one module
is not robust. On the other hand, applying robust methods
for each subsystem may have the disadvantage of a low
overall efficiency, as a consequence from the robustification.
For example, [279] consider a state-space model in order to
incorporate observation noise. This observation noise itself
depends on the perception module. Therefore, one should
examine to what extend a certain non-robustness in the
perception modules could be compensated during the training
of a driving policy.

Once an algorithm has proven to be competitive in terms of
its generalization performance, accuracy, or security, a crucial
question is whether the running time is sufficiently low in
order to be applicable in real-world autonomous driving
scenarios. In particular, many of the individual tasks require
real-time performance. While robust algorithms tolerate
contamination which may let non-robust algorithms break
down, they are less efficient than non-robust algorithms,
so that more training data are required for convergence.
The major drawback however is that the optimization
of a non-convex loss function, a minimax loss, or, for
adversarial training, the optimization of an adversary, may
be required, usually resulting in a considerably higher
computation time, which could be the main hindrance
for real-world applications, regardless of their performance
in terms of safety or security. Several of the reviewed
papers already confirm in their experiments, some even on
real-world data, that their robust algorithm has real-time
performance. In addition, for iterative procedures, robustness
can even lead to quicker convergence and even to a reduced
computation time than a classical algorithm, e.g., [44],
[327]. Nevertheless, research on the real-time capabilities of
robust algorithms is necessary, in particular when consid-
ering the whole autonomous system with many individual
modules.

As for the whole system itself, an even broader research
question is the interaction between different properties that
a system should satisfy, in particular, safety and security.
As for security, the reviewed robust approaches for planning
as well as for Byzantine robustness already allow for training
with adversarial attacks, directly corresponding to security.
For perception where training data are given, adversarial
robustness does not fall within the scope of Robust Statistics
as adversarial attacks are crafted after model training, while
Robust Statistics considers the training procedure itself.
As explained in Sec. III, poisoning attacks in contrast are
crafted before model training. However, as poisoning attacks
are usually restricted by a geometric bound, methods from
Robust Statistics can be assumed to fail if the majority of
the instances is perturbed. Nevertheless, a potential topic for
future research could be the interaction between adversarial
robustness (also against poisoning attacks) and robustness in
the sense of Robust Statistics, i.e., whether methods from
Robust Statistics already increase adversarial robustness or
how models that are both robust in the sense of Robust Statis-
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tics and adversarially robust can be trained. A combination
with Byzantine robustness, i.e., training a federated RL. model
with both Byzantine and adversarial attacks, could also be
considered. As for safety in autonomous driving, the goal is to
assess whether an autonomous system can perform undesired
actions or with which probability such behavior occurs.
Although, in particular for deep-learning-based systems,
reasoning whether an outlier in the training data of some
perception module caused an undesired action may not be
possible, one could at least train robust and non-robust
subsystems and evaluate whether the robustness of these
subsystems affects the safety of the combined system.

While the overall system in the previous paragraphs
corresponds to a single autonomous agent, another topic
of interest is collborative navigation. If the individual
agents communicate, there are multiple state measurements,
depending on whether an individual is inside the lane of sight
or at least sufficiently close to another agent. As each agent
has a different location, it can happen that the perception
for some agents suffers from anomalies such as lightning
variations. Therefore, regarding the joint information, one has
a similar setting as in federated RL. One may consider the
corrupted measurements of one agent as Byzantine informa-
tion. Of course, computing an average or distance-weighted
average of the information would lead to corrupted joint
information. Here, one may consider integrating a robust
aggregation procedure, such as a trimmed mean, into the
algorithm that infers the next states. Nevertheless, in this
context, other problems additionally need to be solved,
such as communication delays or data loss, as argued
in [276], or correlated observations among the individual
agents (e.g., [48], [205]). On top of that, [299] consider
adversarial interference in the inter-agent communication.
Future research may consider Byzantine-robust federated
training of robust collaborative agents.
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