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ABSTRACT Autonomous vehicles have to interact with their environment with the goal to fulfill their
tasks while respecting all desired constraints such as not causing dangerous situations, driving comfortable
maneuvers, enabling a smooth traffic flow, or avoiding overly polluting driving behavior. All steps require
a suitable perception of the environment conditions, such as the estimation of the own position, a prediction
of the trajectories of other traffic participants, or the assessment of parameters corresponding to vehicle
dynamics. However, classical estimation algorithms are known to be easily distorted by outliers in the
data. In addition, apart from rule-based systems, it becomes more convenient to train autonomous agents
by machine learning algorithms. Again, such algorithms need to be robust in order to cope with model
misspecification or outliers in the data. Robust Statistics is a discipline of statistics which exactly addresses
these challenges. This paper provides an extensive and systematic overview of current applications of Robust
Statistics in autonomous driving in a unified notation, discusses different notions of the term “robustness”
and identifies directions for future work.

INDEX TERMS Autonomous driving, contaminated data, outliers, robust statistics.

I. INTRODUCTION14

Autonomous vehicles in operation have to interact with their15

environment by repeatedly successfully performing three16

tasks: Perceiving the current environment state, predicting the17

future states of all relevant traffic participants up to some18

prediction horizon, and planning their own maneuvers and19

therefore necessary control actions. Apart from rule-based20

systems, which operate according to a deterministic plan,21

works such as [19] have demonstrated that an autonomous22

agent can also be trained via machine learning (ML), here23

Imitation Learning (IL).24

A major drawback of IL is the necessity to provide25

expert trajectories according to which the agent is trained.26

An alternative class of algorithms is given by Reinforcement27

Learning (RL), where no training data are required but28

where the agent learns by trial-and-error. However, while29
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knowledge about correct maneuvers is implicitly encoded in 30

the expert trajectories in IL training, and while traffic rules 31

can be implemented in rule-based systems, RL agents learn 32

according to a reward function which assigns a real value 33

to a state-action pair, so that the agent learns by experience 34

which actions were useful (i.e., resulted in higher rewards) 35

for which states. Projects such as KI Wissen1 consider the 36

formalization of prior knowledge and their integration into 37

Artificial Intelligence (AI) training for autonomous driving, 38

see [331] for an extensive overview of knowledge integration 39

into AI. 40

The perception, the prediction and, for an agent trained 41

by machine learning, even the training is based on statis- 42

tical estimation, which is well-known to be vulnerable to 43

contamination of the data in the sense that the true model 44

differs from the assumed model, the “ideal model”, so that 45

observations from the real distribution may appear as outliers 46

1https://www.kiwissen.de/
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(w.r.t. the “ideal model”), with the potential to severely47

distort a statistical estimator (see, e.g., [121], [153], [213]).48

Robust Statistics has provided numerous techniques in order49

to safeguard against such perturbations in the sense that the50

estimator still works reasonably well, even in the presence of51

a certain fraction of contaminated data.52

Due to the rising interest in autonomous systems and53

the constant progress made in robustifying estimation and54

machine learning algorithms, this paper aims at systemat-55

ically collecting concrete applications of Robust Statistics56

in autonomous driving, to formalize these approaches57

in a consistent mathematical notation, and to identify58

possible extensions and directions for further research.59

Although this paper is not accompanied with own exper-60

iments, it also makes suggestions for future experimental61

studies.62

This paper is organized as follows. Sec. II provides a63

description of each tasks considered in this paper, a placement64

into the “sense, plan, act” workflow, and a roadmap across the65

different application areas considered in this paper.Moreover,66

potential sources of contamination are identified and how67

such contamination appears in the data. Sec. III collects68

the necessary concepts from Robust Statistics and relates69

them to other notions of robustness that one encounters70

in the autonomous driving literature. Sec. IV is devoted71

to approaches from Robust Statistics in perception tasks72

such as tracking, point cloud detection, or state estimation.73

Sec. V reviews robustifications for planning/prediction tasks,74

in particular for RL, IL, and model-predictive control (MPC)75

algorithms. In Sec. VI, potential topics for future work are76

discussed.77

II. OVERVIEW78

A. GENERAL TASKS79

An autonomous vehicle has to continuously observe its80

surroundings (perception, “sense”). This is realized in81

practice by potentially multiple types of sensors such as82

cameras, LiDAR or radar sensors. The collected information83

is used in order to predict the movements of the surrounding84

traffic participants, such as other vehicles or pedestrians,85

which is necessary in order to plan its own maneuvers86

(“plan”/“think”). The planning outcomes are finally used in87

order to perform the correct actions so that the planned next88

state is reached (“act”). A graphical illustration, including89

selected tasks corresponding to each of these phases,90

is provided in Fig. 1.91

In the following subsections, we briefly describe each92

task which has already been addressed by techniques from93

Robust Statistics that we review in greater detail later. They94

should provide a quick overview for the reader and already95

collect the main challenges corresponding to the respective96

task concerning sources of contamination and the impact of97

contamination on inference and optimization. Mathematical98

formulations of the respective optimization problems and the99

methodology are postponed to the main sections Sec. IV and100

Sec. V.101

B. SIMULTANEOUS LOCATION AND MAPPING 102

Simultaneous location and mapping (SLAM) consists of 103

two main tasks: Tracking the position of the robot (strictly 104

speaking, the sensor) and estimating its ego-motion; and 105

computing the map of the unknown surrounding environment 106

(e.g., [168]). The robot may use different types of sensors 107

such as camera, LiDAR, sonar or infrared. Camera-based 108

SLAM is referred to as visual SLAM (e.g., [353]). 109

In odometry, the goal is to estimate the ego-motion of 110

the robot. In contrast to SLAM, which requires global 111

consistency of the estimated trajectory in regard of a 112

localization of the agent within its environment, odometry 113

considers local consistency and incrementally estimates the 114

robot’s trajectory. Odometry can be considered as part of 115

SLAM, e.g., [128]. 116

In particular, one has to distinguish between different types 117

of sensors that are used for odometry, e.g., wheel odometry, 118

GNSS/INS (global navigation satellite system/ intertial 119

navigation system), GPS, sonar, LiDAR or camera (e.g., 120

[13]). Using camera data corresponds to visual odometry 121

(VO), using LiDAR data to LiDAR odometry (e.g., [177]). 122

Depending on the used sensor type and the actual task, one 123

may find different types of contamination in the collected 124

data, which we specify in the following subsections. 125

1) VISUAL ODOMETRY 126

As for camera models in VO, the most common is the 127

perspective camera model (e.g., [353]). All camera models 128

map the 3D world into an 2D image plane. In the perspective 129

model, more distant objects appear smaller. For 2D image 130

coordinates (u, v) and 3D coordinates (x, y, z), the perspective 131

model is given by 132

λ

uv
1

 =

fx 0 cx
0 fy cy
0 0 1

xy
z

 , 133

where λ is a depth factor and where the matrix is referred to 134

as the intrinsic calibration matrix, with the focal lengths fx 135

and fy and the projection center (cx , cy). 136

In general, cameras are vulnerable to illumination changes 137

(e.g., [63]). Other sources of contamination can be self- 138

shadowing, camera saturation, camera shaking or rotation, 139

motion blur or defocus [219]. 140

In direct odometry, the image data are used as they 141

are and a projection of the images on reference images is 142

computed. The quality is then quantified via the photometric 143

errors [125]. Alternatively, [62] use brightness intensities at 144

the positions instead of the position coordinates themselves. 145

In the sample consisting of the collected 2D points, contam- 146

ination manifests itself in points that are not in accordance 147

with the rest of the sample, resulting in high photometric 148

and/or geometric errors when comparing the source and 149

the reference image. A robust approach allows to cover 150

situations (regardless whether photometric or geometric 151

errors are quantified) where the image taken by the camera 152

is contaminated, but in principle, it would also allow for 153
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FIGURE 1. Overview of perception, planning, and control tasks as well as corresponding sources of contamination.

the usage of contaminated reference images or reference154

intensities.155

Reference [219] mention that a stereo camera pair156

increases the robustness for the cost of slightly increased157

computational complexity.158

Optical flow estimation slightly differs from VO since the 159

only goal is to estimate the optical flow, i.e., the velocity 160

between subsequent images, but not necessarily the camera 161

position itself. According to [155], the optical flow can be 162

related to the position, translational and rotational velocity 163
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of the camera. Therefore, one can extract the positions and164

velocities by regression from the sample. Contamination165

in the sample is induced by measurement errors of the166

optical flow, maybe due to the lack of a visible ground167

surface. References [33] and [34] elucidate that optical flow168

estimation is usually accompanied by assumptions such as169

the brightness constancy assumption which indicates that170

the brightness only varies smoothly (w.r.t. to both position171

and time), or a spatial coherence assumption that indicates172

that neighboring pixels are likely to be part of the same173

object, and hence change similarly. Note that drifts of the174

sensors usually do not violate these assumptions as they do175

not affect the relative correspondences between the pixels.176

Those assumptions however are violated in the presence of177

reflections, shadows, or motion boundaries, which imply178

outliers in the data in the sense that they violate these179

assumptions. In other words, outliers are likely to produce180

large loss values and therefore capable to let the estimation181

break down. Therefore, robust approaches are required.182

2) LIDAR ODOMETRY/POINT CLOUD REGISTRATION183

LiDAR data are usually point clouds. In contrast to cam-184

eras, LiDAR has the advantage to be immune to light185

variations [177], but the analysis of 3D data may cause186

high computational costs [13]. When using LiDAR data,187

contamination may result from occlusions [381], moving188

objects [62], [63], perspective and perceptual aliasing, i.e.,189

different but similar places cannot be distinguished [210],190

or from environments with self-similar structures where false191

associations are generated that appear as outliers [4]. [245]192

argue that outliers not only occur due to measurement errors193

but also due to changes in the object itself or overlapping194

point clouds in the sense that they represent overlapping195

but not the same details of an object. Reference [330] point196

out that moving objects appear as dynamic obstacles and197

hence occlude the static environment from the sensors of198

an autonomous vehicle, inducing outliers. See [187] for an199

overview of potential sources of contamination in point cloud200

data.201

Point cloud registration addresses the registration of sets202

of 2D or 3D points in computer vision. One of the best203

known algorithms for this problem is the iterative closest204

point algorithm (ICP). Here, one has some reference surface205

(a “model” point cloud), with which the observed point206

cloud, the “data” point cloud, has to be aligned. To this207

end, the goal is to find a parametric transformation between208

the points of both point clouds. In the simplest form, this209

is done iteratively by finding the closest model point for210

each data point, respectively, for the current parameter, and211

to update the transformation parameter by minimizing the212

sum of squared distances over all data points (e.g., [93]).213

Note the similarity of this approach to transform data points214

in order to match model points and the transformation of215

2D positions or brightness values in order to match their216

reference counterparts in VO.217

Such outliers potentially induce large values of the loss 218

function that is to be minimized, in particular, when using 219

the squared loss as in the standard ICP algorithm. A typical 220

robustification is to use a robust loss function that allows for 221

a certain fraction of such erroneous points without significant 222

distortion of the matching procedure. 223

3) NAVIGATION 224

For satellite data, contamination may occur due to occlusion, 225

i.e., where the line-of-sight between emitter and receiver 226

is blocked [231], [237], [269]. Reference [9] argue that 227

a common source of contamination in GNSS data is the 228

multi-path effect, i.e., the signals from satellites in a low 229

orbit can reach the receiving antenna by multiple paths 230

due to reflection on the ground or on surrounding objects. 231

Reference [65] additionally mention partial sky visibility and 232

non-line-sight as sources of contamination. Another source 233

of contamination can be electromagnetic propagation in the 234

sensors [334]. Radar data may be contaminated due to the 235

multi-path effect and interference [192]. 236

In odometry, although the models may receive sequential 237

data, they usually do not include a time component in the form 238

of a time series or state space model. All navigation or track- 239

ing approaches where time series data are used are discussed 240

separately and are therefore contained in the individual 241

section Sec. IV-A3. The often used filtering approaches 242

assume a state space model where the observations at time 243

t depend on the current system state, and the current system 244

state depends recursively on the system state at time (t − 245

1). In contrast to localization problems that are solved via 246

regression or image translation where contamination appears 247

statically in the responses, regressor matrices, or point 248

clouds/images, contamination can propagate through the 249

recursive state space model, and the error distribution may 250

be non-stationary. 251

Usually, one assumes outliers that only affect the observa- 252

tions, indicating that the observations can be drawn from a 253

different than the assumed ideal distribution with a certain 254

probability (cf. [269]). However, contamination may also 255

appear in the state equation, indicating that the state at time 256

(t+1) is drawn from a different than the assumed conditional 257

distribution w.r.t. the current state at time t . This phenomenon 258

is referred to as innovation outliers (cf. [269]), and results, due 259

to the recursivity of the state equation, also in contamination 260

in the subsequent states. 261

Filtering approaches mostly amount to the application of 262

the standard or an extended Kalman filter (which covers 263

non-linear state and observation equations), or by noise mod- 264

eling, usually by variational inference. Inference in Kalman 265

filtering can be identified with least squares regression, 266

opening the path for robust approaches by performing robust 267

regression instead. In variational inference, assumptions on 268

the measurement and process noise distributions are required. 269

By using a heavy-tailed distribution for each type of noise, 270

both additive and innovation outliers can be adequately 271

captured when computing the posterior state distributions. 272
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Reference [343] point out that many approaches try to273

achieve robustness by focusing on high-level features such274

as lines and edges, however, the computational burden can275

hinder real-time performance. Reference [211] point out that276

robust features (e.g., [27], [203]) that are constructed in order277

to be less invariant towards illumination changes are not278

suitable for realistic situations where the spectrum and the279

direction of the light can change.280

In SLAM, the data may consist of relative information281

such as (pseudo)range measurements, i.e., distances between282

the receiver and the emitter, collected from GPS or radar.283

By a regression model, one can infer the vehicle (i.e.,284

receiver) location from the range data. Since themeasurement285

function that quantifies the relative information is usually286

non-linear, a good initial guess for the true positions is287

required in order to find the global optimum (cf. [141]).288

Contamination appears not only frommeasurement errors but289

is also implied by bad initial guesses, and their location may290

be random or grouped (e.g., [4]). Contamination in the sense291

of measurement errors of the ranges appear as outliers in the292

responses. A robust (regression) approach therefore not only293

safeguards against measurement errors but also against bad294

initializations (maybe resulting from measurement errors in295

the data) and allows for contamination in the regressormatrix,296

maybe due to erroneous receiver coordinates or clock offsets.297

C. BOUNDING BOX ESTIMATION298

Bounding box estimation is crucial in object detection and299

tracking. The goal is to find a box which completely sur-300

rounds the desired object and which is as tightly as possible.301

Typical approaches for bounding box detection invoke both302

a classification loss, because the object corresponding to the303

box needs to be identified, as well as a regression loss that304

quantifies the quality of the bounding box coordinates (e.g.,305

[108]).306

A source of contamination could be errors made by the307

annotators, which is a known problem and has been studied308

for example in [224] and [306]. Suppose that an annotator309

provided a bounding box that is much wider or narrower310

than it should be. This could induce wrong patterns during311

training, maybe when there are many similar objects in the312

data, so that the neural network learns to fit reliable bounding313

boxes for the similar objects and, therefore, also for the314

object with the wrong bounding box, which implies a large315

regression loss for this particular bounding box. However,316

if for some reason a reference bounding box immensely317

differs from the optimal one, it could have a leverage effect,318

similarly as one large outlier in least-squares regression,319

and distort the whole model. Having already annotated data,320

is seems implausible that they would be checked again by the321

data scientist, so in this case, one could find contamination322

by inspecting the losses during neural network training or323

during testing, and may identify such “outliers”. By a robust324

approach, even large outliers may not result in a distorted325

model. Reference [154] provided another argumentation why326

contamination may appear, namely that object detection is 327

accompanied with an uncertainty that grows as a function of 328

time, i.e., when performing tracking and iteratively predicting 329

a bounding box for a future time step. In this sense, the 330

true bounding box coordinates could appear as outliers 331

under the assumption of the current predictive model for the 332

coordinates. 333

D. ESTIMATION OF VEHICLE PARAMETERS 334

Vehicle parameters need to be inferred in order to operate 335

a vehicle safely. Such parameters can correspond to vehicle 336

dynamics like longitudinal and lateral velocities, moments of 337

inertia, or tractive forces, or be related to electric vehicles 338

only, which are voltages or the state of charge of batteries. 339

Contamination appears once measurement errors occur, 340

either in the training data for the parameters of inter- 341

est, resulting in errors in the response variables, or for 342

the regressor variables, which leads to contamination in 343

the features. Outliers in the responses or regressors can 344

be identified individually by outlier detection procedures, 345

applied onto the response column or the regressor matrix, 346

however, in a regression setting, both procedures alone would 347

not find outliers that are inconsistent with the regression 348

model. In other words, if for example a response variable 349

has been measured wrongly but still lies within the range 350

of the majority of response values, it would not appear 351

as outlier when considering the response column alone. 352

However, if the contamination is inconsistent with an 353

assumed underlying regression model, it is detected when 354

computing the residuals. Robust procedures hence allow to 355

deal with even large measurement errors, which may never 356

be completely avoidable, and can provide models that only 357

marginally suffer from contamination. 358

E. DETECTION OF ROAD FEATURES 359

Road feature detection includes to find the position of road 360

features such as roadmarkings or to even extract road surfaces 361

from measured 3D point clouds. This is achieved by a 362

regression approach. 363

A typical source of contamination are measurement errors 364

and false positives of the tracker (e.g., [302]). In road surface 365

detection, contamination may arise from non-surface points 366

in the point cloud [234], which would imply large residuals. 367

F. PREDICTION AND PLANNING 368

Apart from the applications of Robust Statistics in perception 369

tasks as illustrated in the previous subsections, robust proce- 370

dures also entered approaches for prediction and planning, 371

i.e., RL, IL, and MPC. 372

In most of these approaches, one either considers adver- 373

sarial robustness or robustness against noise induced by 374

measurement errors, where either the observed state is 375

perturbed (e.g., [282]) or even the true state [316]. Robust 376

approaches usually amount to a minimax game, where 377

one does not optimize the expected future reward, but a 378
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worst-case future reward under unfavorable transitions [131],379

maybe induced by adversarial agents that are trained in order380

to hinder the ego-agent to reach its goal (e.g., [256]). Even381

perturbations of the ego-actions have been considered [298].382

However, as RL does not need data but uses the data383

generated during training, finding a reasonable amount of384

contamination is more difficult than in settings where one can385

just use contaminated real-world data. One challenge, when386

training adversarial agents, is to ensure that these agents at387

least behave plausibly, i.e., that the ego-agent is not trained388

solely on extreme edge cases that are very unlikely to be389

encountered in the real world.390

In IL, reference trajectories are given, where contam-391

ination can appear by random perturbations [19]. With392

annotation errors from bounding box estimation in mind,393

one can interpret such perturbations as a manifestation of394

a non-perfect human driver, similarly to annotation errors395

due to non-perfect human annotators. Alternatively, single396

state-action pairs may be contaminated [198], a fraction397

of transitions [366] or even a fraction of transitions and398

rewards [365].399

III. KEY CONCEPTS OF ROBUST STATISTICS400

This section provides the necessary notions and concepts of401

Robust Statistics.402

A. CONTAMINATION MODELS403

Contamination models formalize mismatches of the assumed404

(“ideal”) and the real distribution. They are given by sets of405

probability distributions whose distance, quantified in some406

metric, to the ideal distribution is bounded by some constant.407

Before we start with formal definitions, we provide small408

examples in order to illustrate how the contamination models409

have to be understood and how they deviate from adversarial410

attacks.411

Example 1: Consider the regressor matrix412

X =


2 0 3

−1 1 2
−2 1 0
4 −1 3

 and the following perturbed versions:413

X (1)
=


1 −1 2

−2 0 1
−3 0 −1
3 −2 2

 , X (2)
=


8 −4 6

−1 1 2
−2 1 0
4 −1 3

 ,414

X (3)
=


2 0 3
8 9 8

−2 1 0
9 8 11

 .415

Let us start with adversarial attacks. Here, we interpret the416

perturbed matrices as sums of the form X (k)
= X + V (k),417

k = 1, 2, 3, for perturbation matrices V (k). These matrices418

are therefore given by 419

V (1)
=


−1 −1 −1
−1 −1 −1
−1 −1 −1
−1 −1 −1

 , V (2)
=


6 −4 3
0 0 0
0 0 0
0 0 0

 , 420

V (3)
=


0 0 0
9 8 6
0 0 0
5 9 8

 . 421

Can these perturbation matrices stem from an adversarial 422

attack scheme? It depends on the budget, usually quantified 423

in the Frobenius norm. The Frobenius norm of a matrix 424

M ∈ Rm×n is defined as ||M ||F =

(∑m
i=1

∑n
j=1 |mij|2

)1/2
. 425

Therefore, we have ||V (1)
||F =

√
12, ||V (2)

||F =
√
61, 426

||V (3)
||F =

√
351. In other words, with a perturbation budget 427

of 7 for an adversarial attack scheme on X , it is possible to 428

generate X (1), but it is impossible to generate X (2) or X (3). 429

With a budget of 20, it is possible to generate each of the 430

perturbed matrices. 431

Now, consider a probabilistic contamination model in the 432

sense that with a certain probability, 1 − r , a row of X 433

stems from its original distribution, and with probability 434

r , from some other distribution G. The first consequence 435

is that the V (k) are no longer needed here, as there is no 436

additive perturbation matrix. We assume for simplicity in this 437

example that when a row of X (k) equals the respective row 438

of X , it stems from the original distribution. We start with 439

X (2). Only the first row differs from X . In this simplified 440

example, it follows that for r = 0.1, the probability 441

that only one row stems from another than the original 442

distribution is 4 · 0.1 · 0.93. However, whether realizing X (2)
443

is possible and its likelihood also depends on the distribution 444

G. If G is a N3((6,−4, 3), 6)-distribution for some positive 445

semi-definite matrix 6, the realization of X (2) is certainly 446

possible and its likelihood is given by the density of G 447

at (6,−4, 3). However, if G has zero density at (6,−4, 3), 448

realizing X (2) under this contamination scheme is impossible. 449

A similar argumentation can be done for X (3). As for X (1), 450

under our simplifying assumptions, having four rows realized 451

from G is very improbable for a low r , but not impossible. 452

This example should emphasize that the main difference 453

in the geometric distances used in adversarial attacks and the 454

probabilistic distances that are encountered in contamination 455

settings from Robust Statistics is that the former are 456

deterministic in the sense that a certain adversarial contam- 457

ination is either possible or impossible, while distributional 458

contamination is more subtle and allows for a large variety of 459

possible realized perturbations. 460

For the following definition, see [259, Sec. 4.2]. 461

Definition 1: Let (�,A) be a measurable space. Let P := 462

{Pθ | θ ∈ 2} be a family of parametric distributions Pθ ∈ 463

Pθ on (�,A), where Pθ0 denotes the “ideal distribution”. 464

Let 2 ⊂ Rp be a parameter space. A contamination 465

model is given by the set U∗(θ0) := {U∗(θ0, r) | r ∈ 466
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[0,∞]} of contamination balls U∗(θ0, r) = {Q ∈467

M1(A) | d∗(Pθ0 ,Q) ≤ r}, where M1(A) denotes the set468

of probability distributions on A. One refers to r also as the469

“contamination radius”.470

One can consider the “ideal distribution” to be the471

distribution that one assumes for the underlying data, often472

idealized, e.g., Gaussian.473

Example 2: The convex contamination model Uc(θ0) con-474

siders a convex combination of distributions, leading to475

convex contamination balls of the form476

Uc(θ0, r) = {(1 − r)+Pθ0 + min(1, r)Q | Q ∈ M1(A)}.477

The convex contamination model is intuitive in the sense478

that with a probability of min(1, r), an instance in a dataset,479

a gradient in neural network training, an action of an480

agent, or whatever the data consist of, is contaminated, i.e.,481

in expectation, a min(1, r)-fraction of the considered objects482

is not generated from the ideal distribution. In Ex. 1, convex483

contamination has been considered.484

B. BREAKDOWN POINT485

The breakdown point (BDP), roughly speaking, quantifies the486

amount of contamination that is necessary in order to achieve487

a breakdown of the estimator in the sense that the estimator488

may output unreasonable values. For a given dataset, the489

so-called finite-sample BDP [78] is the relative fraction of490

instances that have to be contaminated in order to achieve491

such a breakdown. For regression, let the dataset consist of492

instances (X i,Yi) ∈ Rp+1 and assume the model IE[Yi] =493

h(X i)β for some unknown coefficient vector β ∈ Rp. The494

BDP is then defined as follows.495

Definition 2: Let Zn := {(X1,Y1), . . . , (Xn,Yn)} for496

instances (X i,Yi). The case-wise finite-sample breakdown497

point of an estimator β̂ for the regression parameter β is498

defined by499

ε∗(β̂,Zn) = min

{
m
n

∣∣∣∣ sup
Zmn

(||β̂(Zmn )||) = ∞

}
. (1)500

Here, the set Zmn denotes any sample that has exactly (n−m)501

instances in common with Zn. The coefficient β̂(Zn) denotes502

the estimated parameter on Zmn .503

Note that the fraction given by the BDP is deterministic504

in the sense that, for example, in federated learning, one505

assumes that exactly m out of n gradients can be intercepted506

and manipulated by an attacker. In contrast, the convex507

contamination balls are stochastic in the sense that even if the508

contamination radius r is fixed, the number of contaminated509

objects follows an B(n,min(1, r))-distribution. The BDP of510

many estimators has already been computed in the literature511

on Robust Statistics.512

We continue the Ex. 1 in order to illustrate the contamina-513

tions that are covered in BDP examinations.514

Example 3: Consider the matrices X , X (1), X (2), and X (3)
515

from Ex. 1. In contrast to the modeling approach with ideal516

and contaminating distributions as in Ex. 1, we inspect517

the situation where a breakdown point of some algorithm 518

operating on X should be discussed. For comparison, we first 519

consider adversarial attacks. Here, the question is whether 520

some adversarial attack that can be crafted using the allowed 521

budget can lead to a large deviation in the output of a trained 522

model. Usually, one has a classification model and tries to 523

find adversarial perturbations that cause the model to predict 524

a different label for the perturbed input than for X (e.g., [42], 525

[111]). 526

When dealing with poisoning attacks, one does not 527

assume an already trained model as when considering 528

adversarial attacks, but examines the impact of an adversarial 529

perturbation w.r.t. some budget on the trained model itself, 530

i.e., whether adversarial perturbations can distort the model 531

during training. 532

For BDP inspections, the goal is similar as when con- 533

sidering poisoning attacks. Here, one is also interested in 534

the impact of perturbations on the training process, but the 535

contamination is injected differently.While poisoning attacks 536

consider perturbations that are bounded by a geometric argu- 537

ment, e.g., the Frobenius norm, BDP discussions consider 538

the fraction of perturbed observations only. In this sense, 539

the perturbed matrices X (k) can appear in poisoning attack 540

settings provided that the budget is sufficiently high. For 541

BDP discussions however, the set Zmn is considered. In this 542

example, the set Zmn consists of all 4× 3−matrices for which 543

exactly (n − m) rows are identical with the respective rows 544

of X . In this sense, the matrix X (2) lies in the set Zmn for all 545

m = 1, . . . , 4, while the matrix X (3) can only be considered 546

for m > 1. The matrix X (1) would correspond only to 547

m = 4, however, in nearly all settings, one would not allow 548

for m > n/2 = 2, so one can assume that X (1) would not 549

appear in BDP discussions. 550

The BDP concept has also been formulated, e.g., for 551

classification (rotation of decision boundaries; [370]), rank- 552

ing (order inversion; [325]), and clustering (dissolution of 553

clusters; [136]). 554

In particular, in the context of high-dimensional data, [10] 555

propose to consider the contamination of single cells. As one 556

contaminated cell already contaminates the corresponding 557

instance, in high-dimensional settings, one can easily con- 558

taminate each instance with a few outlying cells. One can 559

nevertheless consider the relative fraction of contaminated 560

cells as (cell-wise) BDP concept, see, e.g., [310], when 561

analyzing cell-wise robust algorithms that are tailored to this 562

setting. 563

C. INFLUENCE CURVE 564

Robust Statistics interprets estimators as statistical function- 565

als, i.e., functionals which take a distribution as input. For 566

example, the expected value of some distribution P can be 567

denoted by the mean functional Tmean(P) =
∫
xP(dx). The 568

influence curve goes back to [123]. The goal is to determine 569

the local behavior of an estimator in a neighborhood around 570

the ideal distribution by a suitable linearization of the 571
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underlying functional. Given such a linearization, i.e., a van-572

Mises expansion [311] of the statistical functional in the sense573

T (Q) − T (P) =

∫
T ′(P)d(Q− P)(x) + rem574

for some stochastic remainder term rem, the (Gâteaux-)575

deritative can be identified with the influence curve, i.e.,576

T ′(P) = IC(x,T ,P).577

Formally, the influence function is defined as follows (e.g.,578

[259]).579

Definition 3: Let Z be a normed function space. Let580

further the parameter space 2 be a normed real vector space581

and let T : Z → 2 be a statistical functional. The influence582

curve of T at x for a distribution P on Z is given by583

IC(x,T ,P) := lim
r→0

(
T ((1 − r)P+ rδx) − T (P)

r

)
584

= ∂r [T ((1 − r)P+ rδx)]

∣∣∣∣
r=0

585

for the Dirac measure δx at x.586

The influence curve determines the infinitesimal impact587

of a single observation on the estimator. Robustness of the588

estimator in the sense of the influence curve requires that589

|IC(x,T ,P)| < ∞ for all x. This property is called B-590

robustness.591

D. ROBUST LOSSES AND AGGREGATION METHODS592

Let a general M-estimator be given by593

θ̂
M

= argminθ

(
1
n

∑n

i=1
ρ(ri(θ ))

)
594

for a loss function ρ : R → R and residuals ri(θ ).595

If ρ is differentiable, one can equivalently consider the596

corresponding Z-estimator597

zeroθ

(
1
n

∑n

i=1
ψ(ri(θ ))

)
598

forψ = ρ′. The influence function of anM-estimator is (e.g.,599

[121])600

IC(x, θ̂
M
,Pθ0 ) = −

ψ(x)
IEPθ0

[ψ ′(X)]
. (2)601

Therefore, a robustification of anM-estimator can be done by602

bounding the derivativeψ of the loss function, which leads to603

“robust loss functions”. A popular example is the Huber loss604

ρH (r) =

{
r2, |r| ≤ k
2k|r| − k2, |r| ≥ k

605

for a hyperparameter k . One can interpret location606

M-estimators as weighted means of the form (e.g., [213])607 ∑n

i=1
w(X i − θ̂ )(X i − θ̂ ) = 0, θ̂ =

∑
i wiX i∑
i wi

,608

wi = w(X i − θ̂ ).609

In the case of the Huber loss, the weight function is given by 610

wH (r) = min
(
1,

k
|r|

)
. 611

A disadvantage of the Huber loss is that the loss function 612

is still unbounded, which makes Huberized M-estimators 613

vulnerable against large outliers or heavy-tailed distributions. 614

In order to cope with such situations, one uses loss functions 615

which are bounded, implying that their derivatives ψ tend to 616

zero again in the sense lim|r|→∞(ψ(r)) = 0. Therefore, such 617

derivatives are sometimes called “redescenders”. A popular 618

loss function of this type is the Tukey-biweight loss, given by 619

ρT (r) =

 1 −

(
1 −

( r
k

)2)3

, |r| ≤ k

1, |r| ≥ k
. 620

Further losses with redescending derivative are the Welsch 621

loss 622

ρW (r) = 1 − exp
(

−
1
2

( r
k

)2)
, 623

the Geman-McClure loss 624

ρGM (r) =
r2

r2 + k2
, 625

and the Cauchy loss 626

ρC (r) =
k2

2
ln
(
1 +

( r
k

)2)
. 627

Another technique, which still allows for using standard 628

loss functions such as the squared loss, is to robustify the 629

aggregation of the losses corresponding to the individual 630

instances. This is done by trimming, leading to approaches 631

such as the least median of squares [262] 632

argminθ (med(ri(θ ))). 633

Due to a slow convergence rate, [262] proposed the least 634

trimmed squares (LTS) estimator 635

argminθ

(∑h

i=1
(r2(θ ))i:n

)
, 636

where z1:n denotes the smallest element of a vector z ∈ Rn, 637

z2:n the second smallest element and so forth. In other words, 638

the LTS estimator intends to minimize the sum of squares for 639

the h ≤ n observations with the smallest squared residuals 640

(the set of these instances is sometimes called “clean subset”). 641

Due to the computational complexity of LTS, [264], [265] 642

proposed an iterative algorithm that starts with an initial 643

subset I (0)h of size h so that the parameters of the model are 644

computed solely using the instances I (0)h . Then, the residuals 645

for all instances are computed, leading to the next iterate I (1)h 646

that consists of the h instances with the smallest residuals. 647

Due to only attaining a local minimum, this algorithm is 648

repeated for several initial sets, so that the final h-set with 649

the smallest sum of residuals (over this h-set) is taken. This 650

technique has been extended to high-dimensional models by 651
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the Sparse LTS (SLTS) method [7] where Lasso models are652

computed in each iteration.653

In regression, one may have to estimate both the regression654

parameter β̂ and a scale σ̂ . This can be done by first655

estimating σ̂ and by solving656

argminβ

(
1
n

∑
i
ρ

(
ri(β)
σ̂

))
,657

for a bounded loss function ρ. The idea of MM-estimators is658

to first compute a consistent and highly robust estimator β̂
(0)
,659

to compute a robust scale estimator σ̂ and to find a solution660

of the problem above, allowing for both robustness and high661

efficiency.662

E. OTHER NOTIONS OF ROBUSTNESS IN AUTONOMOUS663

DRIVING664

The term “robustness” is often used in the AI literature,665

including that on autonomous driving, in a dictionary-sense666

such as robustness against error propagation by the sim-667

plification of computation steps or against hyperparameter668

settings of a certain algorithm. Robustness can also be669

understood as a better accessibility of model parameters (e.g.,670

[81]).671

The closest understanding of robustness to that from672

Robust Statistics is the consideration of challenging environ-673

ment conditions such as GPS in the presence of tunnels and674

canyons [219], sensor fusion in “hostile environments” [339]675

or rain [360], or in general the gap between a simulation and676

the real world, e.g., [8], [11]. Sensors such as LiDAR or Radar677

that can cope with varying lightning or weather conditions are678

also called “robust” [89].679

In deep learning in general, the term “robustness” is often680

understood as adversarial robustness (e.g., [156]; see, e.g.,681

[24], [266] for details on adversarial robustness), which682

is not the core understanding of robustness in the sense683

of Robust Statistics, because the perturbation occurs after684

model training, while Robust Statistics considers the effect685

of contamination onto the estimator, i.e., the contamination686

appears before training and therefore potentially affects687

the trained model. Reference [104] point out that there688

are different understandings of the term “robustness” and689

focus themselves on the classical robustness in terms of690

the breakdown point. Moreover, they correctly emphasize691

that robustness in the sense of the BDP does not guarantee692

adversarial robustness.693

At least two measures for adversarial robustness have been694

proposed in the literature, the error-rate-based measure [212]695

where adversarial samples are generated given a certain696

perturbation radius and the relative number of errors is697

investigated, or the radius-based measure [296] where one698

searches for the minimum perturbation radius in order to699

generate a misclassification. In the adversarial setting, one700

uses the term “certified robustness” which indicates some701

guarantee that an adversary does not have success provided702

that the perturbation norm is smaller than some threshold.703

The counterpart from Robust Statistics is the property of a 704

non-zero BDP in order to guarantee global robustness here. 705

Sometimes even the convex contamination setting is 706

interpreted as adversarial setting [371]. Reference [382] 707

use the terminology “robust loss” for a worst-case loss in 708

adversarial training. Reference [338] call the property that 709

machine learning models perform well even in the presence 710

of adversarial attacks as “robust accuracy” or “robust gen- 711

eralization”. Reference [112] define “over-robustness” (for 712

Graphical Neural Networks (GNNs)) as unwanted robustness 713

in the sense that even the semantic context has changed due to 714

the perturbations, the robust classifier does not react, which 715

they call “robust beyond the point of semantic change”. The 716

term “trigger/backdoor robustness” has been coined in [118] 717

who consider backdoor and poisoning attacks. 718

Reference [135] speak of “common corruptions” of images 719

such as blur, Gaussian noise or due to certain weather 720

conditions such as fog. They propose not to only consider 721

the worst-case situation when assessing robustness as in 722

adversarial attacks (and, notably, also in BDP computations) 723

but to also take these common corruptions into account. They 724

introduce the term “corruption robustness” which does not 725

refer to the minimum probability that the classifier predicts 726

the correct class over a perturbation ball as in adversarial 727

robustness but which refers to the expectation over a set of 728

corruptions. Note that this idea is similar to the expected 729

finite-sample BDP from [268] where one abstains from 730

considering the worst-case contamination in the context of 731

heavy-tailed distributions. 732

F. RANSAC 733

A popular algorithm that entered autonomous driving appli- 734

cation is RANSAC (random sample consensus), going back 735

to [92]. The idea of RANSAC is to iteratively identify the 736

worst points (usually time points) and to remove them from 737

the data. More precisely, RANSAC samplesm < n instances, 738

computes a model f
θ̂
and determines the consensus set, which 739

is given by the instances for which the loss is smaller than 740

some threshold. If the size of this set is larger than h for 741

some h, one uses this set to re-compute the model, otherwise, 742

one samples another random subset of size m and repeats the 743

procedure. At the end, the largest consensus set (which one 744

may again interpret as “clean” subset) observed is reported. 745

The elements of this consensus set are interpreted as inliers 746

here. This procedure can be interpreted as a brute-force 747

counterpart of the iterative algorithm for the computation of 748

the LTS. 749

For example, [349] use the RANSAC algorithm in order 750

to address ego-motion estimation, segmentation, and moving 751

object detection. They point out that RANSAC is tailored 752

to environments with rapid changes. Reference [178] apply 753

RANSAC for robust pose estimation of vehicles. 754

Reference [291] point out that on data corresponding to 755

rotation search or point cloud registration, one can even have 756

more than 95% outliers, see also [239], and work with up 757
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to 99% outliers in their experiments. The reason is that for758

two point clouds P = (P i)ni=1, P
∗

= (P∗
i )
n
i=1, P i,P

∗
i ∈ R3,759

mismatched keypoints or localization errors can result in a760

lot of false correspondences (P i,P∗
i ) [178], [291]. From the761

perspective of Robust Statistics, such a high contamination762

radius is uncommon, and most concepts can at most deal763

with contamination radii of 0.5 because the BDP of an764

equivariant estimator cannot exceed 0.5 asymptotically [71].765

There are however at least two cases where the number766

of outlying instances is allowed to be higher. First, when767

aggregating models, e.g., [326] proposed a trimmed Stability768

Selection where only the models corresponding to the769

smallest out-of-sample losses are considered for aggregation,770

theoretically allowing for a higher rate of outliers in the data771

set than 0.5 because resampling can result in sufficiently772

clean training batches (where the outlier ratio is at most773

0.5). On the other hand, an instance is considered to be774

outlying if at least one cell is contaminated [10]. In such775

situations, cell-wise robust algorithms provide an alternative776

to classical robust algorithms as they can deal with the777

situation that each instance is contaminated, provided that778

the cell-wise contamination rate is lower than their cell-779

wise BDP. However, this requires sufficiently many predictor780

variables, e.g., in the setting of point cloud registration, the781

data set only consists of the pairwise point correspondences,782

making the notion of cell-wise robustness obsolete.783

RANSAC has disadvantages, such as the long computation784

time, the dependence on the minimum number of instances785

that is required for defining a model [254], the problem786

to apply it to data with only a few samples due to787

sparse measurements or many dropouts [210], the increased788

complexity for large outlier fractions [283], the sensitivity789

to the outlier threshold [210], its non-deterministic nature790

(e.g., [239], [280]), and the difficulty to apply it to high-791

dimensional problems [280]. RANSAC clearly depends792

on the error threshold, which leads to the problem that,793

in contrast to trimming approaches such as LTS where the794

trimming rate (i.e., α such that h = ⌈(1 − α)n⌉) is fixed,795

defining a threshold does not provide ex ante information to796

how many non-trimmed instances it corresponds. According797

to [341], RANSAC can deal with 80% outliers but becomes798

very expensive due to re-adaptations when the outlier rate is799

higher than 90%.800

Reference [210] experimentally compare different M-801

estimators with the squared, absolute, Huber, Cauchy,802

Geman-McClure, the dynamically scaled covariance loss [4]803

and a clipped squared loss on a dataset for visual localization,804

with the result that the Geman-McClure loss, optionally805

combined with clipping in the sense that the last iterations806

are done w.r.t. the clipped squared loss as loss function807

instead of the Geman-McClure loss, lead to the best results808

in the presence of large contamination radii. RANSAC809

cannot be applied due to the large contamination radius,810

resulting in too few correct correspondences in each images.811

Reference [225] showed that RANSAC in combination with812

robust base estimators such as LTS or LMS performs better in 813

the presence of contamination than RANSAC with standard 814

least squares. The methods were evaluated by the number of 815

inliers they identified on simulated data where this number 816

is known. Reference [182] point out that the iterative closest 817

point algorithm (ICP), which is the standard tool for point 818

cloud registration, heavily depends on the initializations of 819

the transformations and that it cannot deal with cross-source 820

point clouds, for example, from multiview stereo. They 821

combine RANSAC with the Tukey biweight in order to 822

overcome the problem of a very high required number of trials 823

of RANSAC. 824

Reference [140] propose VODRAC (voting-based double- 825

point random sampling with compatibility weighting). The 826

idea is to overcome to computational complexity of RANSAC 827

by using the pairwise compatibility constraint. That is, for the 828

model p̃∗

i = Rp̃i+t⃗+ϵi for p̃i and p̃
∗

i from point cloudsP ,P∗, 829

respectively, a rotation operator R ∈ SO(3) and a translation 830

t⃗ ∈ R3, the constraint is 831

rij := ||p̃∗

i − p̃∗

j || − ||p̃i − p̃j|| ≤ 2η 832

for the inlier threshold η. This norm difference equals 833

2||ϵi − ϵj|| under the model above. This allows for checking 834

whether two correspondences are compatible, then, one can 835

check whether a third correspondence is compatible with 836

each of these two correspondences and so forth, facilitating 837

the search for the inlier set. This technique is referred to 838

a double-point random sampling. In addition, they aim at 839

putting more weight onto clear inliers, i.e., for which rij is 840

small, by invoking Tukey’s biweight loss function, leading to 841

the weights 842

wij =


(
1 −

r2ij
(2η)2

)2

, r2ij ≤ (2η)2

0, r2ij > (2η)2,

843

which allows a sorting of the correspondence set in the sense 844

that the minimal subset is formed by the correspondences 845

with the highest weights. 846

IV. APPLICATIONS IN AUTONOMOUS DRIVING: 847

PERCEPTION 848

This section collects approaches based on Robust Statistics in 849

perception tasks for autonomous driving. In each subsection, 850

we address one of the sub-tasks that we already listed in 851

Fig. 1. Robust perception refers to strategies that allow 852

for corrupted data, such as outliers in camera or LiDAR 853

data, that may result from challenging weather conditions, 854

light reflections, occlusions, or just measurement errors. The 855

extraction of realiable state information from those data is 856

vital in order to suitably predict the maneuvers of other traffic 857

participants and to plan own maneuvers. 858
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A. SLAM859

Reference [141] propose to use the Cauchy loss for a robust860

graph-based SLAM for the model861

zij = hij(pi, pj) + ϵij862

for a non-linear measurement function hij, positions pi, errors863

ϵij and measurements zij from pi to pj. The goal is to estimate864

the true locations pi, so the residuals that enter the Cauchy865

loss function are866

rij = ||6
1/2
ij (zij − hij(pi, pj))||2867

for the covariance matrix 6−1
ij of the ideal model ϵij ∼868

N (0, 6−1
ij ). The objective is then869

argmin(p1,...,pn)
(∑

(i,j)∈E
ρC (rij)

)
870

for the edge set E of the corresponding SLAM graph.871

Reference [4] also consider a graph-based approach of the872

SLAM model which aims to minimize873 ∑
t
||ht,t+1(pt , pt+1) − zt,t+1||

2
6t

874

+

∑
t

∑
t ′

||f (pt , pt ′ ) − zt,t ′ ||23t,t′
875

where the indices t and t ′ correspond to time steps. The876

covariance matrices of the odometry and sensor measure-877

ments are given by 6t and 3t,t ′ , respectively. The goal is to878

find the positions pt that minimize the loss. They propose the879

dynamically scaled covariance loss,880 ∑
t
||ht,t+1(pt , pt+1) − zt,t+1||

2
6t

881

+

∑
t

∑
t ′

||9(ζt,t ′ )ht,t ′ (pt , pt ′ ) − zt,t ′ ||23t,t′
882

+

∑
t

∑
t ′

||1 − ζt,t ′ ||
2
4t,t′

,883

where the ζt,t ′ ∈ [0, 1] are switching variables, 9 : [0, 1] →884

[0, 1] is a scaling function andwhere4t,t ′ is a switching prior.885

This loss is minimized w.r.t. both the pt and the ζt,t ′ . They886

show that the solution is given by887

ζt,t ′ = min

(
1,

24−1
t,t ′

4−1
t,t ′

+ ||ht,t ′ (pt , pt ′ ) − zt,t′ ||
2
3t,t′

)
.888

References [3] and [210] show that, inserting the uncon-889

strained solution for the ζt,t+1 (so that they are not upper890

bounded by 1) for dynamically scaled covariance into891

the loss function, one replicates the Geman-McClure loss892

function, up to a constant factor. Reference [210] identify the893

dynamically scaled covariance loss therefore with a variant894

of the Huber loss where the squared loss is used for small895

residuals, and the Geman-McClure loss for large residuals.896

Reference [3] propose a Bayesian approach for estimating897

the posterior of the state (position) variables, so that robust898

loss functions can be implicitly encoded via corresponding899

distributions such as corrupted Gaussian in a mixture900

approach. They test their procedure using real data from901

Google StreetViewmaps fromwhich the necessary poses and902

3D points are extracted.903

Reference [303] use the truncated least squares loss for 904

location estimation, i.e., 905∑
i

∑
j
ρ(r2ij), ρ(r) =

{
r2, |r| ≤ k
k2, |r| ≥ k

, 906

for the geodesic distances r2ij between the average poses and 907

the measured poses. 908

Reference [202] consider multimodal motion prediction 909

and propose a loss function composed by several losses, one 910

is a regression loss w.r.t. the coordinate offsets for which they 911

use the Huber loss. The goal is to predict trajectories until a 912

given horizon. 913

Many SLAM approaches consider GPS or GNSS data, 914

where one usually has the (pseudo)range as response 915

variable. 916

Reference [96] compare several robust regression methods 917

for positioning estimation in challenging areas such as urban 918

canyons or city centers. Their model is given by 919

Yi = X iβ + ϵi (3) 920

where the Yi are the differences between measured and 921

predicted pseudoranges, the X i are the geometry matrices 922

and β is a vector consisting of the receiver coordinates and 923

the clock offset of the receiver and the satellite, scaled with 924

the speed of light. As for the robust methods, LTS and 925

M-estimation with the Huber loss and the IGGIII weight 926

function 927

wIGGIII(r) =


1, |r| ≤ k1
k1
|r|

(
k2 − |r|
k2 − k1

)2

, k1 ≤ |r| ≤ k2

0, |r| ≥ k2

, 928

respectively, are applied. 929

Another comparison has been made in [173] who compare 930

several robust regression and outlier detection methods, 931

including LTS, LMS, robust M-estimators, S-estimators, and 932

MM-estimators, on simulated GPS data where the response 933

variable is the pseudorange. The goal of [173] was to 934

study how many outliers were correctly detected by the 935

individual methods. They point out that the robust methods 936

are time-consuming and may hinder real-time performance. 937

Reference [9] apply robust regression methods on GNSS 938

data, where they consider the linear model Eq. 3 where X i 939

at least contains information about the satellite ID, the epoch 940

and the elevation and where Yi are the pre-fit pseudoranges. 941

They apply LTS, LMS and a forward search, where one 942

starts searching for a clean subset of size h and increases 943

this number iteratively. They achieve real-time capability 944

on a real-world dataset and propose to not analyze large 945

chunks of data at once but to use a sliding-window approach. 946

Reference [6] consider MM-regression. 947

Reference [12] propose to apply the HuberM-estimator for 948

GPS position estimation. The underlying model is given by 949

Yi = X (d)
i + X (b)

i + ϵi, 950
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where Y is a pseudorangemeasurement,X (d) is the geometric951

distance from satellite to receiver and X (b) is a receiver952

clock offset. In the linear model Eq. 3, the parameter vector953

β contains the incremental corrections to the unknown954

variables (receiver coordinates and clock offsets). Due to955

linear relationships of the residuals and measurement errors,956

they compute the redundancy matrix which is used to957

modify the residuals. See also [64] for an application of958

robust M-estimators for GNSS in urban scenarios, where a959

three-satellite constellation is considered, which is reflected960

by three clock offsets in the features. References [216], [217],961

and [218] consider the regression problem from [12] with962

the tropospheric and ionospheric corrections as additional963

features in the model above and also use S- and MM-964

estimators. Reference [40] also integrate ionospheric and965

tropospheric corrections and replace the WLS estimation966

by an estimation based on the Huber loss. Reference [361]967

additionally include multi-path delays and ionospheric and968

tropospheric corrections in the pseudorange model. Using969

real-world data from open-sky, semi-urban and dense-urban970

environments, they apply different robust loss functions,971

including the Huber, Tukey, Cauchy, Geman-McClure and972

Welsch loss.973

Reference [114] propose to adapt the threshold of Tukey’s974

biweight loss for GNSS position estimation. This is done in975

dependence of the detected fraction of multi-paths in the data976

when applying a CNN. The higher this fraction, the lower977

the threshold, which is chosen in order to maintain a given978

efficiency or BDP. Alternatively, they propose a robust M-979

estimator, which is computed via IRWLS.980

Reference [358] aim at discarding pseudorange and981

Doppler measurements in GNSS. They point out that Doppler982

measurements are also affected by reflections from buildings983

or trees, although to a smaller extent than pseudorange984

measurements. Based on the NFA (number of false alarms)985

criterion, i.e.,986

NFA(D) = η
1

0(|D|/2)

∫ δ2D/(2σ
2)

0
e−t t |D|/2−1dt,987

for the set D of observations, a normalization constant η, the988

variance σ 2 of the underlying assumed normal distribution989

of the measurement noise, and the sum of squares δ2D of the990

standardized residuals, they propose an iterative algorithm in991

order to find a “clean subset” of the data that minimizes this992

criterion.993

Reference [320] propose a cross-view localization based994

on both satellite and ground views. Given feature maps995

extracted by a CNN from the satellite and ground-view996

images, the residuals ri between the components of these997

feature maps are computed. Then, the individual points are998

weighted according to weights that are proportional to the999

derivative of some robust loss function so that points with1000

large residuals are downweighted.1001

Reference [237] consider robust range estimation and 1002

propose to use a tanh-type robust loss function of the form 1003

ρ(Yi, Ŷi) =
1
c
tanh

(
c
2
(Yi − Ŷi)2

σ 2

)
, 1004

where the Yi are the measured ranges, Ŷi their predicted 1005

counterparts, and where σ > 0 is a scale parameter. The 1006

parameter c is estimated by LMS, σ by the MAD. They also 1007

propose a robust Bayesian algorithm, which is initiated by the 1008

weights 1009

w(Yi, Ŷi) =
1
σ 2 sech

2

(
c(Yi − Ŷi)2

2σ 2

)
, 1010

computed from the M-estimation. 1011

Reference [323] propose the GNSS measurement model 1012

Yij = ||X i − aj|| + c(δsi − δj) + Ii,j + Ti,j + bi,j + ϵi,j 1013

for the pseudorange between vehicle i and satellite j, where aj 1014

is the position of satellite j, where δsi and δj are the clock offset 1015

of vehicle i and satellite j to the satellite system s, respectively, 1016

and where ϵi,j is the measurement noise, which appears as 1017

a stochastic noise term for which some distribution needs 1018

to be assumed. Furthermore, c denotes the speed of light 1019

and Ii,j and Ti,j denote measurement errors that are induced 1020

by the ionosphere and the troposphere, respectively. Lastly, 1021

bi,j are latent variables for modeling unknown measurement 1022

biases. As for vehicle to vehicle measurements, they use 1023

the model 1024

Yij = h(X i,X j) + bij + ϵij, 1025

for latent variables bij, measurement noise ϵij and the 1026

states X i and X j of vehicle i and vehicle j, respectively. 1027

Assuming that the measurement noise is Gaussian, any 1028

contamination is modelled by the latent variables. To this 1029

end, Gaussian-Gamma prior distributions are assumed, and 1030

the joint distribution of the states and latent variables 1031

are approximated via variational inference. They apply 1032

their method on a real-world data set with three vehicles. 1033

Reference [40] consider the same GNSS model, but without 1034

latent variables. In a differential GNSS approach, the 1035

differences 1036

ρb = h(X) − h(Xb) + ϵb 1037

are modelled, where Xb denotes the position of the base 1038

station. First-order linearization leads to 1039

ρb ≈ h(X0) + Hrδ − h(Xb) + ϵb, 1040

for δ = X0 − X and geometry matrix Hr . The residuals 1041

are given by rb ≈ Hrδ + ϵb and modelled by a Gaussian 1042

distribution. In the collaborative localization setting, the 1043

measurements of all individual vehicles are concatenated. 1044

Denoting the concatenated counterparts of the quantities 1045
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above by r̃, H̃r and δ̃, the Gaussian assumption allows for1046

a WLS formulation of the form1047

ˆ̃
δ = argmin

δ̃

(
(r̃ − H̃r δ̃)T W̃ (r̃ − H̃r δ̃)

)
,1048

where theweightmatrix is the inverse joint covariancematrix.1049

Reference [107] propose a baro-radar odometry approach1050

based on barometry and radar and use robust loss functions1051

for the barometry and Doppler residuals. Radar data are also1052

considered in [192] who propose to use a truncated least1053

squares loss function.1054

1) VISUAL ODOMETRY/EGO-MOTION ESTIMATION1055

Many approaches intend to find a linear transformation1056

that relates the 2D images collected from the camera and 2D1057

reference images.1058

References [62] and [63] consider dense visual tracking1059

under large illumination changes. Given a stereo camera pair,1060

making n intensity measurements each, these observations1061

are stored into two sets I and I ′. Let I = (I , I ′)T be the1062

current view pair, let I∗ be the reference view pair, and let1063

P∗
= {p, p′

} be a set of stereo image correspondences (the1064

pixel locations) from a pair of reference templates from the1065

set P∗
n = {{p∗, (p′)∗}1, . . . , {p∗, (p′)∗}n}. Let f be the motion1066

model, which is quadrifocal warping in [62], represented by a1067

transformation T ∈ SE(3). If T̄ is the true transformation, and1068

if T̂ is the estimated transformation until time step (t−1), the1069

tracking problem then amounts to estimating the incremental1070

transformation T (ξ ) at the current time step t , under the1071

assumption that there exists ξ0 such that T (ξ0)T̂ = T̄ . Then,1072

the standard criterion based on the least-squares cost is1073 ∑
P∗∈P∗

n
(I (f (P∗,T (ξ )T̂ ) − I∗(P∗)))2,1074

where the quadratic loss is replaced by the Huber loss in [62]1075

and [63]. Experiments on real-world data show that their1076

approach allows for real-time performance. They also make1077

suggestions for further computational improvement.1078

Reference [219] propose a hybrid approach between1079

model-based optimization, where the error between the cur-1080

rent model and the transformed current image is minimized,1081

and VO, which minimizes the distance between the previous1082

and current transformed image. More precisely, for model-1083

based tracking, they assume the relation1084

i∗(P∗) = αit (f (P∗, T̄ ) − γ1085

between the reference image intensities, i∗, and the current1086

image intensities it at time t , leading to the Huberized1087

objective1088 ∑
P∗∈P∗

n
ρH (αit (f (P∗,T (ξ )T̂ ) − γ − i∗(P∗))).1089

In the VO approach, they consider augmented reference1090

images that include the warped image ift−1 from the previous1091

time step, where1092

ift−1(P
∗) = it−1(f (P∗,Tt−1)),1093

leading to a similar objective as above but where i∗(P∗) is 1094

replaced by ift−1(P
∗). As the model-based approach suffers 1095

from illumination changes (apart from the fact that it requires 1096

an à priori model, which may be very difficult to obtain, 1097

as pointed out in [63]), and the VO approach is prone to drift 1098

due to the accumulation of errors during feature extraction 1099

and matching [63], [219] combine both approaches, the 1100

robust loss functions corresponding to both approaches are 1101

stacked so that a joint optimization is performed. Reference 1102

[219] achieve near real-time performance on real-world data 1103

with a stereo camera pair. 1104

Reference [229] propose a Huberized approach in 1105

model-based visual tracking by downweighting the contri- 1106

bution of all pixels whose photometric error is higher than 1107

some iteratively decreasing threshold. The standard average 1108

photometric error is given by 1109

Cr (p, d) =
1

|J ∗|

∑
I∈J ∗

||rph(I, p, d)||1, 1110

rph(I, p, d) = I∗(p) − I(π (KTπ−1(p, d)) 1111

for inverse depth d , a set J ∗ of indices of reference images 1112

from the set I∗, I∗
∈ I∗, pixel p = (x, y)T , T ∈ 1113

SE(3), a camera-intrinsic transformation matrix K , and back- 1114

projection π−1(p, d) of the inverse depth value to a 3D point. 1115

The robustification now invokes the Huber norm 1116

||r||ϵ =


||r||22
2ϵ

, ||r||2 ≤ ϵ

||r||1 −
ϵ

2
, ||r||2 ≥ ϵ

, 1117

which enters the energy functional 1118

Eℵ =

∫
w(u)||∇ℵ(u)||ϵ + λC(u,ℵ(u))du 1119

for the map ℵ that assigns a depth value to a pixel, and 1120

a pixel weight function w. Similar approaches based on 1121

robust loss functions can be found in [238], where the Huber 1122

function is directly applied to the rph, and [110], [172], 1123

who consider the IRWLS formulation of the minimization 1124

problem w.r.t. the photometric error, where they use robust 1125

weight functions such as the Huber of Tukey weight 1126

function. Experiments on real-world datasets confirm real- 1127

time capability. References [169] and [171] consider the 1128

photometric residuals rph and formulate the MAP estimation 1129

problem 1130

argmaxξ (P(T (ξ )|(rph(I,u, d))I∈J ∗ )), 1131

searching for the transformation T (ξ ) that maximizes the 1132

posterior probability of the residuals. Here, they allow for 1133

heavy-tailed distributions such a t-distribution. Reference 1134

[171] apply their approach on data from an autonomous flight 1135

experiment and achieve real-time performance. 1136

Reference [343] propose to minimize the geometric 1137

projection error instead of the photometric error due to a 1138

higher resistance against illumination changes. The idea is to 1139

find a distance transformmapDc that computes the Euclidean 1140
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distance to the closest edge for each pixel. For an edge pixel1141

ei from the current frame It , it should therefore hold that1142

Dc(ei) = 0. Let the reprojection residual for an edge pixel1143

e∗i from a reference image I∗ be1144

r(e∗i ) = Dc(êi)1145

for the reprojection position êi computed by the underlying1146

rotation and translation model. The objective is1147 ∑
e∗i ∈E∗

||r(e∗i )||ϵ1148

for the Huber norm || · ||ϵ and the set E∗ of all edges in1149

I∗. Real-time performance has been shown on real-world1150

datasets.1151

Reference [17] consider dense VO [169], which does not1152

only use matched features as sparse VO does, i.e., dense1153

VO uses all pixels, resulting usually in a higher precision1154

but at higher computational costs. They point out that using1155

a t-distribution for both geometric and photometric errors1156

ignores the physical process, resulting in photometric errors1157

not being well-represented by such a noise model. Therefore,1158

they propose to use a t-distribution for photometric errors1159

but a probabilistic sensor noise model for geometric errors1160

(which in turn is not suitable for photometric errors),1161

and estimate the transformation between the 3D camera1162

coordinates and 2D image points.1163

Reference [381] argue that photo bundle adjustment1164

(PBA), which estimates scene geometry and camera motion1165

in VO, is usually done by minimizing the photometric1166

error. Motivated by works such as [169], they point out1167

that PBA must be robustified against outliers that may1168

arise due to widely separated active key frames so that the1169

photo-consistency assumption may be violated by occlusions1170

and reflections. In [381], their PBA error function for the total1171

photometric error has the form1172 ∑∑∑∑
w(ri)r2i (ξ )1173

for the parameters ξ , the squared residuals r2i and weights1174

w(ri), where the quadruple sum goes over all pixels in all1175

points corresponding to the active keyframes. The problem1176

is that the usually used Levenberg-Marquardt algorithm in1177

order to optimize this objective picks keyframes according1178

to photometric consistency, so that frames with occlusions1179

or reflections are prone to be ignored here. Although [381]1180

consider sparse VO, they conclude that a t-distribution is also1181

suitable for the photometric errors as in dense VO considered1182

in [17]. They first derive that the approach based on the t-1183

distribution is also suitable here, and also make experiments1184

with the Huber weights1185

w(ri) =

{
σ−2, |ri| < k
kσ−2

|ri|−1, |ri| ≥ k
,1186

where σ 2 is the variance of the ideal Gaussian distribution1187

of the photometric errors. Experiments reveal that the t-1188

distribution leads to even better performance because the1189

weights drop even faster at the tails. In their experiments, 1190

they also flag points as outliers if the number of outlying 1191

pixels (flagged as such if the photometric error exceeds 1192

the 95%−quantile of the error in the respective keyframe) 1193

exceeds some threshold and delete them from the set of 1194

observations. The Huber loss is also used in [94] and [221]. 1195

Experiments on KITTI and other datasets confirm real-time 1196

performance. 1197

Reference [155] consider the problem of camera 1198

ego-motion estimation and propose a robust ego-motion 1199

estimation procedure. They argue that the noise in real-time 1200

flow data is often non-Gaussian and that violations of 1201

the scene-rigidity assumption due to objects moving 1202

independently result in outliers. The underlying model is 1203

u(pi) = δ(pi)A(pi)vt + B(pi)vr 1204

for the optical flow u(pi) at image position pi ∈ R2, the 1205

translational velocity vt ∈ R3, the rotational velocity vr ∈ R3, 1206

the inverse δ of the scene depth and linear transformations A 1207

and B. Motivated by [363], who already proposed a robust 1208

ego-motion estimation procedure based on IRWLS, they 1209

write the problem as a regression problem as [363], i.e., 1210

min
vr ,vt ,δ

(||Avtδ + Bvr − u||2), 1211

with the linear transformations Avt and B in matrix notation, 1212

but they allow for confidence weights for each individual 1213

flow vector. For a least-squares estimate v̂r of vr and a 1214

re-formulation that allows to drop δ, this leads to 1215

min
vt

(||vr ◦ A⊥(t)T (Bv̂r (vt ) − u)||22). 1216

In an expected residual likelihood approach, they directly 1217

estimate these confidence weights, based on an assumed 1218

Laplacian distribution of the residuals. 1219

Reference [251] first derive a model for a monocular 1220

visual-inertial system and aim at making robust state 1221

estimations, where the states consist of positions and depths. 1222

To this end, the residuals for the visual measurement are 1223

minimized, but they are robustified in advance by the function 1224

ρ(r) = I (r ≥ 1) + (2
√
r − 1)I (r < 1). On a real-world 1225

dataset, they achieve real-time performance. See [272] for a 1226

similar robustness approach. Reference [372] include 3D to 1227

2D reprojection errors, which enter via the Huber norm. 1228

The Huber loss is also used in [51] where the reprojection 1229

error of the estimated trajectory from a linear projection of 1230

feature points w.r.t. the estimated trajectory from tracking key 1231

points. 1232

References [33] and [34] use robust loss functions for 1233

optical flow estimation. Let (X t , yt ) be an image point at time 1234

t and let vt ∈ R2 be the vector containing the horizontal and 1235

vertical image velocity. For the image intensity I = I (x, y, t) 1236

of pixel (x, y) at time t , the objective suggested by [33] is 1237∑
s=(x,y)

∑
Rs
ρ1(∂xIv1 + ∂yIv2 + ∂t I , σ1) 1238

+λ
∑

i∈Ns
[ρ2(v(s)1 − v(i)2, σ2) + ρ2(v(s)2 − v(i)2, σ2)], 1239
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where Ns containts all neighboring pixels of pixel s, where1240

Rs is some local neighborhood of s, for σ1, σ2,λ > 0,1241

and where ρ1, ρ2 are loss functions. The objective has to1242

be optimized w.r.t. v1, v(s)1 and v(s)2. The first summand1243

encourages the data conservation constraint that the intensity1244

structure of small regions should persist over time, while1245

the second summand encourages the local optical flow of a1246

pixel to be close to that of neighboring pixels. Alternatively,1247

they consider a line-process approach where discontinuities1248

between pixels are modelled separately by binary variables,1249

which leads to a similar objective, and also consider a robust1250

alternative where the truncated squared loss is taken as loss1251

function.1252

2) LIDAR ODOMETRY/POINT CLOUD REGISTRATION1253

Reference [93] robustify ICP by using the Huber loss1254

function, aiming to minimize the distance1255 ∑
i
wimin

j
(ρH (||p̃∗

j − T (ξ )(p̃i)||),1256

where the wi are just indicator variables that take the value1257

one if and only if there is a match between reference and data1258

points.1259

Welsch’s loss function has been applied as a robust error1260

metric for ICP in point cloud registration in [73] in order to1261

quantify the distance between a set of intersection points on1262

the source surface and the target surface, respectively, i.e.,1263

D(x, y) = ρW (||x− y||22).1264

Reference [31] consider the objective1265

min
R,⃗t

(∑
i
ρ(||Rp̃i + t⃗ − P̃

∗
||)
)

1266

for a rotation matrix R ∈ R3×3 and a translation vector1267

t⃗ ∈ R3 for point cloud registration and use IRWLS with the1268

Huber, the Tukey or the Cauchy loss function as robust loss1269

functions ρ.1270

The Huber loss is applied in [333] for motion-prediction1271

from point clouds, where it is used as motion-prediction loss,1272

spatial and temporal consistency loss.1273

Reference [125] propose a LiDAR-based direct odometry1274

method with the goal to efficiently find the matching points1275

for the point clouds extracted from the LiDAR data. Direct1276

odometry methods usually compare 2D images, therefore,1277

they first project the 3D LiDAR point to a 2D sphere. As a1278

re-projection of the entire projected 2D image would be time-1279

consuming, this re-projection is only done on selected key1280

points. Let p∗
∈ R2 be the 2D image coordinates of the1281

reference data and let f be a parametric conversion function1282

between sensor and reference data so that f = f (T (ξ ),F)1283

for a parameter ξ that encodes rotation and translation,1284

a frame F, and a translation T (ξ ) from the Lie group SE(3).1285

Let the residuals from the 2D image coordinate map be1286

r(Fs,F∗,T (ξ )) for a sensor frame Fs and a reference frame1287

F∗. Then, let a new frame F0 be given with the goal to adjust1288

the corresponding T0(ξ0), which is done by minimizing 1289∑
j

∑
F
ρH (r(Fs,F∗,T0(ξ0)T

−1
j ) 1290

at the key points, where the Tj, j = 1, . . . , n, are frame- 1291

specific transformations. Afterwards, the Tj are updated sim- 1292

ilarly, but where Tukey’s biweight loss is used. Experiments 1293

on KITTI data and real-world data with an autonomous 1294

vehicle confirm real-time performance. 1295

Reference [144] use the Huber loss function when com- 1296

puting functional map matrices that parameterize pairwise 1297

correspondences of point clouds in order to better deal with 1298

occlusions or deformations. The objectives 1299∑Ikl

i=1
ρH (||8

(kl)
l,i −8

(kl)
k,i C||) 1300

have to be minimized w.r.t. the map C for all (k, l), which 1301

represent the edges in the point cloud graph, and where 8(kl)
k 1302

are the matrices that represent the matched points from point 1303

cloud Pk to point cloud Pl , for the number Ikl of matches. 1304

The squared loss in the ICP algorithm has been replaced 1305

with the LMS criterion in [214] and [375], and with the 1306

LTS criterion for example in [59] and [243]. Reference [245] 1307

proposed the so-called fractional root mean squared distance 1308

as distance measure for ICP, which is essentially an LTS 1309

criterion, up to taking the square root. Reference [145] 1310

consider a truncated absolute loss. Reference [115] propose 1311

a differentiable variant of the Huber loss. Reference [68] use 1312

the family of parametrized robust loss functions from [23] 1313

and propose an algorithm where one alternatingly optimizes 1314

for the parameters of this loss function and the actual 1315

regression parameter. Reference [346] propose a graduated 1316

non-convexity approach where a non-convex robust loss is 1317

optimized by iteratively optimizing a sequence of surrogates, 1318

which are initially convex but gradually become non-convex. 1319

This method is applied to point cloud registration with the 1320

Geman-McClure and the truncated least squares criterion. 1321

Reference [193] consider matching a data and a reference 1322

point cloud, resulting in the objective 1323

argminR∈SE(3),⃗t∈R3

(∑
i

∑
j
ρ(r(p̃∗

j − Rp̃i − t⃗))
)

1324

for a robust loss function ρ. Experiments on different data sets 1325

confirm a total computational time of less than one second, 1326

confirming real-time performance. 1327

A similar approach has been used in [335] for point-to- 1328

plane matching, where the distance between a point from 1329

the point cloud and the nearest point from a local plane on 1330

the map is considered. They use the Huber loss function. 1331

In [376], the truncated least squares loss is used in order to 1332

find a transformation that aligns points from a LiDAR frame 1333

with points from a local map for ego-motion estimation. 1334

Experiments on KITTI data and real-world data collected 1335

from a robot confirm real-time performance of their overall 1336

LiDAR-only odometry and mapping pipeline. 1337

Reference [143] propose a loss function that can be 1338

interpreted as a soft counterpart of a truncated least squares 1339
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loss, namely ρ(r, k,w) = w2
||r||2 + (1 − w)2k2. In other1340

words, each residual is accompanied with a weight which1341

decides the trade-off between the squared loss and a constant1342

loss. This loss function is not used directly as objective for1343

the estimation of the optimal transformation T ∈ SE(3) but1344

as a penalty term, i.e., the objective is1345 ∑
i
||(r)(i))∗||2 +

∑
j
ρ(wj, ||r(j)||2),1346

where (r(i))∗ denotes the residuals w.r.t. a reference point1347

cloud and where r(j) denotes residuals from the LiDAR point1348

cloud. The objective is optimized w.r.t. the weights and1349

the transformation alternatingly. The optimization w.r.t. the1350

weights leads to the closed-form solution w∗
j = k2(||r(j)||2 +1351

k2)−1, implying the loss ρ(||r(j)||2, k,wj) = k2||r(j)||2(k2 +1352

||r(j)||2). This is just a scaled Geman-McClure loss. They1353

achieve real-time performance on different real datasets. A1354

similar objective function has been proposed in [373]. On1355

real-world data from urban areas in Hong Kong, they achieve1356

real-time performance.1357

Reference [330] use the Huber kernel loss as loss function1358

in laser localization. The objective is then1359 ∑
i
wiρH (r(T (ξ )(p̃i), P̃

∗
)),1360

wherewi an indicator which is zero if p̃i is considered to be an1361

outlier, which is done by comparing the median of the error of1362

the posterior predictive corresponding to this point with the1363

population median of the error.1364

3) NAVIGATION/TRACKING VIA FILTERING1365

An important class of state estimation techniques areKalman1366

filters (KF). The linear KF assumes a state space model of the1367

form (e.g., [269])1368

X t = FtX t−1 + νt , Y t = ZtX t + ϵt ,1369

with transition matrices Ft ∈ Rp×p, Zt ∈ Rq×p, and1370

noise variables ϵt ∼ Nq(0q,Vt ), νt ∼ Np(0p,Qt ). The1371

first equation is the state equation, describing the evolution1372

of the states of the system, while the second equation is1373

the measurement equation that describes the generation of1374

noisy measurement outputs from the underlying true states.1375

In control theory, one would also include a controller input1376

in the state equation (see Sec. V-C). The state space model1377

described here is time-discrete and time-variant. In the1378

less general time-invariant settings, one has static transition1379

matrices F and Z . The goal in Kalman filtering is to estimate1380

the true states X t when measuring the Y t . There are several1381

ways how to robustify the KF, for example, by robustifying1382

the loss function is the least-squares interpretation of the KF,1383

by assuming a different noise distribution that is capable to1384

model large errors which would appear as outliers under the1385

Gaussian assumption, or outlier detection. In this paper, since1386

we are not aware of any robust approach for autonomous1387

driving in a continuous-time setting, we always have a1388

discrete-time setting.1389

Reference [269] distinguish between additive outliers 1390

(AOs), which affect the observations, i.e., 1391

ϵret ∼ (1 − rAO)L(ϵidt ) + rAOL(ϵrut ), 1392

and innovation outliers (IO), which affect the innovations, 1393

i.e., 1394

νret ∼ (1 − rIO)L(νidt ) + rIOL(νrut ), 1395

where L(ϵidt ), L(ϵrut ), L(νidt ), L(νrut ) denote the distributions 1396

of the ideal and contaminated noise terms, respectively, and 1397

where rAO, rIO ∈ [0, 1] are the respective contamination 1398

radii. The main difference is that IOs affect subsequent 1399

states, covering level shifts or linear trends, so that not 1400

only the current observation is affected. One can also define 1401

substitutive outliers (SO), which directly manipulate the 1402

observation distribution and not the noise distribution, i.e., 1403

Y re
t ∼ (1 − rSO)L(Y id

t ) + rSOL(Y rut ). 1404

1405

1406

The Kalman filtering algorithm, going back to [164], 1407

is given by the following recursive scheme (here, in the 1408

notation of [269]): Initialization 1409

X0|0 = a0, 60|0 = Q0, (4) 1410

prediction 1411

X t|t−1 = FtX t−1|t−1, 6t|t−1 = Ft6t−1|t−1FTt + Qt , (5) 1412

and correction 1413

X t|t = X t|t−1 + Kt1Y t , 6t|t = (Ip − KtZt )6t|t−1, (6) 1414

for 1415

1X t = X t − X t|t−1, 1Y t = Y t − ZtX t|t−1 = Zt1X t + ϵt ,

(7)
1416

and 1417

1t = Zt6t|t−1ZTt + Vt , Kt = 6t|t−1ZTt 1
−
t . (8) 1418

Here, the quantity Kt is referred to as the Kalman gain. 1419

This recursive scheme can also be interpreted as a 1420

least-squares approach (e.g., [288]). In the notation of [65], 1421

denoting 1422(
Y t

X t|t−1

)
=

(
Zt
I

)
X t +

(
ϵt
rt

)
1423

for 1424

rt = X t|t−1 − X t , 1425

one can compactly write 1426

Ỹ t = Z̃tX t + r̃t , 1427

where r̃t has a block diagonal covariance matrix R̃t . The 1428

estimation of the states via a squared loss leads to a 1429

least-squares solution with prediction 1430

X̂ t|t = (Z̃Tt R̃
−1
t Z̃t )−1Z̃Tt R̃

−1
t Ỹ t . (9) 1431

VOLUME 13, 2025 167863



T. Werner: Applications of Robust Statistics in Autonomous Driving

In non-linear dynamics, suitable versions of the linear KF1432

have been proposed in the literature, where the state-space1433

model is given by1434

X t = f (X t−1) + νt , Y t = h(X t ) + ϵt ,1435

for differentiable functions f and h. In the recursive KF1436

scheme however, the linear maps Ft and Zt are required. For1437

the EKF, a first-order linearization of f is done at X t−1|t−1,1438

while a linearization of h is done at X t|t−1.1439

The unscented Kalman filter (UKF) also allows for1440

non-linear transformations but does not perform a linear1441

approximation as the EKF. Instead, a so-called unscented1442

transformation [162], [312] in order to approximate the1443

posterior mean and variance of the underlying function is1444

computed.1445

The cubature Kalman filter (CKF) uses the radial-1446

spherical cubature rule [14] instead of the unscented transfor-1447

mation as in the UKF in order to estimate the posterior mean1448

and variance.1449

The following approaches consider robust loss functions.1450

Reference [49] propose to replace the squared loss of the1451

linear KF by the maximum correntropy (MMC) criterion,1452

which is a local similarity measure and therefore insensitive1453

to large outliers. The MMC criterion is given by1454 ∫
κ(x, y)dF(x, y)1455

for a shift-invariant Mercer kernel κ , e.g., the Gaussian kernel1456

κ(x, y) = Gσ (r) = exp(−r2/(2σ 2)). Given residuals rt , one1457

can therefore estimate the correntropy by the arithmetic mean1458

of the Gσ (rt ). In the KF context, they define the errors1459

ϵ̃t =

(
−(X t − X̂ t|t−1)

ϵt

)
1460

and denote IE[ϵ̃t ϵ̃
T
t ] = BtBTt with a matrix Bt that can1461

be computed by a Cholesky decomposition of IE[ϵ̃t ϵ̃
T
t ].1462

It follows that Dt = WtX t + rt for1463

Dt = B−1
t

(
X̂ t|t−1 Y t

)
, Wt = B−1

t

(
I
Ht

)
, rt = B−1

t ϵ̃t ,

(10)

1464

where rt is white noise. Now, the correntropy objective leads1465

to1466

X̂ t|t−1 = argmaxx

(
1

p+ q

∑p+q

i=1
Gσ ((Dt )i − (Wt )ix)

)
.1467

They derive an iterative fixed-point algorithm in order to1468

find the optimal solution and prove a sufficient condition for1469

convergence.1470

A CKF based on the MMC criterion has been applied1471

for cooperative localization of underwater vehicles. Refer-1472

ence [378] apply an MCC-based cubature information filter1473

for tracking aerial autonomous vehicles. In their numerical1474

simulations with a step size of 1 s, their filter requires1475

a computation time of around 0.2 s. Reference [293]1476

propose to combine a UKF with the MCC criterion based1477

on the t-kernel with an additional weighting scheme in 1478

order to safeguard the estimation against extreme outliers. 1479

As weight function, applied to the individual components 1480

of the states, they consider the biweight, Huber, Hampel 1481

and Andrews function. On real-world data collected from 1482

an autonomous underwater vehicle, their algorithm achieves 1483

real-time performance. Reference [195] use a KF with the 1484

MCC criterion for pseudorange estimation. They consider 1485

localizing and tracking in real-world experiments and achieve 1486

similar computational efficiency than the standard KF. 1487

Reference [185] consider collaborative localization and 1488

propose an EKF updating scheme with the MCC. Here, as for 1489

the required Mercer kernel, they consider a Cauchy kernel. 1490

Reference [88] consider a Laplacian kernel and apply the 1491

resulting MCC-based EKF for cooperative localization of 1492

autonomous underwater vehicles. In their simulations, the 1493

computation time was around twice as much as for the 1494

standard EKF. 1495

An alternative loss function for robust state estimation with 1496

the KF has been proposed by [72] who consider the residual 1497

least entropy-like loss function 1498

Hk (Dk , q1, . . . , qk ) 1499

= I (Dk ̸= 0) ·
−1
ln(k)

∑k

i=1
qi ln(qi), 1500

Dk =

∑k

i=1
||ri||2, 1501

qi =
||ri||2∑k
j=1 ||rj||2

, 1502

for the residuals ri. This loss function is used as a penalty term 1503

for the weighted least-squares objective which encourages a 1504

large entropy of the residuals and hence many small and few 1505

large residuals. 1506

Reference [65] consider GNSS/INS integration and pro- 1507

pose a robust KF by robustifying the update step with an 1508

M-estimator. They point out that robust methods require a 1509

larger number of measurements than classical ones (which is 1510

a consequence of the efficiency loss, since the least-squares 1511

estimator is the maximum likelihood estimator under Gaus- 1512

sian noise and hence achieves maximum efficiency) but that 1513

GNSS applications usually do not have many satellites in 1514

view. They consider the standardized versionWt of R̃
−1
t from 1515

Eq. 9 by standardizing the measurements first. Then, Wt is 1516

updated using IRWLS, which is robustified by the Huber 1517

estimation 1518

(Wt )ii = wH ([Ȳ t − Z̄t X̂ t|t ]ii) 1519

for the respective standardized measurements Ȳ t and Z̄t . 1520

In their experiments, they consider different types of 1521

contamination, which are single biases, multiple biases, and 1522

ramps. 1523

Reference [97] consider, in addition to innovation and 1524

observation outliers, so-called structural outliers, i.e., where 1525

the linear mapping Zt resp. Ft in the state space model 1526

may be misspecified. They assume that the observations 1527
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are synchronized, otherwise, delayed observations may be1528

treated as outlying data. First, they aim at robustly estimating1529

the covariance matrix in the least-squares interpretation of the1530

KF. To this end, they consider the Stahel-Donoho estimator1531

sup
||u||=1

(
|hTt u− medj(hTj u)|

MADj(hTj u)

)
1532

for the data points h, which are here the matrices (ZTt , I )
T .1533

However, they argue that applying the estimator in each1534

time step would detect only structural outliers and therefore1535

propose to use the vector Ỹ t = (YTt , X̂
T
t|t−1)

T instead of1536

the ht as it already captures the effects of all three types1537

of outliers. Points whose value s of the Stahel-Donoho1538

estimator is larger than some threshold τ are downweighted1539

in the sense that their new weight is τ 2/s2, where τ =1540

1.5 in [97]. As structural outliers appear as leverage points1541

in the least-squares interpretation of the KF, a GM-estimator1542

with the Huber loss function and the weights arising from the1543

Stahel-Donoho estimator is applied, i.e., one minimizes1544 ∑
i
wiρH (r̃i),1545

with the residuals r̃i = ris−1w−1
i with the MAD s of the1546

vector of residuals ri. Due to non-linearity, this problem is1547

solved using IRWLS. Finally, the update filter error has to be1548

adapted. They therefore compute the IC of the GM-estimator,1549

given by1550

IC(x,X,P) =
ψ(x̃)

IEP[ψ ′(x)]
(ATA)−1Xw1551

for x̃ = xs−1w−1, which enables to compute the asymptotic1552

covariance matrix 6t|t = IEP[IC(x,X,P)(IC(x,X,P))T ].1553

Reference [364] propose distributionally robust filtering,1554

where a minimax problem is solved. Let Zt = (X t ,Y t ) and1555

let FZt |Yt−1 denote the conditional joint state-measurement1556

distribution at time step t . The new state is estimated by1557

X̂ t+1 = min
s
( max
F∈U (FZt |Y t−1 )

(IE[(X t − s)(X t − s)T ])),1558

for an uncertainty set U(FZt |Y t−1) around FZt |Y t−1 . In their1559

algorithm, they construct this set by mean and covariance1560

constraints around a nominal distribution. The problem can1561

be re-written as a nonlinear semi-definite program. In their1562

experiments, they consider tracking a hypersonic vehicle.1563

Reference [284] replace the least-squares regression prob-1564

lem arising in the KF by a minimax problem. In particular,1565

they propose to minimize the worst-case expected squared1566

residuals over an uncertainty set. As for this uncertainty1567

set, they either use all normal distributions with the same1568

mean as the ideal distribution but whose covariance lies1569

within a certain radius around the ideal covariance, or a1570

Wasserstein-based contamination ball containing all normal1571

distributions whose W2-distance from the ideal distribution1572

is bounded by the contamination radius. On real-world data,1573

the performance of their algorithm is comparable to that of1574

the standard EKF, thus allowing for real-time performance.1575

Reference [74] consider aircraft ground inspection, which 1576

is vulnerable to large GNSS positioning errors. They consider 1577

a robust EKF based on M-estimation. They essentially 1578

robustify the KF in the same manner as [49], but where the 1579

rt from Eq. 10 do not enter the correntropy criterion but a 1580

weighted least squares objective, i.e., 1581

min
x
(rTt (x)W rt (x)), 1582

for the weight matrix W = diag(wH (rt,i)) with the Huber 1583

weight function wH . Reference [75] propose a grid search in 1584

order to select the hyperparameter K of the Huber function 1585

in a data-driven way, according to the horizontal accuracy. 1586

More precisely, the hyperparameter is chosen according to 1587

a difficulty level of the scenario, and this level is predicted 1588

using a neural network. In order to make the predictions more 1589

interpretable, [76] replace the neural network by a SVM. 1590

Reference [28] propose a robustification of the EKF 1591

by downweighting measurement outliers. They use the 1592

formulation 1593

X̂ t = argminX t
(||X t − f (X̂ t−1)||2V̂t

+ ||Y t − h(X t )||2Q̃t
) 1594

for Q̃t = Q̂1/2
t W−1Q̂T/2t . Here, Q1/2

t is the Cholesky 1595

factorization of Qt . The weight matrix W is given by 1596

W = diag(w(Q1/2
t (Y t − h(X t )))) for a weight function w 1597

corresponding to a robust loss function. In their experiments, 1598

they use the Huber weight function. Reference [270] integrate 1599

feature maps into the EKF for GNSS positioning. Those 1600

feature maps contain information about, for example, satellite 1601

visibility or spatio-temporal features, allowing for a prior 1602

distribution of the pseudorange residuals. In the EKF, obser- 1603

vations whose pseudorange residual deviates considerably 1604

from the expected ones are downweighted. This is done by 1605

applying the weight function corresponding to a robust loss 1606

function, for which the Huber, Tukey and Geman-McClure 1607

loss function are considered, to the predicted pseudorange 1608

residuals. 1609

Reference [119] apply parallel robust EKFs for a Bayesian 1610

approach for robust localization from GNSS data. Instead of 1611

the Gaussian likelihood, they consider densities of the form 1612

p(Y t |X t ) ∝ exp(−ρ(rt )) for the residual rt = Y t − h(X t ) 1613

and where ρ is the Huber or the Tukey loss function. The 1614

covariance matrix Vt of the measurement equation is updated 1615

via R̃t = (ψ(rt ))−1Rt for ψ(rt ) = ∂rρ(r)|r=rt . However, 1616

due to multi-modal uncertainties in the measurements, single 1617

Gaussian distributions are not suitable. To this end, they 1618

replace the standard posterior, 1619

p(X t |Y1:t ) ∝ p(Y t |X t )
∫
p(X t |X t−1)p(X t−1|Y1:t−1)dX t−1, 1620

with 1621

p(X t |X l
t ,Y1:t ) ∝ p(Y t |X l

t ,X t ) 1622∫
p(X t |X l

t ,X t−1)p(X t−1|X l
t ,Y1:t−1)dX t−1, 1623
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for linearization pointsX l
t at which the EKF transition and the1624

robust loss ρ are linearized. As the selection of linearization1625

points is accompanied by uncertainties itself, [119] propose1626

the update rule1627

p(X l
t ,Y1:t ) ∝ p(Y t |X l

t )
∫
p(X l

t |X
l
t−1)p(X

l
t−1|Y1:t−1)dX l

t−1.1628

In their algorithm, one starts with an initial set of linearization1629

points and iteratively updates this whole set and correspond-1630

ing weights that are computed via the posterior p(Y t |X l
t ),1631

so that the distribution p(X t |Y1:t ) can finally be estimated1632

using Rao-Blackwellization.1633

The UKF has been robustified by Huberization in [337].1634

Given the non-linear dynamics1635

X t+1 = f (X t ) + νt , Y t = h(X t ) + ϵt ,1636

one can write1637 (
Y t+1
X t+1|t

)
=

(
h(X t+1)
X t+1

)
+

(
ϵt

1X̂ t+1|t

)
1638

for the predicted state X̂ t+1|t at time (t + 1) and its error1639

1X̂t+1|t . For the covarianceVt of ϵt and the covariance6t+1|t1640

of X̂ t+1|t , one computes1641

Ỹ t+1 = S−1/2
t+1

(
Y t+1

X̂ t+1|t

)
, St+1 =

(
Vt 0
0 6t+1|t

)
,1642

g(X t+1) = S−1/2
t+1

(
h(X t+1)
X t+1

)
, ξ t+1 = S−1/2

t+1

(
ϵt

1X̂ t+1|t

)
,1643

so that Ỹ t+1 = g(X t+1) + ξ t+1 holds. The objective for1644

finding the prediction X̂ t+1|t is then1645

min
x

(∑p+q

i=1
ρH (rt+1,i(x))

)
,1646

where the residuals are given by rt+1(X t+1) = Ỹ t+1 −1647

g(X t+1). Reference [337] use this Huberized UKF for1648

underwater terrain matching, where X t represents the 2D1649

coordinates of the vehicle. Reference [46] apply it to tracking.1650

Reference [322] propose an adaptive variant of the robust1651

UKF with an application in vehicle tracking. They consider1652

the dynamics model error and the measurement model error1653

simultaneously by treating the respective residuals separately,1654

i.e.,1655

min
x
(λt ||x− X̂ t|t−1||

2
6t|t−1

+ ||Ftx− Y t ||2V−1
t
)1656

with a fading factor λt which is computed by1657

λt =

 1, |1X̃ t | ≤ τ
τ

|1X̃t |
, |1X̃ t | > τ

,1658

1X̃ t =
||X̃ t − X̂ t|t−1||√

tr(6−1
t|t−1)

,1659

for some threshold τ > 0.1660

Reference [21] alternatingly use the Huber and the loss1661

corresponding to the dynamically scaled covariance approach1662

from [3] in the EKF and consider the navigation of 1663

autonomous underwater vehicles. On real-world data, the 1664

computation time is close to that of the standard KF, with at 1665

most around 25% overhead. Reference [22] modify the EKF 1666

by alternatingly optimizing the MSE and the Huber loss in 1667

the sense that in a first iteration, X̂ t|t is estimated using the 1668

updating steps corresponding to the Huber loss. Then, X̂ t|t 1669

enters as prior X̂ t|t−1 in the updating steps corresponding to 1670

the MSE. The average runtime on real-world data is around 1671

75% higher than for the standard KF. 1672

See further applications of Huberized Kalman Filters for 1673

spacecraft attitude estimation (linear KF; [166]), elliptical 1674

orbit rendezvous and docking (EKF; [167]), navigation 1675

(UKF; [47], [250], CKF; [307]), vehicle tracking (CKF; 1676

[124], [197]), underwater tracking (EKF; [82]), and collab- 1677

orative localization (EKF; [129]). 1678

In contrast to loss-based filters where a robustification 1679

of the loss function is done, noise modeling and covari- 1680

ance scaling approaches consider heavy-tailed distributions, 1681

assuming that the measurements can be contaminated by 1682

heavy-tailed noise, in contrast to the standard KF that 1683

assumes Gaussian noise. This idea essentially goes back 1684

to [328]. It has been shown in [267] that in the ideal, 1685

i.e., Gaussian, model, the usage of a t-distribution with 1686

small degrees of freedom leads to a high efficiency loss. 1687

In particular, using variational approximation allows for 1688

learning the real noise distribution in an online manner, 1689

even allowing for non-stationary (e.g., due to changing 1690

environments as argued in [152]) loss distributions. 1691

Reference [2] propose a structured variational approach 1692

where they assume an inverse Wishart distribution of the 1693

covariance matrix Vt . As they assume that Y t |X t ,Rt ∼ 1694

N (FX t ,Rt ), marginalizing out Rt leads to a t-distribution as 1695

the conditional distribution of Y t |X t . They derive that the 1696

marginal log-likelihood of the Y t can be expressed as the 1697

sum of a lower bound of the marginal likelihood of the data 1698

and the KL-divergence between the true and the approximate 1699

posterior distribution of (X t ,Rt ) given Y t . For iid. noise and 1700

for a slowly-drifting noise model, where the two parameters 1701

of the inverse Wishart distribution of Rt themselves obey 1702

a first-order model, they derive an algorithm in order to 1703

compute an approximate posterior. They apply their method 1704

for GPS position estimation of a car. Reference [1] assume 1705

X t |X t−1 ∼ N (FTX t−1 + b,Q), 1706

Y t |X t ,Vt ∼ N (ZTX t + d,Vt ) 1707

where the observation noise V−1
t is assumed to follow a 1708

Wishart distribution, again leading to a t-distribution of 1709

Y t |X t . The posterior p(X t |Y1, ..,Y t ) is approximated by 1710

structured variational filtering. They apply their method for 1711

position estimation from GPS data. 1712

The approach from [1] has been extended to the nonlinear 1713

case in [246] and [273]. Reference [150] argue that these 1714

such variational Bayes approaches as in [273] can handle 1715

slowly time-varying measurement noise covariance matrices 1716
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Vt , but that they assume accurate estimation of the process1717

noise covariance matrices Qt , otherwise, their performance1718

decreases. Therefore, they propose to assume inverseWishart1719

priors for both Vt and the prediction error covariance matrix1720

Pt , which, by the prediction step X t|t−1 = Ft−1X t−1|t−1,1721

satisfies1722

Pt|t−1 = Ft−1Pt−1|t−1FTt−1 + Qt−1.1723

The new states are then inferred jointly with Pt|t−1 and Vt via1724

variational approximation. Their method is applied to target1725

tracking.1726

Reference [233] assume that the measurement noise is1727

skewed t-distributed and approximate the posterior observa-1728

tion distribution with variational inference. They apply their1729

filter for GNNS position estimation. In their experiments,1730

they report that the computational time of their filter exceeds1731

that of the standard KF by a factor of around 5 to 10.1732

Reference [374] consider GNSS positioning and assume t-1733

distributed measurement noise. They propose to estimate the1734

degrees of freedom outside the variational Bayes iteration1735

via inversely scaling a baseline degree of freedom with1736

the Mahalanobis distance of the current innovation to a1737

Gaussian distribution with the current innovation covariance1738

matrix. The method is applied in a field test for position1739

estimation of a vehicle in Beijing. Reference [55] assume1740

t-distributed process noise, while the measurement noise is1741

assumed to be Gaussian. They consider SINS navigation in a1742

real-world car-mounted experiment. Reference [158] model1743

the measurement noise by a convex contamination model,1744

where the ideal Gaussian distribution is contaminated with1745

a Gaussian distribution with a different covariance matrix.1746

They allow the contamination radius to vary in time. As they1747

consider a situation where the states are observed by multiple1748

agents, they have an observation equation for each agent j1749

with individual transition matrices Z jt and noises ϵ
j
t . In a1750

sliding window approach, the joint posterior of the states, the1751

process covariance matrices, the agent-specific measurement1752

covariance matrices and contamination radii is approximated1753

via variational inference. They apply their method in a target1754

tracking simulation with multiple sensors. Reference [170]1755

argue that a robust filter is less efficient than a filter with1756

the Gaussian assumption and propose to use two models,1757

one with Gaussian and one with t-distributed measurement1758

noise, and to combine them using Bayesian model averaging.1759

They use their method for target tracking. In their simulations,1760

they observe a computational time of their filter of around1761

twice as high as for the standard CKF, while only requiring1762

around 40% of the time of the CKFwhere iterative variational1763

Bayes approximations are used. Reference [126] propose to1764

use α-stable sub-Gaussian distributions for the measurement1765

noise in the linear KF, and compare noise modeling with1766

low- and heavy-tailed noise distributions, such as Gaussian1767

mixtures or t-distributions. Reference [336] assume amixture1768

of a Gaussian and a Gaussian inverse-Gamma distribution1769

for the measurement noise and apply their algorithm to the1770

navigation of an underwater vehicle. Reference [191] invoke1771

a Gaussian-exponential distribution for the measurement 1772

noise. 1773

Reference [148] propose a Gaussian-inverse-Wishart mix- 1774

ture distribution for the state transition. They argue that such 1775

a mixture has the advantage over a single Gaussian-inverse- 1776

Wishart distribution when only inaccurate prior information 1777

is available. As for the prior, they assume a Dirichlet 1778

distribution. For the conditional observation distribution, they 1779

assume a Gaussian-inverse-Wishart distribution and derive 1780

a variational approximation algorithm of the joint posterior 1781

of the current and previous state, the measurement and 1782

the state covariance matrices and the mixing parameters. 1783

They apply their algorithm to target tracking. Reference [86] 1784

track an autonomous surface vehicle by assuming an inverse 1785

Wishart distribution for the measurement covariance matrix 1786

and computing the posterior distribution of the states 1787

and covariances by variational inference. Reference [207] 1788

first scale the measurement covariance matrix with IGGIII 1789

weights, and propose to model the covariance matrix with 1790

variational Bayes and an inverseWishart distribution as prior. 1791

Reference [146] argue that the estimation accuracy of 1792

the prediction error covariance matrix, 6t|t−1, depends on 1793

the state noise covariance matrix, Qt . Therefore, if only 1794

inaccurate prior information about the latter is available, they 1795

propose to not use the one-step prediction-error covariance 1796

matrix directly in their variational Bayesian adaptive KF 1797

algorithm, but estimate a prior scale matrix via the EM algo- 1798

rithm. They apply their strategy for collaborative localization 1799

with two surface vehicles and one autonomous underwater 1800

vehicle. 1801

Reference [66] use the CKFwith a sigma-point update rule 1802

for GNSS/INS estimation. In order to deal with measurement 1803

outliers, they propose to include switching variables which 1804

are Bernoulli-distributed, where the presence of an outlier 1805

would correspond to the value 0, with Beta prior. The 1806

measurement covariance matrix is scaled with the inverse of 1807

the expectation of the switching variable in the respective 1808

time step. The joint posterior of the states, switching variables 1809

and their priors are updated via variational inference. They 1810

apply their method in a real-world experiment with car- 1811

mounted GNSS/INS. 1812

Reference [147] assume that both the process and mea- 1813

surement noise are t-distributed. In a smoothing approach 1814

with nonlinear dynamics, they infer the trajectory in a fixed 1815

time window via variational inference of the joint posterior, 1816

and apply their technique to target tracking. Reference [317] 1817

consider car tracking and assume t-distributed process noise 1818

and a Gaussian-generalized hyperbolic distribution for the 1819

measurement noise in the EKF. The latter is a mixture 1820

of Gaussian distributions, where the mixture distribution 1821

is a generalized inverse Gaussian distribution, thus a joint 1822

posterior of the states, covariances, distribution and mixture 1823

parameters is computed by variational approximation. Refer- 1824

ence [252] consider target tracking and assume a Gaussian- 1825

exponential-Gamma distribution for both the process and the 1826

measurement noise. 1827
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Reference [152] propose a Gaussian-Student’s t mixture1828

distribution (GSTM) in order to address non-stationary,1829

heavy-tailed noise distributions for both the states and the1830

observations. The GSTM distribution is of the form1831

p(x|π) = πN (x,µ, 6) + (1 − π )t(x,µ, 6, ν),1832

where π is the mixing parameter, which has to be inferred and1833

for which a Beta distribution is assumed as prior distribution.1834

While the GSTM distribution has lighter tails than the1835

corresponding pure t-distribution, it has heavier tails than the1836

corresponding Gaussian distribution. Reference [152] argue,1837

based on the influence function of the GSTM distribution,1838

which is close to that of the Gaussian distribution in a vicinity1839

of the mean and tends to that of the t-distribution outside,1840

that the GSTM distribution has the same efficiency as the1841

Gaussian distribution on clean data and the same efficiency1842

as the t-distribution on contaminated data. The joint posterior1843

distribution of the states, the mixing parameters and the1844

degrees of freedom is approximated via a variational Bayes1845

approach.1846

Reference [314] assume time-varying skewness in the1847

measurement noise, which they argue to result from imperfect1848

synchronization and a variable nonline of sight. They propose1849

a so-called shape-parameter mixture distribution of the1850

measurement noise, which is a mixture of Gaussian scale1851

mixture distributions w.r.t. the shape parameters, extending1852

the work of [149] who initially proposed the pure Gaussian1853

scale mixture for the process and the measurement noise.1854

As for the mixing prior, they assume a Dirichlet distribution.1855

They apply their algorithm to robot tracking.1856

Reference [209] incorporate both heavy-tailed measure-1857

ment noise and inequality constraints in a variational Bayes1858

algorithm. First, they assume a skewed t-distribution for1859

the measurement noise and an inverse Wishart distribution1860

for the predicted error covariance matrix. As for the1861

inequality constraints, they consider linear constraints of1862

the form at ≤ DtX t ≤ bt , for some constraint matrix1863

Dt . These constraints are integrated into the variational1864

approximation via truncation of one element of the predicted1865

state, conditioning the computed distribution onto the feasible1866

set. In their experiments, they track a mobile robot.1867

Reference [356] consider target tracking and extend the1868

state-space model by multiplicative noise in the measurement1869

equation, leading to the model1870

X t = FtX t−1 + νt , Y t = mtZtX t + ϵt .1871

They motivate the multiplicative term mt by the multi-path1872

effect as well as fading and scattering when considering1873

underwater acoustics. The two additive and the multiplicative1874

noise are modelled as generalized t-distributions, and the1875

posteriors are approximated by variational inference.1876

There is further literature where variational filtering is1877

used in situations where multiple state-space models have to1878

be considered, for example, in sensor fusion, collaborative1879

navigation or centralized estimation settings.1880

Reference [281] consider state estimation of autonomous 1881

surface vehicles and propose to perform the estimation 1882

remotely in order to save onboard computational capacities. 1883

To this end, they propose a stochastic event-triggered commu- 1884

nication strategy. Let Yold be the most recent observation that 1885

the USV transmitted to the remote station. For each following 1886

time step t , one computes ct := exp(−0.5(Y t−Yold)TAt (Y t− 1887

Yold)), for a symmetric positive-definite matrix At , and 1888

triggers a new transmission if Ut ∼ U ([0, 1]) realizes a 1889

value larger than ct , making a new transmission more likely if 1890

the current observation strongly deviates from the previously 1891

transmitted observation. They assume the GSTM distribution 1892

from [152] for the state distribution p(X t |X t−1, θ ), where θ 1893

represents the USV model parameter vector. They use VB 1894

in order to compute an approximate joint posterior for X t 1895

and θ . They compare different adaptive and event-triggered 1896

UKFversions and the standardUKFwith their method, which 1897

outperforms its competitors in terms of accuracy, both in 1898

a simulation as well as on a real-world experiment. As for 1899

an adaptive KF, the observation noise covariance parameters 1900

are stochastic, so a joint posterior for the distribution of the 1901

states and parameters must be found, which is done by an VB 1902

approximation in [274]. 1903

Reference [368] consider multi-sensor fusion and propose 1904

to robustify the single filters by assuming t-distributed 1905

noise. The posterior state distribution for each filter is 1906

approximated by variational inference. Assuming that each 1907

sensor operates independently, they derive a weighting 1908

strategy which additionally neglects any dependence between 1909

the individual state components, resulting in a diagonal 1910

weight matrix which can be easily computed, as matrix 1911

inverses are avoided, for the price of potentially reduced 1912

accuracy. They compare their algorithm with competitor 1913

robust KF and sensor fusion algorithms in a real-world 1914

experiment with an autonomous driving platform, achieving 1915

better accuracy than its competitors. As for the computational 1916

time, their algorithm requires around 4 times more time than 1917

the standard KF, but around half of the time required for the 1918

federated KF. 1919

Reference [184] consider a leader-follower cooperative 1920

navigation setting where a fleet of follower vehicles with 1921

cheap and low-accuracy sensors is given, and one or multiple 1922

leader vehicles with high-accuracy sensors. As for the 1923

observations, they consider the range between leaders and 1924

followers. The states and measurements are the concatenated 1925

state and measurement vectors. In the resulting EKF, they 1926

model both the process noise and the measurement noises 1927

by t-distributions. The joint state and measurement posteriors 1928

are updated recursively via linearization of the state and 1929

the measurement equation. They apply their algorithm for 1930

underwater navigation in a real-world experiment with one 1931

follower and one leader vehicle. Reference [151] consider 1932

t-distributed measurement and process distributions and use 1933

variational inference for approximating the posteriors. They 1934

apply their method for collaborative localization with two 1935
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leader surface vehicles and one autonomous underwater1936

vehicle.1937

Reference [297] argue that in collaborative localization1938

with low overlap between the local maps of the individual1939

agents, outlier data associations are likely, resulting in1940

potentially high outlier ratios. Therefore, they compute the1941

spatial consistency between each two matched point pairs1942

{x(1), y(1)}, {x(2), y(2)}, considering them only as inliers if the1943

difference |||x(1) − x(2)||2 − ||y(1) − y(2)||2| is below some1944

threshold. Local maps with more inliers are associated with a1945

higher overall inlier probability in an EM algorithmwhere the1946

positions are updated. Their algorithm is applied to a KITTI1947

dataset and a real-world dataset with three robots.1948

Reference [344] consider decentralized collaborative1949

localization, which, in contrast to centralized collaborative1950

localization where one central entity jointly estimates the1951

states of all robots based on the transmitted data, allows the1952

robots to share their own state estimates with each other.1953

In addition to a robot-individual state equation, [344] define1954

observation equations for the absolute range measurement1955

yila,t between robot i and landmark l at time t , given by1956

yila,t = hit (X
i
t ,X

l
t ) + νit ,1957

and for the relative range measurements yijr,t between robots1958

i and j at time t , given by1959

yijr,t = hit (X
i
t ,X

j
t ) + νit .1960

While using Gaussian distributions for the state equations,1961

[344] allow for t-distributed noise in the absolute and1962

relative range measurements and propose a variational1963

Bayes approach in order to update them for each robot.1964

Due to shared information, interdependences between each1965

robot pair have to be integrated into the algorithm, which1966

themselves are updated iteratively. They apply their method1967

for collaborative localization of 5 robots.1968

Reference [200] propose to robustly estimate Vt =1969

Cov(ϵt ) of the KF by scaling the diagonal entries using1970

different weight functions such as the IGGIII weight function.1971

A similar idea has been proposed in [188] who scale the1972

covariance matrix of the CKF using IGGIII weights. See1973

also [294], [315], [318].1974

Reference [352] combine an adaptive KF and a robust1975

KF. In the adaptive KF, the gain and covariance are scaled1976

with Huber weights. In the robust KF, IGGIII weights are1977

used in order to scale the measurement covariance matrix.1978

Finally, the estimated state vector and state covariance matrix1979

is computed as a convex combination of both predictions1980

from the adaptive KF and from the robust KF. Here, for small1981

residuals, the adaptive KF gets more weight, and vice versa1982

for large residuals. They apply their algorithm for land vehicle1983

navigation.1984

Reference [45] assume a linear state-space model and1985

propose to compute the standard Mahalanobis distance of the1986

observations and to scale the noise covariancematrixVt in the1987

KF with a scalar if the Mahalanobis distance exceeds some1988

threshold, where the scaling factor is chosen adaptively. They 1989

apply their algorithm to a kinematic positioning problem 1990

where both position and velocity have to estimated. 1991

References [304] and [305] consider the observation 1992

equation Y t = ZtX t + ϵt + ut , where ut follows a non- 1993

ideal distribution. Note that this contamination scheme is 1994

not a convex contamination, unless one would consider 1995

the distribution of ϵt + ut as contaminating distribution 1996

and the contamination radius as 1. In particular, they 1997

follow an unknown variance prior approach where ut ∼ 1998

N (0, 6t ) where 6t itself follows some prior distribution. 1999

The estimation of 6t is done via the EM algorithm. They 2000

apply their approach for the localization of a marine vehicle 2001

and a quadrotor. The computation time was around 6 times 2002

higher than that for the standard KF, but lower than for the 2003

KF proposed in [2]. 2004

Reference [231] consider object tracking by sequences 2005

of images and propose to apply a Kalman smoother for 2006

each pixel in order to deal with abrupt lightning changes 2007

and occlusions. They propose to replace the square in 2008

the Gaussian distribution by the Huber function, i.e., the 2009

observation model given some template feature vector f t at 2010

time t is given by 2011

p(Y t |f t ) = c−1
|R|

−1/2 exp(−ρH (r(Y t , f t ))) 2012

for a normalizing constant c, a scale matrix R and the error 2013

r(Y t , f t ) =

√
(Y t − f t )TR−1(Y t − f t ). 2014

They then approximate the posterior f t , which is no longer 2015

analytically computable. In their workflow, they first match 2016

templates. Given a set of predicted feature vectors f̂ t (x), they 2017

match them to the current image in order to derive the errors 2018

for the KF at the next time step. Considering translation, 2019

rotation and scaling, they consider the transformation 2020

T (ξ )(x) = (1 + ξ4)
(
cos(ξ3) − sin(ξ3)
sin(ξ3) cos(ξ3)

)(
x1
x3

)
+

(
ξ1
ξ2

)
2021

with a parameter ξ ∈ R4 to be estimated, which is done by 2022

robust regression w.r.t. the objective 2023∑
x
ρH (r(I t (p(x, ξ )), f̂ t (x))) 2024

for the feature vector I t (p(x, ξ )) observed at image point 2025

p(x, ξ ). The templates are updated using the robust KF and 2026

lastly, the scale matrix R is updated. 2027

Reference [334] apply a robust particle filter on pedestrian 2028

tracking using radar. They consider a non-linear state space 2029

model and assume ϵt ∼ N (0,W−1
t R) for a diagonal weight 2030

matrixWt = (wt,m)m=1,...,q, with Gamma priors 2031

wt,m ∼ Gamma(wt,m|θm/2, θm/2), 2032

m = 1, . . . , q. 2033

References [29] and [30] consider joint robust GNSS 2034

position and attitude estimation with the EKF. As the EKF 2035

can be interpreted as the optimization problem 2036

X̂ t|t = argminx(||x− X̂ t|t−1||
2
6t|t−1

+ ||h(x) − Y t ||2Vt ), 2037
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they point out that generalized M-estimators such as in [97]2038

do not allow for redescending losses, hence they use2039

robust information filters where the optimization problem2040

is re-formulated by replacing Vt by a weighted version2041

V 1/2
t W−1V T/2

t for2042

W = diag(w(V−1/2
t (Y t − h(X t ))))2043

for a weight function w, which may be the Huber loss2044

function or the Tukey loss function. The solution to the2045

optimization problem above can then be approximated2046

iteratively. They further adapt this strategy to the situation2047

where the data points belong to a manifold, as in the joint2048

position and attitude estimation problem. Experiments are2049

done on simulated data with an outlier rate of 20% and 25%2050

in [29] and [30], respectively.2051

Apart from approaches based on a robustification of2052

the loss function or modeling heavy-tailed noise, there are2053

strategies that invoke other techniques for robustification,2054

such as outlier detection or clipping.2055

If only AOs occur, [267] propose a Huberization of the2056

Kalman gain in order to robustify the correction step, i.e., the2057

Huberization of the Kalman gain is given by2058

Hb(Kt1Y t ) := Kt1Y t min
(
1,

b
|Kt1Y t |

)
.2059

The clipping height b may be determined so that a certain2060

Anscombe-efficiency level is attained or by a minimax2061

criterion w.r.t. a least favorable contamination radius. In the2062

case of SO-outliers, they assume a convex contamination2063

model around the true distribution F id
Y t of the Y t , leading to2064

a distribution F re
Y t , so that, assuming independence with the2065

distribution FX t of the X t , the ball2066

USO(r) =

⋃
0≤s≤r

{L(X t ,Y re
t ) | F re

Y t ∈ Uc(F id
Y t , s)}2067

is considered. They propose to either minimize the MSE on2068

USO or to minimize the MSE w.r.t. a bound on the bias on2069

USO. In the case of IOs, they show that the correction step2070

can be written as2071

X t|t = X t|t−1 + Z6t (1Y t − IE[ϵt |1Y t ]),2072

Z6t = 6t|t−1ZTt (Z
T
t 6t|t−1Zt )−,2073

so a robustification is done by Huberizing IE[ϵt |1Y t ], which2074

equals (I − ZtKt )1Y t in the ideal model, leading to the2075

Huberized correction step2076

X t|t = X t|t−1 + Z6t [1Y t − Hb((I − ZtKt )1Y t )].2077

In [269], the same clipping strategy is performed for the EKF.2078

They apply their method to vehicle tracking with the goal2079

to estimate the change of altitude. Apart from measurement2080

errors and changes in the road surface, their data also consist2081

of missings due to signal loss, e.g., in tunnels, leading to2082

jumps in altitude or speed.2083

Reference [359] propose an iterated EKF where the2084

linearization is considered at the updated state X t+1|t . Then,2085

a Huberization of the Kalman gain Kt1Y t , going back 2086

to [267], is performed. They consider spacecraft navigation. 2087

Reference [91] point out that robust KFs that allow for 2088

heavy-tailed noise distributions and that approximate the 2089

posterior by variational Bayes are only robust to additive 2090

outliers, while a Huberization of the residuals such as done 2091

in [269] also robustifies against IOs. Moreover, they point 2092

out that anomalies are often multi-modal, which cannot be 2093

represented by t-type distributions. 2094

Reference [38] use a standard KF, but reduce the dataset 2095

to inliers using RANSAC before, for lane detection and 2096

tracking. 2097

Reference [37] consider measurement outliers in collabo- 2098

rative localization and downweight them in an KF scheme 2099

where the weights are computed via the Stahel-Donoho 2100

estimator. 2101

Reference [196] consider additive outliers and propose to 2102

identify them by computing the matrix 2103

Bt = ZtPt|t−1ZTt + ZtQtZTt + Vt . 2104

The i-th component of an observation is flagged as outlier if 2105

the i-th diagonal element of (Y t −ZtX t|t−1)(Y t −ZtX t|t−1)T 2106

is larger than Bii, multiplied with some weight. If an outlier 2107

is detected, the corresponding predicted state and covariance 2108

matrix are corrected via component-wise scaling. Their 2109

method is applied to aircraft tracking. They argue that their 2110

algorithm achieves real-time performance as the computation 2111

time is lower than 100 ms per frame. 2112

Reference [380] integrate outlier detection and suppression 2113

into a variational Bayes approach by using sliding windows. 2114

First, they allow for heavy tails by using a t-distribution 2115

for both the measurement and process noise. In their sliding 2116

window approach, the posterior for each time step in the 2117

window are updated by using a constant measurement and 2118

state covariance matrix within each sliding window. In addi- 2119

tion, in each window, for each covariance matrix, an auxiliary 2120

variable is considered which scales the covariance matrix, 2121

allowing for outlier suppression in the respective window. 2122

The posterior for the states, covariance matrices and auxiliary 2123

variables is approximated jointly by variational inference. 2124

They apply their method to tracking a car in a simulated and 2125

in a real-world experiment. 2126

Reference [87] point out that the EKF performs linear 2127

approximations based on the estimations from the previous 2128

step, so that errors may even increase. They also point out 2129

that the computational complexity dramatically increases 2130

when trying to robustify the EKF. They criticize the H∞- 2131

filtering approach (e.g., [285]; see Sec. V), which interprets 2132

outliers as bounded uncertainty, to be too pessimistic. The 2133

idea in [87] is to detect outliers in the innovations and to clip 2134

them, i.e., 2135

max(−k,min(k,Yi,t − (hi(X̂ t|t−1))), 2136

where the clipping height k is adaptively chosen. 2137
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B. ESTIMATION OF VEHICLE PARAMETERS2138

KFs are used in order to provide an estimation of the true2139

underlying state X t , based on the observed noisy state Y t .2140

Of course, provided that an underlying state space model2141

can be formulated, one can estimate vehicle parameters by2142

considering them to be part of the underlying states X t .2143

AHuberized linear KF has been applied in [83] for position2144

estimation of vehicles, in [194] who estimate the position2145

error and mounting angles and yaws as well as lever-arm2146

residuals between data from the INS and a laser Doppler2147

velocimeter or VO, respectively.2148

A Huberized EKF is applied in [332] for center of gravity2149

estimation, which is done by using a state space model that2150

relates the height of the center of gravity and its distance to2151

the front axis with the velocity, [369] consider estimating the2152

rotor angle and speed of a bus. Reference [68] apply robust2153

KFs, including a Huberized EKF and a covariance-scaled2154

EKF, for the estimation of attitude, position and velocity2155

errors, and acceleration and gyro biases of a rover. Several2156

robust KFs, including a Huberized KF, the KF from [45] and2157

several variational filters, have been compared in [69], here2158

with the application to improve wheel-inertial odometry for2159

planetary rovers. The state represents the attitude, position2160

and velocity error, and the acceleration and gyro biases.2161

Reference [292] use a Huberized UKF with adaptive2162

covariance for the navigation of coupled vehicles, [313]2163

consider vehicle state estimation, such as longitudinal and2164

lateral velocities, yaw rate, mass, center of gravity, and2165

moment of inertia.2166

Reference [190] use a Huberized CKF for rotor angle and2167

speed estimation and confirm real-time performance as their2168

algorithm only leads to a slight overhead in the computation2169

time compared to the standard CKF. Reference [189] apply a2170

Huberized CKF to an INS where the state consists of attitude,2171

latitude, longitude, height and velocity errors, gyroscopic2172

drifts, accelerometer biases, and a scale factor error of the2173

Doppler velocity log. A numerically more stable version of2174

the CKF, the square-root CKF, has been Huberized in [139],2175

who use it for state-of-charge (SoC) estimation for lithium-2176

ion batteries. Here, the state represents the SoC and the2177

polarization voltage.2178

The variational filter from [2] has been applied in [277] for2179

the estimation of the internal resistance in the battery system2180

of electric vehicles. Reference [357] apply an EKF with t-2181

distributed observation noise for ship position estimation.2182

Reference [127] use an adaptive KF with the MCC and allow2183

for a time-varying noise covariance via variational Bayes in2184

order to estimate the tire-road forces and the side slip angle2185

of a vehicle. In numerical simulations, their algorithm only2186

requires slightly more computation time than the standard2187

CKF.2188

Reference [52] use the correntropy criterion for the linear2189

KF for the navigation of vehicles in an urban environment.2190

Reference [61] combine the CKF with maximum corren-2191

tropy for spacecraft attitude estimation, [248] consider the2192

estimation of the yaw rate, the lateral and the longitudinal 2193

velocity of a vehicle, [50] consider car mass estimation. 2194

Reference [103] use the MCC for the square-root CKF in 2195

order to estimate velocities, the yaw rate, and wheel rotation 2196

of electric vehicles, [201] consider estimating the yaw rate, 2197

side slip angle and the longitudinal velocity. 2198

Reference [249] scale the covariance matrix corresponding 2199

to the measurement noise of the KF via IGGIII weights and 2200

estimate the SoC of lithium-ion batteries of electric vehicles. 2201

Reference [289] consider, under a static environment 2202

assumption, a linear relation between Doppler velocities 2203

(based on radar measurements) and the ego-velocity. Due 2204

to dynamic features, outliers are generated, which are first 2205

filtered using a sliding window approach where instances 2206

for which the velocity of two subsequent measurements 2207

differs too much or where the velocity differs too much from 2208

the average in the window are discarded. With the filtered 2209

data, robust regression using truncated least squares and the 2210

Cauchy loss is performed. 2211

Robust regression can also be used for velocity estimation, 2212

see, e.g., [300], who consider the objective 2213

min
β

(∑
i
ρH (vi − X iβ)

)
, 2214

for the measured velocities vi and variables such as the mean 2215

traffic speed or the road curvature, that are represented by the 2216

X i. 2217

Reference [258] apply robust M-estimators such as LTS 2218

and LMS, but also consider robustifications of recursive least 2219

squares, for vehicle parameter estimation. Such recursive 2220

objective are important when considering time-varying 2221

systems so that for each time step t , a solution can be 2222

efficiently computed, which is in particular important for 2223

real-time applications. The objective is 2224

min
β

(∑T

t=t0
λt−t0ρ(Yt − X tβ)

)
2225

for some forgetting parameter λ ∈]0, 1]. Reference [258] 2226

also propose to additionally regularize recursive least squares. 2227

They apply these algorithms to mass estimation and tractive 2228

force prediction of vehicles in grey-box models. They use the 2229

model Xβ = Y for 2230

X =

(
g cos(θ ), g sin(θ ) + v′, v2,

v4

4r2P

)
, 2231

β =

(
mfr0 ,m,

ρa

2
Acx ,

m2

cyW

)
, 2232

for the gravitational constant, g, the gradient angle, θ , the 2233

path radius, rP, the rolling resistance coefficient, fr0 , the 2234

mass, m, the vehicle cross-sectional area, A, the longitudinal 2235

drag coefficient, cx , the air density, ρa, the wheel-concerning 2236

stiffness, cyW, and the velocity, v. X takes the role of the 2237

measured input and Y represents the tractive force, which 2238

takes the role of the measured output in mass estimation. 2239

Note that a robust estimation of β allows for extracting the 2240
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desired vehicle parameters, here the mass, from the estimate2241

β̂. In [258], Y itself is computed by the model2242

Y =
TR − IW θ ′′

W

rW
,2243

for the rim torque, TR, the wheel moment of inertia, IW , the2244

dynamic wheel radius, rW , and the second derivative θ ′′
W of2245

the wheel rotation angle, θW . They also provide an overview2246

of variables that need to be estimated as they cannot be2247

directly measured. In the above model, the engine torque and2248

the reduced moment of inertia can be assessed by look-up2249

tables, while the velocity, the path angle, and the path radius2250

can be estimated by simple models. They also point out that2251

in the presence of outliers, theMSE is not the correct criterion2252

for validation.2253

Mass estimation has also been considered in [60]. Under2254

the assumption of a nearly flat road, the model Y = Xβ for2255

the longitudinal acceleration Y is approximately valid, where2256

X =

(
Teigif ηT
rW

−
cxAρav2

2
,−g

)
,2257

β =

(
1
m
, fr0 +

Ferr
mg

)T
,2258

where Te is the engine torque, ig the transmission gear, if the2259

final drive ratio, ηT the driveline mechanical efficiency, and2260

where Ferr represents the error of a physical model of the2261

driving force. They consider recursive regression where the2262

objective consists of two parts, one for each component of2263

β. The squared loss is replaced by the three-part redescender2264

going back to [123] for the first part of the objective. In2265

their simulations, they confirm real-time capabilities of their2266

algorithm.2267

Reference [67] consider the estimation of running resis-2268

tances of a train. To this end, they invoke the differential2269

equation2270

∂tv(t) = u(t) − r(v(t)) − w(s(t)),w(s(t)) =
g
ρm

p(s(t))2271

+
k

ρmrT (s(t))
,2272

where u(t) is the tractive and brake effort, r(v(t)) the2273

running resistance corresponding to the velocity, at time t ,2274

respectively, and where ρm is the rotational mass factor,2275

p(s(t)) the gradient of the track at s(t), rT (s(t)) is the radius of2276

the track at s(t), and where k is a gauge factor corresponding2277

to the impact of a curve on the train. For the resistance, they2278

use the model2279

r(v(t)) = r0 + r1v(t) + r2v2(t),2280

for rolling resistance parameters r0, r1, r2. Using time2281

discretization with time step size 1t , one gets the regression2282

model Y = Xβ, for2283

yk = uk − w(sk ) − ak , ak =
v(tk+1) − v(tk )

1t
,2284

2285

β = (r0, r1, r2)T , Xk = (1, vk , v2k ),2286

with the respective quantities at time step k . They consider 2287

a plethora of non-robust and robust loss functions, including 2288

the Huber, Tukey, Cauchy, and Welsch loss. 2289

Reference [32] consider robust parameter estimation for 2290

electric vehicles, including mass, braking parameters, drag 2291

and resistance, electric parameters of asynchronous machines 2292

(such as resistances, inductivities), and parameters of 2293

lithium-ion cells (voltage, SoC, State of Health). They point 2294

out that contamination may arise from wrong measurements, 2295

disturbed transfer, phases with low system stimulation (when 2296

driving with constant speed), wrongly modelled system 2297

dynamics, or wrong input parameters such as wheel radii, 2298

velocity, driving torque, air density, or acceleration. As for 2299

the longitudinal vehicle dynamics, they consider the model 2300

Y = FA = Xβ for 2301

X =

(
ax , g, gvx , gv4x , 0.5ρav

2
x , a

2
y

)
, 2302

β =

(
(m,mcr,0,mcr,1,mcr,4, cwAFzg,

m2

(4cγRad )T

)
, 2303

for the longitudinal velocity, vx , the longitudinal acceleration, 2304

ax , the lateral acceleration, ay, the rolling drag forces, cr,j, 2305

the air drag force, cw, the surface area projected on the y- 2306

z-axis, AFzg , and the curve drag force, m2/(4cγRad ). Apart 2307

from outlier detection, which has disadvantages when being 2308

applied to embedded systems due to a large memory and 2309

computational burden due to the recursive estimations, [32] 2310

propose a robust version of recursive least squares, including 2311

exponential forgetting, regularization and parameter range 2312

constraints, see [32, Alg. 3.8], which is solved by an IRWLS 2313

procedure. As for the robustness aspect, the weighted RLS 2314

objective 2315

min
β

(
1
n

∑T

t=t0
λt−t0w(r2t (β))

)
2316

is considered, where w is a weight function such as the Huber 2317

weight function. As for electric parameters, they consider the 2318

model 2319

Y =∂tuαS+npωmu
γ
S =



∂2t i

α
S + ∂t (npωmi

γ
S )

∂t iαS
−uαS

∂t iαS + npωmi
γ
S

iαS



T

σBlLS
LS

RR
LR

RR
LR
RS
RS

RR
LR

 2320

= Xβ, 2321

for currents, i, voltages, u, electric resistances, R, and 2322

inductivities, L, where the subscripts S and R refer to the 2323

stator and the rotor, respectively, and where superscripts α 2324

and γ refer to the coordinate system of the asynchronous 2325

machine. ωm is the mechanical rotor drive, np the number of 2326

pole pairs, and σBl the scattering coefficient. Although they 2327

do not apply their robust RLS procedure here, they analyze 2328

problems that arise when applying the non-robust variant and 2329

propose a Savitzy-Golay smoothing of the signal in order to 2330
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compute ∂2t i
α
S . In lithium-ion cells, the model2331

Y (k)
= U (k)

akk = (1,U (k−1)
akk , I (k)akk, I

(k−1)
akk )β2332

for β = ((1 − a1UOC, a1, a2, a3) is assumed, for voltage2333

Uakk, current Iakk and open circuit voltage UOC of the cell,2334

and quantities a1, a2, a3 that are given in terms of the time2335

step size, inner resistance R0, and resistance R1 and capacity2336

C1 of the RC branch, respectively. They apply their robust2337

RLS variant here.2338

C. BOUNDING BOX ESTIMATION2339

Reference [154] propose a robust estimation of future2340

bounding boxes, including their uncertainty. Given an anchor2341

box B0, let T (t) = [Tx(t),Ty(t),Tw(t),Th(t)] : R →2342

R4 be the transformation at time step t from B0 to the2343

ground-truth prediction boxB∗(t) where the indices represent2344

the x- and y-position of the center, the width and the2345

height of the bounding box, respectively. Then, the proposed2346

confidence-weighted Huber loss is2347

Hk (u, u′, σ ) = ln(c)2348

+

{
(u− u′)2/(2σ 2), |u− u′

| < k
kσ−2

|u− u′
| − k2/(2σ 2), |u− u′

| ≥ k
,2349

for a normalizing constant c and a scale parameter σ > 0.2350

They propose to set k to the estimated uncertainty σ̂ , scaled2351

by some constant factor. As for the objective, they consider2352

minimizing the discrepancies of the dimension-individual2353

means, i.e.,2354

min
θdB,θ

d
σ

(∑
d
Hd (T ∗

d (t), T̂d (t, θ
d
B), σ̂d (t, θ

d
σ ))
)
,2355

where T̂d and σ̂d are estimators for the transformation and the2356

uncertainty by a neural network, with individual parameters2357

θdB and θdσ , respectively. Experiments were performed on the2358

KITTI “raw” dataset. The first 20 frames of a tracklet serve2359

as training sample, the prediction horizon consists of the2360

following 10 frames.2361

The Huber loss is also referred to as “smooth l1-loss”, only2362

up to a scaling, in the deep learning literature. For example,2363

[53] use this loss function as orientation loss and bounding2364

box offset loss, [54] for the 3D box regression loss, [175] use2365

it for all regression losses in 3D object detection. In 2D object2366

detection, algorithms such as Fast R-CNN [108] use this loss2367

function. Reference [15] propose to use a convex combination2368

of the IoU loss and the Huber loss.2369

D. DETECTION OF ROAD FEATURES2370

Reference [302] consider the detector YARF (yet another2371

road follower), which uses Robust Statistics in order to detect2372

road features. They propose the model2373

Yi = β0 − βr0 + β1Xi + 0.5β2X2
i ,2374

where βr0 is the offset from the road spine, β0 the Y -intercept2375

of the spine arc, β1 the heading w.r.t. the tangent of the spine2376

arc at β0 and where β2 is the curvature of the spine arc,2377

where the positions are given by (X i,Yi). The coefficients are 2378

estimated using LMS. 2379

References [234] and [235] consider the problem of road 2380

surface extraction from 3D point clouds and apply a robust 2381

variant of locally weighted regression based on the Tukey 2382

loss, i.e., they minimize 2383∑
i
ρT (r̃i)w(X i)(Yi − fβ (X i))2, 2384

where r̃i = ri/σ̂ for σ̂ being the MAD of (|r1|, . . . , |rn|), 2385

where the weight function w is the tri-cube weight function 2386

w(X i) =


[
1 −

(
||X i − X j||2

maxj∈N (X i)(||X i − X j||2)

)3
]3
, j ∈ N (x)

0, j /∈ N (x),

2387

for a local neighborhood N (X i) of X i, and for some 2388

potentially non-linear function fβ . The residuals after the fit 2389

indicate whether the individual points belong to the road 2390

surface or whether they are non-ground/3D surface points. 2391

E. OTHER APPROACHES 2392

Outlier detection is a popular topic in data analysis. It is 2393

therefore out of scope for this paper to list all the literature 2394

where some kind of outlier detection has been performed 2395

in the context of autonomous driving. Just as an example, 2396

consider the work of [345] who have data from nmicrophone 2397

arrays which are located as known 2D-positions pi, i = 2398

1, . . . , n, which measure angles of arrival from an object 2399

with the goal to determine its position p0. In an iterative 2400

manner, first the m microphone arrays with the smallest 2401

distance to a particular object are identified based on an 2402

initial estimate p̂0 of the object’s position, which form a 2403

reference set. Then, the matrices Pi = (p̂ij)j=m+1,...,n, i = 2404

1, . . . ,m, are formed, where p̂ij is the estimated position 2405

of the object when replacing pj with pi. Using the robust 2406

Mahalanobis distance where the mean and covariance of the 2407

Pi are estimated robustly in the spirit of the Gnanadesikan- 2408

Kettenring estimator [109], some instances are flagged as 2409

“outliers”. Finally, the position of the object is estimated 2410

using WLS where the outlying instances are downweighted 2411

accordingly. 2412

Reference [36] use median regression for trend estimation 2413

in GPS time series based on the Theil-Sen estimator 2414

v̂ = medi<j

(
zj − zi
tj − ti

)
2415

for the velocity, where each zi represents the coordinate at 2416

time ti. As a pre-processing step, outlier detection is done 2417

where the slope is computed for each data pairs, removing all 2418

pairs for which the slope has a distance larger than 2 MADs 2419

from the median. 2420

Reference [204] estimate the orientation changes of a 2421

vehicle based on radar images. After an MAD-based outlier 2422

removal, the surviving pairs of reference and data images 2423

are considered and the rotation and scale is estimated 2424

using Tukey’s biweight function. At the end, the estimation 2425
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is refined by minimizing the Cauchy loss, evaluated at2426

Mahalanobis-type residuals arising from the previous estima-2427

tion step.2428

Reference [23] propose a whole family of loss functions,2429

including robust ones as special cases, given by2430

ρ(r, α, τ ) :=
|α − 2|
α

( ( r
τ

)2
|α − 2|

+ 1

)α/2
− 1

 ,2431

with a scale parameter τ > 0 and a shape parameter α. The2432

special cases α = −∞, α = −2, α = 0, α = 2 correspond2433

to the Welsch loss, the Geman-McClure loss, a smoothed2434

version of the l1-loss and the squared loss, respectively. They2435

apply several particular loss functions from this family to2436

tasks such as monocular depth estimation and fast global2437

registration.2438

Reference [347] consider the truncated least squares2439

problem2440

min
z

(∑
i
min

(
(z− Yi)2

σ 2
i

, τ 2

))
2441

for the inlier standard deviation σi corresponding to Yi. They2442

show that general geometric perception problems such as2443

pose, rotation or 3D structure estimation can be formulated as2444

such a problem. They solve it by a convex relaxation. Their2445

relaxation is extended in [348] to robust loss functions such as2446

the Huber loss or Tukey’s biweight loss where it is applied to,2447

for example, point cloud registration, pose estimation, shape2448

estimation, and rotation averaging.2449

Reference [241] propose the version2450

ρH ,k (Yi, Ŷi) =

 |Ŷi − Yi|, |Ŷi − Yi| ≤ k
(Ŷi − Yi)2 + k2

2k
, |Ŷi − Yi| ≥ k

2451

of the Huber loss function for depth estimation, where the2452

Yi are the pixel values in the ground truth depth-map, the Ŷi2453

their predictions, and where the threshold k is given by k =2454

0.2maxi(|Ŷi − Yi|). This loss is one component of an overall2455

loss that is composed by this pixel loss and a loss function2456

for structural similarity and for the intensity gradients of the2457

pixels, respectively. Contamination may arise from inherent2458

blurs in images.2459

As for GNNs, which are a backbone of many computer2460

vision methods, [105] consider a robust aggregation of the2461

embedded features of neighboring points in GNNs. They2462

replace the usual sum or mean aggregation, which opens2463

the door for distorted aggregated embeddings due to single2464

perturbed points (as the BDP of an arithmetic mean is zero),2465

by a smoothed medoid aggregation, which is computed by2466

∑
i
wiX i, wi =

exp
(
−δ−1∑

j ||X j − X i||

)
∑

k exp
(
−δ−1

∑
j ||X j − Xk ||

)2467

for some parameter δ that controls the approximation to the 2468

original solution 2469

argminy
(∑

i
||X i − y||

)
. 2470

The solution to the smoothedmedoid problem approaches the 2471

arithmetic mean for δ → ∞ and the exact medoid for δ → 0. 2472

They show that the soft medoid procedure has a BDP of 2473

0.5. As for contamination, they assume that an adversary can 2474

perturb a fraction of the aggregation points. Reference [104] 2475

propose the Soft Median aggregation which requires less 2476

memory capacities than the Soft Medoid aggregation while 2477

maintaining the BDP of 0.5. It is given by 2478

softmax(−cδ−1p−1/2)TX 2479

for the vector c consisting of components cj = ||X̄ −X j|| and 2480

for the node attributes X ∈ Rn×p of the graph to which the 2481

GNN is applied. 2482

Deep fundamental matrix estimation has applications 2483

in 3D perception, for example, for the projected retinal 2484

image coordinates p corresponding to 3D coordinates of 2485

the corresponding point, a fundamental matrix F satisfies 2486

pTFp = 0. Having an initial estimate for F , [367] propose to 2487

refineF by computing the signed distances r2i and flagging all 2488

points for which r2i is larger than a certain multiple of a robust 2489

scale estimate as outliers and then consider an LTS approach 2490

where only the residuals from the non-flagged instances enter. 2491

Reference [254] propose to estimate the inlier distribution 2492

during the optimization. In their context, the optimization 2493

problem is 2494

min
θ

(∑
i
||Apiθ ||

2
)

s.t. ||θ || = 1, 2495

for somematrixA. This problem can approximately be solved 2496

by solving iteratively 2497

xj+1
= argmin||x||=1(||W

j(θ )Ax||2) 2498

for a weight matrix W (θ ). They propose to learn the weights 2499

by a deep neural network, so that they essentially have a 2500

meta-algorithm of IRWLS. Identifying the solution in one 2501

step of the IRWLS problem as a right singular vector of 2502

W (θ )A for the weight matrix W (θ ), they show that θ can 2503

be learned by backpropagation through an SVD layer. This 2504

technique is applied to fundamental matrix estimation. 2505

V. APPLICATIONS IN AUTONOMOUS DRIVING: 2506

PREDICTION AND PLANNING 2507

In this section, we collect robust approaches for prediction 2508

and planning. The first two subsections are devoted to RL 2509

and IL. Here, the ego-vehicle has to learn by experience 2510

(typically, via simulations) how to behave in which situations, 2511

so the own actions and, implicitly, the evolution of the states 2512

of surrounding vehicles, are learned. The third subsection 2513

considers MPC, where models for vehicle dynamics are used 2514

in order to predict the state evolution for the surrounding 2515

traffic participants and the ego-vehicle based on the observed 2516

current state. In all cases, reliable perception is important (see 2517
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Fig. 1). Nevertheless, robust planning approaches may safe-2518

guard partially against misperception, and can, in addition,2519

also cope with other types of peculiarities such as adversarial2520

driving behaviors of the surrounding traffic participants.2521

The fourth subsection addresses Byzantine robustness, which2522

becomes important when performing federated or distributed2523

RL training.2524

A. REINFORCEMENT LEARNING2525

RL considers a Markov decision process (S,A,ℶ, γ,R) for2526

a state space S , an action space A, a set ℶ of transitions,2527

a discount factor γ ∈]0, 1], and a reward function R :2528

S × A × S → R that assigns a real-valued reward to a2529

state-action-state triple (st , at , st+1), where st+1 is the state2530

into which the system is translated in the next time step2531

after action at was executed in state st . The transition model2532

may either be deterministic, so that ג ∈ ℶ is a mapping2533

(s, a) 7→ ,s)ג a) ∈ S, or stochastic, so that a density value2534

Pג(s′|s, a) is assigned to (s, a). The goal is to learn a policy π2535

which is either deterministic, i.e., a map π : S → A so that2536

π (s) is the action taken when being in state s, or stochastic,2537

i.e., π : S × A → [0,∞[ so that π(s, a) assigns a2538

density value to the state-action pair (s, a). We abbreviate2539

R(st , at , st+1) =: Rt . The value function for a given state s2540

is the expected future reward that the agent receives when2541

following policy π , i.e.,2542

V π (s) = IEπ

[∑∞

t ′=t
γ t

′
−tRt

∣∣∣∣st = s
]
.2543

TheQ-function similarly assigns a value to a state-action pair2544

(s, a) in the sense that, starting with st = s, one does not let2545

the policy choose the initial action at but starts with a given2546

action a at the initial state s.2547

In RL or MPC, the term “robustness” is often understood2548

as adversarial robustness, hence many robust RL algorithms2549

perform adversarial training. However, in contrast to adver-2550

sarial attacks in classical machine learning where a model2551

is trained on a static dataset and where adversarial attacks2552

are computed after model training, decoupling them from2553

the training procedure, adversarial attacks in RL are used2554

for adversarial training where an adversarial agent challenges2555

the ego-agent, indeed affecting the training procedure. This2556

makes the notion of adversarial robustness in RL inherently2557

close to Robust Statistics.2558

For example, adversarial RL approaches have been applied2559

to train an agent for autonomous driving, see [256], who2560

propose a minimax game where the adversarial agent min-2561

imizes the objective that the ego agent aims at maximizing2562

(up to a different regularization parameter). References [247]2563

and [257] suggest similar minimax games. References [256]2564

and [257] apply their method to a scenario where the ego2565

vehicle aims at crossing a 4-way intersection, where adver-2566

sarial vehicles drive on the lanes the ego vehicle has to cross.2567

Reference [134] consider adversarial attacks against the2568

agent’s observations in highway scenarios, which is trained2569

according to maximizing the Jensen-Shannon divergence2570

between the π (s, ·) and π (s̃, ·), for the perturbed state s̃ of 2571

s. In [133], the worst-case observational perturbations are 2572

computed by an adversary using the FGSM scheme [111]. 2573

They consider highway, intersection, and on-ramp scenar- 2574

ios with episode lengths of 300, 30 and 30 time steps, 2575

respectively. They observe much higher computational costs 2576

than for standard RL algorithms, which is a consequence 2577

of the approximation of the worst-case perturbations by a 2578

Bayesian approach. In [130], the management of a fleet of 2579

electric vehicles is considered, where one has one agent 2580

for each region of the map who can displace vehicles 2581

into adjacent regions or to charging stations. Here, the 2582

adversarial attack is a perturbation of the observed states 2583

of the region’s agents, which consist of the number of 2584

vacant and low-battery vehicles, information about charging 2585

spots, and demand. The objective is a minimax game, and 2586

both the region’s and the adversary’s policies are updated 2587

iteratively. Reference [84] propose to discount the adversary’s 2588

reward and to constrain the number of attacks by an upper 2589

bound, encouraging to only attack in critical situations. Their 2590

method is applied for left-turn in an intersection and on-ramp 2591

merging. Reference [117] consider state attacks and optimize 2592

the worst-case discounted reward, while the adversarial 2593

agents aim at performing the action that minimizes the 2594

victim’s reward. In a simulation framework, they consider 2595

driving scenarios with an obstacle. 2596

In addition,many approaches concerning robust control are 2597

given in the literature. One can distinguish between minimax 2598

games where one searches for the policy the maximizes 2599

the cumulated reward/minimizes the cumulated cost given 2600

the worst-case trajectory or worst-case transition model 2601

(similarly as above in the adversarial RL approaches, but 2602

with the difference that the adversarial agents trained in these 2603

approaches do not necessarily reflect worst-case situations), 2604

risk-sensitive criteria where an individual riskmeasure is used 2605

as objective, and constrained criteria where the reward should 2606

be maximized subject to several constraints, see [99]. 2607

More formally, the worst-case criterion under parameter 2608

uncertainty corresponds to the objective 2609

max
π∈5

(
min
P∈ℶ

(
IEπ,P

[∑∞

t=0
γ tRt

]))
, 2610

for a setℶ of transitionmatrices, and a set5 of policies, while 2611

the worst-case criterion under inherent uncertainty is given by 2612

max
π∈5

(
min
ω∈�π

(
IEπ,ω

[∑∞

t=0
γ tRt

]))
, 2613

for a set �π of trajectories that are allowed under policy 2614

π [101]. E.g., [232] consider the worst-case criterion under 2615

parameter uncertainty for finite state-action spaces and apply 2616

the method to aircraft routing. 2617

Another example of a minimax criterion is the robust 2618

Bellman TD operator introduced in [279]. The objective is 2619

the expected squared temporal difference 2620

1
2
IEot∼PO [(δ

nominal
t,w′ (wt , ot ))2] 2621
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for2622

δnominal
t,w′ (wt , ot ) = Y nominal

t,w′ (ot ) − Qwt (st , at )2623

for the weightsw′ of the target network, the current parameter2624

wt of the approximation Qwt (s, a) of the true Q-function, the2625

distribution PO of the observations, and the nominal targets2626

Y nominal
t,w′ (ot ) = Rt + γ max

a′
(Qw′ (st+1, a′))2627

for observation ot = (st , at ,Rt , st+1) at time t . In the robust2628

Bellman TD formulation, one still considers the squared TD2629

error but a robust minimax target label2630

Y robust
t,w′ (ot ) = Rt+γ min

U∋ג
2631 (∑

s′∈S(st ,at )
s′|st)ג , at ) max

a′
(Qw′ (s′, a′))

)
.2632

for the set S(st , at ) of all possible states at time (t + 1) given2633

st and at under the uncertainty set U .2634

Reference [44] consider policy gradient descent and2635

replace the squared differences of the predicted Q-values2636

for given state-action pairs and the observations by the2637

absolute differences and the Huber losses. They apply their2638

algorithm for autonomous parking and consider scenarios2639

with 100 time steps. In their experiments, the Huber loss2640

allows for quicker convergence, finally resulting in an2641

even decreased training time in comparison with training2642

according to the MSE and the MAE. Other occurences of the2643

Huber loss in RL include the training of ecological behavior2644

in front of red traffic lights [223], vehicle control (left/right2645

turn, acceleration/deceleration, [354]), and in (simulated)2646

environments for a mountain car and a lunar lander [43].2647

In contrast to the minimax approach where the adversarial2648

realization is considered to be the worst from a given2649

uncertainty set, distributionally robust optimization optimizes2650

an expectation which is not computed w.r.t. the ideal2651

distribution but w.r.t. a set of distributions that contains the2652

ideal distribution. In light of Sec. III, one can interpret this2653

as an optimization of an expectation w.r.t. a contamination2654

ball (although, in the literature, one not necessarily uses the2655

classical contamination balls fromRobust Statistics). In [132]2656

(although actually not an RL approach, as there is no learned2657

policy but the optimization problem is solved periodically2658

with new data), the goal is to manage a fleet of electric2659

vehicles according to the mobility demand and charging2660

requirements. Here, the worst-case expected cost (w.r.t. sets2661

of distributions that model the demand and the supply,2662

respectively) is minimized over the number of dispatched2663

vehicles across the regions. Here, the sets of distributions are2664

confidence sets, estimated from historical data.2665

Reference [282] consider state measurement errors and2666

formulate the idea of smoothness regularizers that should2667

encourage the differences betweenπθ (s) andπθ (s̃) to be small2668

if the difference of s and s̃ is small. Assuming s ∈ Rp, the2669

smoothness regularizer has the form2670

Rs(πθ ) = IE
s∼P

πθt
S

[ max
s̃∈B(s,ϵ)

(D(πθ (s), πθ (s̃))]2671

for the state visitation distribution PπS induced by a policy π 2672

and the lp-ball B(s, ϵ) around swith radius ϵ. For the distance 2673

D, they use the Jeffrey’s divergence 2674

DJ (P||Q) =
1
2
DKL(P||Q) +

1
2
DKL(Q||P) 2675

for stochastic policies and the Euclidean norm for determin- 2676

istic policies. The agent is then trained w.r.t. the objective 2677

to maximize the Q-function, penalized by the smoothness 2678

regularizer. 2679

Reference [131] consider multi-agent RL with electric 2680

vehicles and argue that the individual charging patterns 2681

lead to additional model uncertainties with the goal to 2682

distribute the electric vehicles fairly among different regions 2683

while allocating low-battery vehicles to charging stations, 2684

minimizing the overall costs. For a cost function c, denote 2685

the worst-case state value function by 2686

vπc (s) = min
(r,0ג)Uc∋ג

(
IEπ

[∑∞

t=1
γ t−1c(st , at )

∣∣∣∣s1 = s
])

2687

for the uncertainty set Uc(0ג, r) =
⊗

s∈S,a∈A ,s)ג a) where 2688

each ,s)ג a) is a convex contamination ball around the true 2689

transition distribution ,s)0ג a) with contamination radius r , 2690

i.e., 2691

,s)ג a) = {(1 − r)+0ג(s, a) + min(1, r)Q|Q ∈ M1(S ×A)}. 2692

The objective for finding the optimal policy is then 2693

max
π

(vπr (PS )) s.t. vπc (s) ≥ τ ∀s ∈ S, 2694

for some threshold τ and 2695

vπr (s) = min
(r,0ג)Uc∋ג

(
IEπ

[∑∞

t=1
γ t−1Rt

∣∣∣∣s1 = s
])

2696

and vπ∗ (PS ) = IEs∼PS [v
π
∗ (s)] for ∗ ∈ {c, r}. 2697

B. IMITATION LEARNING 2698

Robust approaches for RL also carry over to IL. 2699

Random perturbations of trajectories, which can be 2700

understood as an untargeted adversarial training, have been 2701

considered for IL in [19] who trained an autonomous driving 2702

agent based on expert trajectories. In [298], one perturbs 2703

the action selected by the agent by an adversarial action 2704

that should drag the vehicle from the intended path. In their 2705

setting, one is provided with future states by an expert. 2706

An inverse dynamics model (IDM) is applied to find suitable 2707

actions that allow the vehicle to attain these states. The policy 2708

is trained according to the reward function 2709

−||aIDM − (aθ + aω)||2, 2710

for the policy’s action aθ and the adversarial action aω, so the 2711

agent should learn to imitate the optimal action by adjusting 2712

for the adversarial action. In order to decourage too harsh 2713

adversarial actions, they only inject an adversarial action with 2714

a certain probability and further restrict the adversarial action 2715

to a certain interval. 2716
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Reference [183] consider a minimax criterion where an2717

uncertainty set around the true observation is considered. This2718

uncertainty set is given by coordinate-wise l1-balls around2719

the true state component. They consider simulated driving2720

scenarios with traffic lights and intersections.2721

Reference [138] introduce an IL algorithm based onGANs.2722

They start with a regularized form of inverse RL with the2723

objective2724

argmaxc(−J (c)+min
π

(−H (π )+IEπ [c(s, a)])−IEπE [c(s, a)]),2725

where c denotes a cost function, H the γ -discounted2726

causal entropy and πE the expert policy. In order to2727

prevent overfitting, they propose to regularize this objective2728

with a convex regularizer J , inducing the additional term2729

−J (c). Denoting this regularized objective by ILJ (πE ), and2730

considering the RL objective2731

RL(c) = argminπ (H (π ) + IEπ [c(s, a)]),2732

[138, Prop. 3.2] shows that2733

RL ◦ ILJ (πE ) = argminπ (−H (π ) + J∗(OMπ − OMπE )),2734

for the occupancy measure2735

OMπ (s, a) = π (a|s)
∑∞

t=0
γ tP(st = s|π).2736

Now, [138] connect GANs with RL with the choice2737

J (c) =

{
IEπE [g(c(s, a))], c < 0
∞, c ≥ 0

,2738

g(x) =

{
−x − ln(1 − ex), x < 0
∞, x ≥ 0

,2739

for which2740

J∗(OMπ − OMπE ) =2741

max
D

(IEπ [D(s, a)] + IEπE [ln(1 − D(s, a))]),2742

where D is taken from the set of all discriminative classifiers2743

on S ×A. This leads to the task of finding a saddle point of2744

IEπ [ln(D(s, a))] + IEπE [ln(1 − D(s, a))] − λH (π ).2745

With parametrizations Dω and πθ , this task can be solved in2746

a GAN-style by alternatingly updating the parameters for the2747

discriminator and the policy, respectively.2748

Reference [220] propose to induce a Lipschitzness of both2749

the discriminator and the policy by replacing the entropy2750

regularizer H (π ) with the regularizer2751

R(D) =
1

|D|

∑
(s,a)∈D

|Dω(s+ δs,aa) − Dω(s, a)|,2752

δs,a = argmax||δ||2≤r (|Dω(s+ δ, a) − Dω(s, a)|),2753

for training data D and discriminator network Dω. The2754

motivation is to better cope with observation noise. Their2755

method is applied to robot locomotion.2756

Reference [176] train an adversarially robust IL agent via2757

a minimax game where the adversary aims at minimizing2758

the objective the agent aims at maximizing (the entropy- 2759

regularized advantage function). In order to stabilize training, 2760

they suggest regularizing the objective of the ego-agent by a 2761

distillation loss term. 2762

Similarly, [316] propose to alternatingly train an IL agent 2763

and an adversary where the latter learns to perturb the states 2764

in order to let the agent fail. Let the attack policy πadv assign 2765

a density πadv(·|s) to a state s in order to produce some 2766

adversarial state s′. They then distinguish between sensory 2767

attacks, where the observed states are perturbed, or physical 2768

attacks, where the state itself is perturbed, resulting in a 2769

perturbation of the observed state and letting the transition 2770

model produce the next state based on the perturbed state. The 2771

objective is then to learn a policy under all possible attacks, 2772

i.e., 2773

min
π

(max
πadv

(J (π, πadv))) 2774

for 2775

J (π, πadv) = IE
[∑

t
ρ(at , πE (st ))

∣∣∣∣ 2776

at ∼ π (πadv(st )), st+1 ∼ st|·)ג , at )] 2777

in the case of sensory attacks, or 2778

J (π, πadv) = IE
[∑

t
ρ(at , πE (st ))

∣∣∣∣ 2779

at ∼ π (πadv(st )), st+1∼ג(·|πadv(st ), at )] 2780

in the case of physical attacks, respectively, for some loss 2781

function ρ that penalizes the discrepancy between two 2782

actions. 2783

A typical approach from Robust Statistics, namely a 2784

robustification of the objective, is done in [240] who consider 2785

value function estimation and who point out that this is 2786

usually done by minimizing the squared Bellman error. I.e., 2787

for Bellman operator 2788

(T V )(s) = IE[Rt+1 + γ t+1V (st+1)|st = s], 2789

this objective is given by 2790

min
θ

(∑
s∈S

PS (s)((T Vθ )(s) − Vθ (s))2
)

2791

for some distribution PS on S and an approximation Vθ 2792

of the true function V π for which (T V π ) = V π holds. 2793

Reference [240] propose to replace the squared loss by the 2794

absolute or the Huber loss and show how these new objectives 2795

can be minimized. 2796

Reference [198] consider IL if contamination in the 2797

classical Tukey-Huber sense are allowed, i.e., in the pool of 2798

offline demonstration data, a fraction of ϵ of the instances 2799

(state-action pairs) can be arbitrarily corrupted (note that this 2800

fraction is deterministic as in the BDP context, not stochastic 2801

as in convex contamination settings). They propose to 2802

randomly partition the data intoB batches and to use themean 2803

of the likelihoods in each batch as the objective, so the overall 2804

objective is the median of the means for which they propose 2805

a gradient-based optimization algorithm. This contamination 2806
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model has also be considered in [365] and [366] for RL with2807

policy gradient. More precisely, in [366], an ϵ-fraction of2808

transitions can be modified arbitrarily while in [365], both2809

an ϵ-fraction of rewards and transitions can be perturbed2810

arbitrarily, therefore, they call this contamination scheme2811

“strong data corruption”.2812

Reference [366] point out that many of the existing robust2813

RL methods consider offline RL, where they distinguish2814

between online RL, i.e., an adversary can adapt their2815

perturbation in each iteration, and offline RL, where the2816

contamination must be generated prior to training. In [365],2817

in contrast, the ϵ-contamination scheme is designed for online2818

learning in the sense that the adversary can decide in each2819

iteration whether to replace the current reward and the new2820

state with arbitrary values, with the restriction that this can2821

only be done in at most ϵmiter training iterations if miter is the2822

maximum number of iterations.2823

Reference [70] assume that reference trajectories or parts2824

of reference trajectories are adversarial in the sense that they2825

accomplish the task with illegal means. Having a small initial2826

set of guaranteed benign trajectories, they detect adversarial2827

trajectories by a divergence measure. To this end, they2828

partition trajectories during training into parts corresponding2829

to sub-tasks and learn sub-policies (options, see [18], [295])2830

for each sub-task. In order to be able to detect adversarial2831

trajectories that only differ from benign ones in some time2832

steps, they propose to use the occupancy measure w.r.t. the2833

clean trajectories, i.e.,2834

OMclean
π (s, a) =

∑
(si,ai)∈τclean

π∗(ai|si)2835 ∑
t
γ tP(st = si|πclean)2836

for a clean trajectory τclean generated by a clean policy πclean2837

and for the optimal policy π∗. Because this measure is zero2838

if two trajectories are very close without overlapping, [70]2839

combine it with the Fréchet distance2840

FD(τ ) = min
α,β

( max
t∈[0,1]

(||τ (α(t)) − τclean(β(t))||2))2841

for functions α, : [0, 1] → {0, 1, . . . , |τ |}, β, : [0, 1] →2842

{0, 1, . . . , |τclean|}. Then, a classifier is trained on the two2843

distance measures in order to decide whether the trajectory2844

part is adversarial or benign.2845

C. MODEL-PREDICTIVE CONTROL2846

In MPC, one assumes a model for the system dynamics, i.e.,2847

st+1 = f (st , ut , νt ),2848

where ut are the control inputs to the system, which are2849

contained in some space U , and control noise νt . In its2850

simplest form, an MPC problem is given by2851

min
u∈U

(∑
t
ρ(rt )

)
s.t. st+1 = f (st , ut ),2852

for the control errors rt = d(sspt , st (ut )) where sspt is the2853

set-point that the agent should follow at time t and where2854

d is some distance measure. The objective is potentially2855

conditioned on other constraints such as that the states and 2856

control inputs should, at least with a certain probability, 2857

be contained in some subspace of S and U , respectively, that 2858

correspond to safe or comfortable behavior, or penalized by 2859

a term that discourages the control inputs to vary too much 2860

over time. 2861

Similar approaches as for RL and IL have also been 2862

introduced for MPC, e.g., replacing the quadratic loss for the 2863

control errors by the absolute loss as in [79] and [227], by the 2864

Cauchy loss [77] or the dynamically scaled covariance loss 2865

introduced in [4], which has been used in [77] as loss function 2866

for MPC. 2867

A minimax formulation of an MPC in order to deal with 2868

worst-case uncertainties goes back to [41]. Reference [362] 2869

propose another minimax formulization where the objective 2870

contains worst-case losses w.r.t. an uncertainty set on the 2871

(discrete) behavior of surrounding vehicles, given as a 2872

probability simplex. Experiments on simulated data with a 2873

time step of 0.1 s and a planning horizon of 5 s confirm 2874

real-time capability. Reference [226] consider the control 2875

of maritime vessels and aim at avoiding collisions. Here, 2876

the obstacles are overapproximated by balls, and due to 2877

tidal effects, their radius changes, i.e., they are modelled as 2878

random variables. Assuming that an empirical distribution for 2879

each radius exists, their robust MPC approach considers an 2880

uncertainty set in the form of contamination balls around each 2881

empirical distribution, based on the p-th order Wasserstein 2882

distance. 2883

Reference [228] point out that robust control approaches 2884

often include robust optimization where the constraints 2885

are only known up to some noise term with the goal to 2886

keep the constraints satisfied for all possible noise terms 2887

for a given uncertainty set, i.e., g(x, ξ ) ≤ 0 for all 2888

ξ ∈ U for some uncertainty set U and some function g, 2889

making the approach rather conservative. The other approach 2890

is distributionally robust optimization where the supremal 2891

expectation of the constraints have to be satisfiedw.r.t. a given 2892

set of distributions w.r.t. which the expectation is computed, 2893

i.e., 2894

sup
P∈ℶ

(IEP[g(x, ξ )]) ≤ 0 2895

for some set ℶ of distributions. Motivated by the functional 2896

view from Robust Statistics, [228] consider the supremum 2897

bias due to the decomposition 2898

sup
P∈ℶ

(IEP[g(x, ξ )]) = IEP̂[g(x, ξ )] + sup
P∈ℶ

(Bias(P, g, P̂)) 2899

with 2900

Bias(P, g, P̂) =

∫
gd(P− P̂). 2901

They compute the supremumbias for the commonly used 1-th 2902

order Wasserstein and MMD metric, resulting in 2903

sup
W1(P,P̂)≤ϵ

(Bias(P, g, P̂)) = ϵLg 2904
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for Lipschitz constant Lg of g w.r.t. the first argument, and2905

sup
MMD(Hg,P,P̂)≤ϵ

(Bias(P, g, P̂)) = ϵ||g||Hg2906

for the RKHS Hg of g, respectively. Due to Lg and2907

||g||Hg being unknown in practice, they propose to control2908

the distributional robustness for the 1-th order Wasserstein2909

distance by2910

ϵmax
i
(||∇xg(xi, ·)||),2911

motivated by Lg ≥ supx(||∇xg(x, ·)||), and for the MMD2912

distance, they prove that the original inequality w.r.t. the2913

supremal expectation is satisfied if there exists h ∈ H for2914

some RKHSH such that2915

max
i
(h(ξi)) + ϵ||h||H) ≤ 0 and g(x, ξ ) ≤ h(ξ ) ∀ξ ∈ U .2916

Another common robust MPC strategy is tube-based MPC2917

where one assumes that there is a function g : 2S ×U × 2Rq
2918

such that g(st ,ut , νt ) ∈ g(S,ut ,N ), where νt ∈ Rq, S ⊂ S2919

and N ⊂ Rq. Furthermore, if S1 ⊂ S2, it holds that2920

g(S1,u,Rq) ⊂ g(S2,u,Rq) for all u ∈ U (e.g., [287]).2921

In other words, the set of all possible forward reachable states2922

is overapproximated by a tube.2923

Reference [287] enhance tube-based robust MPC with2924

collision avoidance constraints and train an autonomous2925

agent for a car. Reference [26] apply robust tube-based MPC2926

to the training of an autonomous driving agent in order to2927

avoid collisions with pedestrians, both uncertain static and2928

uncertain dynamic pedestrians. Reference [25] considerMPC2929

that satisfies safety constraints such as collision avoidance2930

or terminal conditions like a full stop or parking, and allow2931

for the state and controller inputs being as close as possible2932

to a reference input. In simulations with a time step size2933

of 0.05 s and a prediction horizon of 20 s, they confirm2934

real-time performance of their controller. Reference [230]2935

consider a robust tube-based MPC for lane keeping of2936

an autonomous vehicle, [142], [157], [215], [179], [350]2937

(experiencing quicker convergence than standard MPC in2938

their simulations), [20], [57] apply it to path tracking,2939

and [340] to overtaking. Reference [98] consider obstacle2940

avoidance using tube-basedMPC on icy and snowy roads and2941

confirm real-time capability in their experiments. Reference2942

[290] use tube-based MPC for collision avoidance with2943

moving obstacles. Reference [222] use tube-based MPC in2944

order to let multiple agents satisfy platooning requirements,2945

i.e., maintaining the same speed. Reference [244] combine2946

l1-adaptive control, which lets the system behave as a2947

linear model, disregarding uncertainties and perturbations,2948

with tube-based MPC. Delay (even time-varying) as an2949

additional source of uncertainty is also considered, for2950

example in [199], who apply tube-based MPC to steering,2951

and [163], who consider uncertainties in timing due to2952

multiple sources simultaneously, formulate the problem as2953

tube-based MPC, and perform experiments concerning static2954

collision avoidance and overtaking. Reference [329] consider 2955

tube-based robust MPC for autonomous racing. 2956

H∞-control considers the H∞-norm of the transfer func- 2957

tion G of a linear state space model, i.e., 2958

||G||∞ = sup
ω
(σmax(G(jω))) 2959

for the maximum singular value σmax. Optimal H∞-control 2960

considers minimizing ||Tzw||∞ where Tzw denotes the upper 2961

left block of the transfer matrix G, however, as the solution 2962

is often not unique and difficult to compute, one usually 2963

relaxes the problem to satisfying ||Tzw(s)||∞ < γ for 2964

some γ > 0. Reference [275] use H∞-control for adaptive 2965

cruise control and lane change in queues, [116] for path 2966

tracking, cruise control and lane change of electric vehicles, 2967

[159] consider double lane change and serpentine maneuvers 2968

for electric vehicles, [253], [342] steering while driving at 2969

constant speed, [160] path following and lateral stability of 2970

autonomous electric vehicles, [165] path following and lateral 2971

stability of autonomous vehicles, [236] speed and current 2972

control for electric vehicles, [242] collision avoidance, [261] 2973

lane-keeping, [95] lateral control, and [137], [377] path- 2974

tracking. 2975

Reference [278] consider lane change on highways and 2976

model the lane switching behavior of the surrounding 2977

vehicles asMarkov jump process. Letω be a set of parameters 2978

that model the uncertainty of the system. Then, for a sample 2979

{ω̂i}, they compute the empirical distribution P̂n and let the 2980

ambiguity set be the contamination ball around P̂n w.r.t. 2981

the TV distance. The robust MPC approach then solves a 2982

minimax problem, i.e., finding the control sequence that 2983

minimizes that maximum cost over all such distributions. 2984

See also [355] for further references on robust MPC 2985

approaches for autonomous driving. 2986

D. BYZANTINE ROBUSTNESS 2987

Federated and distributed (reinforcement) learning is done 2988

for a lot of recent autonomous driving models, see [319] 2989

and references therein. Therefore, it is important to ensure 2990

Byzantine-robustness of those approaches. Reference [319] 2991

themselves craft poisoning attacks against federated learning 2992

in a non-linear, autonomous steering control scenario, [102] 2993

propose attacks against trajectory prediction via federated 2994

learning. 2995

As for distributed RL, [85] consider Byzantine-robustness 2996

and suggest classical outlier detection in each learning round 2997

by computing the mean of the medians of the estimated 2998

policy gradients of each agent and neglecting those which 2999

differ by a least two standard deviations from this estimate. 3000

Reference [80] consider a general bandit algorithm and 3001

allow for a constant ϵ-fraction of agents to be byzantine, 3002

and propose to compute the shortest interval containing 3003

a fixed fraction of rewards so that the mean reward is 3004

then given by the mean of the rewards contained in this 3005

interval. Reference [58] consider also a trimmed mean in 3006

order to estimate the value function in online and offline 3007

VOLUME 13, 2025 167879



T. Werner: Applications of Robust Statistics in Autonomous Driving

distributed RL. Reference [208] propose a poisoning scheme3008

for federated RL and assume that the attacker can perturb the3009

observations of some of the trained RL agents, but has no3010

information about the underlying MPC. They also consider3011

corrupted critic networks in actor-critic RL. Note that in these3012

settings, the individual distributed agents themselves take the3013

role of the instances in the original understanding of case-3014

wise contamination.3015

Further approaches for Byzantine-robustness that are not3016

directly tailored to federated RL are given in the literature.3017

For example, [35] show that no linear aggregation is3018

Byzantine-robust if one single local model is poisoned.3019

Note that analogy to the non-robustness of the mean or the3020

non-robustness of Bagging. They propose Krum, a technique3021

where essentially a variant of the geometric median is3022

computed, more precisely, the local model with the smallest3023

distance to its nearest neighbors. They show that Krum3024

guarantees Byzantine robustness if the fraction of malicious3025

models is smaller than (n/2 − 1), so one could interpret3026

the fraction of 0.5 of malicious models as “Byzantine-3027

BDP” here. The notion of such a BDP has recently been3028

introduced in [113]. Variants of the geometric median have3029

also been considered for example in [186], [286], and [321],3030

or in [56] and [271] where a geometric median of means of3031

gradients is proposed. Reference [351] consider median and3032

trimmed-mean aggregation of the coordinate-wise gradients3033

reported back from the local learners and analyze statistical3034

error rates. Reference [379] improve their work as the bounds3035

in [351] depend on the dimensionality so that the rates3036

may be sub-optimal in high dimensions and also interpret3037

the minimum fraction of Byzantine models that lead to3038

unreliability of the federated learning procedure as BDP.3039

See [309] for a recent overview of robust federated3040

learning.3041

VI. OUTLOOK AND FUTURE WORK3042

In this section, we outline some ideas of robust strategies3043

that were not yet fully applied to autonomous driving tasks.3044

Moreover, we provide suggestions for benchmarking studies,3045

where different robust algorithms for each of the individual3046

application areas could be compared in order to assess3047

whether some classes of robust algorithms are better suited3048

than other, and to get an intuition about the amount of3049

contamination in typical datasets from the respective area.3050

A. FURTHER STRATEGIES FROM ROBUST STATISTICS3051

The concept of influence functions is rarely seen in the3052

context of autonomous driving in the sense of Robust3053

Statistics, however, the term “influence function” is often3054

used in a physical sense, i.e., quantifying the impact of one3055

physical variable to some property. Influence functions are3056

used as diagnostic tools in deep learning in general, for3057

example, in [174], and they are one of many approaches3058

of XAI (e.g., [16]). [106] propose adversarial attack against3059

influence functions and show that the interpretation of a3060

neural network based on the influence function is also fragile 3061

and highly vulnerable to adversarial attacks. 3062

A particular application in autonomous driving is given 3063

in [301] where influence functions are used in order to predict 3064

the impact of a data point on pedestrian detection. More 3065

precisely, the influence function is used as proxy in order to 3066

predict the differences between the test losses for a model 3067

trained on the original data and a model trained on data where 3068

one instance has been deleted. 3069

Apart from the quantification of the impact of an 3070

observation on the estimator, diagnostics based on influence 3071

curves can be used to generally strengthen the understanding 3072

of the data, for example, whether there are clusters of points 3073

with high impact or by trying to find particular properties that 3074

make data points influential. This strategy may not only be 3075

applied for perception but also for planning in the sense that 3076

certain actions or whole trajectories of adversarial agents are 3077

identified as influential on the RL training result. 3078

Nevertheless, apart from diagnostic purposes, the influence 3079

curve can also be used in order to robustify an estimator 3080

directly through the perspective of local robustness. The 3081

“robust losses” introduced in Sec. III-D themselves induce 3082

bounded influence curves of the corresponding M-estimator 3083

by Eq. 2, however, it is also possible to directly robustify the 3084

influence curves. To this end, a so-called asymptotic linear 3085

expansion of the estimator in the form 3086

θ̂n = θ̂0 +
1
n

∑n

i=1
IC(X i,T ,P) + rem 3087

must be valid, for some consistent initial estimator θ̂0 and a 3088

remainder term rem (see, e.g., [259]). This property holds, 3089

for example, for asymptotically normal M-estimators [259], 3090

SVMs [120], or regularized M-estimators [324]. Given an 3091

influence curve, one can formulate different optimization 3092

problems in order to robustify the underlying estimator, for 3093

example, minimizing the covariance of the influence curve 3094

subject to a bound on the bias, minimizing the MSE [259], 3095

or finding the estimator the achieves maximum asymptotic 3096

relative efficiency even under the worst-case contamination 3097

radius [260]. Such “optimally-robust” estimators do not seem 3098

to have been considered so far for applications in autonomous 3099

driving, but would potentially increase the performance of the 3100

trained models compared to those trained according to the 3101

classical robust losses. 3102

Another topic, which becomes increasingly important 3103

when dealing with high-dimensional data, is variable selec- 3104

tion. Robust variable selection algorithms already have 3105

been proposed in the literature, for example, the sparse 3106

LTS [7], robust Boosting variants [161], [206], or a trimmed 3107

Stability Selection [326]. Such techniques could be applied 3108

in situations with high-dimensional state spaces in order to 3109

identify relevant variables. 3110

In the reviewed literature, except for those considering 3111

Kalman filters where contamination in the innovations 3112

has already been regarded, one does often not distinguish 3113

between contamination in the responses and contamination in 3114
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the regressor variables. This distinction is however important3115

because one can argue that outliers in the responses, given3116

clean predictor columns, may naturally be bounded or3117

that large errors may be detectable in advance, implying3118

that unbounded loss functions with a bounded gradient3119

such as the Huber loss function are not problematic here.3120

However, outliers in the predictor columns are known to3121

be more challenging. This situation would even be natural,3122

as the predictor variables are also measurements in some3123

applications such as location estimation via GPS data, where3124

coordinates or clock offsets enter as predictor variables,3125

or vehicle parameter estimation such as tractive forces3126

or electric parameters, where variables such as velocity3127

or voltages are used as predictor variables. Moreover,3128

contamination in the predictor variables occurs when one3129

cannot assume perfect reference data. For example, bounding3130

box estimation is often accompanied with ground truth3131

coordinates, which may be imperfect due to errors done3132

by human annotators, or the reference trajectories in IL are3133

corrupted. Here, robust estimation techniques that allow for3134

this type of contamination, which is more challenging than3135

just considering contamination in the responses, allow for3136

addressing such situations.3137

Large measurement errors that are a source of contam-3138

ination in the data are especially problematic in data with3139

a high number of variables and a rather low number of3140

observations. Here, the fraction of contaminated instances3141

can quickly become very large, as a single contaminated3142

cell already makes an instance an outlier (e.g., [10]).3143

Therefore, cell-wise robust approaches have recently been3144

proposed in the literature, i.e., algorithms that can cope3145

with a certain fraction of contaminated cells, even if all3146

instances would be contaminated. For example, there are3147

cell-wise robust counterparts of location and scatter matrix3148

estimation algorithms [5], [180], regression [39], [90], [181],3149

and clustering [100]. In high-dimensional data with an3150

admissible cell-wise contamination scheme (which could3151

be a random selection of perturbed cells as, e.g., having3152

contamination on the response column only would not3153

allow for any advantage of cell-wise robust over case-wise3154

robust algorithms, see [326]), the application of cell-wise3155

robust procedures could improve the robustness against large3156

case-wise contamination rates, even potentially becoming an3157

alternative to RANSAC and its variants.3158

Outlier detection algorithms have been applied in advance3159

to the data in many references. Unless one faces univariate3160

samples, one should be aware of several pitfalls when3161

trying to detect outliers in multivariate data (see, e.g.,3162

[121]). A single large outlier in a multivariate sample can3163

make other outliers invisible, essentially due to deforming3164

the confidence region in a way that other outliers fall3165

within this region, which is referred to as “masking effect”.3166

Similarly, non-contaminated observations can, due to the3167

same reason, be located outside the confidence region so3168

that they are incorrectly flagged as outliers, which is referred3169

to as “swamping effect”. Therefore, one should not apply a3170

classical outlier detection algorithm on the dataset once and 3171

consider the non-flagged observations as clean. In addition, 3172

when assuming an underlying model, as in regression, simply 3173

detecting outliers in a model-agnostic way is unlikely to 3174

find instances whose entries are insuspicious but which 3175

appear as outliers w.r.t. the assumed model. In such settings, 3176

model-based outlier detection, which is essentially done 3177

in the iterations of LTS, is necessary. As for cell-wise 3178

contamination, some strategies for detecting and imputing 3179

cell-wise outliers have been proposed, e.g., [255], [263]. 3180

B. SUGGESTIONS FOR BENCHMARK STUDIES AND 3181

FUTURE RESEARCH 3182

This survey paper has provided an overview of robust 3183

methods in autonomous driving in a comprehensive way and 3184

in a unified notation. It should not only serve as a detailed 3185

overview for researchers and practitioners, but also pave the 3186

way for organizing and conducting benchmarking studies, 3187

which are of interest on their own, but beyond the scope of 3188

this work. 3189

For nearly each application area, there are already several 3190

robust strategies in the literature. Of course, in the respective 3191

papers, comparisons already have been made, but often 3192

with some selected comptetitors from the literature. The 3193

comparison of a large number of algorithms for one specific 3194

problem would be desirable. In particular, the navigation 3195

section contains a plethora of robust algorithms that fol- 3196

low different strategies: robust criteria, noise modeling or 3197

clipping. While robust criteria and clipping follow a similar 3198

idea as robust regression approaches, namely downweighting 3199

or even neglecting outlying instances during optimization, 3200

noise modeling learns the noise distribution and integrates 3201

it into the computation of the posterior distribution for the 3202

next state. Both strategies are accompanied with advantages 3203

and disadvantages. Noise modeling, in particular when using 3204

online algorithms such as variational inference, allow for 3205

non-stationary noise distributions and have already been 3206

successfully applied in real-world settings where both the 3207

measurement and the process noise were heavy-tailed, i.e., 3208

both additive and innovation outliers occurred. The computa- 3209

tion of the posterior distribution allows for the quantification 3210

of estimation uncertainty. On the other hand, noise modeling 3211

requires assumptions about the noise distributions, while 3212

robust optimization criteria are usually applicable under 3213

milder assumptions. Therefore, algorithms from each type 3214

should be compared on data with both additive and innovation 3215

outliers and where the noise distributions are non-stationary. 3216

The iterative nature of both variational inference and the 3217

optimization of robust criteria usually induces computational 3218

overheads compared to a non-robust algorithm. It should be 3219

investigated how this overhead scales on real-world data and 3220

in dependence of the amount of contamination. 3221

Benchmarking studies could be both based on simulations 3222

and real data. As for simulations, the advantage is that via data 3223

generation, one can directly control the type and the amount 3224
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of contamination, for example, case-wise contamination with3225

outliers only in the responses, only in the regressors, or both,3226

or cell-wise contamination. This would enable to validate3227

different robust algorithms concerning breakdown. Although3228

one can compute theoretical breakdown points, one should3229

be aware of the facts that on the one hand, the breakdown3230

point corresponds to a worst-case scenario, indicating that3231

an estimator does not necessarily break down once the3232

corresponding fraction of instances or cells is contaminated.3233

On the other hand, the algorithm with which the estimator3234

is computed usually is not regarded when computing a3235

breakdown point, therefore, due to numerical pitfalls such3236

as vanishing gradients, it is possible to have an earlier3237

breakdown than expected. Such an effect has been observed3238

in [327] for neural network training.3239

As for real data, any type of data base with real data and a3240

benchmarking study on such data is of course also of interest3241

on its own. A future benchmarking study should focus on3242

the comparison of the performance of robust algorithms from3243

each individual subsection in this review paper, including3244

non-robust competitors. In particular, on real data, one cannot3245

determine the true underlying contamination model nor the3246

contamination radius. Therefore, one usually applies both3247

a robust and a non-robust method and decides to use the3248

non-robust estimator henceforth if their performance does not3249

differ much or if the classical estimator performs better. In a3250

more granular approach, for any algorithm whose robustness3251

can be controlled, e.g., by the trimming parameter that3252

decides on the size of the clean subset used for fitting,3253

one should apply the respective algorithm with different3254

robustness properties in order to try to implicitly assess the3255

amount of contamination of the data in the real world.3256

The same argumentation holds for adversarial and Byzan-3257

tine robustness. In particular, for Byzantine robustness,3258

each contaminated gradient/model/input from an adversarial3259

machine takes the role of one contaminated instance in a3260

standard dataset. As for adversarial robustness, from the3261

perspective of Robust Statistics, one could ask whether a3262

worst-case analysis is possible, and how the amount of3263

contamination could be quantified. Both questions should be3264

addressed in future research.3265

If a worst-case perspective, without any restrictions,3266

would be pursued, one would likely consider adversarial3267

actions from an adversarial agent where the worst case3268

would correspond to the maximum acceleration or jaw.3269

However, in particular for planning algorithms, there is one3270

crucial aspect when it comes to perturbations/adversarial3271

actions: Realism. This property has already been identified as3272

important in the literature on adversarial attacks on images,3273

e.g., [308]. It is well-known that training strategies such as3274

RL fail if the environment is too challenging, e.g., [298].3275

Although such edge cases are important for the safety3276

assessment of an autonomous driving system, focusing on3277

them appears not to be the correct way to assess the robustness3278

of the learning algorithm itself in the context of breakdown.3279

Moreover, one could ask how the amount of contamination 3280

should be quantified here, i.e., whether one should count each 3281

adversarial action or each adversarial trajectory. 3282

In order to define a breakdown for learned policies, one 3283

should check whether the existing definitions of a breakdown 3284

from Robust Statistics can be translated. In Robust Statistics, 3285

when learning a parametrized model, a breakdown indicates 3286

that the learned parameters can be arbitrarily close to 3287

the borders of the underlying parameter set, or made 3288

arbitrarily large. It should be assessed whether this is possible 3289

for the parameters learned when training a parametrized 3290

policy, or the control inputs learned in MPC, as well as 3291

the implications on the behavior of the agent. Moreover, 3292

robustness should not be confused with safety here. For 3293

example, consider an autonomous car and a distribution 3294

that is learned on its action space. If the environment 3295

is extremely challenging, it can learn just not to move. 3296

From the perspective of safety, such a behavior could be 3297

interpreted as excellent, but from the perspective of Robust 3298

Statistics, it could be interpreted as breakdown since it would 3299

correspond to (or be close to, depending on the algorithm) a 3300

Dirac distribution on a particular value (zero acceleration). 3301

Apart from the quantitative robustness that corresponds to 3302

the influence curve and the breakdown point, [122] propose 3303

a notion of qualitative robustness of an estimator, which 3304

indicates that small changes in the underlying distribution 3305

(usually measured in the Prokhorov distance) imply only 3306

small changes in the estimates. Regularity of the trained 3307

policy has already been considered in [220] and [282], 3308

where one focuses on the regularity w.r.t. state perturbations. 3309

A unified approach would consider a joint distribution on the 3310

observed states (e.g., due tomeasurement errors or in partially 3311

observable settings) and the transitions. An approach in order 3312

to assess qualitative robustness, in a simulated setting, could 3313

be to identify realistic but challenging scenarios, such as 3314

complex urban environments or severe weather conditions, 3315

and to gradually change the underlying distribution to 3316

increase the mass of such challenging situations, or, in other 3317

words, to contaminate an “ideal distribution”, which should 3318

reflect the real world as much as possible, resulting in 3319

a contaminated distribution, similarly as in [131], who 3320

concentrated on the transition distribution. One may be 3321

able to identify when the trained policy starts to deteriorate 3322

in the sense that a certain regularity property of the 3323

underlying policy no longer holds once the distribution 3324

favors challenging situations too strongly. This amount of 3325

contamination could then be interpreted as the BDP. 3326

In the reviewed literature, a robust method for either a 3327

particular perception or planning area has been presented. 3328

A complete autonomous system however is composed by 3329

several modules, at least multiple perception modules and 3330

a planning module. It is vital to consider the robustness 3331

of the whole system. To this end, one would first inspect 3332

each individual module and assess its robustness in order 3333

to have prior information for further inspections in the case 3334
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that the whole system is not robust. Usually, one may argue3335

that the whole system is not robust if at least one module3336

is not robust. On the other hand, applying robust methods3337

for each subsystem may have the disadvantage of a low3338

overall efficiency, as a consequence from the robustification.3339

For example, [279] consider a state-space model in order to3340

incorporate observation noise. This observation noise itself3341

depends on the perception module. Therefore, one should3342

examine to what extend a certain non-robustness in the3343

perceptionmodules could be compensated during the training3344

of a driving policy.3345

Once an algorithm has proven to be competitive in terms of3346

its generalization performance, accuracy, or security, a crucial3347

question is whether the running time is sufficiently low in3348

order to be applicable in real-world autonomous driving3349

scenarios. In particular, many of the individual tasks require3350

real-time performance. While robust algorithms tolerate3351

contamination which may let non-robust algorithms break3352

down, they are less efficient than non-robust algorithms,3353

so that more training data are required for convergence.3354

The major drawback however is that the optimization3355

of a non-convex loss function, a minimax loss, or, for3356

adversarial training, the optimization of an adversary, may3357

be required, usually resulting in a considerably higher3358

computation time, which could be the main hindrance3359

for real-world applications, regardless of their performance3360

in terms of safety or security. Several of the reviewed3361

papers already confirm in their experiments, some even on3362

real-world data, that their robust algorithm has real-time3363

performance. In addition, for iterative procedures, robustness3364

can even lead to quicker convergence and even to a reduced3365

computation time than a classical algorithm, e.g., [44],3366

[327]. Nevertheless, research on the real-time capabilities of3367

robust algorithms is necessary, in particular when consid-3368

ering the whole autonomous system with many individual3369

modules.3370

As for the whole system itself, an even broader research3371

question is the interaction between different properties that3372

a system should satisfy, in particular, safety and security.3373

As for security, the reviewed robust approaches for planning3374

as well as for Byzantine robustness already allow for training3375

with adversarial attacks, directly corresponding to security.3376

For perception where training data are given, adversarial3377

robustness does not fall within the scope of Robust Statistics3378

as adversarial attacks are crafted after model training, while3379

Robust Statistics considers the training procedure itself.3380

As explained in Sec. III, poisoning attacks in contrast are3381

crafted before model training. However, as poisoning attacks3382

are usually restricted by a geometric bound, methods from3383

Robust Statistics can be assumed to fail if the majority of3384

the instances is perturbed. Nevertheless, a potential topic for3385

future research could be the interaction between adversarial3386

robustness (also against poisoning attacks) and robustness in3387

the sense of Robust Statistics, i.e., whether methods from3388

Robust Statistics already increase adversarial robustness or3389

howmodels that are both robust in the sense of Robust Statis-3390

tics and adversarially robust can be trained. A combination 3391

with Byzantine robustness, i.e., training a federated RLmodel 3392

with both Byzantine and adversarial attacks, could also be 3393

considered. As for safety in autonomous driving, the goal is to 3394

assess whether an autonomous system can perform undesired 3395

actions or with which probability such behavior occurs. 3396

Although, in particular for deep-learning-based systems, 3397

reasoning whether an outlier in the training data of some 3398

perception module caused an undesired action may not be 3399

possible, one could at least train robust and non-robust 3400

subsystems and evaluate whether the robustness of these 3401

subsystems affects the safety of the combined system. 3402

While the overall system in the previous paragraphs 3403

corresponds to a single autonomous agent, another topic 3404

of interest is collborative navigation. If the individual 3405

agents communicate, there are multiple state measurements, 3406

depending on whether an individual is inside the lane of sight 3407

or at least sufficiently close to another agent. As each agent 3408

has a different location, it can happen that the perception 3409

for some agents suffers from anomalies such as lightning 3410

variations. Therefore, regarding the joint information, one has 3411

a similar setting as in federated RL. One may consider the 3412

corrupted measurements of one agent as Byzantine informa- 3413

tion. Of course, computing an average or distance-weighted 3414

average of the information would lead to corrupted joint 3415

information. Here, one may consider integrating a robust 3416

aggregation procedure, such as a trimmed mean, into the 3417

algorithm that infers the next states. Nevertheless, in this 3418

context, other problems additionally need to be solved, 3419

such as communication delays or data loss, as argued 3420

in [276], or correlated observations among the individual 3421

agents (e.g., [48], [205]). On top of that, [299] consider 3422

adversarial interference in the inter-agent communication. 3423

Future research may consider Byzantine-robust federated 3424

training of robust collaborative agents. 3425
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