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ARTICLE INFO ABSTRACT

Edited by Jing M. Chen Fluorescence light emitted by chlorophyll in plants is a direct probe of the photosynthetic process and
can be used to continuously monitor vegetation status. Retrieving solar-induced fluorescence (SIF) using a
machine learning (ML) approach promises to take full advantage of airborne and satellite-based instruments
to map expected vegetation function over wide areas on a regular basis. This work takes a first step towards
developing a ML-based SIF retrieval method. A general-purpose framework for the simulation of at-sensor
radiances is introduced and applied to the case of SIF retrieval in the oxygen absorption band O,-A with
the spaceborne DESIS and airborne HyPlant spectrometers. The sensor characteristics are modelled carefully
based on calibration and in-flight data and can be extended to other instruments including the upcoming FLEX
mission. A comprehensive dataset of simulated at-sensor radiance spectra is then assembled encompassing the
most important atmosphere, geometry, surface and sensor properties. The simulated dataset is employed to
train emulators capable of generating at-sensor radiances with sub-percent errors in tens of ps, opening the way
for their routine use in SIF retrieval. The simulated spectra are shown to closely reproduce real data acquired by
DESIS and HyPlant and can ultimately be used to develop a robust ML-based SIF retrieval scheme for these and
other remote sensing spectrometers. Finally, the SIF retrieval performance of the 3FLD method is quantitatively
assessed for different on- and off-band configurations in order to identify the best band combinations. This
highlights how our simulation framework enables the optimization of SIF retrieval methods to achieve the best
possible performance for a given instrument.
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1. Introduction wavelengths, it is directly dependent on the efficiency of light reactions

during photosynthesis (see Mohammed et al. (2019), Porcar-Castell

Methods to quantify solar-induced fluorescence (SIF) have gained
great interest in the remote sensing community over the last years. This
emerging attention was triggered by the selection of the FLEX mission
of the European Space Agency (Drusch et al., 2017) to become the
first dedicated Earth Explorer satellite mission to quantify SIF globally
in moderate spatial resolution (300 m) and by the achievements in
retrieving SIF from existing satellite-borne instruments (see Joiner et al.
(2013), Kohler et al. (2020), Guanter et al. (2021) and references
therein). The fluorescence emitted by green vegetation originates as
a weak signal from the chlorophyll pigments of photosynthetic active
plant material in the wavelength range between 670 nm and 780 nm.
Although the signal is much less intense than reflected light at these
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et al. (2021) for recent reviews). SIF has therefore been shown to
have high potential not only to monitor the greenness of vegetation
but also for the early detection of stress-induced impairment of pho-
tosynthesis (A¢ et al., 2015; Pinto et al., 2020; Zeng et al., 2022) and
to help estimate carbon and water fluxes within the green vegetation
layer (Damm et al., 2018; Maes et al., 2020; Martini et al., 2022; Norton
et al., 2019).

Despite its great potential to track the actual state of photosynthesis,
it remains challenging to measure top-of-canopy SIF accurately without
any hidden bias and to relate it to physiologically relevant leaf level
SIF. It was thus proposed to combine SIF with novel reflectance-based
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indices (Zeng et al., 2021, 2022). The challenges of detecting SIF from
remote platforms is firstly related to the intrinsic weakness of the
fluorescence signal that needs to be separated from the quantitatively
larger intensity of reflected photons (the SIF signal is approximately
only 2-5% of the total photons in this spectral region). The separation
of SIF from reflectance is generally done in solar and/or atmospheric
absorption regions, where the intensity of incoming and reflected light
is greatly reduced. However, resolving these fine absorption bands
requires high spectral resolution sensors, which in turn generally suffer
from a low signal-to-noise ratio (SNR) if high spatial resolution is
desired. Finally, on its path to the sensor, the top-of-canopy SIF signal
itself is partly absorbed by the atmosphere, rendering the retrieval of
SIF from airborne or satellite data a complex task.

Dedicated SIF instrumentation has been developed with an opti-
mized balance between spectral resolution and SNR (Cendrero-Mateo
et al.,, 2019), but in parallel several attempts have been undertaken
to also use medium resolution instruments to retrieve SIF or at least
signals that contain parts of the fluorescence emission (Damm et al.,
2014). Nowadays, we have different systems which enable continuous
recording of SIF from towers and ground-based systems (Rossini et al.,
2016; Julitta et al., 2016; Peng et al., 2022). Additionally, dedicated
airborne sensors for SIF measurements have become available (Rascher
et al., 2015; Frankenberg et al., 2018; Siegmann et al., 2019) and
smaller sensors which can be mounted on small unmanned aircrafts
are currently on the fringe of becoming available (Garzonio et al.,
2017; Bendig et al., 2020; Vargas et al., 2020; Wang et al., 2022).
Retrieval of the SIF signal is generally done using the Fraunhofer Line
Discrimination method (FLD) and an expansion of it (Maier et al.,
2003), which was subsequently further modified to account for the
non-linearity of the reflectance and fluorescence signals in the red
spectral region (Cogliati et al., 2015b, 2019). However, it remains a
challenge for these retrieval methods to account for the modulation and
reabsorption of the signal in the downwelling and upwelling path of
photons through the atmosphere (Sabater et al., 2018). Even though
great advances have been made in the past years to constrain the
atmospheric absorption of the signal (Sabater et al., 2021), several
activities are currently ongoing to use machine learning (ML) and deep
learning approaches to handle atmospheric effects and retrieve the
SIF signal (Scodellaro et al., 2022; Vicent Servera et al., 2022; Buffat
et al., 2023, 2025c,a,b). For these ML approaches to reach the accuracy
required for SIF retrieval it is crucial to have abundant high-quality
training data with accurate detector characterization.

SIF retrieval can be seen as a complex, multi-dimensional inversion
problem. We aim to eventually develop a ML method for SIF retrieval
capable of mapping fluorescence over extended regions and character-
izing its uncertainty. This is currently not possible with other methods.
The ML model will need to learn and abstract away the complicated
influence of the atmosphere on the measured signal and the sensor
spectral uncertainties in order to extract the SIF signal. The present
work takes the first step in this effort, namely the preparation of a
meaningful and thorough body of training data for the learning process.
We start by implementing a general-purpose simulation framework
for at-sensor radiances in any reflective spectral range and for any
instrument. Our focus here is on two different classes of spectrometers
of relevance for SIF retrieval, represented by DESIS (Krutz et al., 2019)
and HyPlant (Siegmann et al., 2019). On the one hand, DESIS is an
example of a space-based spectrometer capable of covering wide areas
around the globe at moderate spatial and spectral resolutions. On
the other hand, HyPlant typifies a group of airborne spectrometers of
high spectral resolution that can cover a handful of small regions at
high spatial resolution. Although other classes of instruments may be
employed in the study of fluorescence, DESIS and HyPlant encompass a
representative range of current and future capabilities. A precise sensor
model is then developed to simulate high-fidelity DESIS and HyPlant
data that closely resemble real measurements.
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Two applications of relevance for both traditional and novel SIF re-
trieval methodologies are explored using the assembled simulated data.
First, we show that it is possible to train fast and accurate at-sensor radi-
ance emulators, thereby providing a fast alternative to computationally
demanding radiative transfer modelling in SIF retrieval methods. Sec-
ond, the SIF retrieval performance of the 3FLD method (Maier et al.,
2003) is evaluated using our simulations, illustrating the assessment
of a SIF retrieval method with the simulation dataset presented in
this contribution. The framework and results presented here have been
the starting point for several of our recent works towards a robust
ML-based SIF retrieval method, including the development of fast and
accurate emulators (Pato et al., 2023, 2024) and a novel ML-based SIF
retrieval method for HyPlant (Buffat et al., 2025¢c, 2023, 2025b) and
DESIS (Buffat et al., 2025a).

It is important to explain our choice of the 3FLD method for SIF
retrieval assessment in the current study as opposed to other state-of-
the-art algorithms (Alonso et al., 2008; Mazzoni et al., 2012; Meroni
et al., 2010; Cogliati et al., 2015b, 2018, 2019; Buffat et al., 2025c).
Although more modern approaches are nowadays routinely used for the
derivation of fluorescence from ground-based or airborne instruments
(see e.g. Siegmann et al. (2019)), the 3FLD retrieval is straightforward,
spectrum-based and not explicitly coupled to atmosphere conditions
or observation geometries through radiative transfer modelling. In
addition, the method is typically robust and does not create retrieval
artifacts. These features make 3FLD the ideal choice for our purposes of
illustrating the assessment of SIF retrieval accuracy with our simulated
datasets in a simple fashion. The evaluation of more modern methods
with the simulated data is also a relevant line of research which is left
for future work.

The paper is organized as follows. We start by describing the
simulation framework and its application to the case of SIF retrieval
in Section 2, including radiative transfer, surface properties and sensor
specifics. The dataset of simulated at-sensor radiance spectra for DESIS
and HyPlant is presented in Section 2.3 including the adopted input
parameter ranges and different sampling strategies. Section 3 then
documents in detail our results and findings. Two direct applications
of the simulated data are showcased, namely the training of forward
emulators of at-sensor radiances (Section 3.1) and the evaluation of the
SIF retrieval performance of the 3FLD method (Section 3.2). The sim-
ulated data are shown to be high-fidelity proxies of real data routinely
acquired by DESIS and HyPlant in Section 3.1. Section 4 discusses the
results and further elaborates on how the simulated datasets can form
the basis for a ML-based SIF retrieval method. Our concluding remarks
are given in Section 5. In Appendix technical details are given regarding
the sensitivity analysis that informed our simulations.

2. Data and methods
2.1. Simulation framework

The radiance measured by an airborne or satellite-based sensor de-
pends in general on the atmospheric conditions, observation geometry,
surface properties and sensor characteristics:

LS = Ls(xatm’ xgeo’ xSlll” xsen) ? (1)

where L; is the at-sensor radiance spectrum and Xy, Xgeo»> Xsur a0 Xep
represent the atmosphere, geometry, surface and sensor parameters,
respectively. The complicated multi-dimensional dependence has to be
accounted for in any simulation of at-sensor radiances. Fortunately, the
problem can be decoupled into a part that depends only on atmosphere
and geometry and another part that depends only on surface and sensor
properties. This decoupling permits a more efficient simulation and a
more thorough exploration of the high-dimensional input parameter
space. We have accordingly developed a two-module simulation tool
to deliver at-sensor radiances in a defined spectral range given a set
of atmosphere, geometry, surface and sensor parameters. Note that the
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Fig. 1. Schematic diagram of the software tool developed to simulate at-sensor radiances depending on atmosphere, geometry, surface and sensor parameters.

framework is general and may be easily applied to any optical remote
sensing application, wavelength range or sensor. A diagram of our
simulation setup is shown in Fig. 1. In the following we describe the
two modules of the tool: the atmospheric module and the surface-sensor
module.

2.1.1. Atmospheric module

The at-sensor radiance may be modelled for our purposes as the
combination of three components, namely surface-reflected light, sur-
face emission and atmosphere-scattered light (generically called path
radiance). Accordingly, we write the radiance measured by a detector
element at a given wavelength as

L=1L,+(Lg(p)+ Lprt (2)

where p is the surface reflectance, Ly is the reflected on-ground radi-
ance, Ly is the SIF on-ground radiance, L, is the path radiance and T T
is the total transmission coefficient from surface to sensor (typically
decomposed into direct and diffuse components, T' = TdTir + TdTif).
Following Guanter et al. (2009), the reflectance component Ly may be
further expressed in terms of the global solar irradiance on the ground
Eg (comprising direct and diffuse components) and the spherical albedo
of the atmosphere S:

Egp
z(1=pS) ~
with the implicit assumption of a Lambertian surface. Notice that all
variables in the above equations are wavelength dependent and that
any multiple scattering effects are implicitly included in the definition
of L,, Eg and T'. The dependence on the top-of-atmosphere solar irra-
diance enters in Eg and L,. Any solar model can be selected in our tool.
In this work, we have used the recent TSIS-1 solar model (Coddington
et al., 2023).

The five so-called atmospheric functions L, Eg, TdTir, TdTif and S
depend solely on atmosphere and observation geometry, not on surface
nor sensor specifics. Therefore, the atmospheric functions can be com-
puted once at high spectral resolution and then applied for multiple
surface and sensor configurations, as long noticed and done in the
remote sensing literature (Guanter et al., 2009; de los Reyes et al.,
2020). This computation typically requires a radiative transfer code
to account for the absorption and scattering of light throughout its
path in the atmosphere. We choose to work with MODTRANG6 (Berk
et al,, 2014, 2015) for this step given its wide use, versatility and
high spectral resolution, but other atmosphere radiative transfer models

Lg(p) = 3)

could be used in our general simulation framework. MODTRAN, as
other models, does not directly provide the atmospheric functions;
these have to be derived from the outputs of two distinct MODTRAN
runs with different (ideally non-zero) reflectance values and no surface
emission. A full account of this procedure can be found in Guanter et al.
(2009). Overall, as sketched in Fig. 1, the atmospheric module takes
as input atmosphere and observation geometry parameters (virtually
any specification that can be passed to MODTRAN), runs MODTRAN6
twice, and derives the five atmospheric functions L, Eg, TdTir, TdTif
and S in a specified range of wavelengths at high spectral resolution.
These data are stored in an internal database, which we shall call ATM
DB, and constitute the starting point for the second module of the
simulation tool.

2.1.2. Surface-sensor module

The surface-sensor module expects as input the above mentioned
ATM DB as well as surface and sensor properties to deliver the final sim-
ulated spectra. Although conceptually distinct, the surface and sensor
models are incorporated together into a fast module in our simulator
framework.

The surface is characterized by providing models for the wavelength
dependence of reflectance p and SIF emission L. Together with the five
atmospheric functions computed by the atmospheric module, this com-
pletes the definition of the high-resolution at-sensor radiance spectrum
L in Eq. (2). Any parametric model for p(4) and Lg(4) may be imple-
mented in the surface-sensor module. The very general definition of the
surface properties is designed to support a wide range of applications.
The particular models used for our purposes in this work are described
in Section 2.2.1.

With the high-resolution at-sensor radiance spectrum L(4) fully
specified, the sensor spectral characteristics of the instrument can now
be factored in. The spectral response function (SRF) for a spectral band
b is modelled as a Gaussian parameterized by a central wavelength CW,
and full width at half maximum FWHM,. In order to accommodate any
imperfections in the spectral calibration of the instrument, we allow for
small additive shifts for CW and changes in FWHM: CW) = CW, + 5cw
and FWHM, = FWHM,+38gyy- The shifts of CW and changes in FWHM
are global, i.e. the same for all bands. The spectral response function
for the particular band b is given by

1 ( (A—CW))? >
exp| — >
0'2 \V2r 2‘71,,2

SRF, (1) = 4)
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where o‘l’) = FWHM’b/(2\/21n 2) is the modified standard deviation.
The spectral response function and corresponding shifts applied in
our work for DESIS and HyPlant are specified in Section 2.2.2. The

sensor-resolution at-sensor radiance for band b then reads
Ly, = / dA L(3) SRF,(}) . 5)

There is one final subtlety in the simulation of at-sensor radiances
related to the medium where the instrument operates. While MOD-
TRAN reports vacuum wavelengths 4, the spectral response function
refers typically to wavelengths in the measurement medium 4 = Ay/n,,,,
where n,, is the refractive index of the relevant medium. Thus we
have to modify Eq. (5) by scaling the vacuum (simulation) wavelengths
appropriately:

Ly, = / dA L(An,) SRF,(2) . (6)

For instruments operating in vacuum, as in the case of DESIS, n,, = 1
and the wavelength difference is irrelevant. The effect is also negligible
for sensors with moderate spectral resolutions, because the spectral
shift due to refraction is relatively small (0.22 nm at 4 = 760 nm
for air at 0 °C and 1 atm). However, for high-resolution instruments
operating in air such as HyPlant, it is crucial to consider the air-
to-vacuum shift. For HyPlant, we specify the refractive index of the
measurement medium as n, = n, = 1.000293 (air at 0 °C and
1 atm) to model the spectral shift. There is a slight flight altitude
dependence that cannot be accounted for with this simple model, but
it can with the central wavelength shifts implemented in the surface-
sensor module (cf. Eq. (4)). This approach enables a very good match
between the simulated at-sensor radiance spectra and the real HyPlant
measurements (cf. Section 3.1).

The sensor-resolution simulated spectra L, , are saved in a dedicated
database called SENSOR DB. This final database serves as the basis for
the results presented in Section 3.

2.2. Application to SIF

2.2.1. Surface model

The key surface parameters for our purposes are reflectance p and
fluorescence emission Lp. We use simplified parametric models for the
wavelength dependence of both p and Ly having in mind the final
application to SIF retrieval in the O,-A band. The choice of simplified
models in our framework is intentional since it keeps the number
of parameters to a minimum and enables the assembly of very large
simulated datasets, which would not be feasible with very detailed
radiative transfer models (e.g., SCOPE (van der Tol et al., 2009; Yang
et al.,, 2021)). Furthermore, we are not modelling any relationships
between incident solar radiation, vegetation constituents, structure,
physiological state, reflectance and fluorescence. This is an important
feature of our approach since the absence of any such relationships in
our simulated data is necessary for a SIF retrieval method to extract
the actual SIF emission signal, and not a correlation between surface
reflectance and underlying physical parameters.

Reflectance could be described using a full, coupled leaf and canopy
radiative transfer model. However, these models require a large number
of parameters which would substantially increase the dimensionality
of the input parameter space. A simple reflectance model for vege-
tated surfaces can be created through linear combination of vegetation
and soil spectra. Fortunately, in the spectral range investigated here
(740-780 nm) leaf pigments and water only have a minor influence on
reflectance (Maier, 2000), leading to spectrally flat spectra. Further-
more, due to the small spectral range, soil reflectance spectra can be
described by an affine equation. Consequently, we describe the surface
reflectance p as
ste—1)

se—=D
2(/12—/11)(1 Az )

P(A) = pyo+s(A—4) +
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with 4, = 740 nm and 4, = 780 nm. The three parameters p;4,, s and e
have clear meaning: p,4, and s are the reflectance and its spectral slope
at 740 nm, while e is the ratio of reflectance spectral slopes at 780 nm
and 740 nm.

The model in Eq. (7) encompasses a limited but useful range of land
covers including vegetation, soil, concrete and bitumen, but not neces-
sarily other artificial materials. This can be seen explicitly by analysing
observational reflectances in the spectral range of interest. In order to
test our reflectance parameterization, we made use of top-of-canopy
(TOC) reflectances derived from the DUAL sensor integrated in HyPlant
(cf. Section 2.2.2). In particular, we gathered a dataset of TOC re-
flectance estimates comprising all DUAL acquisitions (Siegmann et al.,
2019) from the years 2018-2022 (469 acquisitions, 41 campaigns) and
sampled random subsets consisting of a fixed number of 30,000 spectra.
Fig. 2 shows the maximum absolute error obtained by fitting a linear
reflectance model (e = 1) and a quadratic model (e > 0) to the observed
reflectances. We excluded the wavelength interval 755-770 nm from
the fit since in this range the DUAL reflectances are less accurate due to
the influence of the O,-A absorption feature. Clearly, the linear model
fails to provide an accurate description of the reflectance for typical
land covers in HyPlant acquisitions. The underlying reason is primarily
the curvature of the red edge in the range 740-750 nm, as depicted
with an exemplary reflectance curve in Fig. 2 (right). The quadratic
model does capture the curvature of typical reflectance spectra around
the O,-A band since the parameter e effectively controls the degree of
curvature of the reflectance spectrum. With both s and e positive, this
formulation guarantees monotonically increasing reflectance spectra
in the considered wavelength range, as expected for vegetation and
soil, which we aim to simulate. This is important to avoid introducing
unrealistic reflectance spectra in the simulated dataset which could bias
a ML SIF retrieval method. Naturally, our simulations should not be
used to interpret data from land covers different from those considered
in our framework. As can be observed in Fig. 2 (left), the quadratic
model has a maximum error of less than 1.2% in the analysed dataset,
which makes this model appropriate for our purposes.

Next we determine appropriate parameterization ranges for p,4, s
and e by matching cubes to the fitted distributions of the parameters.
While the ranges are derived from the given data distribution, we are
confident that the formulation of the reflectance model as well as the
large margins around the parameter space covered by this particular
dataset are general enough to be valid for other datasets. Fig. 3 shows
the marginal distributions p(s,e) and p(ps4g). These distributions mo-
tivate the parameter space delimited by the red lines in the figure,
encompassing ps, = [0.05,0.6], s = [0,0.012] nm~! and e = [0, 1].

Solar-induced fluorescence in vegetation shows two peaks at around
690 nm and 737 nm. Fig. 4 illustrates solar-induced fluorescence spectra
modelled using the leaf radiative transfer model SLOPE (Maier, 2000)
and measured under natural conditions (Amoros-Lopez et al., 2008;
Krdamer, 2024). Besides a single spectrum from Amoros-Lopez et al.
(2008), we compare our model with 161 leaf-level on-ground SIF
measurements at high spectral resolution (0.75 nm) collected with the
FLUOWat/LOX measurement system (Van Wittenberghe et al., 2013)
from different crops in dedicated campaigns in Campus Klein-Altendorf
in 2022 and 2023 (Kramer, 2024). Below 730 nm an approximation
based on Gaussian functions is not satisfactory. In contrast, above
730 nm, a Gaussian model is a very good approximation for the solar-
induced fluorescence spectra. We therefore model SIF emission in the
spectral range 740-780 nm as

2
A=A
Ly(4) = Fy37 exp <—Q> R (€)]

2 Gé
with Ag = 737 nm and o = 20 nm. The only free parameter is F;3;, the
SIF on-ground radiance at 737 nm, and we consider the range Fi3; =
[0,0.8] mW/cm?/sr/pum for our simulations. Note that our simplified SIF
model is well motivated for our purposes here given the narrow range
740-780 nm considered around the O,-A band (where the SIF spectrum
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Fig. 2. Reflectance model fits to HyPlant DUAL data in the spectral region around the O,-A band. The left panel shows the distribution of the maximum absolute error (MaxAE)
in spectral dimension of linear and quadratic fits over 30,000 reflectance spectra collected from DUAL acquisitions between 2018 and 2022. In the right panel, an exemplary
DUAL reflectance spectrum (green) is compared to the corresponding linear fit (blue) and quadratic fit (orange). The grey band indicates the spectral range of the O,-A absorption

feature which was not used in the reflectance model fits.
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Fig. 4. Solar-induced fluorescence spectra modelled using the leaf radiative transfer model SLOPE (Maier, 2000), measured under natural conditions in Amoros-Lopez et al.
(2008) (one spectrum) and in Krédmer (2024) (161 spectra) and a Gaussian model in the considered wavelength range 740-780 nm. All spectra have been scaled to the spectrum
from Amoros-Amoros-Lopez et al. (2008) for visualization. The measured spectra from Amoros-Lopez et al. (2008), Kramer (2024) have been baseline corrected to ensure zero
fluorescence outside of the fluorescence emission range. The grey shaded area depicts the wavelength range considered in this study.

consists of the decaying tail of the second fluorescence peak, cf. Fig.
4) and the interest in medium spectral resolution instruments such as
DESIS. For SIF retrieval at the O,-B band or for a full SIF spectrum re-
construction as aimed by the upcoming FLEX, a more complex model is

needed, possibly including parameters for the position, width, intensity
and asymmetry of the fluorescence peaks. Our simulation framework
may be used for such studies and we briefly comment on this possibility
in Section 4.
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Fig. 5. The variation of the DESIS spectral response function in terms of central wavelength (CW, left) and full width at half maximum (FWHM, right) in the across-track direction
for spectral bands near the O,-A absorption band. The differences 6.y and gy shown in the plots are defined with respect to the corresponding average over the 400 central
pixels. The DESIS spectral response function shown here is based on the spectral calibration table with version 0207 and valid from May 1, 2020 to Dec 1, 2020.

2.2.2. Instruments and data

A concise overview of the key specifications of DESIS and HyPlant
around the O,-A band (specifically, in the spectral range 740-780 nm)
is presented next. Our focus is on the precise characterization of the
sensor spectral properties, while a detailed model for sensor radiomet-
ric noise is deferred to future work. Note however that the handling of
sensor noise can be implicitly included in recent SIF retrieval schemes
(cf. Buffat et al. (2025a)).

The DLR Earth Sensing Imaging Spectrometer (DESIS) is a space-
based instrument installed and operated on the International Space
Station (ISS) (Krutz et al., 2019). DESIS was launched to the ISS in June
2018, began initial operation in November 2018 and was declared fully
operational in September 2019. DESIS image products consist of 235
spectral bands ranging from 400 nm to 1000 nm and 1024x1024 spatial
pixels with a ground sampling distance of 30 m. The overall absolute ra-
diometric calibration is within ~5% at the top-of-atmosphere radiance
level outside strong atmospheric absorption regions when validated
against RadCalNet (Bouvet et al.,, 2019), Sentinel-2 and Landsat-8.
The spectral calibration is better than ~ 0.5 nm for the majority of
DESIS observations. For a small fraction of observations, though, DESIS
shows larger spectral deviations that are within 0.85 nm (~1/3 of a
spectral pixel). The spectral sampling distance is nominally stated as
2.55 nm, while the full width at half maximum of the bands is nominally
3.55 nm. A complete description of the DESIS data products and DESIS
performance can be found in Alonso et al. (2019).

Several DESIS acquisitions were analysed in our effort to gen-
erate realistic simulations. In particular, we used a DESIS scene of
30 x 30 km? southwest of Cologne (centre-west Germany with the geo-
graphical WGS84 centre coordinates of latitude 50.7744° and longitude
6.8593°) to gauge differences between simulation and real data. The
scene was acquired on June 23, 2020 at 10:10 UTC with the following
geometry parameters: sun zenith angle of 32.05°, sun azimuth angle
of 140.57°, scene incidence angle of 21.79°, scene azimuth angle of
205.60° and a geometrical accuracy of ~20 m linear deviation in east
and north directions. In addition, we studied multiple DESIS scenes
acquired between 2018 and 2021 over two sites in Germany (Jiilich,
Munich) and one in Australia (Litchfield) in order to set realistic DESIS
observation geometries in our simulations. More details are given in
Section 2.3.

The DESIS spectral response functions were measured on-ground
during the instrument characterization campaigns. The central wave-
lengths can be refined post-launch using internal coloured LEDs, but

the full widths at half maximum are not updated during the whole
mission lifetime. Our simulation uses the averaged band CW and FWHM
around the O,-A feature for a particular spectral calibration table
(corresponding to the DESIS acquisitions described above) together
with the existing dependency in sensor across-track direction. The
differences in CW and FWHM with respect to the band averages in the
central pixels are shown in Fig. 5 for the wavelengths of interest and
the mentioned spectral calibration table. This is sufficient to account
for smile (i.e., variation of band central wavelength in the across-track
direction) during a limited time interval. However, based on numerous
DESIS calibration and Earth datatakes acquired over several years, it
is known that under certain conditions a global spectral shift of up
to about 0.5 nm can arise (Carmona et al., 2021). Thus, we fix the
range of oy to [—1.75,41.25] nm for our simulated dataset. The range
of Spwym is likewise fixed to [—0.30,+0.30] nm to account for possible
inaccuracies in the knowledge of the spectral bandwidth. The precise
characterization of the DESIS spectral response function presented here
ensures that our simulation is realistic and capable of reproducing
DESIS spectra in a wide variety of conditions.

The airborne imaging spectrometer HyPlant is a hyperspectral in-
strument that was developed within a cooperation between the Finish
company SPECIM (SPECIM, 2024) and Forschungszentrum Jiilich. Hy-
Plant is composed of two modules, called DUAL and FLUO, which
are co-aligned on a rigid baseplate and operated in a synchronized
manner. The DUAL module measures radiance from 400 nm to 2500 nm
with a spectral resolution of 3-4 nm in the visible and near-infrared
spectral region (400-1050 nm) and with a spectral resolution of 10 nm
in the short wave spectral region (1050-2500 nm). The FLUO module
was designed to enable SIF retrieval and measures radiance in high
spectral resolution at the O,-A and O,-B oxygen absorption bands.
The sensor is fully temperature controlled to ensure stable operation
under flight conditions and operates at an effective spectral resolution
between 0.23 nm and 0.26 nm (FWHM under flight conditions, see
Siegmann et al. (2019) for a detailed description of the radiometric
performance of this sensor). The spatial resolution of the HyPlant
system depends on the flight altitude and ranges between 0.5 m and
5 m per pixel for the nominal flight altitudes, which were used in the
past years. Top-of-canopy reflectance and SIF emission are calculated
by applying a dedicated atmospheric correction and physically based
retrieval algorithms, which were developed in preparation of the FLEX
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Fig. 6. Re-evaluation of HyPlant spectral resolution around O,-A absorption band. The left panel shows the 10%, 25%, 75% and 90% percentiles of the distribution of FWHM
values estimated with HyPlant measurements in the range 763-767 nm from campaigns over Campus Klein-Altendorf (CKA) and Selhausen (SEL) between 2018 and 2022 and
acquired at 350 m and 680 m flight altitudes. The right panel shows the distribution of fitted FWHM values for the range 740-780 nm derived from two acquisitions with gas
emission lines performed during the HyPlant spectral calibration campaign in 2022. In both panels, the range of FWHM based on HyPlant calibration data from 2018 and 2019

is marked by the red filling.

satellite mission (Siegmann et al., 2019; Cogliati et al., 2019; Sabater
et al., 2021).

The ready access to recent HyPlant acquisitions (Buffat et al.,
2024b) has greatly helped in improving our simulation setup. Through-
out our work we used data from multiple HyPlant campaigns in the
period 2018-2022 over two sites in Germany (Selhausen and Campus
Klein Altendorf) at different flight altitudes (350 m and 680 m above
ground level). For each campaign there are several flight lines avail-
able, each covering 384 pixels in across-track direction and typical
lengths of 3-12 km. In total, several million spectra are collected per
flight line with spatial resolutions of 0.5 m and 1.0 m per pixel for flight
altitudes of 350 m and 680 m, respectively. We have mostly used the
at-sensor radiance spectra measured by the HyPlant FLUO sensor, but
in some specific cases (cf. Section 2.2.1) the reflectance derived from
the DUAL sensor was also analysed.

The spectral response functions of the HyPlant FLUO sensor are
measured in terms of both CW and FWHM during yearly routine
calibrations under laboratory conditions by the manufacturer SPECIM.
Calibration data from 2018 and 2019 suggest that CW differences with
respect to the band average lie in the range [-0.012,0.012] nm and
that the FWHM varies in the range [0.27,0.35] nm for the wavelengths
around the O,-A absorption band. Since the spectral response function
can be very sensitive to thermal, atmospheric pressure and geometrical
instabilities under typical in-flight conditions, we make use of real
HyPlant data to inform our choice for the CW and FWHM ranges. We
compare a representative set of HyPlant spectra from campaigns over
Selhausen and Campus Klein-Altendorf in 2018-2022 at flight altitudes
of 350 m and 680 m to dedicated simulations with variable CW and
FWHM. The resulting CW shifts vary essentially within +0.05 nm, but
in some cases shifts can reach slightly higher values, so we fix the
range of Scy to [—0.080,0.080] nm. The estimated FWHM values are
shown in Fig. 6 (left) and most lie between 0.20 nm and 0.27 nm. This
result is further cross-checked with the help of two acquisitions with
gas emission lines performed during the HyPlant spectral calibration
in 2022. The fitted FWHM values, reported in Fig. 6 (right), lie be-
tween 0.23 nm and 0.28 nm. The results from imaging and calibration
acquisitions are consistent with each other and overall they call for
a HyPlant FWHM range [0.20,0.28] nm, or equivalently &gy in the
range [—0.04,0.04] nm for a baseline FWHM of 0.24 nm.

2.3. Simulated datasets

The simulation framework presented in Section 2.1 is completely
general and can be used for virtually any spectral range and application

with airborne or satellite optical instruments. In this work, we restrict
ourselves to SIF retrieval in the O,-A band with the DESIS and HyPlant
instruments (cf. Section 2.2.2).

The first step in generating synthetic data is to single out the ranges
of atmosphere, geometry, surface and sensor parameters relevant for
the particular application at hand. This is done with the help of the
sensitivity analysis documented in Appendix along with expert knowl-
edge of the instruments under consideration. Several results from the
sensitivity analysis are worth mentioning here. First, the simulation
of the percent-level effect of SIF in the at-sensor radiance spectra
requires the use of the line-by-line radiative transfer algorithm with the
highest resolution available in MODTRANG6 (0.1 em™!) and a precise
multiple scattering treatment. Second, while aerosol optical thickness
and aerosol model are the most relevant atmosphere parameters as
expected, also water vapor content plays a role at the extremes of the
spectral range considered. Third, the modelling of solar zenith angle,
surface and sensor heights as well as reflectance spectrum is indis-
pensable for a precise simulation including SIF. Finally, our sensitivity
analysis also shows that the at-sensor radiance signal is particularly sen-
sitive to shifts of central wavelength across the sensor, so an accurate
retrieval method needs to implicitly or explicitly account for such shifts
when estimating SIF.

Table 1 outlines the key parameters and their ranges for the genera-
tion of DESIS and HyPlant simulated spectra. For comparison, a column
also shows the values used in the sensitivity analysis. The atmosphere
and geometry parameters were defined based on existing DESIS and
HyPlant acquisitions over selected locations. For DESIS, 20 acquisitions
over Munich, Germany and 16 over Litchfield, Australia in the period
2018-2021 were used to encompass typical observation geometries,
while atmospheric conditions for both mid-latitude and tropical sites
were gauged considering three sites: Munich and Jiilich, Germany and
Litchfield, Australia. There are separate sub-databases for DESIS corre-
sponding to mid-latitude summer and tropical atmosphere models. For
HyPlant, the focus is on mid-latitude European sites and accordingly
the typical atmosphere and geometry parameters were set based on 13
available acquisitions from three campaigns over Selhausen in 2018
at nominal flight altitude of 680 m. In addition, the range of aerosol
optical thickness at 550 nm for both DESIS and HyPlant databases was
fixed to [0.02,0.30] based on both global distributions (Kinne, 2019) and
on measurements of the aerosol optical thickness (at 675 nm, 870 nm
and 1020 nm) made by the CIMEL instrument at the AERONET station
in FZJ-JOYCE (AERONET FZJ-JOYCE, 2024). The adopted values for
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Ranges of input atmosphere, geometry, surface and sensor parameters used for the generation of DESIS and HyPlant simulated data as well as
for the sensitivity analysis (cf. Appendix). Atmosphere parameters include atmosphere model, water vapor (H,0), ozone content (O5), aerosol
optical thickness at 550 nm (AOTs5,) and aerosol model, while the geometry parameters are tilt angle (TA), sun zenith angle (SZA), relative

azimuth angle (RAA) between sun and line of sight, ground altitude h,,, and sensor altitude A,

The surface is modelled by the reflectance at

sen*

740 nm, reflectance slope at 740 nm, ratio of reflectance slopes at 780 nm and 740 nm and SIF on-ground radiance at 737 nm, while the sensor
parameters include the shift of central wavelength .y, and of full width at half maximum 6&gyy,. The sensor altitude for HyPlant databases
refers to altitude in km above ground level (agl). The radiance unit used to specify the fluorescence output F,y, is F, = 1 mW /cm?/sr/pm.

Parameter Sensitivity DESIS DB HyPlant DB
analysis
Atmosphere model mid-latitude mid-latitude mid-latitude
summer, tropical summer, tropical summer
H,0 [cm] 0.3-5.0 0.3-5.0 0.3-3.0
0O, [DU] 200-500 332 332
AOTss, [1 0.05-0.50 0.02-0.30 0.02-0.30
aerosol model rural, maritime, rural rural
desert, urban,
none
Geometry TA [°] 0-15 0-25 0-20
SZA [°] 0-45 0-55 20-55
RAA [°] 0-180 0-180 0-180
Ry [m] 0-4000 0-600 0-300
hy, [km] 0.001-100 100 0.659-0.691 agl
Surface P [1 0.00 — 0.60 0.05 - 0.60 0.05 — 0.60
s [nm™] 0 —0.0008 0-0.012 0-0.012
e[] 1 0-1 0-1
Fpyp/ Fy 0-08 0-0.8 0-08
Sensor Scw [nm] [-1.00,+1.00] [-1.75,+1.25] [—0.080, +0.080]
Spwiy [nm] [-0.25,+0.15] [-0.3,+0.3] [~0.040, +0.040]

surface and sensor properties were based on the discussion in Sec-
tions 2.2.1 and 2.2.2, respectively. It is important to stress that the
ranges in Table 1 are representative of real DESIS and HyPlant data
to be used in the future in conjunction with the simulated datasets
presented here. This point is crucial for the success of any SIF retrieval
method trained on simulated data.

The next step is to sample the input parameter space defined above.
Three sampling methods are considered: uniform grid, random sam-
pling and Halton sampling with Owen scrambling (Halton, 1960; Owen,
2017). The multi-dimensionality of the input space (> 10 dimensions)
requires millions of samples in order to achieve a reasonable sampling
uniformity. This is currently beyond our available computational re-
sources because the time required to simulate one at-sensor radiance
spectrum is several minutes, dominated by MODTRAN running time.
However, as seen in Section 2.1, the simulation can be decoupled
into a (slow) atmospheric module, that depends only on atmosphere
and geometry parameters, and a (fast) surface-sensor module, that
depends only on surface and sensor properties, see Fig. 1. Instead
of running both steps in sequence for each sample of the full input
space, one may first execute the atmospheric module in a sample
set of the atmosphere/geometry input space and then, for each run,
execute the surface-sensor module in a sample set of the surface/sensor
input space. This strategy represents a reasonable compromise between
sampling uniformity and running time, making it feasible to simulate
a reasonably uniform body of millions of high-dimensional samples in
useful time with the available resources.

The sampling specifications chosen for the DESIS and HyPlant
databases are reported in Table 2. In addition to random and Halton
samples, a set of uniform grid sampling points is also included in order
to populate the databases with the borders and corners of the input
parameter space as well as special values (e.g., zero sensor shifts),
which are not necessarily picked up by random or Halton sampling.
The use of the three sampling methods for the generation of the
databases will be useful in the future to study the effect of sampling
strategies in the training of a ML-based SIF retrieval method. In total,

Table 2

Specification of the generated DESIS and HyPlant databases. The input space and
number of samples are reported for each database employing uniform grid (UG),
random (R) and Halton (H) sampling techniques.

DB  Specification DESIS DB HyPlant DB
- Input space 6d 7d
g Sampling UG R H UG R H
Nr. samples 2x30 2x10°  2x10* 37 10° 10*
g Input space 6d 6d
%]
g Sampling UG R H UG R H
. Nr. samples 2% 30 300 300 2% 30 300 300
Total samples 2x10°  6x10°  6x10° 3x10° 3x10° 3x10°

approximately 15 million spectra were simulated distributed across the
different databases and sampling strategies. Several more sets with tens
of million of spectra overall were simulated in intermediate datasets
leading up to the final databases presented here.

The databases of simulated spectra were generated with a dedicated
virtual machine using 10 cores. The total running time for the final
datasets amounted to approximately one week. The single-core running
time for the atmospheric module varies between 1 min/sample for
nadir geometries and about 4 min/sample for off-nadir geometries,
while the same time needed for the surface-sensor module amounts to
approximately 0.02 s/sample for both DESIS and HyPlant.

We conclude this section by showing in Fig. 7 selected at-sensor
radiance spectra from the generated databases for both DESIS and
HyPlant. The different resolutions of DESIS and HyPlant can be fully
appreciated as well as the complex interplay between atmosphere,
geometry, surface and sensor properties. Although limited, the set of
spectra in Fig. 7 serves to illustrate the power of an extensive body
of simulated data that can be used to analyse the signal measured by
hyperspectral sensors and help in the SIF retrieval task.
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Fig. 7. Selected simulated at-sensor radiance spectra surrounding the O,-A feature (740-780 nm) for different atmosphere, geometry, surface and sensor properties. The spectra
are extracted from DESIS DB (uniform grid sampling, mid-latitude atmosphere model) in the left panel and from HyPlant DB (uniform grid sampling) in the right panel. All cases
correspond to a constant 30% surface reflectance. The number of spectral bands in the wavelength range considered is 13 for DESIS and 349 for HyPlant.

3. Results

In this section we use the simulated dataset described above for two
specific applications. The analysis presented here demonstrates explic-
itly the usefulness of our simulations for SIF retrieval and motivates
further applications to be pursued in the near future.

3.1. At-sensor radiance emulators

The assembled set of simulated data effectively establishes a di-
rect connection between a combination of atmosphere, geometry, sur-
face and sensor properties and the corresponding at-sensor radiance
spectrum in the wavelength range of interest for DESIS and HyPlant
(cf. Eq. (1)). While the dataset is originally intended to aid in the ill-
posed inverse task of retrieving one surface property (in our case, SIF)
from the at-sensor radiance spectrum, the same dataset can also be used
for the direct task of predicting the at-sensor radiance spectrum given
a set of atmosphere, geometry, surface and sensor properties:

Ls = F(xalm’ xgeo’ xsur’ xsen) i (9)

where F : R? — R’ is a multi-dimensional function, p is the number
of atmosphere, geometry, surface and sensor parameters (p = 12 for
DESIS, p = 13 for HyPlant, cf. Table 1) and b is the number of spectral
bands in the considered range around the O,-A band (b = 13 for DESIS,
b = 349 for HyPlant). The learning of the function F with the help of
the simulated dataset is a well-defined regression problem and provides
an at-sensor radiance emulator which mimics the simulation step.
Several works in the literature have proposed and studied emulators
in different contexts and applications (see e.g. Vicent Servera et al.
(2022)). For our regression problem, different parametric functions for
F may be chosen; a comprehensive study of different emulators and
their performance is presented by us in Pato et al. (2024). Fourth degree
polynomials turn out to be fast and accurate emulators for our purposes
in this work. We therefore train a fourth degree polynomial emulator
separately for DESIS and HyPlant using the uniform grid and Halton
samples of simulated spectra (cf. Table 2) as training set, while leaving
the random datasets for validation and testing.

The time and accuracy performance of the trained emulators for
DESIS and HyPlant is shown in Fig. 8. Two main conclusions are

evident from our results. First, as seen in the left panel of Fig. 8, the
emulators have prediction times per sample spectrum ranging from
1-2 ms (for a single sample) down to 10-20 ps (for a million samples),
with the DESIS emulator slightly faster due its lower dimensionality.
The prediction is faster (per sample) when done in bulk since it involves
only matrix multiplications, which are highly optimized in standard
software packages. The single-sample time of a few ms is relevant for
the sequential emulation of spectra (as needed in the simulation step
of some SIF retrieval algorithms (Buffat et al., 2023, 2025c)), while
the million-sample time of 10-20 ps is to be considered for emulation
in bulk (as in the generation of large datasets for training SIF retrieval
algorithms). Either way, the emulator is several orders of magnitude
faster than the 1-4 min needed for the full physics-based simulation of
one spectrum.

Second, the emulators are very accurate in reproducing the simu-
lated spectra both for DESIS and HyPlant, as shown by the distributions
of the band-averaged relative errors in the right panel of Fig. 8. The
errors cluster around approximately 0.1% for DESIS and 0.02% for Hy-
Plant and there are few cases where they exceed 1%. Such impressive
sub-percent accuracy is adequate to characterize the SIF signal, which
usually amounts to a few percent of the total at-sensor radiance. In fact,
we employed the emulators to reproduce the whole DESIS DB (mid-
latitude atmosphere model) and HyPlant DB presented in Section 2.3
with ~0.1% average error or better in just under 3 min. This highlights
the power of emulation and its excellent combined time and accuracy
performance.

Finally, we show that the emulators accurately reproduce real mea-
surements, thereby providing the first step for a robust SIF retrieval and
the estimation of its uncertainty. The comparison between simulated
and measured spectra over a representative land cover is reported in
Fig. 9 for a DESIS scene and in Fig. 10 for a HyPlant scene. We employ
the emulators for DESIS and HyPlant to fit every spectrum in the scenes.
An unconstrained least squares optimization is performed for each
individual spectrum to retrieve the atmosphere, geometry and surface
parameters and column-wise per band to retrieve the sensor shifts. The
deliberately simplified scheme is not intended for SIF retrieval, but it
is adequate to interpret DESIS and HyPlant spectra. The results of this
procedure for the example pixels highlighted in Figs. 9(a) and 10(a)
are shown in Fig. 9(b) and Fig. 10(b), respectively. The distribution of
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Fig. 8. Time and accuracy performance of fourth degree polynomial emulators of at-sensor radiances for DESIS and HyPlant around the O,-A band. The left panel displays typical
prediction times per sample for different number of samples, while the right panel shows the distributions of the band-averaged relative errors in the entire DESIS DB (mid-latitude

atmosphere model) and HyPlant DB.

the residuals between data and simulation for the full patches and all
bands, reported in Figs. 9(c) and 10(c), indicates that typical residuals
lie in the interval 9x10~*+0.07 mW/cm?/sr/pm for DESIS and 5x 103+
0.09 mW/cm?/sr/pm for HyPlant.

We shortly comment on the magnitude of the residuals between
simulation and data. While it is true that some residuals are larger
than about 0.1 mW/cm?/sr/pm, we do not see this as problematic
for two main reasons. First, the distribution of residuals is shown for
the full patch, including surface compositions not represented in our
simulation. In order to be conservative we have not filtered these
regions out for Figs. 9(c) and 10(c). Second, our simulation is noise-
free while the measured spectra naturally contain noise that ends up in
the quantification of the residual. Notice in particular that, for a sensor
such as DESIS, a radiance noise of 0.1 mW/cm?/sr/um is very small.
Overall, the key message of the residuals shown in Figs. 9 and 10 is that
their distribution is not biased and that our simulation setup reproduces
DESIS and HyPlant at-sensor radiance spectra to within better than
0.1 mW/cm?/sr/um across the considered wavelength range. These
findings demonstrate the realistic nature of the simulations and show
that our body of simulated data constitutes a solid basis for training
ML-based SIF retrieval methods.

3.2. SIF retrieval performance

The simulated dataset presented in our work can be used in a
straightforward fashion to test the performance of any SIF retrieval
method for various atmosphere, geometry, surface and sensor con-
ditions. Such studies may also inform the actual design of retrieval
algorithms before application to real data. We demonstrate this here,
making use of a small set of simulated DESIS spectra to evaluate the
SIF retrieval performance of different variants of the 3FLD method.
This method, initially proposed in Maier et al. (2003), estimates a
relative SIF signal by using a band or combination of bands in the
0,-A absorption region (on-band) and a virtual band consisting of two
or more bands on either side of the absorption region (off-band). The
procedure may be applied to each sensor element separately and relies
on the existence of non-fluorescent pixels in the image to factor out
the influence of atmosphere and geometry. In order to evaluate the
SIF retrieval performance of 3FLD we collected small subsets of 2000
DESIS and HyPlant simulated spectra with fixed atmosphere, geometry
and sensor properties and varied surface reflectance and fluorescence.
In such a dataset the SIF retrieval accuracy can be assessed directly

10

by comparing the retrieved fluorescence for each spectra with the
simulated value.

The choice of the on- and off-bands in the 3FLD method depends
sensitively on the properties of the sensor and is better done guided by
simulated data. We start by considering only simulated spectra with
linear reflectances (e 1) and comment on non-linear reflectances
afterwards. Fig. 11 shows the correlation between the 3FLD retrieved
fluorescence and the actual simulated fluorescence for all simulated
DESIS spectra using three different on- and off-band configurations.
Since the algorithm retrieves only relative SIF, an absolute error es-
timation is not possible, but the correlations in Fig. 11 can be used to
assess the 3FLD accuracy. DESIS has 13 spectral bands in the region
around the O,-A absorption feature (cf. Fig. 7), so different on- and
off-band configurations are possible. One reasonable choice is to select
band 8 (762.5 nm) sitting deep in the absorption feature as on-band
and combine bands 5 and 11 (755 nm and 770 nm) outside the feature
to form the off-band. This baseline 3FLD band configuration leads to
a good retrieval performance with a Pearson correlation coefficient of
0.68 and a very small bias as evident from the top panel of Fig. 11.
The other panels show the effect of using alternative bands on either
side of the absorption feature (bands 3-5 and 11-13, cf. middle panel)
and additionally inside the absorption feature (bands 7-9, cf. bottom
panel). The addition of bands seems to slightly reduce the retrieval
accuracy with the correlation coefficient dropping to 0.65 (middle
panel) and 0.63 (bottom panel) while the bias is kept negligible in both
cases. Notice however that our simulated data does not include sensor
noise. When using real data, adding bands in the 3FLD method should
reduce the impact of sensor noise and therefore lead to an increase in
retrieval quality. Other combinations of on- and off-band configurations
lead to poor retrievals (not shown), highlighting that this choice of
wavelengths is essential for the success of 3FLD in estimating SIF.

The case of HyPlant is qualitatively different from DESIS given the
smaller path between target and sensor and especially its higher spec-
tral resolution. In particular, it is possible with HyPlant to place a nar-
row on-band for the 3FLD method deep inside the oxygen absorption
feature, thereby reducing dramatically the down-welling irradiance and
reflectance signal in that band and consequently increasing the relative
importance of the fluorescence signal. This facilitates SIF retrieval with
a high spectral resolution instrument as HyPlant when compared to a
medium spectral resolution spectrometer as DESIS. Our results confirm
this well-known expectation. The 3FLD retrieval performance for the
HyPlant simulated spectra (with linear reflectance spectra, e = 1) is
reported in Fig. 12 when using HyPlant band 179 (760.42 nm) as on-
band and bands 120 and 238 (753.90 nm and 766.95 nm) as off-band.
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Fig. 9. Comparison between DESIS data and simulation. The top panel (a) displays the true colour composite of a heterogeneous region of approximately 2.4 x 4.8 km? (80 x 160
pixels) based on a DESIS L1B product (at-sensor radiances) without smile correction from an acquisition southwest of Cologne, Germany on June 23, 2020 at 10:10 UTC. Two
pixels with representative vegetation covers are highlighted in yellow and the corresponding comparison between simulated and measured spectra is shown in panel (b). Panel (c)
reports the distribution of the residuals between measured and simulated at-sensor radiances across the patch for all bands.

The retrieval accuracy achieved with HyPlant is very good attaining a
correlation coefficient of 0.99, clearly superior to the figures obtained
for DESIS. In addition, averaging up to three HyPlant bands to form the
3FLD on- and off-bands does not appreciably change the results in Fig.
12, always leading to a correlation coefficient of 0.99. This situation is
different from DESIS (cf. Fig. 11) and can be understood by the high
spectral resolution and small spectral sampling distance of HyPlant.
Lastly, we comment briefly on one important limitation of the 3FLD
method, namely the assumption of a linear reflectance model (e = 1).
In fact, the SIF retrieval accuracy obtained by the 3FLD approach
can be significantly reduced for simulated spectra having non-linear
reflectances. For instance, using the DESIS band configuration shown
in the bottom panel of Fig. 11 (bands 7-9 as on-band, bands 3-5 and
11-13 as off-band), we find a positive bias growing from 3.3 x 10~* for
e = 1 (cf. bottom panel of Fig. 11) to 4.2x 1073 for e > 0.8 and 9.9x 1073
for e > 0.5. Accordingly, the correlation coefficient drops from 0.63 for
e =1 to 0.45 for e > 0.8 and 0.30 for e > 0.5. This loss of accuracy
using DESIS spectra can be mitigated by restricting the spectral range
of the off-band: using only bands 5 and 11 as off-band brings the
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bias to 4.2 x 1073 and the correlation coefficient to 0.53 for e > 0.5.
For HyPlant, we find instead a very good retrieval accuracy with a
correlation coefficient of 0.99 for both linear and non-linear reflectance
spectra. This is a direct consequence of the high spectral resolution of
HyPlant and the possibility of using a narrow 3FLD on-band deep in
the absorption feature, which significantly weakens the impact of the
reflectance spectrum on the retrieval. The linear reflectance limitation
of 3FLD can be addressed with other SIF retrieval algorithms, but this
example serves to illustrate how tailored simulated data can be applied
to study in detail the performance of a SIF retrieval method.

4. Discussion

Simulated at-sensor radiance spectra may be used in several ways to
help combine physics-based SIF retrieval methods with ML algorithms,
as pursued in our recent studies for HyPlant (Buffat et al., 2023,
2025¢,b) and DESIS (Buffat et al., 2025a). The present work explored
two specific applications of the simulated data.

First, physics-based emulators trained with the databases were
shown to provide a very fast and precise alternative to a full radiative
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Fig. 10. Comparison between HyPlant data and simulation. Panel (a) displays the true colour composite of a subset of a HyPlant acquisition from Jiilich, Germany on June 26,
2018 at 15:30 CEST. Three pixels with representative vegetation covers are highlighted in colour and the corresponding comparison between simulated (coloured) and measured
(black) spectra is shown in panel (b). Panel (c) reports the distribution of the residuals between measured and simulated at-sensor radiances across the patch for all bands.

transfer model (cf. Section 3.1). The emulators can complement — and
in some cases replace — the time-consuming simulations including ra-
diative transfer. Our findings have at least two important consequences
for SIF studies. Most important, the emulators can be straightforwardly
incorporated into retrieval methods (see e.g. Buffat et al. (2025a))
to provide a fast online simulation step and thereby improve the
reconstruction of the measured signal and the retrieval of fluorescence.
But an additional advantage is that extensive tailored datasets of
simulated spectra can be emulated at very modest computational cost.
These datasets may serve as training sets for developing novel ML-
based SIF retrieval methods and as reference data to evaluate the
SIF retrieval accuracy of any method. Both points illustrate how our
emulators may aid in specific tasks which are simply not feasible with
full physics-based simulations. It is worth cautioning that the emulators
proposed here are valid only for DESIS and HyPlant in the spectral
region around the O,-A band and for the considered range of input
parameters. However, our procedure can be easily applied to derive
emulators for other applications.
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Second, the databases constitute a testing ground which we ex-
ploited to assess the SIF retrieval performance of the 3FLD method
(cf. Section 3.2). As explained in detail in Section 1, our preference
for 3FLD over state-of-the-art SIF retrieval methods in this assessment
is grounded on its simplicity and robustness. The performance study
presented is deliberately brief and it serves to illustrate the usefulness
of simulated datasets, such as the one introduced in our work for
SIF research. The study may certainly be extended in several respects,
including for instance the inter-comparison of different retrieval meth-
ods and the retrieval sensitivity to atmosphere, geometry and sensor
properties. In particular, the SIF retrieval uncertainty may be quan-
tified for different observation conditions. We defer the exploration
of these possibilities to future work. The simulated dataset can also
be employed as a labelled training dataset for supervised learning
methods. Incidentally, we have recently developed a novel SIF retrieval
scheme combining physics-based modelling and ML algorithms (Buffat
et al., 2025c) and have extended it to incorporate our simulations in a
separate work (Buffat et al., 2025a,b).
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Fig. 11. SIF retrieval performance of the 3FLD method using different on- and off-band
configurations evaluated on DESIS simulated data. All panels show the correlation
between the relative SIF signal retrieved by 3FLD and the actual simulated SIF on-
ground radiance. The upper panel corresponds to the baseline 3FLD band configuration
with DESIS band 8 (762.5 nm) used for the on-band and bands 5 and 11 (755 nm
and 770 nm) for the off-band. In the middle panel the on-band is formed by DESIS
band 8 (762.5 nm) and the off-band by DESIS bands 3-5 (750-755 nm) and 11-13
(770-775 nm), while in the bottom panel the on-band is formed by DESIS bands
7-9 (760-765 nm) and the off-band by DESIS bands 3-5 (750-755 nm) and 11-13
(770-775 nm). The best linear fit and corresponding Pearson correlation coefficient are
indicated in each case.

Finally, we comment on the applicability of our work to other sen-
sors and spectral ranges. Here we focused on the SIF retrieval potential
of DESIS and HyPlant in the O,-A band by implementing a precise sen-
sor characterization to simulate realistic spectra, which differentiates
our simulated dataset from others in the literature. While our results are
necessarily specific to DESIS and HyPlant at 740-780 nm, the proposed
framework can be applied to other instruments and wavelength ranges.
For instance, one may examine the case of FLEX (Drusch et al., 2017)
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Fig. 12. SIF retrieval performance of the 3FLD method evaluated on HyPlant simulated
data. The plot shows the correlation between the relative SIF signal retrieved by
3FLD and the actual simulated SIF on-ground radiance along with the best linear fit
and corresponding Pearson correlation coefficient. The 3FLD band configuration used
here consisted of HyPlant band 179 (760.42 nm) as on-band and bands 120 and 238
(753.90 nm and 766.95 nm) as off-band.

at the O,-A band, provided a precise characterization of the instrument
is available. The case of the O,-B band (at around 687 nm) is more
challenging for SIF retrieval due its moderate depth and would require
the definition of different reflectance and fluorescence models in our
framework. Either at the O,-A band, O,-B band and/or full spectral
range, it is crucial to represent the spectral characteristics of the FLEX
instruments as realistically as possible (eventually with the help of on-
ground calibration data) in order to generate high fidelity simulated
spectra. An extensive dataset of such spectra is essential for the devel-
opment of ML methods for SIF retrieval with FLEX and it could also
be used to train a fast forward simulator and evaluate the SIF retrieval
performance of existing methods. This research direction is of particular
relevance for the exploitation of FLEX data, but it lies outside the scope
of the present contribution and is left for future work.

5. Conclusion

The retrieval of solar-induced fluorescence from airborne and
satellite-based hyperspectral measurements is a complex inversion
problem that requires an intimate knowledge of the spectral perfor-
mance of the instrument and a precise correction for atmospheric
effects. The combination of physics-based retrieval methods with ML
algorithms has the potential to tackle such problems efficiently and
thus provide a promising avenue for retrieving SIF from a multitude
of hyperspectral sensors of diverse spectral and spatial resolutions.
However, any ML model can be only as good as the body of training
simulated data available to it. Furthermore, ML models are proficient
at learning subtle features in the data and thus may fail to properly
interpret real measurements if the simulated training data are not
reliable and representative of the instrument. It is therefore crucial that
the simulated data used for training are representative of the real data.
In this work, we attempted to provide a sound starting point for the
learning process of ML-based SIF methods by assembling an extensive
set of highly realistic simulated at-sensor radiance spectra around the
0,-A band for two representative classes of currently operating imaging
spectrometers, namely DESIS and HyPlant. Our approach leverages on
the expert knowledge about the calibration and characterization of
DESIS and HyPlant in order to provide high-fidelity simulated spectra
that closely reproduce actual measurements. The same approach can be
applied to existing or future instruments such as FLEX in the O,-A band,
or other spectral ranges. In addition, such simulated datasets can easily
be used to train fast and accurate emulators of at-sensor radiances as
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well as to evaluate the performance of SIF retrieval methods. These are
two important applications whose results will aid in the ongoing effort
towards developing robust ML-based retrieval methods for SIF.
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Fig. A.1. Sensitivity goal of the simulation of at-sensor radiances for SIF retrieval in
the O,-A band. The simulation should be at least as accurate as the effect we aim to
study, in our case SIF. The sensitivity goal L, shown in red is set by the SIF at-sensor
radiances corresponding to the typical SIF outputs F;; = (0.1 — 0.4) mW/cm? /sr/pm,
while the reference at-sensor radiance L., for a reflectance p = 0.5 is reported in
black. The curves were resampled to FWHM of 0.3 nm and correspond to the reference
configuration (nadir observation from space, sea-level surface, sun zenith angle of
30°, mid-latitude summer atmosphere, rural aerosol profile, 23 km visibility, accurate
radiative transfer baseline Al).

Appendix. Sensitivity analysis

The SIF on-ground radiance spectrum has two characteristic peaks
at approximately 690 nm and 737 nm, so the narrow spectral range
we consider (740-780 nm) essentially comprises the falling tail of the
feature at 737 nm. Typical on-ground radiances for this second fluores-
cence peak amount to F;3; = (0.1 —0.4) mW /cm? /sr/pm (Meroni et al.,
2009; Cogliati et al., 2015a; Rascher et al., 2015). The corresponding
range of SIF at-sensor radiances around the O,-A band is illustrated in
Fig. A.1 by the red band, which effectively sets the sensitivity goal L,
for our study. In other words, our simulations are designed to be accu-
rate enough to represent SIF signals down to F;3; = 0.1 mW /cm? /sr/pum,
but not below that value. Also shown in the figure is a reference at-
sensor radiance spectrum L. for a surface reflectance p = 0.5 and no
fluorescence emission.

It is clear from Fig. A.1 that SIF emission by vegetation leads to
a percent-level effect in the measured at-sensor radiance, which is
largely dominated by the reflectance signal. Any simulation of use for
SIF retrieval must be at least as accurate as the order of magnitude
of the fluorescence signal itself, which in our case implies a percent-
level accuracy. For our purposes, the relevant accuracy measure is the
difference to the reference at-sensor radiance: AL = L — L.;. We
therefore carried out an extensive sensitivity analysis to identify all
parameters or configurations with an impact on the at-sensor radiance
spectrum larger than the SIF sensitivity goal, namely |AL| > L,. The
exact sensitivity of the retrieval to these parameters depends on the
SIF retrieval algorithm.

The reference configuration used for our sensitivity analysis cor-
responds to a nadir-looking sensor in space, sea-level surface, sun
zenith angle of 30°, mid-latitude summer atmosphere, rural aerosol
profile, 23 km visibility (corresponding to an aerosol optical thickness
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Fig. A.2. Atmospheric functions derived for the reference configuration. The different functions shown quantify the transmission and scattering of light through the atmosphere

and their dependence on wavelength. The left panel shows the transmission coefficients
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and the spherical albedo of the atmosphere S, while path radiance L, and global

solar irradiance on the ground Eg are displayed in the right panel. The high-resolution atmospheric functions were here resampled to FWHM of 0.3 nm for visualization purposes.

Table A.1

Radiative transfer configurations used in the sensitivity analysis to balance accuracy and computa-
tional time. The last column reports the single-core run time in minutes and seconds needed for the
atmospheric module to generate high-resolution atmospheric functions for the reference configuration.
Each case is colour-coded in green, orange or red depending on whether its difference with respect
to the accurate baseline Al is below, similar to or above the SIF sensitivity goal, respectively. Case

eneration of databases and is marked with an asterisk.

C4 was selected as default for the
Case Model Resolution Multiple scattering Run time
00 correlated-k (fast) 1.0 cm™ / — Isaacs scaled (8S) 00:02
Al line-by-line 0.1 cm~' / 100 DISORT (8S) 09:13
B2 correlated-k (slow) 0.1 cm™ /- DISORT (8S) 01:40
B3 correlated-k (fast) 01cm™! /- DISORT (8S) 00:59
B4 band model 0.1 cm™' / — DISORT (8S) 00:09
Cc2 line-by-line 0.1 cm™!' / 50 DISORT (8S) 04:34
Cc3 line-by-line 0.1 cm™ / 20 DISORT (8S) 01:55
C4* line-by-line 0.1 em™ / 10 DISORT (8S) 00:57
C5 line-by-line 0lem™ /5 DISORT (8S) 00:30
Cé6 line-by-line 0lcem™ /3 DISORT (8S) 00:20
Cc7 correlated-k (slow) 1.0 cm™ / — DISORT (8S) 00:20
Cc8 correlated-k (slow) 50 cm™! / — DISORT (8S) 00:05
D2 line-by-line 0.1 cm™' / 100 Isaacs scaled (8S) failed
D3 correlated-k (slow) 0.1 cm™ /- Isaacs scaled (8S) 00:07
D4 correlated-k (fast) 01 cm™! /- Isaacs scaled (8S) 00:06
D5 line-by-line 0.1 cm™' / 100 None 00:05

at 550 nm of 0.30-0.35), the Fontenla et al. 2011 (Fontenla et al., 2011)
(mid2) solar model and the accurate radiative transfer baseline Al
(cf. Appendix A.1). The associated atmospheric functions are reported
in Fig. A.2. This reference configuration has been used throughout.
The sensitivity analysis presented here is performed at the spectral
resolution of 0.3 nm to support DESIS (FWHM of 3.5 nm), HyPlant
(0.3 nm) and any other instrument of larger FWHM. In the following we
focus on the sensitivity to radiative transfer configurations, atmosphere,
geometry, surface and sensor parameters.

A.1. Radiative transfer configuration

The requirement of a realistic simulation at high resolution in the
spectral range of the O,-A band implies a careful choice of the radiative
transfer options in MODTRANG6 (Berk et al., 2014). Our strategy was
to first set a very accurate baseline configuration and then vary in turn
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different radiative transfer options in order to find the best compromise
between simulation accuracy and computational time. As accurate
baseline, the line-by-line algorithm implemented in MODTRANG (Berk
et al., 2015) was used with 0.1 cm~! wavenumber resolution,’ 100
sampling points per spectral bin and the 8-stream DISORT multiple
scattering treatment. This baseline is designated as case Al in Table
A.1 and it takes our atmospheric module (Section 2.1.1) about 9 min
to run MODTRANG twice and derive the five high-resolution atmo-
spheric functions in the wavelength range between 740 nm and 780 nm
for the reference configuration (cf. Fig. A.2). We sequentially tested
alternative radiative transfer models (correlated-k (slow), correlated-k
(fast), band model, see cases B2-B4 in Table A.1), resolutions (1 cm™!,

1 For reference, a wavenumber resolution of 4v = 0.1 cm~! corresponds to
a wavelength resolution of A4 ~ 0.006 nm at A =760 nm.
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Fig. A.3. Sensitivity to radiative transfer options, namely radiative transfer model (a,b), number of sampling points in line-by-line model (c), resolution in correlated-k (slow)
model (d) and multiple scattering (e). The impact of each parameter on the at-sensor radiance (with respect to the reference case Al in Table A.1) is shown in comparison to
the SIF sensitivity goal encompassed by the red bands. Parameter values that overshoot any of the red bands have an influence larger than the SIF signal. The sensitivity to the
radiative transfer model is plotted for FWHM of 0.3 nm (a) and 3.5 nm (b), while in the other panels (c,d,e) the FWHM is 0.3 nm. Note that cases B2-3, C2—-5 and D3—-4 are

essentially indistinguishable in the plots.

5 cm™!, different sampling points per spectral bin for the line-by-line
algorithm, see models C2-C8) and multiple scattering setups (8-stream
Isaacs scaled, no multiple scattering, see models D2-D5). Case 00
using correlated-k (fast), 1 cm~! resolution and 8-stream Isaacs scaled
multiple scattering is also included for comparison since it is a common
configuration used in MODTRANS.

Fig. A.3 displays the at-sensor radiance differences AL as a function
of wavelength for all radiative transfer cases along with our SIF sensi-
tivity goal L. Several important points are implied by this figure. First,
as seen in Fig. A.3(a), the alternative radiative transfer models B2—4,
namely correlated-k (slow or fast) and band model, are only border-
line accurate compared to the sensitivity goal, leaving the line-by-line
algorithm as the only viable option for our application. Fig. A.3(b) il-
lustrates that the situation is somewhat relaxed for a DESIS-like FWHM
of 3.5 nm, but even then the differences overshoot the expected SIF
signal, especially in the oxygen absorption feature between 760 nm and
765 nm. It is also clear that case 00 is not adequate for our purposes.

Second, we are forced to select the finest available resolution of
0.1 cm~!. Resolutions of 1 cm™ or 5 cm™! (only possible with the
correlated-k algorithm or band model) are simply too inaccurate as
demonstrated by the results of models C7-8 in Fig. A.3(d). However, it
is possible to significantly reduce the number of sampling points in the
line-by-line algorithm with little changes in the atmospheric functions
or at-sensor radiance spectrum, cf. models C2-5 in Fig. A.3(c).

Lastly, the treatment of multiple scattering with the precise 8-stream
DISORT option appears unavoidable in view of Fig. A.3(e). In fact,
while the deactivation of multiple scattering (model D5) substantially

reduces the at-sensor radiance across the full spectral range, the Isaacs
scaled recipe (with the correlated-k algorithm, models D3-4) leads
to differences of the order of the expected SIF signal in the bulk of
the oxygen absorption band. Note that the Isaacs scaled option is
apparently incompatible with the line-by-line algorithm and thus case
D2 has failed.

Table A.1 gives an overview of the results regarding attained ac-
curacy (colour coded in the table) and required atmospheric module
single-core run time (last column). After careful consideration, we
selected case C4 (line-by-line algorithm, 0.1 cm~!, 10 sampling points,
8-stream DISORT, 57 s) as the best compromise between simulation
accuracy and running time. While the baseline case Al is used for
the sensitivity analysis, we adopted case C4 as our default radiative
transfer configuration for the generation of the simulated datasets in
Section 2.3. Note that the running time estimates presented here are
only approximate and refer to nadir-looking geometries. For instance,
the default case C4, with a running time of about 1 min as reported in
Table A.1, may take up to 4 min in off-nadir configurations.

A.2. Atmosphere

The signal ultimately measured by the sensor is necessarily depen-
dent on the atmosphere, namely its constituents, physical properties
and conditions at the time of acquisition. Although the simulation
framework described in Section 2.1 supports virtually all MODTRAN6
options to model the atmosphere, it is important to identify the key
atmosphere parameters for our application and spectral range. We have
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Fig. A.4. Sensitivity to atmosphere parameters, namely atmosphere model (a), water vapor (b), ozone (c), aerosol optical thickness at 550 nm (d), aerosol model (e) and aerosol
scattering asymmetry parameter (f). The impact of each parameter on the at-sensor radiance (with respect to the reference case indicated in the top left of each plot) is shown
in comparison to the SIF sensitivity goal encompassed by the red bands. Parameter values that overshoot any of the red bands have an influence larger than the SIF signal. The

FWHM used for all panels is 0.3 nm.

focused on the following quantities: atmosphere model, water vapor,
ozone, aerosol optical thickness at 550 nm, aerosol model and aerosol
scattering asymmetry parameter. Fig. A.4 shows the results of our
sensitivity analysis for these atmosphere parameters in terms of the
comparison between AL and L.

The influence of atmosphere and aerosol models in Fig. A.4(a,e)
is expectedly larger than the percent-level SIF signal. This implies
in particular that these models should be carefully chosen according
to the regions and conditions of the measurement place. The water
vapor content is another relevant quantity to consider when analysing
radiance spectra between 740 nm and 780 nm, cf. Fig. A.4(b). There is
actually no strong absorption due to water vapor at these wavelengths,
but the tails of two small absorption features just below 740 nm and
above 780 nm spill over to the considered range and have an effect of
the order of the SIF sensitivity goal. Ozone instead has only a marginal
role in the at-sensor radiance spectra around the O,-A band, as shown
in Fig. A.4(c). We therefore set a default ozone value of 332 Dobson
units (DU) and drop ozone from the input parameters to generate
the simulated data. Note however that the simulation is really only
representative of real data acquired in atmospheres of similar ozone
content.

The aerosol optical thickness effectively determines the viewing
conditions at the measurement place and naturally affects the at-sensor
radiance spectra across the full wavelength range as seen in Fig. A.4(d).
For the simulations, we opt to use AOTsg, instead of visibility since it
is a parameter with a clear physical interpretation and easier to sample
linearly in a given range of values. It is important to point out that in
SIF retrieval applications we will mainly be dealing with data acquired
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with good or very good visibilities, so the range of AOTsg, should not
include hazy conditions.

Lastly, the simulated spectrum is sensitive to the aerosol scattering
angular distribution, which in MODTRANG is computed with Mie scat-
tering for the aerosol profile (default option) or may be parameterized
by the quantity g (-1 for pure back scattering, +1 for pure forward scat-
tering). Fig. A.4(f) shows that different scattering angular distributions
lead to spectral distortions of the order of our sensitivity goal. Note
in addition that there is a complicated dependence on the observation
geometry. For instance, if sun, sensor and target are aligned, then
any amount of aerosol back scattering can have a huge impact on the
measured radiance.

A.3. Geometry

Next we concentrate our attention on the specific observation geom-
etry. Fig. A.5 shows the impact of varying sensor tilt angle, sun zenith
angle, relative azimuth angle between sun and line of sight, ground
altitude and sensor altitude in reasonable ranges for airborne and
space-based spectrometers. The three angles are defined at the sensor
point for the purpose of the sensitivity analysis. The influence of the
sun zenith angle is the largest and abundantly exceeds the sensitivity
goal, cf. Fig. A.5(b). As the sun gets closer to zenith (i.e., as the sun
zenith angle decreases), the solar irradiance at the surface increases
significantly and so does the at-sensor radiance spectrum in the whole
wavelength range. The tilt angle has a smaller influence on the radiance
spectrum, but still close or above the expected SIF signal, as seen in Fig.
A.5(a). A more inclined line of sight (i.e., a larger tilt angle) leads to
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Fig. A.5. Sensitivity to geometry parameters, namely tilt angle (a), sun zenith angle (b), relative azimuth angle (c¢), ground altitude (d) and sensor altitude (e). The impact of
each parameter on the at-sensor radiance (with respect to the reference case indicated in the top left of each plot) is shown in comparison to the SIF sensitivity goal encompassed
by the red bands. Parameter values that overshoot any of the red bands have an influence larger than the SIF signal. The FWHM used for all panels is 0.3 nm.

more absorption and more scattering with the net effect of decreasing
the at-sensor radiance by up to a few percent for the case where the
sun zenith angle at the sensor is fixed to 30°. For nadir observations
(zero tilt angle), the relative azimuth angle is irrelevant, but it becomes
increasingly important as the tilt angle increases. The effect shown in
Fig. A.5(c) is marginal when compared to the sensitivity goal in the case
of 5° off-nadir observations. Nevertheless, we shall include the relative
azimuth angle in the generation of our databases so that the cases of
moderate tilt angles are appropriately covered.

Fig. A.5(d,e) further demonstrates that the simulated spectrum is
very sensitive to both ground altitude (for airborne and space-based
instruments) and sensor altitude (for airborne instruments only). This is
to be expected, because we are focusing on a strong oxygen absorption
band and the oxygen content of the atmosphere varies quickly with
altitude, especially at low altitudes. In particular, there is less oxygen
along the line of sight for higher ground altitudes and smaller sensor
altitudes, leading to less absorption and thus a larger at-sensor radiance
spectrum. Note that for instruments in space the exact sensor altitude
does not play a role, because for our purposes the atmosphere does not
extend beyond altitudes of 100 km. Therefore, any space instrument can
be simulated assuming a sensor altitude of 100 km and the appropriate
adaptation of the geometry viewing angles.

It is important to stress that all geometry parameters studied above
are either stored directly in typical data products or can be easily
reconstructed from existing metadata. These quantities do not need
to be inferred by SIF retrieval methods from the measured spectra.
Therefore, in order to accommodate a diverse range of observation
geometries for both airborne and space-based instruments, all five
geometry parameters are considered in the generation of the simulated
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datasets in Section 2.3. This has no significant extra cost apart from the
increase of input dimensionality.

A.4. Surface

In the scope of the sensitivity analysis, we have considered the
linear reflectance function (ps4, s, e = 1) and the Gaussian SIF emission
(F;37) described in Section 2.2.1 to model the surface properties of the
target. We illustrate the effect of the three parameters p;4y, s and F3;
on the at-sensor radiance spectrum in Fig. A.6(a,b,c) for the case of
DESIS. Clearly, SIF retrieval methods must have a very good handle on
both reflectance p,,, and reflectance slope s in order to make a precise
measurement of fluorescence.

A.5. Sensor

A precise knowledge of the spectral response function of the instru-
ment is imperative for SIF retrieval. Any slight spectral mischaracteri-
zation or sensor instability resulting in shifts of the central wavelength
and/or full width at half maximum (i.e., spectral resolution) have an
impact greater than the small SIF signal. This is exemplified for DESIS
in Fig. A.6(d,e). The sensitivity on central wavelengths in Fig. A.6(d)
is particularly noteworthy. The spectral characterization of both DESIS
and HyPlant between 740 nm and 780 nm presented in Section 2.2.2 is
therefore crucial to define a precise spectral response function for our
simulations. On top of a reference spectral response function, we have
allowed for shifts on CW and FWHM (¢, Spwam, cf. Section 2.1.2)
so that the simulation can encompass the real performance of the
instruments during acquisition. This will allow future retrieval methods
to implicitly correct for these shifts while extracting the SIF signal.
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