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 A B S T R A C T

Fluorescence light emitted by chlorophyll in plants is a direct probe of the photosynthetic process and 
can be used to continuously monitor vegetation status. Retrieving solar-induced fluorescence (SIF) using a 
machine learning (ML) approach promises to take full advantage of airborne and satellite-based instruments 
to map expected vegetation function over wide areas on a regular basis. This work takes a first step towards 
developing a ML-based SIF retrieval method. A general-purpose framework for the simulation of at-sensor 
radiances is introduced and applied to the case of SIF retrieval in the oxygen absorption band O2-A with 
the spaceborne DESIS and airborne HyPlant spectrometers. The sensor characteristics are modelled carefully 
based on calibration and in-flight data and can be extended to other instruments including the upcoming FLEX 
mission. A comprehensive dataset of simulated at-sensor radiance spectra is then assembled encompassing the 
most important atmosphere, geometry, surface and sensor properties. The simulated dataset is employed to 
train emulators capable of generating at-sensor radiances with sub-percent errors in tens of μs, opening the way 
for their routine use in SIF retrieval. The simulated spectra are shown to closely reproduce real data acquired by 
DESIS and HyPlant and can ultimately be used to develop a robust ML-based SIF retrieval scheme for these and 
other remote sensing spectrometers. Finally, the SIF retrieval performance of the 3FLD method is quantitatively 
assessed for different on- and off-band configurations in order to identify the best band combinations. This 
highlights how our simulation framework enables the optimization of SIF retrieval methods to achieve the best 
possible performance for a given instrument.
1. Introduction

Methods to quantify solar-induced fluorescence (SIF) have gained 
great interest in the remote sensing community over the last years. This 
emerging attention was triggered by the selection of the FLEX mission 
of the European Space Agency (Drusch et al., 2017) to become the 
first dedicated Earth Explorer satellite mission to quantify SIF globally 
in moderate spatial resolution (300 m) and by the achievements in 
retrieving SIF from existing satellite-borne instruments (see Joiner et al. 
(2013), Köhler et al. (2020), Guanter et al. (2021) and references 
therein). The fluorescence emitted by green vegetation originates as 
a weak signal from the chlorophyll pigments of photosynthetic active 
plant material in the wavelength range between 670 nm and 780 nm. 
Although the signal is much less intense than reflected light at these 
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wavelengths, it is directly dependent on the efficiency of light reactions 
during photosynthesis (see Mohammed et al. (2019), Porcar-Castell 
et al. (2021) for recent reviews). SIF has therefore been shown to 
have high potential not only to monitor the greenness of vegetation 
but also for the early detection of stress-induced impairment of pho-
tosynthesis (Ač et al., 2015; Pinto et al., 2020; Zeng et al., 2022) and 
to help estimate carbon and water fluxes within the green vegetation 
layer (Damm et al., 2018; Maes et al., 2020; Martini et al., 2022; Norton 
et al., 2019).

Despite its great potential to track the actual state of photosynthesis, 
it remains challenging to measure top-of-canopy SIF accurately without 
any hidden bias and to relate it to physiologically relevant leaf level 
SIF. It was thus proposed to combine SIF with novel reflectance-based 
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indices (Zeng et al., 2021, 2022). The challenges of detecting SIF from 
remote platforms is firstly related to the intrinsic weakness of the 
fluorescence signal that needs to be separated from the quantitatively 
larger intensity of reflected photons (the SIF signal is approximately 
only 2–5% of the total photons in this spectral region). The separation 
of SIF from reflectance is generally done in solar and/or atmospheric 
absorption regions, where the intensity of incoming and reflected light 
is greatly reduced. However, resolving these fine absorption bands 
requires high spectral resolution sensors, which in turn generally suffer 
from a low signal-to-noise ratio (SNR) if high spatial resolution is 
desired. Finally, on its path to the sensor, the top-of-canopy SIF signal 
itself is partly absorbed by the atmosphere, rendering the retrieval of 
SIF from airborne or satellite data a complex task.

Dedicated SIF instrumentation has been developed with an opti-
mized balance between spectral resolution and SNR (Cendrero-Mateo 
et al., 2019), but in parallel several attempts have been undertaken 
to also use medium resolution instruments to retrieve SIF or at least 
signals that contain parts of the fluorescence emission (Damm et al., 
2014). Nowadays, we have different systems which enable continuous 
recording of SIF from towers and ground-based systems (Rossini et al., 
2016; Julitta et al., 2016; Peng et al., 2022). Additionally, dedicated 
airborne sensors for SIF measurements have become available (Rascher 
et al., 2015; Frankenberg et al., 2018; Siegmann et al., 2019) and 
smaller sensors which can be mounted on small unmanned aircrafts 
are currently on the fringe of becoming available (Garzonio et al., 
2017; Bendig et al., 2020; Vargas et al., 2020; Wang et al., 2022). 
Retrieval of the SIF signal is generally done using the Fraunhofer Line 
Discrimination method (FLD) and an expansion of it (Maier et al., 
2003), which was subsequently further modified to account for the 
non-linearity of the reflectance and fluorescence signals in the red 
spectral region (Cogliati et al., 2015b, 2019). However, it remains a 
challenge for these retrieval methods to account for the modulation and 
reabsorption of the signal in the downwelling and upwelling path of 
photons through the atmosphere (Sabater et al., 2018). Even though 
great advances have been made in the past years to constrain the 
atmospheric absorption of the signal (Sabater et al., 2021), several 
activities are currently ongoing to use machine learning (ML) and deep 
learning approaches to handle atmospheric effects and retrieve the 
SIF signal (Scodellaro et al., 2022; Vicent Servera et al., 2022; Buffat 
et al., 2023, 2025c,a,b). For these ML approaches to reach the accuracy 
required for SIF retrieval it is crucial to have abundant high-quality 
training data with accurate detector characterization.

SIF retrieval can be seen as a complex, multi-dimensional inversion 
problem. We aim to eventually develop a ML method for SIF retrieval 
capable of mapping fluorescence over extended regions and character-
izing its uncertainty. This is currently not possible with other methods. 
The ML model will need to learn and abstract away the complicated 
influence of the atmosphere on the measured signal and the sensor 
spectral uncertainties in order to extract the SIF signal. The present 
work takes the first step in this effort, namely the preparation of a 
meaningful and thorough body of training data for the learning process. 
We start by implementing a general-purpose simulation framework 
for at-sensor radiances in any reflective spectral range and for any 
instrument. Our focus here is on two different classes of spectrometers 
of relevance for SIF retrieval, represented by DESIS (Krutz et al., 2019) 
and HyPlant (Siegmann et al., 2019). On the one hand, DESIS is an 
example of a space-based spectrometer capable of covering wide areas 
around the globe at moderate spatial and spectral resolutions. On 
the other hand, HyPlant typifies a group of airborne spectrometers of 
high spectral resolution that can cover a handful of small regions at 
high spatial resolution. Although other classes of instruments may be 
employed in the study of fluorescence, DESIS and HyPlant encompass a 
representative range of current and future capabilities. A precise sensor 
model is then developed to simulate high-fidelity DESIS and HyPlant 
data that closely resemble real measurements.
2 
Two applications of relevance for both traditional and novel SIF re-
trieval methodologies are explored using the assembled simulated data. 
First, we show that it is possible to train fast and accurate at-sensor radi-
ance emulators, thereby providing a fast alternative to computationally 
demanding radiative transfer modelling in SIF retrieval methods. Sec-
ond, the SIF retrieval performance of the 3FLD method (Maier et al., 
2003) is evaluated using our simulations, illustrating the assessment 
of a SIF retrieval method with the simulation dataset presented in 
this contribution. The framework and results presented here have been 
the starting point for several of our recent works towards a robust 
ML-based SIF retrieval method, including the development of fast and 
accurate emulators (Pato et al., 2023, 2024) and a novel ML-based SIF 
retrieval method for HyPlant (Buffat et al., 2025c, 2023, 2025b) and 
DESIS (Buffat et al., 2025a).

It is important to explain our choice of the 3FLD method for SIF 
retrieval assessment in the current study as opposed to other state-of-
the-art algorithms (Alonso et al., 2008; Mazzoni et al., 2012; Meroni 
et al., 2010; Cogliati et al., 2015b, 2018, 2019; Buffat et al., 2025c). 
Although more modern approaches are nowadays routinely used for the 
derivation of fluorescence from ground-based or airborne instruments 
(see e.g. Siegmann et al. (2019)), the 3FLD retrieval is straightforward, 
spectrum-based and not explicitly coupled to atmosphere conditions 
or observation geometries through radiative transfer modelling. In 
addition, the method is typically robust and does not create retrieval 
artifacts. These features make 3FLD the ideal choice for our purposes of 
illustrating the assessment of SIF retrieval accuracy with our simulated 
datasets in a simple fashion. The evaluation of more modern methods 
with the simulated data is also a relevant line of research which is left 
for future work.

The paper is organized as follows. We start by describing the 
simulation framework and its application to the case of SIF retrieval 
in Section 2, including radiative transfer, surface properties and sensor 
specifics. The dataset of simulated at-sensor radiance spectra for DESIS 
and HyPlant is presented in Section 2.3 including the adopted input 
parameter ranges and different sampling strategies. Section 3 then 
documents in detail our results and findings. Two direct applications 
of the simulated data are showcased, namely the training of forward 
emulators of at-sensor radiances (Section 3.1) and the evaluation of the 
SIF retrieval performance of the 3FLD method (Section 3.2). The sim-
ulated data are shown to be high-fidelity proxies of real data routinely 
acquired by DESIS and HyPlant in Section 3.1. Section 4 discusses the 
results and further elaborates on how the simulated datasets can form 
the basis for a ML-based SIF retrieval method. Our concluding remarks 
are given in Section 5. In Appendix technical details are given regarding 
the sensitivity analysis that informed our simulations.

2. Data and methods

2.1. Simulation framework

The radiance measured by an airborne or satellite-based sensor de-
pends in general on the atmospheric conditions, observation geometry, 
surface properties and sensor characteristics: 
𝐿𝑠 = 𝐿𝑠(𝑥atm, 𝑥geo, 𝑥sur , 𝑥sen) , (1)

where 𝐿𝑠 is the at-sensor radiance spectrum and 𝑥atm, 𝑥geo, 𝑥sur and 𝑥sen
represent the atmosphere, geometry, surface and sensor parameters, 
respectively. The complicated multi-dimensional dependence has to be 
accounted for in any simulation of at-sensor radiances. Fortunately, the 
problem can be decoupled into a part that depends only on atmosphere 
and geometry and another part that depends only on surface and sensor 
properties. This decoupling permits a more efficient simulation and a 
more thorough exploration of the high-dimensional input parameter 
space. We have accordingly developed a two-module simulation tool 
to deliver at-sensor radiances in a defined spectral range given a set 
of atmosphere, geometry, surface and sensor parameters. Note that the 
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Fig. 1. Schematic diagram of the software tool developed to simulate at-sensor radiances depending on atmosphere, geometry, surface and sensor parameters.
framework is general and may be easily applied to any optical remote 
sensing application, wavelength range or sensor. A diagram of our 
simulation setup is shown in Fig.  1. In the following we describe the 
two modules of the tool: the atmospheric module and the surface-sensor 
module.

2.1.1. Atmospheric module
The at-sensor radiance may be modelled for our purposes as the 

combination of three components, namely surface-reflected light, sur-
face emission and atmosphere-scattered light (generically called path 
radiance). Accordingly, we write the radiance measured by a detector 
element at a given wavelength as 
𝐿 = 𝐿𝑝 + (𝐿R(𝜌) + 𝐿F)𝑇 ↑ , (2)

where 𝜌 is the surface reflectance, 𝐿R is the reflected on-ground radi-
ance, 𝐿F is the SIF on-ground radiance, 𝐿𝑝 is the path radiance and 𝑇 ↑

is the total transmission coefficient from surface to sensor (typically 
decomposed into direct and diffuse components, 𝑇 ↑ = 𝑇 ↑

dir + 𝑇 ↑
dif ). 

Following Guanter et al. (2009), the reflectance component 𝐿R may be 
further expressed in terms of the global solar irradiance on the ground 
𝐸0
𝑔  (comprising direct and diffuse components) and the spherical albedo 

of the atmosphere 𝑆: 

𝐿R(𝜌) =
𝐸0
𝑔𝜌

𝜋(1 − 𝜌𝑆)
, (3)

with the implicit assumption of a Lambertian surface. Notice that all 
variables in the above equations are wavelength dependent and that 
any multiple scattering effects are implicitly included in the definition 
of 𝐿𝑝, 𝐸0

𝑔  and 𝑇 ↑. The dependence on the top-of-atmosphere solar irra-
diance enters in 𝐸0

𝑔  and 𝐿𝑝. Any solar model can be selected in our tool. 
In this work, we have used the recent TSIS-1 solar model (Coddington 
et al., 2023).

The five so-called atmospheric functions 𝐿𝑝, 𝐸0
𝑔 , 𝑇 ↑

dir , 𝑇
↑
dif  and 𝑆

depend solely on atmosphere and observation geometry, not on surface 
nor sensor specifics. Therefore, the atmospheric functions can be com-
puted once at high spectral resolution and then applied for multiple 
surface and sensor configurations, as long noticed and done in the 
remote sensing literature (Guanter et al., 2009; de los Reyes et al., 
2020). This computation typically requires a radiative transfer code 
to account for the absorption and scattering of light throughout its 
path in the atmosphere. We choose to work with MODTRAN6 (Berk 
et al., 2014, 2015) for this step given its wide use, versatility and 
high spectral resolution, but other atmosphere radiative transfer models 
3 
could be used in our general simulation framework. MODTRAN, as 
other models, does not directly provide the atmospheric functions; 
these have to be derived from the outputs of two distinct MODTRAN 
runs with different (ideally non-zero) reflectance values and no surface 
emission. A full account of this procedure can be found in Guanter et al. 
(2009). Overall, as sketched in Fig.  1, the atmospheric module takes 
as input atmosphere and observation geometry parameters (virtually 
any specification that can be passed to MODTRAN), runs MODTRAN6 
twice, and derives the five atmospheric functions 𝐿𝑝, 𝐸0

𝑔 , 𝑇 ↑
dir , 𝑇

↑
dif

and 𝑆 in a specified range of wavelengths at high spectral resolution. 
These data are stored in an internal database, which we shall call ATM 
DB, and constitute the starting point for the second module of the 
simulation tool.

2.1.2. Surface-sensor module
The surface-sensor module expects as input the above mentioned 

ATM DB as well as surface and sensor properties to deliver the final sim-
ulated spectra. Although conceptually distinct, the surface and sensor 
models are incorporated together into a fast module in our simulator 
framework.

The surface is characterized by providing models for the wavelength 
dependence of reflectance 𝜌 and SIF emission 𝐿F. Together with the five 
atmospheric functions computed by the atmospheric module, this com-
pletes the definition of the high-resolution at-sensor radiance spectrum 
𝐿 in Eq. (2). Any parametric model for 𝜌(𝜆) and 𝐿F(𝜆) may be imple-
mented in the surface-sensor module. The very general definition of the 
surface properties is designed to support a wide range of applications. 
The particular models used for our purposes in this work are described 
in Section 2.2.1.

With the high-resolution at-sensor radiance spectrum 𝐿(𝜆) fully 
specified, the sensor spectral characteristics of the instrument can now 
be factored in. The spectral response function (SRF) for a spectral band 
𝑏 is modelled as a Gaussian parameterized by a central wavelength CW𝑏
and full width at half maximum FWHM𝑏. In order to accommodate any 
imperfections in the spectral calibration of the instrument, we allow for 
small additive shifts for CW and changes in FWHM: CW′

𝑏 = CW𝑏 + 𝛿CW
and FWHM′

𝑏 = FWHM𝑏+𝛿FWHM. The shifts of CW and changes in FWHM 
are global, i.e. the same for all bands. The spectral response function 
for the particular band 𝑏 is given by 

SRF𝑏(𝜆) =
1

′
√

exp

(

−
(𝜆 − CW′

𝑏)
2

2𝜎′2

)

, (4)

𝜎𝑏 2𝜋 𝑏
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where 𝜎′𝑏 = FWHM′
𝑏∕(2

√

2 ln 2) is the modified standard deviation. 
The spectral response function and corresponding shifts applied in 
our work for DESIS and HyPlant are specified in Section 2.2.2. The 
sensor-resolution at-sensor radiance for band 𝑏 then reads 

𝐿𝑠,𝑏 = ∫ d𝜆𝐿(𝜆) SRF𝑏(𝜆) . (5)

There is one final subtlety in the simulation of at-sensor radiances 
related to the medium where the instrument operates. While MOD-
TRAN reports vacuum wavelengths 𝜆0, the spectral response function 
refers typically to wavelengths in the measurement medium 𝜆 = 𝜆0∕𝑛𝑚, 
where 𝑛𝑚 is the refractive index of the relevant medium. Thus we 
have to modify Eq. (5) by scaling the vacuum (simulation) wavelengths 
appropriately: 

𝐿𝑠,𝑏 = ∫ d𝜆𝐿(𝜆𝑛𝑚) SRF𝑏(𝜆) . (6)

For instruments operating in vacuum, as in the case of DESIS, 𝑛𝑚 = 1
and the wavelength difference is irrelevant. The effect is also negligible 
for sensors with moderate spectral resolutions, because the spectral 
shift due to refraction is relatively small (0.22 nm at 𝜆 = 760 nm
for air at 0 ◦C and 1 atm). However, for high-resolution instruments 
operating in air such as HyPlant, it is crucial to consider the air-
to-vacuum shift. For HyPlant, we specify the refractive index of the 
measurement medium as 𝑛𝑚 = 𝑛air = 1.000293 (air at 0 ◦C and 
1 atm) to model the spectral shift. There is a slight flight altitude 
dependence that cannot be accounted for with this simple model, but 
it can with the central wavelength shifts implemented in the surface-
sensor module (cf. Eq. (4)). This approach enables a very good match 
between the simulated at-sensor radiance spectra and the real HyPlant 
measurements (cf. Section 3.1).

The sensor-resolution simulated spectra 𝐿𝑠,𝑏 are saved in a dedicated 
database called SENSOR DB. This final database serves as the basis for 
the results presented in Section 3.

2.2. Application to SIF

2.2.1. Surface model
The key surface parameters for our purposes are reflectance 𝜌 and 

fluorescence emission 𝐿F. We use simplified parametric models for the 
wavelength dependence of both 𝜌 and 𝐿F having in mind the final 
application to SIF retrieval in the O2-A band. The choice of simplified 
models in our framework is intentional since it keeps the number 
of parameters to a minimum and enables the assembly of very large 
simulated datasets, which would not be feasible with very detailed 
radiative transfer models (e.g., SCOPE (van der Tol et al., 2009; Yang 
et al., 2021)). Furthermore, we are not modelling any relationships 
between incident solar radiation, vegetation constituents, structure, 
physiological state, reflectance and fluorescence. This is an important 
feature of our approach since the absence of any such relationships in 
our simulated data is necessary for a SIF retrieval method to extract 
the actual SIF emission signal, and not a correlation between surface 
reflectance and underlying physical parameters.

Reflectance could be described using a full, coupled leaf and canopy 
radiative transfer model. However, these models require a large number 
of parameters which would substantially increase the dimensionality 
of the input parameter space. A simple reflectance model for vege-
tated surfaces can be created through linear combination of vegetation 
and soil spectra. Fortunately, in the spectral range investigated here 
(740–780 nm) leaf pigments and water only have a minor influence on 
reflectance (Maier, 2000), leading to spectrally flat spectra. Further-
more, due to the small spectral range, soil reflectance spectra can be 
described by an affine equation. Consequently, we describe the surface 
reflectance 𝜌 as 

𝜌(𝜆) = 𝜌740 + 𝑠
(

𝜆 − 𝜆1
)

+
𝑠(𝑒 − 1)

(𝜆 − 𝜆1)2 , (7)

2(𝜆2 − 𝜆1)

4 
with 𝜆1 = 740 nm and 𝜆2 = 780 nm. The three parameters 𝜌740, 𝑠 and 𝑒
have clear meaning: 𝜌740 and 𝑠 are the reflectance and its spectral slope 
at 740 nm, while 𝑒 is the ratio of reflectance spectral slopes at 780 nm
and 740 nm.

The model in Eq. (7) encompasses a limited but useful range of land 
covers including vegetation, soil, concrete and bitumen, but not neces-
sarily other artificial materials. This can be seen explicitly by analysing 
observational reflectances in the spectral range of interest. In order to 
test our reflectance parameterization, we made use of top-of-canopy 
(TOC) reflectances derived from the DUAL sensor integrated in HyPlant 
(cf. Section 2.2.2). In particular, we gathered a dataset of TOC re-
flectance estimates comprising all DUAL acquisitions (Siegmann et al., 
2019) from the years 2018–2022 (469 acquisitions, 41 campaigns) and 
sampled random subsets consisting of a fixed number of 30,000 spectra. 
Fig.  2 shows the maximum absolute error obtained by fitting a linear 
reflectance model (𝑒 = 1) and a quadratic model (𝑒 > 0) to the observed 
reflectances. We excluded the wavelength interval 755–770 nm from 
the fit since in this range the DUAL reflectances are less accurate due to 
the influence of the O2-A absorption feature. Clearly, the linear model 
fails to provide an accurate description of the reflectance for typical 
land covers in HyPlant acquisitions. The underlying reason is primarily 
the curvature of the red edge in the range 740–750 nm, as depicted 
with an exemplary reflectance curve in Fig.  2 (right). The quadratic 
model does capture the curvature of typical reflectance spectra around 
the O2-A band since the parameter 𝑒 effectively controls the degree of 
curvature of the reflectance spectrum. With both 𝑠 and 𝑒 positive, this 
formulation guarantees monotonically increasing reflectance spectra 
in the considered wavelength range, as expected for vegetation and 
soil, which we aim to simulate. This is important to avoid introducing 
unrealistic reflectance spectra in the simulated dataset which could bias 
a ML SIF retrieval method. Naturally, our simulations should not be 
used to interpret data from land covers different from those considered 
in our framework. As can be observed in Fig.  2 (left), the quadratic 
model has a maximum error of less than 1.2% in the analysed dataset, 
which makes this model appropriate for our purposes.

Next we determine appropriate parameterization ranges for 𝜌740, 𝑠
and 𝑒 by matching cubes to the fitted distributions of the parameters. 
While the ranges are derived from the given data distribution, we are 
confident that the formulation of the reflectance model as well as the 
large margins around the parameter space covered by this particular 
dataset are general enough to be valid for other datasets. Fig.  3 shows 
the marginal distributions p(𝑠, 𝑒) and p(𝜌740). These distributions mo-
tivate the parameter space delimited by the red lines in the figure, 
encompassing 𝜌740 = [0.05, 0.6], 𝑠 = [0, 0.012] 𝑛𝑚−1 and 𝑒 = [0, 1].

Solar-induced fluorescence in vegetation shows two peaks at around 
690 nm and 737 nm. Fig.  4 illustrates solar-induced fluorescence spectra 
modelled using the leaf radiative transfer model SLOPE (Maier, 2000) 
and measured under natural conditions (Amoros-Lopez et al., 2008; 
Krämer, 2024). Besides a single spectrum from Amoros-Lopez et al. 
(2008), we compare our model with 161 leaf-level on-ground SIF 
measurements at high spectral resolution (0.75 nm) collected with the 
FLUOWat/LOX measurement system (Van Wittenberghe et al., 2013) 
from different crops in dedicated campaigns in Campus Klein-Altendorf 
in 2022 and 2023 (Krämer, 2024). Below 730 nm an approximation 
based on Gaussian functions is not satisfactory. In contrast, above 
730 nm, a Gaussian model is a very good approximation for the solar-
induced fluorescence spectra. We therefore model SIF emission in the 
spectral range 740–780 nm as 

𝐿F(𝜆) = 𝐹737 exp

(

−

(

𝜆 − 𝜆F
)2

2 𝜎2F

)

, (8)

with 𝜆F = 737 nm and 𝜎F = 20 nm. The only free parameter is 𝐹737, the 
SIF on-ground radiance at 737 nm, and we consider the range 𝐹737 =
[0, 0.8] mW/cm2/sr/μm for our simulations. Note that our simplified SIF 
model is well motivated for our purposes here given the narrow range 
740–780 nm considered around the O -A band (where the SIF spectrum 
2
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Fig. 2. Reflectance model fits to HyPlant DUAL data in the spectral region around the O2-A band. The left panel shows the distribution of the maximum absolute error (MaxAE) 
in spectral dimension of linear and quadratic fits over 30,000 reflectance spectra collected from DUAL acquisitions between 2018 and 2022. In the right panel, an exemplary 
DUAL reflectance spectrum (green) is compared to the corresponding linear fit (blue) and quadratic fit (orange). The grey band indicates the spectral range of the O2-A absorption 
feature which was not used in the reflectance model fits.
Fig. 3. Distribution of fitted parameters for the reflectance model applied to HyPlant DUAL data. The marginal distribution over the fitted reflectance slope 𝑠 and slope ratio 𝑒 is 
shown on the left, while the marginal distribution over the fitted reflectance 𝜌740 is reported on the right. Dashed red lines mark the borders of the selected parameter space to 
generate the simulated dataset.
Fig. 4. Solar-induced fluorescence spectra modelled using the leaf radiative transfer model SLOPE (Maier, 2000), measured under natural conditions in Amoros-Lopez et al. 
(2008) (one spectrum) and in Krämer (2024) (161 spectra) and a Gaussian model in the considered wavelength range 740–780 nm. All spectra have been scaled to the spectrum 
from Amoros-Amoros-Lopez et al. (2008) for visualization. The measured spectra from Amoros-Lopez et al. (2008), Krämer (2024) have been baseline corrected to ensure zero 
fluorescence outside of the fluorescence emission range. The grey shaded area depicts the wavelength range considered in this study.
consists of the decaying tail of the second fluorescence peak, cf. Fig. 
4) and the interest in medium spectral resolution instruments such as 
DESIS. For SIF retrieval at the O2-B band or for a full SIF spectrum re-
construction as aimed by the upcoming FLEX, a more complex model is 
5 
needed, possibly including parameters for the position, width, intensity 
and asymmetry of the fluorescence peaks. Our simulation framework 
may be used for such studies and we briefly comment on this possibility 
in Section 4.
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Fig. 5. The variation of the DESIS spectral response function in terms of central wavelength (CW, left) and full width at half maximum (FWHM, right) in the across-track direction 
for spectral bands near the O2-A absorption band. The differences 𝛿CW and 𝛿FWHM shown in the plots are defined with respect to the corresponding average over the 400 central 
pixels. The DESIS spectral response function shown here is based on the spectral calibration table with version 0207 and valid from May 1, 2020 to Dec 1, 2020.
2.2.2. Instruments and data
A concise overview of the key specifications of DESIS and HyPlant 

around the O2-A band (specifically, in the spectral range 740–780 nm) 
is presented next. Our focus is on the precise characterization of the 
sensor spectral properties, while a detailed model for sensor radiomet-
ric noise is deferred to future work. Note however that the handling of 
sensor noise can be implicitly included in recent SIF retrieval schemes 
(cf. Buffat et al. (2025a)).

The DLR Earth Sensing Imaging Spectrometer (DESIS) is a space-
based instrument installed and operated on the International Space 
Station (ISS) (Krutz et al., 2019). DESIS was launched to the ISS in June 
2018, began initial operation in November 2018 and was declared fully 
operational in September 2019. DESIS image products consist of 235 
spectral bands ranging from 400 nm to 1000 nm and 1024x1024 spatial 
pixels with a ground sampling distance of 30 m. The overall absolute ra-
diometric calibration is within ∼5% at the top-of-atmosphere radiance 
level outside strong atmospheric absorption regions when validated 
against RadCalNet (Bouvet et al., 2019), Sentinel-2 and Landsat-8. 
The spectral calibration is better than ∼ 0.5 nm for the majority of 
DESIS observations. For a small fraction of observations, though, DESIS 
shows larger spectral deviations that are within 0.85 nm (∼1/3 of a 
spectral pixel). The spectral sampling distance is nominally stated as 
2.55 nm, while the full width at half maximum of the bands is nominally 
3.55 nm. A complete description of the DESIS data products and DESIS 
performance can be found in Alonso et al. (2019).

Several DESIS acquisitions were analysed in our effort to gen-
erate realistic simulations. In particular, we used a DESIS scene of 
30 × 30 km2 southwest of Cologne (centre-west Germany with the geo-
graphical WGS84 centre coordinates of latitude 50.7744◦ and longitude 
6.8593◦) to gauge differences between simulation and real data. The 
scene was acquired on June 23, 2020 at 10:10 UTC with the following 
geometry parameters: sun zenith angle of 32.05◦, sun azimuth angle 
of 140.57◦, scene incidence angle of 21.79◦, scene azimuth angle of 
205.60◦ and a geometrical accuracy of ∼20 m linear deviation in east 
and north directions. In addition, we studied multiple DESIS scenes 
acquired between 2018 and 2021 over two sites in Germany (Jülich, 
Munich) and one in Australia (Litchfield) in order to set realistic DESIS 
observation geometries in our simulations. More details are given in 
Section 2.3.

The DESIS spectral response functions were measured on-ground 
during the instrument characterization campaigns. The central wave-
lengths can be refined post-launch using internal coloured LEDs, but 
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the full widths at half maximum are not updated during the whole 
mission lifetime. Our simulation uses the averaged band CW and FWHM 
around the O2-A feature for a particular spectral calibration table 
(corresponding to the DESIS acquisitions described above) together 
with the existing dependency in sensor across-track direction. The 
differences in CW and FWHM with respect to the band averages in the 
central pixels are shown in Fig.  5 for the wavelengths of interest and 
the mentioned spectral calibration table. This is sufficient to account 
for smile (i.e., variation of band central wavelength in the across-track 
direction) during a limited time interval. However, based on numerous 
DESIS calibration and Earth datatakes acquired over several years, it 
is known that under certain conditions a global spectral shift of up 
to about 0.5 nm can arise (Carmona et al., 2021). Thus, we fix the 
range of 𝛿CW to [−1.75,+1.25] nm for our simulated dataset. The range 
of 𝛿FWHM is likewise fixed to [−0.30,+0.30] nm to account for possible 
inaccuracies in the knowledge of the spectral bandwidth. The precise 
characterization of the DESIS spectral response function presented here 
ensures that our simulation is realistic and capable of reproducing 
DESIS spectra in a wide variety of conditions.

The airborne imaging spectrometer HyPlant is a hyperspectral in-
strument that was developed within a cooperation between the Finish 
company SPECIM (SPECIM, 2024) and Forschungszentrum Jülich. Hy-
Plant is composed of two modules, called DUAL and FLUO, which 
are co-aligned on a rigid baseplate and operated in a synchronized 
manner. The DUAL module measures radiance from 400 nm to 2500 nm
with a spectral resolution of 3–4 nm in the visible and near-infrared 
spectral region (400–1050 nm) and with a spectral resolution of 10 nm
in the short wave spectral region (1050–2500 nm). The FLUO module 
was designed to enable SIF retrieval and measures radiance in high 
spectral resolution at the O2-A and O2-B oxygen absorption bands. 
The sensor is fully temperature controlled to ensure stable operation 
under flight conditions and operates at an effective spectral resolution 
between 0.23 nm and 0.26 nm (FWHM under flight conditions, see 
Siegmann et al. (2019) for a detailed description of the radiometric 
performance of this sensor). The spatial resolution of the HyPlant 
system depends on the flight altitude and ranges between 0.5 m and 
5 m per pixel for the nominal flight altitudes, which were used in the 
past years. Top-of-canopy reflectance and SIF emission are calculated 
by applying a dedicated atmospheric correction and physically based 
retrieval algorithms, which were developed in preparation of the FLEX 
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Fig. 6. Re-evaluation of HyPlant spectral resolution around O2-A absorption band. The left panel shows the 10%, 25%, 75% and 90% percentiles of the distribution of FWHM 
values estimated with HyPlant measurements in the range 763–767 nm from campaigns over Campus Klein-Altendorf (CKA) and Selhausen (SEL) between 2018 and 2022 and 
acquired at 350 m and 680 m flight altitudes. The right panel shows the distribution of fitted FWHM values for the range 740–780 nm derived from two acquisitions with gas 
emission lines performed during the HyPlant spectral calibration campaign in 2022. In both panels, the range of FWHM based on HyPlant calibration data from 2018 and 2019 
is marked by the red filling.
satellite mission (Siegmann et al., 2019; Cogliati et al., 2019; Sabater 
et al., 2021).

The ready access to recent HyPlant acquisitions (Buffat et al., 
2024b) has greatly helped in improving our simulation setup. Through-
out our work we used data from multiple HyPlant campaigns in the 
period 2018–2022 over two sites in Germany (Selhausen and Campus 
Klein Altendorf) at different flight altitudes (350 m and 680 m above 
ground level). For each campaign there are several flight lines avail-
able, each covering 384 pixels in across-track direction and typical 
lengths of 3–12 km. In total, several million spectra are collected per 
flight line with spatial resolutions of 0.5 m and 1.0 m per pixel for flight 
altitudes of 350 m and 680 m, respectively. We have mostly used the 
at-sensor radiance spectra measured by the HyPlant FLUO sensor, but 
in some specific cases (cf. Section 2.2.1) the reflectance derived from 
the DUAL sensor was also analysed.

The spectral response functions of the HyPlant FLUO sensor are 
measured in terms of both CW and FWHM during yearly routine 
calibrations under laboratory conditions by the manufacturer SPECIM. 
Calibration data from 2018 and 2019 suggest that CW differences with 
respect to the band average lie in the range [−0.012, 0.012] nm and 
that the FWHM varies in the range [0.27, 0.35] nm for the wavelengths 
around the O2-A absorption band. Since the spectral response function 
can be very sensitive to thermal, atmospheric pressure and geometrical 
instabilities under typical in-flight conditions, we make use of real 
HyPlant data to inform our choice for the CW and FWHM ranges. We 
compare a representative set of HyPlant spectra from campaigns over 
Selhausen and Campus Klein-Altendorf in 2018–2022 at flight altitudes 
of 350 m and 680 m to dedicated simulations with variable CW and 
FWHM. The resulting CW shifts vary essentially within ±0.05 nm, but 
in some cases shifts can reach slightly higher values, so we fix the 
range of 𝛿CW to [−0.080, 0.080] nm. The estimated FWHM values are 
shown in Fig.  6 (left) and most lie between 0.20 nm and 0.27 nm. This 
result is further cross-checked with the help of two acquisitions with 
gas emission lines performed during the HyPlant spectral calibration 
in 2022. The fitted FWHM values, reported in Fig.  6 (right), lie be-
tween 0.23 nm and 0.28 nm. The results from imaging and calibration 
acquisitions are consistent with each other and overall they call for 
a HyPlant FWHM range [0.20, 0.28] nm, or equivalently 𝛿FWHM in the 
range [−0.04, 0.04] nm for a baseline FWHM of 0.24 nm.

2.3. Simulated datasets

The simulation framework presented in Section 2.1 is completely 
general and can be used for virtually any spectral range and application 
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with airborne or satellite optical instruments. In this work, we restrict 
ourselves to SIF retrieval in the O2-A band with the DESIS and HyPlant 
instruments (cf. Section 2.2.2).

The first step in generating synthetic data is to single out the ranges 
of atmosphere, geometry, surface and sensor parameters relevant for 
the particular application at hand. This is done with the help of the 
sensitivity analysis documented in Appendix along with expert knowl-
edge of the instruments under consideration. Several results from the 
sensitivity analysis are worth mentioning here. First, the simulation 
of the percent-level effect of SIF in the at-sensor radiance spectra 
requires the use of the line-by-line radiative transfer algorithm with the 
highest resolution available in MODTRAN6 (0.1 cm−1) and a precise 
multiple scattering treatment. Second, while aerosol optical thickness 
and aerosol model are the most relevant atmosphere parameters as 
expected, also water vapor content plays a role at the extremes of the 
spectral range considered. Third, the modelling of solar zenith angle, 
surface and sensor heights as well as reflectance spectrum is indis-
pensable for a precise simulation including SIF. Finally, our sensitivity 
analysis also shows that the at-sensor radiance signal is particularly sen-
sitive to shifts of central wavelength across the sensor, so an accurate 
retrieval method needs to implicitly or explicitly account for such shifts 
when estimating SIF.

Table  1 outlines the key parameters and their ranges for the genera-
tion of DESIS and HyPlant simulated spectra. For comparison, a column 
also shows the values used in the sensitivity analysis. The atmosphere 
and geometry parameters were defined based on existing DESIS and 
HyPlant acquisitions over selected locations. For DESIS, 20 acquisitions 
over Munich, Germany and 16 over Litchfield, Australia in the period 
2018–2021 were used to encompass typical observation geometries, 
while atmospheric conditions for both mid-latitude and tropical sites 
were gauged considering three sites: Munich and Jülich, Germany and 
Litchfield, Australia. There are separate sub-databases for DESIS corre-
sponding to mid-latitude summer and tropical atmosphere models. For 
HyPlant, the focus is on mid-latitude European sites and accordingly 
the typical atmosphere and geometry parameters were set based on 13 
available acquisitions from three campaigns over Selhausen in 2018 
at nominal flight altitude of 680 m. In addition, the range of aerosol 
optical thickness at 550 nm for both DESIS and HyPlant databases was 
fixed to [0.02, 0.30] based on both global distributions (Kinne, 2019) and 
on measurements of the aerosol optical thickness (at 675 nm, 870 nm
and 1020 nm) made by the CIMEL instrument at the AERONET station 
in FZJ-JOYCE (AERONET FZJ-JOYCE, 2024). The adopted values for 
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Table 1
Ranges of input atmosphere, geometry, surface and sensor parameters used for the generation of DESIS and HyPlant simulated data as well as 
for the sensitivity analysis (cf. Appendix). Atmosphere parameters include atmosphere model, water vapor (H2O), ozone content (O3), aerosol 
optical thickness at 550 nm (AOT550) and aerosol model, while the geometry parameters are tilt angle (TA), sun zenith angle (SZA), relative 
azimuth angle (RAA) between sun and line of sight, ground altitude ℎgnd and sensor altitude ℎsen. The surface is modelled by the reflectance at 
740 nm, reflectance slope at 740 nm, ratio of reflectance slopes at 780 nm and 740 nm and SIF on-ground radiance at 737 nm, while the sensor 
parameters include the shift of central wavelength 𝛿CW and of full width at half maximum 𝛿FWHM. The sensor altitude for HyPlant databases 
refers to altitude in km above ground level (agl). The radiance unit used to specify the fluorescence output 𝐹737 is 𝐹0 = 1 mW∕cm2∕sr∕μm.

Parameter Sensitivity 
analysis

DESIS DB HyPlant DB  

 Atmosphere model mid-latitude 
summer, tropical

mid-latitude 
summer, tropical

mid-latitude 
summer

 

 H2O [cm] 0.3–5.0 0.3–5.0 0.3–3.0  
 O3 [DU] 200–500 332 332  
 AOT550 [] 0.05–0.50 0.02–0.30 0.02–0.30  
 aerosol model rural, maritime, 

desert, urban, 
none

rural rural  

 Geometry TA [◦] 0–15 0–25 0–20  
 SZA [◦] 0–45 0–55 20–55  
 RAA [◦] 0–180 0–180 0–180  
 ℎgnd [m] 0–4000 0–600 0–300  
 ℎsen [km] 0.001–100 100 0.659–0.691 agl  
 Surface 𝜌740 [] 0.00 − 0.60 0.05 − 0.60 0.05 − 0.60  
 𝑠 [nm−1] 0 − 0.0008 0 − 0.012 0 − 0.012  
 𝑒 [] 1 0 − 1 0 − 1  
 𝐹737∕𝐹0 0 − 0.8 0 − 0.8 0 − 0.8  
 Sensor 𝛿CW [nm] [−1.00,+1.00] [−1.75,+1.25] [−0.080,+0.080]  
 𝛿FWHM [nm] [−0.25,+0.15] [−0.3,+0.3] [−0.040,+0.040]  
surface and sensor properties were based on the discussion in Sec-
tions 2.2.1 and 2.2.2, respectively. It is important to stress that the 
ranges in Table  1 are representative of real DESIS and HyPlant data 
to be used in the future in conjunction with the simulated datasets 
presented here. This point is crucial for the success of any SIF retrieval 
method trained on simulated data.

The next step is to sample the input parameter space defined above. 
Three sampling methods are considered: uniform grid, random sam-
pling and Halton sampling with Owen scrambling (Halton, 1960; Owen, 
2017). The multi-dimensionality of the input space (> 10 dimensions) 
requires millions of samples in order to achieve a reasonable sampling 
uniformity. This is currently beyond our available computational re-
sources because the time required to simulate one at-sensor radiance 
spectrum is several minutes, dominated by MODTRAN running time. 
However, as seen in Section 2.1, the simulation can be decoupled 
into a (slow) atmospheric module, that depends only on atmosphere 
and geometry parameters, and a (fast) surface-sensor module, that 
depends only on surface and sensor properties, see Fig.  1. Instead 
of running both steps in sequence for each sample of the full input 
space, one may first execute the atmospheric module in a sample 
set of the atmosphere/geometry input space and then, for each run, 
execute the surface-sensor module in a sample set of the surface/sensor 
input space. This strategy represents a reasonable compromise between 
sampling uniformity and running time, making it feasible to simulate 
a reasonably uniform body of millions of high-dimensional samples in 
useful time with the available resources.

The sampling specifications chosen for the DESIS and HyPlant 
databases are reported in Table  2. In addition to random and Halton 
samples, a set of uniform grid sampling points is also included in order 
to populate the databases with the borders and corners of the input 
parameter space as well as special values (e.g., zero sensor shifts), 
which are not necessarily picked up by random or Halton sampling. 
The use of the three sampling methods for the generation of the 
databases will be useful in the future to study the effect of sampling 
strategies in the training of a ML-based SIF retrieval method. In total, 
8 
Table 2
Specification of the generated DESIS and HyPlant databases. The input space and 
number of samples are reported for each database employing uniform grid (UG), 
random (R) and Halton (H) sampling techniques.
 DB Specification DESIS DB HyPlant DB
 

AT
M

Input space 6d 7d

 Sampling UG R H UG R H  
 Nr. samples 2 × 36 2 × 103 2 × 104 37 103 104  
 

SE
N
SO
R Input space 6d 6d

 Sampling UG R H UG R H  
 Nr. samples 2 × 36 300 300 2 × 36 300 300  
Total samples 2 × 106 6 × 105 6 × 106 3 × 106 3 × 105 3 × 106 

approximately 15 million spectra were simulated distributed across the 
different databases and sampling strategies. Several more sets with tens 
of million of spectra overall were simulated in intermediate datasets 
leading up to the final databases presented here.

The databases of simulated spectra were generated with a dedicated 
virtual machine using 10 cores. The total running time for the final 
datasets amounted to approximately one week. The single-core running 
time for the atmospheric module varies between 1 min/sample for 
nadir geometries and about 4 min/sample for off-nadir geometries, 
while the same time needed for the surface-sensor module amounts to 
approximately 0.02 s/sample for both DESIS and HyPlant.

We conclude this section by showing in Fig.  7 selected at-sensor 
radiance spectra from the generated databases for both DESIS and 
HyPlant. The different resolutions of DESIS and HyPlant can be fully 
appreciated as well as the complex interplay between atmosphere, 
geometry, surface and sensor properties. Although limited, the set of 
spectra in Fig.  7 serves to illustrate the power of an extensive body 
of simulated data that can be used to analyse the signal measured by 
hyperspectral sensors and help in the SIF retrieval task.
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Fig. 7. Selected simulated at-sensor radiance spectra surrounding the O2-A feature (740–780 nm) for different atmosphere, geometry, surface and sensor properties. The spectra 
are extracted from DESIS DB (uniform grid sampling, mid-latitude atmosphere model) in the left panel and from HyPlant DB (uniform grid sampling) in the right panel. All cases 
correspond to a constant 30% surface reflectance. The number of spectral bands in the wavelength range considered is 13 for DESIS and 349 for HyPlant.
3. Results

In this section we use the simulated dataset described above for two 
specific applications. The analysis presented here demonstrates explic-
itly the usefulness of our simulations for SIF retrieval and motivates 
further applications to be pursued in the near future.

3.1. At-sensor radiance emulators

The assembled set of simulated data effectively establishes a di-
rect connection between a combination of atmosphere, geometry, sur-
face and sensor properties and the corresponding at-sensor radiance 
spectrum in the wavelength range of interest for DESIS and HyPlant 
(cf. Eq. (1)). While the dataset is originally intended to aid in the ill-
posed inverse task of retrieving one surface property (in our case, SIF) 
from the at-sensor radiance spectrum, the same dataset can also be used 
for the direct task of predicting the at-sensor radiance spectrum given 
a set of atmosphere, geometry, surface and sensor properties: 
𝐿𝑠 = 𝐹 (𝑥atm, 𝑥geo, 𝑥sur , 𝑥sen) , (9)

where 𝐹 ∶ R𝑝 → R𝑏 is a multi-dimensional function, 𝑝 is the number 
of atmosphere, geometry, surface and sensor parameters (𝑝 = 12 for 
DESIS, 𝑝 = 13 for HyPlant, cf. Table  1) and 𝑏 is the number of spectral 
bands in the considered range around the O2-A band (𝑏 = 13 for DESIS, 
𝑏 = 349 for HyPlant). The learning of the function 𝐹  with the help of 
the simulated dataset is a well-defined regression problem and provides 
an at-sensor radiance emulator which mimics the simulation step. 
Several works in the literature have proposed and studied emulators 
in different contexts and applications (see e.g. Vicent Servera et al. 
(2022)). For our regression problem, different parametric functions for 
𝐹  may be chosen; a comprehensive study of different emulators and 
their performance is presented by us in Pato et al. (2024). Fourth degree 
polynomials turn out to be fast and accurate emulators for our purposes 
in this work. We therefore train a fourth degree polynomial emulator 
separately for DESIS and HyPlant using the uniform grid and Halton 
samples of simulated spectra (cf. Table  2) as training set, while leaving 
the random datasets for validation and testing.

The time and accuracy performance of the trained emulators for 
DESIS and HyPlant is shown in Fig.  8. Two main conclusions are 
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evident from our results. First, as seen in the left panel of Fig.  8, the 
emulators have prediction times per sample spectrum ranging from 
1–2 ms (for a single sample) down to 10–20 μs (for a million samples), 
with the DESIS emulator slightly faster due its lower dimensionality. 
The prediction is faster (per sample) when done in bulk since it involves 
only matrix multiplications, which are highly optimized in standard 
software packages. The single-sample time of a few ms is relevant for 
the sequential emulation of spectra (as needed in the simulation step 
of some SIF retrieval algorithms (Buffat et al., 2023, 2025c)), while 
the million-sample time of 10–20 μs is to be considered for emulation 
in bulk (as in the generation of large datasets for training SIF retrieval 
algorithms). Either way, the emulator is several orders of magnitude 
faster than the 1–4 min needed for the full physics-based simulation of 
one spectrum.

Second, the emulators are very accurate in reproducing the simu-
lated spectra both for DESIS and HyPlant, as shown by the distributions 
of the band-averaged relative errors in the right panel of Fig.  8. The 
errors cluster around approximately 0.1% for DESIS and 0.02% for Hy-
Plant and there are few cases where they exceed 1%. Such impressive 
sub-percent accuracy is adequate to characterize the SIF signal, which 
usually amounts to a few percent of the total at-sensor radiance. In fact, 
we employed the emulators to reproduce the whole DESIS DB (mid-
latitude atmosphere model) and HyPlant DB presented in Section 2.3 
with ∼0.1% average error or better in just under 3 min. This highlights 
the power of emulation and its excellent combined time and accuracy 
performance.

Finally, we show that the emulators accurately reproduce real mea-
surements, thereby providing the first step for a robust SIF retrieval and 
the estimation of its uncertainty. The comparison between simulated 
and measured spectra over a representative land cover is reported in 
Fig.  9 for a DESIS scene and in Fig.  10 for a HyPlant scene. We employ 
the emulators for DESIS and HyPlant to fit every spectrum in the scenes. 
An unconstrained least squares optimization is performed for each 
individual spectrum to retrieve the atmosphere, geometry and surface 
parameters and column-wise per band to retrieve the sensor shifts. The 
deliberately simplified scheme is not intended for SIF retrieval, but it 
is adequate to interpret DESIS and HyPlant spectra. The results of this 
procedure for the example pixels highlighted in Figs.  9(a) and 10(a) 
are shown in Fig.  9(b) and Fig.  10(b), respectively. The distribution of 
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Fig. 8. Time and accuracy performance of fourth degree polynomial emulators of at-sensor radiances for DESIS and HyPlant around the O2-A band. The left panel displays typical 
prediction times per sample for different number of samples, while the right panel shows the distributions of the band-averaged relative errors in the entire DESIS DB (mid-latitude 
atmosphere model) and HyPlant DB.
the residuals between data and simulation for the full patches and all 
bands, reported in Figs.  9(c) and 10(c), indicates that typical residuals 
lie in the interval 9×10−4±0.07 mW/cm2/sr/μm for DESIS and 5×10−3±
0.09 mW/cm2/sr/μm for HyPlant.

We shortly comment on the magnitude of the residuals between 
simulation and data. While it is true that some residuals are larger 
than about 0.1 mW/cm2/sr/μm, we do not see this as problematic 
for two main reasons. First, the distribution of residuals is shown for 
the full patch, including surface compositions not represented in our 
simulation. In order to be conservative we have not filtered these 
regions out for Figs.  9(c) and 10(c). Second, our simulation is noise-
free while the measured spectra naturally contain noise that ends up in 
the quantification of the residual. Notice in particular that, for a sensor 
such as DESIS, a radiance noise of 0.1 mW/cm2/sr/μm is very small. 
Overall, the key message of the residuals shown in Figs.  9 and 10 is that 
their distribution is not biased and that our simulation setup reproduces 
DESIS and HyPlant at-sensor radiance spectra to within better than 
0.1 mW/cm2/sr/μm across the considered wavelength range. These 
findings demonstrate the realistic nature of the simulations and show 
that our body of simulated data constitutes a solid basis for training 
ML-based SIF retrieval methods.

3.2. SIF retrieval performance

The simulated dataset presented in our work can be used in a 
straightforward fashion to test the performance of any SIF retrieval 
method for various atmosphere, geometry, surface and sensor con-
ditions. Such studies may also inform the actual design of retrieval 
algorithms before application to real data. We demonstrate this here, 
making use of a small set of simulated DESIS spectra to evaluate the 
SIF retrieval performance of different variants of the 3FLD method. 
This method, initially proposed in Maier et al. (2003), estimates a 
relative SIF signal by using a band or combination of bands in the 
O2-A absorption region (on-band) and a virtual band consisting of two 
or more bands on either side of the absorption region (off-band). The 
procedure may be applied to each sensor element separately and relies 
on the existence of non-fluorescent pixels in the image to factor out 
the influence of atmosphere and geometry. In order to evaluate the 
SIF retrieval performance of 3FLD we collected small subsets of 2000 
DESIS and HyPlant simulated spectra with fixed atmosphere, geometry 
and sensor properties and varied surface reflectance and fluorescence. 
In such a dataset the SIF retrieval accuracy can be assessed directly 
10 
by comparing the retrieved fluorescence for each spectra with the 
simulated value.

The choice of the on- and off-bands in the 3FLD method depends 
sensitively on the properties of the sensor and is better done guided by 
simulated data. We start by considering only simulated spectra with 
linear reflectances (𝑒 = 1) and comment on non-linear reflectances 
afterwards. Fig.  11 shows the correlation between the 3FLD retrieved 
fluorescence and the actual simulated fluorescence for all simulated 
DESIS spectra using three different on- and off-band configurations. 
Since the algorithm retrieves only relative SIF, an absolute error es-
timation is not possible, but the correlations in Fig.  11 can be used to 
assess the 3FLD accuracy. DESIS has 13 spectral bands in the region 
around the O2-A absorption feature (cf. Fig.  7), so different on- and 
off-band configurations are possible. One reasonable choice is to select 
band 8 (762.5 nm) sitting deep in the absorption feature as on-band 
and combine bands 5 and 11 (755 nm and 770 nm) outside the feature 
to form the off-band. This baseline 3FLD band configuration leads to 
a good retrieval performance with a Pearson correlation coefficient of 
0.68 and a very small bias as evident from the top panel of Fig.  11. 
The other panels show the effect of using alternative bands on either 
side of the absorption feature (bands 3–5 and 11–13, cf. middle panel) 
and additionally inside the absorption feature (bands 7–9, cf. bottom 
panel). The addition of bands seems to slightly reduce the retrieval 
accuracy with the correlation coefficient dropping to 0.65 (middle 
panel) and 0.63 (bottom panel) while the bias is kept negligible in both 
cases. Notice however that our simulated data does not include sensor 
noise. When using real data, adding bands in the 3FLD method should 
reduce the impact of sensor noise and therefore lead to an increase in 
retrieval quality. Other combinations of on- and off-band configurations 
lead to poor retrievals (not shown), highlighting that this choice of 
wavelengths is essential for the success of 3FLD in estimating SIF.

The case of HyPlant is qualitatively different from DESIS given the 
smaller path between target and sensor and especially its higher spec-
tral resolution. In particular, it is possible with HyPlant to place a nar-
row on-band for the 3FLD method deep inside the oxygen absorption 
feature, thereby reducing dramatically the down-welling irradiance and 
reflectance signal in that band and consequently increasing the relative 
importance of the fluorescence signal. This facilitates SIF retrieval with 
a high spectral resolution instrument as HyPlant when compared to a 
medium spectral resolution spectrometer as DESIS. Our results confirm 
this well-known expectation. The 3FLD retrieval performance for the 
HyPlant simulated spectra (with linear reflectance spectra, 𝑒 = 1) is 
reported in Fig.  12 when using HyPlant band 179 (760.42 nm) as on-
band and bands 120 and 238 (753.90 nm and 766.95 nm) as off-band. 
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Fig. 9. Comparison between DESIS data and simulation. The top panel (a) displays the true colour composite of a heterogeneous region of approximately 2.4 × 4.8 km2 (80 × 160 
pixels) based on a DESIS L1B product (at-sensor radiances) without smile correction from an acquisition southwest of Cologne, Germany on June 23, 2020 at 10:10 UTC. Two 
pixels with representative vegetation covers are highlighted in yellow and the corresponding comparison between simulated and measured spectra is shown in panel (b). Panel (c) 
reports the distribution of the residuals between measured and simulated at-sensor radiances across the patch for all bands.
The retrieval accuracy achieved with HyPlant is very good attaining a 
correlation coefficient of 0.99, clearly superior to the figures obtained 
for DESIS. In addition, averaging up to three HyPlant bands to form the 
3FLD on- and off-bands does not appreciably change the results in Fig. 
12, always leading to a correlation coefficient of 0.99. This situation is 
different from DESIS (cf. Fig.  11) and can be understood by the high 
spectral resolution and small spectral sampling distance of HyPlant.

Lastly, we comment briefly on one important limitation of the 3FLD 
method, namely the assumption of a linear reflectance model (𝑒 = 1). 
In fact, the SIF retrieval accuracy obtained by the 3FLD approach 
can be significantly reduced for simulated spectra having non-linear 
reflectances. For instance, using the DESIS band configuration shown 
in the bottom panel of Fig.  11 (bands 7–9 as on-band, bands 3–5 and 
11–13 as off-band), we find a positive bias growing from 3.3 × 10−4 for 
𝑒 = 1 (cf. bottom panel of Fig.  11) to 4.2×10−3 for 𝑒 > 0.8 and 9.9×10−3

for 𝑒 > 0.5. Accordingly, the correlation coefficient drops from 0.63 for 
𝑒 = 1 to 0.45 for 𝑒 > 0.8 and 0.30 for 𝑒 > 0.5. This loss of accuracy 
using DESIS spectra can be mitigated by restricting the spectral range 
of the off-band: using only bands 5 and 11 as off-band brings the 
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bias to 4.2 × 10−3 and the correlation coefficient to 0.53 for 𝑒 > 0.5. 
For HyPlant, we find instead a very good retrieval accuracy with a 
correlation coefficient of 0.99 for both linear and non-linear reflectance 
spectra. This is a direct consequence of the high spectral resolution of 
HyPlant and the possibility of using a narrow 3FLD on-band deep in 
the absorption feature, which significantly weakens the impact of the 
reflectance spectrum on the retrieval. The linear reflectance limitation 
of 3FLD can be addressed with other SIF retrieval algorithms, but this 
example serves to illustrate how tailored simulated data can be applied 
to study in detail the performance of a SIF retrieval method.

4. Discussion

Simulated at-sensor radiance spectra may be used in several ways to 
help combine physics-based SIF retrieval methods with ML algorithms, 
as pursued in our recent studies for HyPlant (Buffat et al., 2023, 
2025c,b) and DESIS (Buffat et al., 2025a). The present work explored 
two specific applications of the simulated data.

First, physics-based emulators trained with the databases were 
shown to provide a very fast and precise alternative to a full radiative 
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Fig. 10. Comparison between HyPlant data and simulation. Panel (a) displays the true colour composite of a subset of a HyPlant acquisition from Jülich, Germany on June 26, 
2018 at 15:30 CEST. Three pixels with representative vegetation covers are highlighted in colour and the corresponding comparison between simulated (coloured) and measured 
(black) spectra is shown in panel (b). Panel (c) reports the distribution of the residuals between measured and simulated at-sensor radiances across the patch for all bands.
transfer model (cf. Section 3.1). The emulators can complement – and 
in some cases replace – the time-consuming simulations including ra-
diative transfer. Our findings have at least two important consequences 
for SIF studies. Most important, the emulators can be straightforwardly 
incorporated into retrieval methods (see e.g. Buffat et al. (2025a)) 
to provide a fast online simulation step and thereby improve the 
reconstruction of the measured signal and the retrieval of fluorescence. 
But an additional advantage is that extensive tailored datasets of 
simulated spectra can be emulated at very modest computational cost. 
These datasets may serve as training sets for developing novel ML-
based SIF retrieval methods and as reference data to evaluate the 
SIF retrieval accuracy of any method. Both points illustrate how our 
emulators may aid in specific tasks which are simply not feasible with 
full physics-based simulations. It is worth cautioning that the emulators 
proposed here are valid only for DESIS and HyPlant in the spectral 
region around the O2-A band and for the considered range of input 
parameters. However, our procedure can be easily applied to derive 
emulators for other applications.
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Second, the databases constitute a testing ground which we ex-
ploited to assess the SIF retrieval performance of the 3FLD method 
(cf. Section 3.2). As explained in detail in Section 1, our preference 
for 3FLD over state-of-the-art SIF retrieval methods in this assessment 
is grounded on its simplicity and robustness. The performance study 
presented is deliberately brief and it serves to illustrate the usefulness 
of simulated datasets, such as the one introduced in our work for 
SIF research. The study may certainly be extended in several respects, 
including for instance the inter-comparison of different retrieval meth-
ods and the retrieval sensitivity to atmosphere, geometry and sensor 
properties. In particular, the SIF retrieval uncertainty may be quan-
tified for different observation conditions. We defer the exploration 
of these possibilities to future work. The simulated dataset can also 
be employed as a labelled training dataset for supervised learning 
methods. Incidentally, we have recently developed a novel SIF retrieval 
scheme combining physics-based modelling and ML algorithms (Buffat 
et al., 2025c) and have extended it to incorporate our simulations in a 
separate work (Buffat et al., 2025a,b).
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Fig. 11. SIF retrieval performance of the 3FLD method using different on- and off-band 
configurations evaluated on DESIS simulated data. All panels show the correlation 
between the relative SIF signal retrieved by 3FLD and the actual simulated SIF on-
ground radiance. The upper panel corresponds to the baseline 3FLD band configuration 
with DESIS band 8 (762.5 nm) used for the on-band and bands 5 and 11 (755 nm
and 770 nm) for the off-band. In the middle panel the on-band is formed by DESIS 
band 8 (762.5 nm) and the off-band by DESIS bands 3–5 (750–755 nm) and 11–13 
(770–775 nm), while in the bottom panel the on-band is formed by DESIS bands 
7–9 (760–765 nm) and the off-band by DESIS bands 3–5 (750–755 nm) and 11–13 
(770–775 nm). The best linear fit and corresponding Pearson correlation coefficient are 
indicated in each case.

Finally, we comment on the applicability of our work to other sen-
sors and spectral ranges. Here we focused on the SIF retrieval potential 
of DESIS and HyPlant in the O2-A band by implementing a precise sen-
sor characterization to simulate realistic spectra, which differentiates 
our simulated dataset from others in the literature. While our results are 
necessarily specific to DESIS and HyPlant at 740–780 nm, the proposed 
framework can be applied to other instruments and wavelength ranges. 
For instance, one may examine the case of FLEX (Drusch et al., 2017) 
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Fig. 12. SIF retrieval performance of the 3FLD method evaluated on HyPlant simulated 
data. The plot shows the correlation between the relative SIF signal retrieved by 
3FLD and the actual simulated SIF on-ground radiance along with the best linear fit 
and corresponding Pearson correlation coefficient. The 3FLD band configuration used 
here consisted of HyPlant band 179 (760.42 nm) as on-band and bands 120 and 238 
(753.90 nm and 766.95 nm) as off-band.

at the O2-A band, provided a precise characterization of the instrument 
is available. The case of the O2-B band (at around 687 nm) is more 
challenging for SIF retrieval due its moderate depth and would require 
the definition of different reflectance and fluorescence models in our 
framework. Either at the O2-A band, O2-B band and/or full spectral 
range, it is crucial to represent the spectral characteristics of the FLEX 
instruments as realistically as possible (eventually with the help of on-
ground calibration data) in order to generate high fidelity simulated 
spectra. An extensive dataset of such spectra is essential for the devel-
opment of ML methods for SIF retrieval with FLEX and it could also 
be used to train a fast forward simulator and evaluate the SIF retrieval 
performance of existing methods. This research direction is of particular 
relevance for the exploitation of FLEX data, but it lies outside the scope 
of the present contribution and is left for future work.

5. Conclusion

The retrieval of solar-induced fluorescence from airborne and
satellite-based hyperspectral measurements is a complex inversion 
problem that requires an intimate knowledge of the spectral perfor-
mance of the instrument and a precise correction for atmospheric 
effects. The combination of physics-based retrieval methods with ML 
algorithms has the potential to tackle such problems efficiently and 
thus provide a promising avenue for retrieving SIF from a multitude 
of hyperspectral sensors of diverse spectral and spatial resolutions. 
However, any ML model can be only as good as the body of training 
simulated data available to it. Furthermore, ML models are proficient 
at learning subtle features in the data and thus may fail to properly 
interpret real measurements if the simulated training data are not 
reliable and representative of the instrument. It is therefore crucial that 
the simulated data used for training are representative of the real data. 
In this work, we attempted to provide a sound starting point for the 
learning process of ML-based SIF methods by assembling an extensive 
set of highly realistic simulated at-sensor radiance spectra around the 
O2-A band for two representative classes of currently operating imaging 
spectrometers, namely DESIS and HyPlant. Our approach leverages on 
the expert knowledge about the calibration and characterization of 
DESIS and HyPlant in order to provide high-fidelity simulated spectra 
that closely reproduce actual measurements. The same approach can be 
applied to existing or future instruments such as FLEX in the O2-A band, 
or other spectral ranges. In addition, such simulated datasets can easily 
be used to train fast and accurate emulators of at-sensor radiances as 
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well as to evaluate the performance of SIF retrieval methods. These are 
two important applications whose results will aid in the ongoing effort 
towards developing robust ML-based retrieval methods for SIF.
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Fig. A.1. Sensitivity goal of the simulation of at-sensor radiances for SIF retrieval in 
the O2-A band. The simulation should be at least as accurate as the effect we aim to 
study, in our case SIF. The sensitivity goal 𝐿0 shown in red is set by the SIF at-sensor 
radiances corresponding to the typical SIF outputs 𝐹737 = (0.1 − 0.4) mW∕cm2∕sr∕μm, 
while the reference at-sensor radiance 𝐿ref for a reflectance 𝜌 = 0.5 is reported in 
black. The curves were resampled to FWHM of 0.3 nm and correspond to the reference 
configuration (nadir observation from space, sea-level surface, sun zenith angle of 
30◦, mid-latitude summer atmosphere, rural aerosol profile, 23 km visibility, accurate 
radiative transfer baseline A1).

Appendix. Sensitivity analysis

The SIF on-ground radiance spectrum has two characteristic peaks 
at approximately 690 nm and 737 nm, so the narrow spectral range 
we consider (740–780 nm) essentially comprises the falling tail of the 
feature at 737 nm. Typical on-ground radiances for this second fluores-
cence peak amount to 𝐹737 = (0.1 − 0.4) mW∕cm2∕sr∕μm (Meroni et al., 
2009; Cogliati et al., 2015a; Rascher et al., 2015). The corresponding 
range of SIF at-sensor radiances around the O2-A band is illustrated in 
Fig.  A.1 by the red band, which effectively sets the sensitivity goal 𝐿0
for our study. In other words, our simulations are designed to be accu-
rate enough to represent SIF signals down to 𝐹737 = 0.1 mW∕cm2∕sr∕μm, 
but not below that value. Also shown in the figure is a reference at-
sensor radiance spectrum 𝐿ref  for a surface reflectance 𝜌 = 0.5 and no 
fluorescence emission.

It is clear from Fig.  A.1 that SIF emission by vegetation leads to 
a percent-level effect in the measured at-sensor radiance, which is 
largely dominated by the reflectance signal. Any simulation of use for 
SIF retrieval must be at least as accurate as the order of magnitude 
of the fluorescence signal itself, which in our case implies a percent-
level accuracy. For our purposes, the relevant accuracy measure is the 
difference to the reference at-sensor radiance: 𝛥𝐿 = 𝐿 − 𝐿ref . We 
therefore carried out an extensive sensitivity analysis to identify all 
parameters or configurations with an impact on the at-sensor radiance 
spectrum larger than the SIF sensitivity goal, namely |𝛥𝐿| > 𝐿0. The 
exact sensitivity of the retrieval to these parameters depends on the 
SIF retrieval algorithm.

The reference configuration used for our sensitivity analysis cor-
responds to a nadir-looking sensor in space, sea-level surface, sun 
zenith angle of 30◦, mid-latitude summer atmosphere, rural aerosol 
profile, 23 km visibility (corresponding to an aerosol optical thickness 
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Fig. A.2. Atmospheric functions derived for the reference configuration. The different functions shown quantify the transmission and scattering of light through the atmosphere 
and their dependence on wavelength. The left panel shows the transmission coefficients 𝑇 ↑

dir , 𝑇
↑
dif and the spherical albedo of the atmosphere 𝑆, while path radiance 𝐿𝑝 and global 

solar irradiance on the ground 𝐸0
𝑔 are displayed in the right panel. The high-resolution atmospheric functions were here resampled to FWHM of 0.3 nm for visualization purposes.
Table A.1
Radiative transfer configurations used in the sensitivity analysis to balance accuracy and computa-
tional time. The last column reports the single-core run time in minutes and seconds needed for the 
atmospheric module to generate high-resolution atmospheric functions for the reference configuration. 
Each case is colour-coded in green, orange or red depending on whether its difference with respect 
to the accurate baseline A1 is below, similar to or above the SIF sensitivity goal, respectively. Case 
C4 was selected as default for the generation of databases and is marked with an asterisk.
Case Model Resolution Multiple scattering Run time
00 correlated-k (fast) 1.0 cm−1 / − Isaacs scaled (8S) 00:02
A1 line-by-line 0.1 cm−1 / 100 DISORT (8S) 09:13
B2 correlated-k (slow) 0.1 cm−1 / − DISORT (8S) 01:40
B3 correlated-k (fast) 0.1 cm−1 / − DISORT (8S) 00:59
B4 band model 0.1 cm−1 / − DISORT (8S) 00:09
C2 line-by-line 0.1 cm−1 / 50 DISORT (8S) 04:34
C3 line-by-line 0.1 cm−1 / 20 DISORT (8S) 01:55
 C4* line-by-line 0.1 cm−1 / 10 DISORT (8S) 00:57
C5 line-by-line 0.1 cm−1 / 5 DISORT (8S) 00:30
C6 line-by-line 0.1 cm−1 / 3 DISORT (8S) 00:20
C7 correlated-k (slow) 1.0 cm−1 / − DISORT (8S) 00:20
C8 correlated-k (slow) 5.0 cm−1 / − DISORT (8S) 00:05
D2 line-by-line 0.1 cm−1 / 100 Isaacs scaled (8S) failed
D3 correlated-k (slow) 0.1 cm−1 / − Isaacs scaled (8S) 00:07
D4 correlated-k (fast) 0.1 cm−1 / − Isaacs scaled (8S) 00:06
D5 line-by-line 0.1 cm−1 / 100 None 00:05
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 
 

 

at 550 nm of 0.30–0.35), the Fontenla et al. 2011 (Fontenla et al., 2011)
(mid2) solar model and the accurate radiative transfer baseline A1
(cf. Appendix  A.1). The associated atmospheric functions are reported
in Fig.  A.2. This reference configuration has been used throughout.
The sensitivity analysis presented here is performed at the spectral
resolution of 0.3 nm to support DESIS (FWHM of 3.5 nm), HyPlant
(0.3 nm) and any other instrument of larger FWHM. In the following we
focus on the sensitivity to radiative transfer configurations, atmosphere,
geometry, surface and sensor parameters.

A.1. Radiative transfer configuration

The requirement of a realistic simulation at high resolution in the
spectral range of the O2-A band implies a careful choice of the radiative
transfer options in MODTRAN6 (Berk et al., 2014). Our strategy was
to first set a very accurate baseline configuration and then vary in turn
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different radiative transfer options in order to find the best compromise
between simulation accuracy and computational time. As accurate
baseline, the line-by-line algorithm implemented in MODTRAN6 (Berk
et al., 2015) was used with 0.1 cm−1 wavenumber resolution,1 100
sampling points per spectral bin and the 8-stream DISORT multiple
scattering treatment. This baseline is designated as case A1 in Table
A.1 and it takes our atmospheric module (Section 2.1.1) about 9 min
to run MODTRAN6 twice and derive the five high-resolution atmo-
spheric functions in the wavelength range between 740 nm and 780 nm
for the reference configuration (cf. Fig.  A.2). We sequentially tested
alternative radiative transfer models (correlated-k (slow), correlated-k
(fast), band model, see cases B2–B4 in Table  A.1), resolutions (1 cm−1,

1 For reference, a wavenumber resolution of 𝛥𝜈 = 0.1 cm−1 corresponds to
a wavelength resolution of 𝛥𝜆 ≃ 0.006 nm at 𝜆 = 760 nm.
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Fig. A.3. Sensitivity to radiative transfer options, namely radiative transfer model (a,b), number of sampling points in line-by-line model (c), resolution in correlated-k (slow) 
model (d) and multiple scattering (e). The impact of each parameter on the at-sensor radiance (with respect to the reference case A1 in Table  A.1) is shown in comparison to 
the SIF sensitivity goal encompassed by the red bands. Parameter values that overshoot any of the red bands have an influence larger than the SIF signal. The sensitivity to the 
radiative transfer model is plotted for FWHM of 0.3 nm (a) and 3.5 nm (b), while in the other panels (c,d,e) the FWHM is 0.3 nm. Note that cases B2−3, C2−5 and D3−4 are 
essentially indistinguishable in the plots.
5 cm−1, different sampling points per spectral bin for the line-by-line 
algorithm, see models C2–C8) and multiple scattering setups (8-stream 
Isaacs scaled, no multiple scattering, see models D2–D5). Case 00 
using correlated-k (fast), 1 cm−1 resolution and 8-stream Isaacs scaled 
multiple scattering is also included for comparison since it is a common 
configuration used in MODTRAN5.

Fig.  A.3 displays the at-sensor radiance differences 𝛥𝐿 as a function 
of wavelength for all radiative transfer cases along with our SIF sensi-
tivity goal 𝐿0. Several important points are implied by this figure. First, 
as seen in Fig.  A.3(a), the alternative radiative transfer models B2−4, 
namely correlated-k (slow or fast) and band model, are only border-
line accurate compared to the sensitivity goal, leaving the line-by-line 
algorithm as the only viable option for our application. Fig.  A.3(b) il-
lustrates that the situation is somewhat relaxed for a DESIS-like FWHM 
of 3.5 nm, but even then the differences overshoot the expected SIF 
signal, especially in the oxygen absorption feature between 760 nm and 
765 nm. It is also clear that case 00 is not adequate for our purposes.

Second, we are forced to select the finest available resolution of 
0.1 cm−1. Resolutions of 1 cm−1 or 5 cm−1 (only possible with the 
correlated-k algorithm or band model) are simply too inaccurate as 
demonstrated by the results of models C7−8 in Fig.  A.3(d). However, it 
is possible to significantly reduce the number of sampling points in the 
line-by-line algorithm with little changes in the atmospheric functions 
or at-sensor radiance spectrum, cf. models C2−5 in Fig.  A.3(c).

Lastly, the treatment of multiple scattering with the precise 8-stream 
DISORT option appears unavoidable in view of Fig.  A.3(e). In fact, 
while the deactivation of multiple scattering (model D5) substantially 
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reduces the at-sensor radiance across the full spectral range, the Isaacs 
scaled recipe (with the correlated-k algorithm, models D3−4) leads 
to differences of the order of the expected SIF signal in the bulk of 
the oxygen absorption band. Note that the Isaacs scaled option is 
apparently incompatible with the line-by-line algorithm and thus case 
D2 has failed.

Table  A.1 gives an overview of the results regarding attained ac-
curacy (colour coded in the table) and required atmospheric module 
single-core run time (last column). After careful consideration, we 
selected case C4 (line-by-line algorithm, 0.1 cm−1, 10 sampling points, 
8-stream DISORT, 57 s) as the best compromise between simulation 
accuracy and running time. While the baseline case A1 is used for 
the sensitivity analysis, we adopted case C4 as our default radiative 
transfer configuration for the generation of the simulated datasets in 
Section 2.3. Note that the running time estimates presented here are 
only approximate and refer to nadir-looking geometries. For instance, 
the default case C4, with a running time of about 1 min as reported in 
Table  A.1, may take up to 4 min in off-nadir configurations.

A.2. Atmosphere

The signal ultimately measured by the sensor is necessarily depen-
dent on the atmosphere, namely its constituents, physical properties 
and conditions at the time of acquisition. Although the simulation 
framework described in Section 2.1 supports virtually all MODTRAN6 
options to model the atmosphere, it is important to identify the key 
atmosphere parameters for our application and spectral range. We have 
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Fig. A.4. Sensitivity to atmosphere parameters, namely atmosphere model (a), water vapor (b), ozone (c), aerosol optical thickness at 550 nm (d), aerosol model (e) and aerosol 
scattering asymmetry parameter (f). The impact of each parameter on the at-sensor radiance (with respect to the reference case indicated in the top left of each plot) is shown 
in comparison to the SIF sensitivity goal encompassed by the red bands. Parameter values that overshoot any of the red bands have an influence larger than the SIF signal. The 
FWHM used for all panels is 0.3 nm.
focused on the following quantities: atmosphere model, water vapor, 
ozone, aerosol optical thickness at 550 nm, aerosol model and aerosol 
scattering asymmetry parameter. Fig.  A.4 shows the results of our 
sensitivity analysis for these atmosphere parameters in terms of the 
comparison between 𝛥𝐿 and 𝐿0.

The influence of atmosphere and aerosol models in Fig.  A.4(a,e) 
is expectedly larger than the percent-level SIF signal. This implies 
in particular that these models should be carefully chosen according 
to the regions and conditions of the measurement place. The water 
vapor content is another relevant quantity to consider when analysing 
radiance spectra between 740 nm and 780 nm, cf. Fig.  A.4(b). There is 
actually no strong absorption due to water vapor at these wavelengths, 
but the tails of two small absorption features just below 740 nm and 
above 780 nm spill over to the considered range and have an effect of 
the order of the SIF sensitivity goal. Ozone instead has only a marginal 
role in the at-sensor radiance spectra around the O2-A band, as shown 
in Fig.  A.4(c). We therefore set a default ozone value of 332 Dobson 
units (DU) and drop ozone from the input parameters to generate 
the simulated data. Note however that the simulation is really only 
representative of real data acquired in atmospheres of similar ozone 
content.

The aerosol optical thickness effectively determines the viewing 
conditions at the measurement place and naturally affects the at-sensor 
radiance spectra across the full wavelength range as seen in Fig.  A.4(d). 
For the simulations, we opt to use AOT550 instead of visibility since it 
is a parameter with a clear physical interpretation and easier to sample 
linearly in a given range of values. It is important to point out that in 
SIF retrieval applications we will mainly be dealing with data acquired 
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with good or very good visibilities, so the range of AOT550 should not 
include hazy conditions.

Lastly, the simulated spectrum is sensitive to the aerosol scattering 
angular distribution, which in MODTRAN6 is computed with Mie scat-
tering for the aerosol profile (default option) or may be parameterized 
by the quantity 𝑔 (−1 for pure back scattering, +1 for pure forward scat-
tering). Fig.  A.4(f) shows that different scattering angular distributions 
lead to spectral distortions of the order of our sensitivity goal. Note 
in addition that there is a complicated dependence on the observation 
geometry. For instance, if sun, sensor and target are aligned, then 
any amount of aerosol back scattering can have a huge impact on the 
measured radiance.

A.3. Geometry

Next we concentrate our attention on the specific observation geom-
etry. Fig.  A.5 shows the impact of varying sensor tilt angle, sun zenith 
angle, relative azimuth angle between sun and line of sight, ground 
altitude and sensor altitude in reasonable ranges for airborne and 
space-based spectrometers. The three angles are defined at the sensor 
point for the purpose of the sensitivity analysis. The influence of the 
sun zenith angle is the largest and abundantly exceeds the sensitivity 
goal, cf. Fig.  A.5(b). As the sun gets closer to zenith (i.e., as the sun 
zenith angle decreases), the solar irradiance at the surface increases 
significantly and so does the at-sensor radiance spectrum in the whole 
wavelength range. The tilt angle has a smaller influence on the radiance 
spectrum, but still close or above the expected SIF signal, as seen in Fig. 
A.5(a). A more inclined line of sight (i.e., a larger tilt angle) leads to 
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Fig. A.5. Sensitivity to geometry parameters, namely tilt angle (a), sun zenith angle (b), relative azimuth angle (c), ground altitude (d) and sensor altitude (e). The impact of 
each parameter on the at-sensor radiance (with respect to the reference case indicated in the top left of each plot) is shown in comparison to the SIF sensitivity goal encompassed 
by the red bands. Parameter values that overshoot any of the red bands have an influence larger than the SIF signal. The FWHM used for all panels is 0.3 nm.
more absorption and more scattering with the net effect of decreasing 
the at-sensor radiance by up to a few percent for the case where the 
sun zenith angle at the sensor is fixed to 30◦. For nadir observations 
(zero tilt angle), the relative azimuth angle is irrelevant, but it becomes 
increasingly important as the tilt angle increases. The effect shown in 
Fig.  A.5(c) is marginal when compared to the sensitivity goal in the case 
of 5◦ off-nadir observations. Nevertheless, we shall include the relative 
azimuth angle in the generation of our databases so that the cases of 
moderate tilt angles are appropriately covered.

Fig.  A.5(d,e) further demonstrates that the simulated spectrum is 
very sensitive to both ground altitude (for airborne and space-based 
instruments) and sensor altitude (for airborne instruments only). This is 
to be expected, because we are focusing on a strong oxygen absorption 
band and the oxygen content of the atmosphere varies quickly with 
altitude, especially at low altitudes. In particular, there is less oxygen 
along the line of sight for higher ground altitudes and smaller sensor 
altitudes, leading to less absorption and thus a larger at-sensor radiance 
spectrum. Note that for instruments in space the exact sensor altitude 
does not play a role, because for our purposes the atmosphere does not 
extend beyond altitudes of 100 km. Therefore, any space instrument can 
be simulated assuming a sensor altitude of 100 km and the appropriate 
adaptation of the geometry viewing angles.

It is important to stress that all geometry parameters studied above 
are either stored directly in typical data products or can be easily 
reconstructed from existing metadata. These quantities do not need 
to be inferred by SIF retrieval methods from the measured spectra. 
Therefore, in order to accommodate a diverse range of observation 
geometries for both airborne and space-based instruments, all five 
geometry parameters are considered in the generation of the simulated 
18 
datasets in Section 2.3. This has no significant extra cost apart from the 
increase of input dimensionality.

A.4. Surface

In the scope of the sensitivity analysis, we have considered the 
linear reflectance function (𝜌740, 𝑠, 𝑒 = 1) and the Gaussian SIF emission 
(𝐹737) described in Section 2.2.1 to model the surface properties of the 
target. We illustrate the effect of the three parameters 𝜌740, 𝑠 and 𝐹737
on the at-sensor radiance spectrum in Fig.  A.6(a,b,c) for the case of 
DESIS. Clearly, SIF retrieval methods must have a very good handle on 
both reflectance 𝜌740 and reflectance slope 𝑠 in order to make a precise 
measurement of fluorescence.

A.5. Sensor

A precise knowledge of the spectral response function of the instru-
ment is imperative for SIF retrieval. Any slight spectral mischaracteri-
zation or sensor instability resulting in shifts of the central wavelength 
and/or full width at half maximum (i.e., spectral resolution) have an 
impact greater than the small SIF signal. This is exemplified for DESIS 
in Fig.  A.6(d,e). The sensitivity on central wavelengths in Fig.  A.6(d) 
is particularly noteworthy. The spectral characterization of both DESIS 
and HyPlant between 740 nm and 780 nm presented in Section 2.2.2 is 
therefore crucial to define a precise spectral response function for our 
simulations. On top of a reference spectral response function, we have 
allowed for shifts on CW and FWHM (𝛿CW, 𝛿FWHM, cf. Section 2.1.2) 
so that the simulation can encompass the real performance of the 
instruments during acquisition. This will allow future retrieval methods 
to implicitly correct for these shifts while extracting the SIF signal.
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Fig. A.6. Sensitivity to surface and sensor parameters, namely reflectance at 740 nm (a), reflectance spectral slope at 740 nm (b), ground SIF radiance at 737 nm (c), CW shift (d) 
and FWHM change (e). The impact of each parameter on the at-sensor radiance (with respect to the reference case indicated in the top left of each plot) is shown in comparison 
to the SIF sensitivity goal encompassed by the red bands. Parameter values that overshoot any of the red bands have an influence larger than the SIF signal. The DESIS spectral 
response function (with approximately FWHM of 3.5 nm and spectral sampling distance of 2.5 nm) was used for all panels.
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