agriculture

Article

AGRARIAN: A Hybrid AlI-Driven Architecture for Smart Agriculture

Michael C. Batistatos 1, Tomaso de Cola 2, Michail Alexandros Kourtis 3 *, Vassiliki Apostolopoulou 4
George K. Xilouris 37 and Nikos C. Sagias !

check for
updates

Academic Editor: Dimitre Dimitrov

Received: 22 March 2025
Revised: 15 April 2025
Accepted: 18 April 2025
Published: 21 April 2025

Citation: Batistatos, M.C.;de Cola, T.;
Kourtis, M.A.; Apostolopoulou, V.;
Xilouris, G.K.; Sagias, N.C.
AGRARIAN: A Hybrid AI-Driven
Architecture for Smart Agriculture.
Agriculture 2025, 15,904. https://
doi.org/10.3390/ agriculture15080904

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

Department of Informatics and Telecommunications, University of Peloponnese, 22100 Tripolis, Greece;
mbatist@uop.gr (M.C.B.); nsagias@uop.gr (N.C.S.)

Institute of Communications and Navigation, Deutsches Zentrum fiir Luft- und Raumfahrt (DLR)
Oberpfaffenhofen, 82234 Wessling, Germany; tomaso.decola@dlr.de

Institute of Informatics and Telecommunications, National Centre for Scientific Research
“DEMOKRITOS” (NCSRD), 15310 Athens, Greece; xilouris@iit.demokritos.gr

Practin, Kastritsa, 45500 Ioannina, Greece; apostolopoulou@practin.com

*  Correspondence: akis.kourtis@iit.demokritos.gr

Abstract: Modern agriculture is increasingly challenged by the need for scalable, sustain-
able, and connectivity-resilient digital solutions. While existing smart farming platforms
offer valuable insights, they often rely heavily on centralized cloud infrastructure, which
can be impractical in rural or remote settings. To address this gap, this paper presents
AGRARIAN, a hybrid Al-driven architecture that combines IoT sensor networks, UAV-
based monitoring, satellite connectivity, and edge-cloud computing to deliver real-time,
adaptive agricultural intelligence. AGRARIAN supports a modular and interoperable archi-
tecture structured across four layers—Sensor, Network, Data Processing, and Application—
enabling flexible deployment in diverse use cases such as precision irrigation, livestock
monitoring, and pest forecasting. A key innovation lies in its localized edge processing and
federated Al models, which reduce reliance on continuous cloud access while maintaining
analytical performance. Pilot scenarios demonstrate the system’s ability to provide timely,
context-aware decision support, enhancing both operational efficiency and digital inclusion
for farmers. AGRARIAN offers a robust and scalable pathway for advancing autonomous,
sustainable, and connected farming systems.

Keywords: smart agriculture; Al-driven decision support systems; precision farming

1. Introduction

The global agricultural sector is undergoing a fundamental transformation driven by
rapid advancements in digital technologies, artificial intelligence (Al), and the Internet
of Things (IoT). These innovations are reshaping traditional farming methods, optimiz-
ing resource efficiency, productivity, and sustainability in response to increasing food
demand and climate change challenges. The European Commission has emphasized that
digitalization in agriculture is a critical component for improving competitiveness, fos-
tering sustainable practices, and ensuring food security in the European Union (EU) and
beyond [1].

Modern agricultural systems are increasingly relying on connected infrastructures,
including smart sensors, Al-driven decision-making tools, and cloud-based agricultural
platforms, to enhance real-time monitoring, automated farm management, and precision
agriculture techniques. This transition aligns with the Agriculture 4.0 paradigm, which
integrates big data analytics, robotics, and advanced network communication protocols to
optimize agricultural operations [2].
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The Common Agricultural Policy (CAP) has been a cornerstone of the EU’s agricultural
strategy, focusing on sustainability, productivity, and the socio-economic well-being of
farmers [3]. Recent CAP Strategic Plans for 20232027 emphasize the role of digital tools,
Al and IoT in improving decision-making for farmers while promoting climate-resilient
agricultural practices [4]. Additionally, EU-backed initiatives on smart farming provide
targeted support for the adoption of cloud computing, Al-driven analytics, and blockchain
technologies to ensure traceable, transparent, and efficient agricultural supply chains [5].
Despite the potential benefits of precision farming technologies, many farmers still face
economic and technical barriers to adoption. According to Eurostat, agricultural labor
input in the EU has continued to decline, highlighting the need for automation and smart
agricultural solutions to compensate for workforce shortages [6-8].

Several international research initiatives from countries like Israel and China have
made substantial progress in smart agriculture. Israel has been a leader in sensor-based
drip irrigation systems, leveraging local edge controllers to manage water efficiency in
arid environments. Chinese efforts have advanced in areas such as UAV-enabled field
monitoring, blockchain-integrated supply chains, and remote sensing for pest management.
These technologies are often domain-specific and vertically optimized, addressing critical
challenges such as irrigation, crop health, and traceability. However, they tend to rely
on centralized architectures, which can be constrained by connectivity gaps or lack of
adaptability in remote rural contexts.

AGRARIAN addresses a clear research and deployment gap by offering a modular,
horizontally and vertically scalable architecture that unifies edge Al, federated learning,
and hybrid connectivity (5G/LEO satellites) within a single framework. Unlike traditional
siloed models, AGRARIAN is designed to support simultaneous, real-time operations
across layers—f{rom sensor data capture to Al-driven decision support—while optimizing
for energy use, latency, and interoperability. This capability is particularly important for
rural deployments with intermittent connectivity, making AGRARIAN adaptable where
centralized models fall short. Its layered design also supports dynamic resource allocation
via slicing, enabling precision agriculture to scale across varied operational environments
with different infrastructure constraints.

Driven by the challenges of climate change, resource constraints, and the growing
demand for sustainable food production, the AGRARIAN architecture introduces a hybrid
Al-driven framework that seamlessly integrates IoT sensors, UAVs, satellite-based remote
sensing, edge computing, and Al-powered decision support systems (DSS) to transform pre-
cision farming, livestock management, and agricultural sustainability. Unlike conventional
systems reliant on centralized cloud processing, AGRARIAN decentralizes data analysis
through edge Al and federated learning, significantly reducing latency, bandwidth con-
sumption, and dependency on continuous connectivity. Its four-layered structure—Sensor,
Network, Data Processing, and Application Layers—ensures a scalable and modular sys-
tem where multimodal sensors capture real-time environmental, soil, and livestock data,
processed through Al-driven analytics at the edge or in the cloud.

The structure of this paper is organized as follows: Section 2 presents an overview of
related technologies, focusing on IoT-based irrigation systems, Al-driven crop protection,
decision support systems (DSS), and satellite-enabled precision agriculture. Section 3
introduces the AGRARIAN system architecture, detailing its horizontal and vertical archi-
tectural models, along with the integration of edge computing, hybrid networking, and
cloud-based Al analytics, an in-depth analysis of the four-layered structure of AGRAR-
IAN, comprising the sensor, network, data processing, and application layers, describing
their role, interaction, and impact on smart agriculture. Finally, Section 4 concludes with
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key findings, potential limitations, and future research directions in hybrid Al-driven
agricultural frameworks.

2. Related Technologies

The integration of Internet of Things (IoT) devices and 5G networks is transforming
smart irrigation management by enabling real-time monitoring and automated water
control. IoT-based sensors, combined with cloud-based decision support systems (DSS),
allow precise irrigation scheduling based on soil moisture levels, weather conditions, and
crop water demand. The use of 5G connectivity enhances data transmission speed, ensuring
low-latency, Al-powered water management solutions that contribute to efficient water
resource allocation and climate resilience [9]. Beyond irrigation, DSS also plays a critical
role in agrarian policy-making and economic planning, as seen in Ukraine, where data-
driven accounting tools are used to align agricultural strategies with European integration
frameworks. These systems analyze farm productivity metrics, subsidy allocations, and
rural development trends to optimize policy interventions [10].

2.1. Al for Crop Protection and Environmental Monitoring

Al-based decision support technologies are also reshaping crop protection and disease
management. Modern deep learning models, when combined with satellite imagery
and IoT sensors, enable real-time disease prediction and early detection, reducing the
dependency on excessive pesticide use. Al-driven DSS can process historical weather data,
pathogen distribution models, and soil health indicators to provide targeted, proactive
recommendations for farmers [11]. Satellite technology, particularly CubeSats and GIS-
based remote sensing, is revolutionizing precision agriculture by offering high-resolution
environmental monitoring. These small satellites provide frequent, real-time imaging,
allowing farmers to track crop health, soil moisture levels, and land-use changes, which are
then integrated into DSS platforms to facilitate data-driven decision-making for sustainable
farming [12].

2.2. DSS for Water Resource and Livestock Management

Water management in agriculture remains a pressing challenge, and DSS frameworks
are being developed to guide groundwater resource allocation, especially in drought-prone
regions. Al-powered decision tools enable multi-stakeholder collaboration, integrating
hydrological models, water demand forecasting, and climate impact assessments to ensure
sustainable irrigation practices [13]. In precision livestock farming, Al-driven DSS are
being deployed to monitor animal welfare, detect diseases, and optimize feed efficiency.
Machine vision, biometric sensors, and predictive analytics allow for real-time tracking of
livestock health, reducing operational costs and improving farm productivity [14]. These
advancements are not only enhancing individual farm operations but are also influencing
renewable energy production in agriculture. DSS frameworks are now used for biogas
facility planning, optimizing locations based on geospatial data, waste production metrics,
and sustainability indicators. This application supports circular bioeconomy models,
where agricultural waste is converted into biofuels and organic fertilizers, reducing carbon
footprints and environmental impact [15].

2.3. Circular Bioeconomy and Smart Supply Chains

Decision support technologies also play a crucial role in circular bioeconomy strategies,
ensuring efficient resource recycling and sustainable food production systems. Al-powered
DSS facilitates agricultural waste management by optimizing the bioconversion of crop
residues into bioenergy and minimizing resource wastage [16]. Recent developments in
digital agriculture and Al-driven decision systems show that fine-tuned natural language
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processing (NLP) models outperform traditional chatbot-based farm management solutions.
These Al-powered DSS provide context-aware recommendations for crop management,
pest control, and supply chain logistics, improving farm productivity and sustainability [17].
Additionally, digital technologies are increasingly being commercialized for nature conser-
vation and ecosystem service provisioning in agriculture. By integrating remote sensing,
Al-based environmental modeling, and cloud-based analytics, these tools help farmers bal-
ance economic profitability with ecological preservation, ensuring that agriculture remains
both productive and environmentally responsible [18].

2.4. Convergence of Digital Agriculture Technologies

As agriculture continues to evolve towards a data-driven, digitally connected ecosys-
tem, the integration of Al, IoT, and DSS technologies is becoming essential. From smart
irrigation management and CubeSat-based environmental monitoring to precision livestock
farming and biogas facility optimization, DSS is empowering farmers and policymakers
with real-time insights for sustainable decision-making. The convergence of edge com-
puting, cloud-based Al analytics, and stakeholder collaboration is paving the way for a
resilient, efficient, and sustainable agricultural future.

Enhancing digital infrastructure and hybrid communication technologies is, therefore, a
key priority in ensuring widespread accessibility to smart farming solutions across Europe.

2.5. Challenges and Infrastructure Considerations

While digital agriculture offers significant opportunities for growth and sustainability,
several challenges must be addressed:

e  Connectivity Gaps: Many rural farming areas suffer from limited broadband access, re-
stricting the adoption of real-time IoT monitoring and Al-driven decision systems [19].

e Interoperability Issues: The diverse range of agricultural IoT devices, cloud platforms,
and Al models creates integration challenges, requiring standardized data exchange
protocols [20].

e  Data Privacy and Security: The sensitive nature of farm data necessitates robust cyber-
security frameworks, including secure data transmission protocols like NETCONF
and YANG [21,22].

Scalability and Computational Demand: Al-driven edge computing is increasingly
being explored to reduce the burden on cloud infrastructure, enabling localized, real-time
data processing for smart agriculture [23].

To address these challenges, next-generation networking protocols such as Recursive
InterNetwork Architecture (RINA) are being explored to replace traditional IP-based archi-
tectures, improving network scalability, data security, and real-time processing capabilities
for large-scale agricultural IoT systems [24].

2.6. Edge Computing and Federated Al for Real-Time Farming

A critical technological enabler for precision farming is edge computing, which fa-
cilitates real-time data analysis at the farm level without the need for continuous cloud
connectivity [23]. By deploying localized Al models on edge devices, UAVs (drones), and
satellite nodes, latency is minimized, bandwidth consumption is reduced, and real-time
decision-making is enhanced. Recent studies suggest that federated learning and Al-driven
edge computing can significantly improve agricultural supply chain efficiency, reducing
costs and optimizing farm management strategies [23].
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3. AGRARIAN Architecture

The AGRARIAN architecture, Figure 1, is designed to provide a robust, scalable,
and intelligent agricultural technology ecosystem, integrating sensor networks, Al-driven
decision support, hybrid communication networks, and cloud-based analytics. This system
is structured into multiple layers to ensure seamless functionality, interoperability, and
efficient data flow between different components. The architecture is conceptualized
through two complementary views: the horizontal and vertical architectures, each detailing
the organization of system elements and their interactions.

Application Layer

Livestock Monitoring Farm Monitoring
and Management and Management

Network Layer Hybrid communications

Terrestrial 5G Satellites (GEO/LEO)

Figure 1. AGRARIAN High-Level Architecture: Integrating IoT, Edge Al, and Hybrid 5G Connectivity
for Smart Agriculture.

The AGRARIAN architecture is designed to support precision farming, livestock moni-
toring, vineyard management, and environmental sustainability. It is composed of multiple
interconnected layers that facilitate sensor data acquisition, edge computing, satellite com-
munications, and Al-driven analytics. The horizontal architecture provides an end-to-end
view of how different components interact, while the vertical architecture focuses on the
service-oriented structure of the system. The horizontal architecture emphasizes the in-
teraction between the customer portal, decision support systems (ADSS), infrastructure,
and external data sources. The vertical architecture, on the other hand, categorizes these
functionalities into four major layers: Sensor Layer, Network Layer, Data Processing Layer,
and Application Layer.

AGRARIAN is currently being evaluated in pilot deployments across vineyard ecosys-
tems and livestock farms, where real-world feedback has helped fine-tune energy man-
agement, model accuracy, and connectivity handling. These pilots validate AGRARIAN's
layered operation: sensor layer (uRLLC) for fast data capture, network layer for hybrid
5G-satellite backhaul, processing layer (eMBB slicing) for model inference, and application
layer for user interaction and alerts. The system also includes API interfaces for future
integration with farm machinery, supporting ISOBUS and OPC UA standards. This ensures
that AGRARIAN is not only a theoretical model but a deployable, extensible solution for
autonomous, sustainable agriculture.
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Application Layer
The Application Layer, Figure 2, provides user-facing tools that allow farmers, poli-

cymakers, and researchers to interact with the AGRARIAN system, offering Al-powered
agricultural insights, decision support, and precision farming applications.

Application Layer —

. S , ¥
1 o1 1 \ - !
i Direct sensor information |1} | -, d
I : Weather forecasts ] - - Yield forecast 1

1 -
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Microclimate data 1 |
Traceability 1 1
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humidity thresholds)

I
1
I
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Il - Dangerous Slopes
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Figure 2. Application layer.

Agricultural Decision Support System (ADSS): Analyzes sensor, satellite, and UAV
data to provide actionable insights on crop health, livestock management, and irriga-
tion scheduling.

Livestock Monitoring and Anomaly Detection: Uses Al-driven video analytics and
GPS tracking to identify anomalous animal behavior, potential health risks, and
missing livestock.

Crop Growth and Yield Forecasting: Predicts crop productivity, pest risks, and optimal
harvesting times based on machine learning algorithms and real-time environmen-
tal data.

Smart Irrigation and Water Management: Uses soil moisture analytics, weather fore-
casts, and Al-based optimization to ensure efficient water usage and minimize waste.
Disease and Pest Alert Systems: Al models process multispectral and SAR data to
predict disease outbreaks and recommend timely interventions.

Supply Chain Traceability and Food Safety: Blockchain-enabled traceability solu-
tions ensure transparent farm-to-market logistics, improving food safety and regula-
tory compliance.

By integrating advanced analytics, real-time alerts, and predictive modeling, this layer

empowers users with intelligent decision-making tools for sustainable and efficient farming.

Data Processing and Orchestration Layer
The Data Processing Layer, Figure 3, acts as the computational hub of the AGRAR-

IAN system, processing, analyzing, and distributing agricultural data across the network.

This layer leverages edge computing, cloud processing, and Al-based analytics to extract

meaningful insights from raw sensor data.
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loT Device Edge Node Satellite Edge Node Cloud Node

Figure 3. Data Processing and Orchestration layer.

e Edge Al and Federated Learning: Distributed Al models are deployed on satellites,
UAVs, and farm-based edge nodes, allowing real-time inference for disease detection,
irrigation control, and crop monitoring.

e CI/CD Pipelines for Al Model Deployment: Continuous integration and deployment
pipelines ensure real-time Al model updates for improved analytics and decision-making.

e  Cloud-Native Orchestration (Kubernetes, KubeEdge, and K3s): Supports scalable,
fault-tolerant, and distributed Al computing for precision farming applications.

e  Satellite Al Processing: Enables onboard Al inference on CubeSats, reducing latency
and bandwidth consumption while providing actionable insights directly from space-
based monitoring.

e  Data Storage and Integration with External Sources: Ensures secure, efficient storage
and retrieval of environmental, livestock, and field data, integrating external climate
databases, weather APIs, and agricultural knowledge repositories.

By leveraging advanced Al and edge computing technologies, this layer enhances
decision-making efficiency and scalability.

The AGRARIAN architecture incorporates various methodological approaches—such
as real-time edge Al, federated learning, and satellite-based inference—not as isolated
innovations but as components selected and positioned according to specific agricultural
use cases and their corresponding feasibility and problem-solving impact. It is acknowl-
edged that not all agricultural operations require real-time decision-making. For example,
strategic planning tasks like yield forecasting or soil nutrient mapping are typically tolerant
of batch processing and delayed analytics. However, certain scenarios do benefit from
real-time or near-real-time responsiveness. These include livestock anomaly detection
(e.g., animal distress or escape), localized irrigation control during heatwaves, and pest
outbreak alerts, where immediate data-driven insights can significantly reduce risks or
losses. In such contexts, AGRARIAN's edge computing and low-latency satellite links offer
value by enabling timely interventions without reliance on centralized cloud infrastruc-
tures. The architecture supports hybrid deployment models that allow stakeholders to
scale computational resources and analytical intensity according to operational context and
economic viability. By not assuming a one-size-fits-all requirement for real-time processing,
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AGRARIAN is designed with a flexible orchestration layer that balances real-time capability
with practical feasibility and cost-effectiveness across scales and farming profiles.
Network Layer
The Network Layer, Figure 4, enables seamless connectivity across all AGRARIAN
components, ensuring reliable communication between sensors, computing nodes, and
cloud-based systems. It integrates terrestrial and satellite communication networks to
provide uninterrupted connectivity in remote agricultural areas.

Network Layer

Y

5G network

Ground ¥ Y Ground
Terminal Gateway

Hybrid Network
Management System

1
1
1
g [5G RAN |—]5G core |
1
L

1
"""""""""""""""" | satellite !
| Satellite H Satellite | - SAT SAT -
: Core Network Proxies 1
1
]

Satellite
-

User User A : Ground Network ]

Terminal Terminal 1 :

(I Sl S Sl L User i GND GND ||
Terminal : Core Network Proxies |}

1

e e 1

Figure 4. Network layer.

e  5G-Based Communication: Provides high-speed, low-latency connectivity for real-time
sensor data transmission and remote farm monitoring.

e  Hybrid Satellite Communications (LEO and GEO): LEO satellites facilitate low-latency
broadband access, while GEO satellites provide continuous global coverage.

e  Edge Network Infrastructure: Supports real-time Al model deployment and inference
at the farm level, reducing dependency on centralized cloud computing.

e  Delay-Tolerant Networking (DTN) and IoT Protocols: Allow efficient data transmis-
sion in rural and disconnected environments, ensuring that time-sensitive agricultural
data is not lost.

e  Ground Network Infrastructure: Includes 5G base stations, ground terminals, and
IoT gateways, allowing seamless integration of AGRARIAN'’s sensor networks with
cloud-based decision support systems.

This layer ensures uninterrupted connectivity, which is essential for real-time agricul-
tural monitoring and automated farming solutions.

Sensor Layer

The Sensor Layer, Figure 5, is the foundation of the AGRARIAN system, comprising
various data acquisition technologies that capture environmental, soil, and livestock data.
These sensors are deployed in situ, on UAVs, and in satellite-based observation systems,
ensuring continuous real-time monitoring of agricultural parameters.
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Figure 5. Sensors layer.

e JoT and Ground Sensors: Measure soil moisture, temperature, air humidity, and
precipitation, providing critical data for precision irrigation and crop health analysis.

e UAV-Based Sensors: Equipped with multispectral cameras, RGB cameras, and real-
time kinematic (RTK) sensors to provide high-resolution field images and topographi-
cal mapping.

e  Weather and Climate Stations: Monitor meteorological parameters such as wind
speed, temperature, solar radiation, and frost prediction, supporting weather-based
agricultural decision-making.

o  Satellite Earth Observation (EO) Systems: Utilize Sentinel-based multispectral imaging
and Synthetic Aperture Radar (SAR) to provide wide-area, high-resolution monitoring
for crop health, soil moisture levels, and yield estimation.

e Livestock Tracking Devices: Sensors embedded in wearables and drones to track
animal movement, health status, and anomaly detection.

This layer ensures real-time, accurate data collection for informed decision-making
within the AGRARIAN ecosystem.

This layer ensures real-time, accurate data collection for informed decision-making
within the AGRARIAN ecosystem by integrating a diverse range of sensors deployed across
agricultural fields, UAVs, and satellites. Ground-based IoT sensors continuously monitor
soil moisture, temperature, humidity, and nutrient levels, providing granular insights into
crop health and water needs. UAV-mounted multispectral and thermal sensors capture
high-resolution imagery, detecting early signs of crop stress, pest infestations, and irrigation
inefficiencies. Weather and climate stations collect atmospheric data, including wind speed,
solar radiation, precipitation, and frost risk, enabling microclimate analysis for precision
farming. Satellite Earth Observation (EO) systems, leveraging multispectral imaging (Sen-
tinel) and Synthetic Aperture Radar (SAR), offer wide-area crop monitoring, soil moisture
assessments, and predictive yield modeling, even under cloud cover and adverse weather
conditions. For livestock applications, wearable biometric sensors track movement patterns,
body temperature, and feeding behavior, facilitating real-time animal health monitoring
and anomaly detection. By ensuring seamless integration of these diverse sensing tech-
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nologies, the AGRARIAN architecture enables data-driven, Al-enhanced decision-making,
fostering sustainable resource management and improved farm productivity.

While the AGRARIAN architecture provides a comprehensive and modular frame-
work for smart agriculture, it is important to critically reflect on its current scope and future
integration opportunities. One notable area of expansion involves the direct interfacing of
AGRARIAN with agricultural machinery, such as autonomous tractors, robotic sprayers,
and harvesters. Although the present architecture primarily focuses on sensor networks,
edge/cloud analytics, and decision support, its design is intentionally modular, with API-
based interoperability layers that support future integration with smart machinery systems.
Technologies such as ISOBUS, MQTT, and OPC UA are being considered for implement-
ing bidirectional communication between the decision support system (ADSS) and farm
equipment, enabling automated actuation based on Al-driven recommendations. Further-
more, AGRARIAN's architecture supports future expansion through control-layer protocols
and real-time machine interfaces, establishing the foundation for intelligent automation.
Implementation-wise, the architecture is already being validated in pilot environments—
including livestock farms, vineyards, and field crop settings—where sensor deployment,
satellite connectivity, and edge Al models are tested for latency, scalability, and usability.
These real-world testbeds are key to evaluating AGRARIAN's readiness for broader de-
ployment and demonstrating its potential to connect directly with autonomous agricultural
machinery, enhancing operational efficiency and promoting end-to-end automation in
modern farming.

The AGRARIAN architecture leverages a diverse set of Al-driven technologies, IoT
connectivity, and hybrid networking to transform modern agricultural practices. The table
below highlights how different components of AGRARIAN align with key advancements
in smart agriculture, mapping each technology to its impact on various domains such as
precision irrigation, crop protection, livestock monitoring, and sustainable resource man-
agement. By associating AGRARIAN's sensor, network, data processing, and application
layers with emerging decision support systems (DSS), Al models, and satellite-based remote
sensing, this comparison demonstrates how AGRARIAN enhances efficiency, sustainability,
and productivity across the agricultural sector.

Table 1 illustrates AGRARIAN's role in improving precision farming by integrating
IoT and 5G for irrigation, Al-based disease detection, and satellite-powered monitoring.
Through real-time sensor data collection, Al-powered decision-making, and seamless con-
nectivity, AGRARIAN enhances resource management, reduces operational costs, and
promotes environmental sustainability. Key findings indicate that edge Al and feder-
ated learning enable more localized and responsive agricultural intelligence, reducing
reliance on centralized cloud computing while improving latency-sensitive applications
like livestock health monitoring and irrigation control. By combining Al-enhanced DSS,
machine learning-driven crop management, and satellite-based remote sensing, AGRAR-
IAN provides a scalable, modular, and resilient digital agriculture platform that supports
data-driven farming, climate adaptation, and food security initiatives.

Table 1. AGRARIAN related works table and how they are mapped to AGRARIAN layers.

AGRARIAN Component

Author, Year, Ref. No.

How AGRARIAN Benefits Mapped AGRARIAN Benefit to Agriculture

the Field Layer(s)
- Enhances irrigation
foT and 5 for Smart Oppong, R.A. (2025) [9] irr]iir‘lallia(l)ﬂnC (‘:)S plizcelilao?n Sensor Layer, Network Layer efficiency, prevents
Irrigation ppong, =4 3 y sng el y overwatering, and improves

real-time sensor data. .
water conservation.
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Table 1. Cont.

AGRARIAN Component

Author, Year, Ref. No.

How AGRARIAN Benefits
the Field

Mapped AGRARIAN
Layer(s)

Benefit to Agriculture

Decision Support Systems
(DSS) for Agrarian Policy

Vasylishyn, S. (2025) [10]

Provides Al-driven policy
recommendations based on
real-time agricultural data.

Application Layer, Data
Processing Layer

Optimizes agricultural
resource allocation, policy
effectiveness, and economic
sustainability.

Al-Based Crop Protection
and DSS

Jensen, A. et al. (2025) [11]

Enables early disease
detection and pest
management through
Al-powered analytics.

Data Processing Layer,
Sensor Layer

Reduces pesticide use,
increases farm productivity,
and enhances sustainability.

CubeSats for
Agricultural Monitoring

Calka, B.; Szostak, M. (2025)
[12]

Offers high-resolution

environmental monitoring Sensor Layer, Network Layer

for precision farming.

Provides real-time insights
into soil health, crop growth,
and environmental
conditions.

Smart Agriculture and DSS
for Water
Resource Management

Firoozzare, A. et al.
(2025) [13]

Improves sustainable water
resource management using
Al-driven climate data.

Application Layer, Data
Processing Layer

Ensures sustainable water
allocation, mitigates drought
impacts, and supports
climate resilience.

Al for Precision
Livestock Farming

Distante, D. et al. (2025) [14]

Enhances livestock welfare
via real-time biometric
monitoring and disease

detection.

Sensor Layer, Data
Processing Layer

Reduces livestock mortality,
increases efficiency, and
improves farm profitability.

Sustainable Agricultural
Planning using DSS

Kaynak, T.; Giimiis, M.G.
(2025) [15]

Supports energy-efficient
agriculture through
Al-driven biogas plant
planning.

Application Layer, Network
Layer

Supports renewable energy
integration and reduces the
carbon footprint in
agriculture.

Circular Bioeconomy and
DSS in Agriculture

Nguyen, T.H. et al. (2025)
(16]

Facilitates circular
agriculture by optimizing
waste recycling.

Application Layer, Data
Processing Layer

Promotes waste reduction,
circular economy strategies,
and resource-efficient
food production.

Digital Agriculture and Al
Decision Systems

De, S.; Sanyal, D.K.;
Mukherjee, I. (2025) [17]

Improves real-time farm
management with
Al-enhanced automation
tools.

Application Layer, Data
Processing Layer

Enhances farm
decision-making with
Al-driven insights and
real-time analytics.

Digital Technologies for
Sustainable Agriculture

Krachunova, T. et al. (2025)
[18]

Enables sustainable farming
through Al-integrated
remote sensing and DSS
tools.

Application Layer, Sensor
Layer, Network Layer

Encourages climate-smart
farming through AI, IoT, and
sustainable land
management practices.

4. Preliminary Validation of AGRARIAN over 5G Network Slicing for
Data Processing and Sensor Layers

To validate the AGRARIAN architecture in terms of its integration with modern com-

munication technologies, we conducted a series of experiments focusing on 5G network
slicing and its implications on energy consumption and latency performance across system
layers. These trials were designed to explore how eMBB (enhanced Mobile Broadband)
slices align with AGRARIAN's Data Processing Layer, while uRLLC (ultra-Reliable Low
Latency Communication) slices support the responsiveness required by the Sensor Layer.
Experiments were executed on an experimental 5G system that was deployed in Stan-
dalone Mode (SA) using Amarisoft 5GC with Huawei P40 Pro UEs and OpenStack-based
virtualized services running on a Dell R730xd. The slicing mechanism leveraged RAN
numerology manipulation to enforce low-latency configurations via tuning of srPeriod and
slot duration.

In the context of 5G network slicing, particularly at the RAN (Radio Access Network)
level, srPeriod and slot are two key parameters that directly influence latency and schedul-
ing responsiveness. The srPeriod (Scheduling Request Period) defines how frequently a
user equipment (UE) can request uplink transmission resources, with lower values enabling
faster response times, Table 2 provides a representative analysis of different configurations
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and corresponding latency metrics. The slot parameter represents the transmission du-
ration within a time frame, affecting how quickly data can be scheduled and processed.
Reducing both parameters leads to lower end-to-end latency, a critical factor for uRLLC
(ultra-Reliable Low Latency Communication) performance in applications such as real-time
sensor feedback and UAV coordination in smart agriculture. These parameters were varied
across several configurations to examine their impact on latency and energy consumption
under different slicing conditions.

Table 2. 5G network slicing configuration information and corresponding expected latency.

Configuration stPeriod Slot Duration Expected Latency
Config 1 (Min Latency) 1 2.5 ~10 ms

Config 2 1 5.0 ~15-18 ms
Config 3 10 25 ~20-25 ms
Config 4 10 5.0 ~30 ms

Config 5 40 2.5 ~35 ms

Config 6 (Max Latency) 40 5.0 ~40 ms

The first set of experiments evaluated energy consumption under varying eMBB
slice bitrates (100 to 300 Mbps) and latency configurations (10 ms and 40 ms). Results
(Figure 6) revealed that smaller packet sizes significantly increase energy usage due to
higher transmission frequency, and lower latency configurations consistently consume
more energy, confirming a trade-off between latency and energy performance at the data
processing level. To evaluate uRLLC slicing for the sensor layer, latency measurements
were collected under diverse configurations. With an eMBB slice allocated for backhaul,
multiple uRLLC slices were imposed (srPeriod = {1, 10, 40}, slot = {2.5, 5}). As illustrated
in Figures 6 and 7, these settings significantly affected system latency, with the best result
(~12 ms) observed under the most aggressive uRLLC configuration (sr = 1, slot = 2.5). These
findings support AGRARIAN's capacity to provide low-latency edge responsiveness for
sensor-triggered alerts and UAV communications.

3D Surface: Downlink Energy Consumption
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Figure 6. A 3D Surface Plot of Downlink Energy Consumption across Bitrate and Latency Configurations.
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3D Surface: Uplink Energy Consumption

378.00

366.75 Si0

355.50 365

344.25

Energy (mA)

360
333.00 355
350

345

Figure 7. A 3D Surface Plot of Uplink Energy Consumption across Bitrate and Latency Configurations.

To understand the impact of 5G slicing on energy efficiency in AGRARIAN’s Data
Processing Layer, we analyzed the energy consumption of downlink transmissions across
different latency configurations and bitrate levels. These configurations, defined by the
slicing parameters srPeriod and slot, were mapped to typical eMBB profiles. Figure 6
presents a 3D surface plot illustrating energy usage (in mA) as a function of both bitrate
and latency configuration, offering a visual overview of the trade-offs involved.

From the surface plot, it becomes evident that energy consumption increases with
both higher bitrates and more aggressive low-latency configurations. This validates the
architectural decision to employ edge computing in AGRARIAN’s data processing layer,
where compute-intensive tasks can be selectively handled based on energy budgets. The
visualization confirms that while high throughput improves data processing responsive-
ness, it should be balanced against energy constraints—especially for deployments in
energy-limited environments such as remote or sensor-heavy agricultural fields.

Complementing the downlink analysis, Figure 7 visualizes uplink energy consump-
tion, which is particularly relevant to the Sensor Layer in AGRARIAN. This layer frequently
transmits real-time data from IoT sensors and UAVs back to the system. The 3D surface plot
represents energy consumption across the same set of latency configurations and bitrates,
this time focusing on the energy demand of uplink transmissions under different uRLLC
slice conditions.

The plot reveals a similar trend to the downlink case—energy usage escalates under
low-latency configurations and higher data rates, reinforcing the known latency-energy
trade-off. However, because the sensor layer often operates with small, frequent packets
rather than continuous streams, the relative energy cost becomes a critical design parameter.
These findings support AGRARIAN's conservative approach to using uRLLC slices only
where real-time sensing is essential while deferring less critical transmissions to energy-
optimized configurations. This balance allows for both performance and energy efficiency
in field deployments.

5. Conclusions

The AGRARIAN architecture offers a modular and intelligent framework for modern
agriculture, combining IoT sensors, UAVs, satellite connectivity, edge computing, and
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Al-based analytics to enhance precision farming and sustainability. By decentralizing data
processing and enabling real-time insights through edge AI, AGRARIAN supports efficient,
scalable, and resilient agricultural operations. Its layered design ensures adaptability across
various farming environments and levels of digital maturity.

In contrast to conventional cloud-centric systems, AGRARIAN supports hybrid de-
ployment models that reduce connectivity constraints and promote real-time decision-
making where it is contextually valuable. Pilot implementations demonstrate its relevance
for applications such as irrigation control, crop disease alerts, and livestock monitor-
ing. Future work will focus on expanding AGRARIAN’s integration with agricultural
machinery, enhancing interoperability, and validating its performance across broader agro-
ecological zones.
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