FPSC Abstracts

Vol. 18, EPSC-DPS2025-688, 2025, updated on 01 Oct 2025 https://doi.org/10.5194/epsc-dps2025-688 EPSC-DPS Joint Meeting 2025 © Author(s) 2025. This work is distributed under the Creative Commons Attribution 4.0 License.

VIVA (Venus' Interior, Volcanism and Atmosphere): a Venus mission to reveal unknown interior structure, thermosphere dynamics and meteoroid flux from atmospheric response to seismic waves, volcanic events and external forcings

Raphael Garcia¹, Matthias Grott², Neil Bowles³, Jim Cutts⁴, Elizabeth Klioner⁵, Marouchka Froment⁶, Gabriella Gilli⁷, Lauriane Soret⁸, Apostolos Christou⁹, and the remaining members of VIVA mission core team^{*}

¹ISAE-SUPAERO, Toulouse University, France (raphael.garcia@isae.fr)

Despite being often described as Earth's sister planet due to a similar distance to the Sun and comparable size, Venus's internal structure and geodynamic regime, together with its upper atmosphere dynamics and asteroid entry rates, are poorly constrained. Whereas Venus is a prime candidate for being a tectonically active planet and presents a very dynamic atmosphere, future missions will not constrain high frequency phenomena such as seismic waves, meteoroid impacts, and high frequency gravity waves. These short duration events can be used to infer Venus' seismicity, internal structure, upper atmosphere dynamics and the small Solar System bodies population [1].

We present a mission concept that targets high rate observations of upper atmosphere airglow emissions on both the day and night side of Venus, as well as thermal imaging in the visible. These observations will allow us to image the propagation of acoustic waves generated by seismic waves, enabling us to investigate quake locations and magnitudes, as well as to determine the structure of the crust and upper mantle. Volcanic events will also be studied through the associated increase in surface and atmosphere temperature. In addition, variations in airglow emissions will constrain the transfer of mechanical energy from the lower atmosphere to the thermosphere, as well as atmosphere dynamics (winds) and composition, and its response to solar forcing. Finally, the observation of fireballs produced by asteroid entries will constrain the asteroid population that crosses Venus's orbit.

The instruments required to perform these high rate observations are presented. They are based on a strong heritage relying on previous implementations in planetary missions.

The mission concept and spacecraft demand new capabilities in terms of on-board attitude determination and data processing capabilities. In particular, a dedicated on-board data processing unit capable of autonomously detecting different event types with advanced algorithms, including

²DLR, Berlin

³Oxford University

⁴JPL, Pasadena

⁵TU, Berlin

⁶NORSAR, Norway

⁷IAA, Granada

⁸Liège University

⁹Armagh Observatory

^{*}A full list of authors appears at the end of the abstract

machine learning methods, has been identified as a key component of the mission. This unit will also be used to average out phenomena over different temporal and spatial scales. To maximise science return, the mission will adopt an operational concept involving the capability to download high rate event data from a first quicklook information, similar to the one implemented on InSight NASA mission.

The feasibility of the mission, already partly demonstrated by VAMOS JPL/NASA mission concept study [2,3], is validated through a dedicated mission analysis study.

References

- [1] Christou A.A., Gritsevich M. 2024. Feasibility of meteor surveying from a Venus orbiter, Icarus, 417, 15 July 2024, 116116, DOI 10.1016/j.icarus.2024.116116
- [2] Sutin, B.M. et al. In Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, volume 10698. SPIE, 2018. doi:10.1117/12.2309439.
- [3] Didion, A. et al. In 2018 IEEE aerospace conference. IEEE, 2018.

remaining members of VIVA mission core team: Martin Partenais, Nils Müller, Rory Evans, Patrick Irwin, David Mimoun, Alexander Stott, Mark Panning, Siddharth Krishnamoorthy, Julian Bartholomäus, Barbara De Toffoli, Philippe Lognonné, Iris van Zelst, Julia Maia, Martin Knapmeyer, Anna Gülcher, Quentin Brissaud, Richard Ghail, Miguel Lopez Valverde, Antoine Martinez, Sébastien Lebonnois, Maxence Lefèvre, Takeshi Imamura, Francisco Brasil, Heike Rauer, Emmanuel Marcq, Yeon Joo Lee, Maria Gritsevich, Thomas Müller, François Colas, Javier Licandro