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Resumen
Esta investigación tiene como objetivo mejorar los algoritmos de clasificación uti-

lizados en la corrección atmosférica (AC), aprovechando las capacidades de extracción de
caracteŕısticas espectro-espaciales de los modelos de aprendizaje profundo (DL) de última
generación para la clasificación a nivel de ṕıxel en imágenes espectrales. El objetivo prin-
cipal es avanzar en el estado del arte actual en preparación para la próxima generación
de sensores hiperespectrales. La fase inicial de este trabajo se centra en la integración de
algoritmos de clasificación basados en umbrales, ampliamente utilizados en teledetección
multispectral, con redes neuronales convolucionales (CNN). Esta integración demuestra
mejoras significativas en los resultados de clasificación al combinar enfoques tradicionales
con técnicas modernas de aprendizaje profundo.

Como parte de esta investigación, se establecen lineamientos para criterios de etique-
tado armonizados basados en parámetros f́ısicos, esenciales para la creación de conjuntos
de datos robustos de entrenamiento y prueba que integren múltiples fuentes de infor-
mación, como etiquetas manuales y productos del sensor TROPOMI a bordo de la misión
Sentinel-5P. Este trabajo utiliza el software PACO desarrollado por el DLR y realiza ex-
perimentos con datos de la misión multiespectral Sentinel-2 y de la misión hiperespectral
EnMAP.

En el caso multiespectral, los modelos propuestos superan de forma consistente la ĺınea
base de PACO en una variedad de conjuntos de prueba, con mejoras de hasta 18.3 pun-
tos porcentuales en el coeficiente de correlación de Matthews normalizado (nMCC). Las
mayores mejoras se observaron en escenarios de clasificación complicados, especialmente
en las clases de sombras y suelo.

En el caso hiperespectral, los resultados de clasificación fueron transformados a parámetros
f́ısicos mediante la comparación de las fracciones de nubosidad inferidas con las obtenidas
por TROPOMI. Si bien las métricas globales de regresión mostraron un desempeño com-
parable entre los métodos basados en CNN y la referencia base de PACO, la principal
contribución radica en el análisis de las fortalezas y debilidades de la metodoloǵıa de val-
idación propuesta. En particular, el uso de gráficos Precisión–Exactitud–Incertidumbre
(APU) permitió una evaluación detallada del comportamiento del modelo en distintos
rangos de fracciones de nubosidad, destacando las limitaciones en los datos de referencia
y los efectos de los desajustes espaciales y temporales.

Al abordar los desaf́ıos en la preparación de conjuntos de datos y utilizar modelos
neuronales avanzados, este trabajo ofrece aportes valiosos para la obtención de productos
de clasificación mejorados en misiones de teledetección multi- e hiper-espectral con una
perspectiva de implementación global.
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Abstract
This research aims to enhance the classification algorithms used in Atmospheric Cor-

rection (AC) by leveraging the spatial-spectral feature extraction capabilities of state-of-
the-art Deep Learning (DL) models for pixel-level classification of spectral imagery. The
primary objective is to advance the current state-of-the-art in preparation for the next
generation of hyperspectral sensors. The initial phase of this work focuses on the inte-
gration of threshold-based masking algorithms, widely applied in multispectral remote
sensing, with Convolutional Neural Networks (CNNs). This integration demonstrates
significant improvements in classification outcomes, by combining traditional approaches
with modern deep learning techniques.

As part of this research, guidelines are established for harmonized labeling criteria
based on physical parameters, which are essential for creating robust training and test-
ing datasets that incorporate multiple sources of information like manual labeling and
products from the Tropospheric Monitoring Instrument (TROPOMI) sensor onboard the
Sentinel-5P mission. This work uses the Python-based Atmospheric Correction (PACO)
software developed by the German Aerospace Center “Deutsches Zentrum für Luft- und
Raumfahrt” (DLR) and conducts experiments using data from the multispectral Sentinel-
2 mission and the Environmental Mapping and Analysis Program (EnMAP), which cap-
tures hyperspectral imagery.

For the multispectral case, the proposed models consistently outperform the PACO
baseline across a variety of testing datasets, showing improvements of up to 18.3 percent-
age points in normalized Matthew’s Correlation Coefficient (nMCC). The largest gains
were observed in challenging classification scenarios, particularly in the shadow and clear
classes.

In the hyperspectral case, classification results were translated into physical param-
eters by comparing the predicted cloud fractions with those from TROPOMI. While
global regression metrics showed comparable performance between the CNN-based meth-
ods and the PACO baseline, the main contribution lies in the analysis of the strengths and
weaknesses of the proposed validation methodology. In particular, the use of Accuracy,
Precision and Uncertainty (APU) plots enabled a deep assessment of model behavior
across different cloud fraction ranges, highlighting limitations in the reference data and
the effects of spatial and temporal mismatches.

By addressing the challenges in dataset preparation and using cutting-edge neural
network models, this work provides insights for obtaining improved classification prod-
ucts for multi- and hyper-spectral remote sensing missions with a global implementation
perspective.
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me feel at home far from home. Thanks also to my sports friends for the bike rides, hikes,
and football matches.

To my family—thank you for always being there. To my mom, Ruth Zepeda, whose
blessing made me feel invincible. To my dad, Mart́ın Padilla López, for teaching me to
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Chapter 1

Introduction

N owadays, the remote sensing applications of the Earth’s surface have become one
of the most important subjects in addressing challenges related to climate change

and natural resource management. The recently launched monitoring missions by the
most prominent space agencies worldwide demand greater comprehension and assimila-
tion of the huge amount of data generated daily. Different products provide users with
various ways to interpret and use the information, depending on the requirements of the
application. Therefore, better classification products generally improve the analysis in
subsequent processing steps. For instance, masking algorithms provide useful information
about the classification of each pixel in the image, allowing users to filter the pixels of
interest for analysis. However, many traditional implementations of masking algorithms
rely primarily on spectral indices, which are based on a limited number of features and
often do not incorporate spatial or temporal context. Although more recent approaches
may include neural networks, spatial analysis, or time-series information, there is still a
widespread reliance on simpler, threshold-based methods in operational settings. As a re-
sult, in certain applications (particularly those focused on small study areas or requiring
high precision) scientists may manually adjust the masking products prior to further anal-
ysis. However, this additional step increases the required effort and may limit scalability
in broader operational contexts.

On the other hand, the growing field of artificial intelligence has demonstrated excel-
lent performance in a wide variety of applications. Given the enormous amount of gen-
erated data, remote sensing applications are excellent candidates for modeling solutions
with deep neural networks. These networks enable the retrieval of spatial and spectral
features with the ability to generalize globally. However, they also present significant chal-
lenges, such as the need for a sufficiently diverse set of reference labels for training, as well
as robust strategies for validating the resulting masking products. Therefore, recognizing
the opportunities to improve classification products using state-of-the-art techniques, this
thesis proposes a Deep Learning (DL) approach to enhance the classification products
generated by currently implemented masking algorithms.
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Chapter 1. Introduction

1.1 Overview
The optical data products of the Earth’s surface are essential for environmental mon-

itoring and security, as they capture interactions between solar radiation and matter in
the ground and water surfaces. This interaction produces a unique combination of light
reflected at different wavelengths for each ground sample, known as the spectral signature.
By analyzing these spectral signatures, researchers can gather valuable information for a
wide range of applications, including vegetation monitoring, water resource management,
climate change assessment, cryosphere monitoring, and wildfire detection, among others
[1].

Multiple efforts from space agencies and the private sector have led to the development
of missions to monitor Earth, providing access to optical imagery and its associated
products. Among the currently operational remote sensing missions [2, 3, 4, 5, 6, 7, 8],
the multispectral Sentinel-2 mission [9] stands out as part of the European Union (EU)’s
Copernicus program. This Copernicus mission, together with the hyperspectral EnMAP
mission [10, 11] from the DLR, will be addressed in this thesis to test the proposed
framework.

Remote sensing optical data is captured at various spatial and spectral resolutions,
depending on the optical sensor and its specific applications. For instance, multispectral
sensors, such as the one onboard Sentinel-2 satellites, have a limited number of selected
bands (typically between 5 and 15) with a wide bandwidth, but a Ground Sampling
Distance (GSD) of 10-20 m. In contrast, hyperspectral imagery offers finer spectral res-
olution (between 100 and 250 bands) with narrower bandwidth, acquiring more spectral
information to be interpreted by further analysis at a GSD of 30 m [13].

Given the increasing importance of optical remote sensing applications and the po-
tential for better utilization of current distributed products (as well as future missions
[14, 15, 16]), an AC process is needed to retrieve an image as if spectroscopy were per-
formed at ground level. Fig. 1.1 shows a schema of this correction. The resulting
spectral image is called Bottom-Of-Atmosphere (BOA) reflectance, and it belongs to
the often referred Level Two (L2) products (see L2-BOA in Fig. 1.1(e)). The starting
point for Atmospheric Correction (AC) is an image composed of the at-sensor Top-Of-
Atmosphere (TOA) reflectances, usually distributed in Level One (L1) data (L1-TOA in
Fig. 1.1(a)).

During the AC process, it is necessary to identify certain elements captured in the
image that correspond to specific atmospheric or Earth’s surface features, for instance:
clear-sky, water, clouds, among others [12]. For this task, masking algorithms are used,
based on thresholds of spectral indices and illumination, to identify patterns of known
spectral signatures pixel-by-pixel, generating a mask represented by a binary matrix for
each target class (see Fig. 1.2). Another common case is pixel-level classification, often
referred to as semantic segmentation or pixel-wise classification, where a unique class is
assigned from a defined set of classes for the application.
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1.1. Overview

Figure 1.1: Top-Of-Atmosphere (TOA) input image, AC with PACO, and the corre-
sponding products obtained during processing: Bottom-Of-Atmosphere (BOA) image,
masks, among others [12]. Image: Sentinel-2, T32NPM, 2016/12/23.

The classification is usually delivered as products after the AC process (L2), either
in the form of a set of binary masks (named masks cube, see Fig.1.2c) or as a complete
labeled classification map (named pre-classification, see Fig.1.2e), which is obtained by
mapping each mask with empirically defined rules. The classification products may also
be delivered as a mixture of both for easier use. The final set of classification L2-BOA
products is often defined based on the specific requirements of the mission. As a delivered
product, this classification provides useful information for a wide range of remote sensing
applications. As a result, most of the current remote sensing missions have a state-of-the-
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Figure 1.2: Masking algorithm big picture, with a spectral image as an input and the
resulting classification map of the same spatial dimensions at the output. Sentinel-2
Image: Antarctic, T21EVK - 2019/02/03.

art implementation of masking algorithms, some of which will be described in Section 2.4.
In the context of the rapidly increasing implementation of machine learning tech-

niques in remote sensing applications, the contribution of this work consist in providing a
method for handling high spectral data volumes to train DL classification models with a
global-perspective implementation for future optical remote sensing missions. Examples
include upcoming hyperspectral missions such as the Copernicus Hyperspectral Imaging
Mission for the Environment (CHIME) [14, 15] from the European Space Agency (ESA)
and Surface Biology and Geology (SBG) [16] from the National Aeronautics and Space
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Administration (USA) (NASA).
The goal of the proposed implementation is to develop a robust methodology to auto-

matically retrieve high-quality classification labels, avoiding the need of manual labeling
for creating training datasets. In addition, this work aims to gain insights from testing
the models with independent label sources to demonstrate generalization regarding class
definitions.

An important aspect to consider is that in this kind of global-scale frameworks, the
testing datasets are commonly independently manually labeled, and the model should be
trained with reference labels not related with the testing datasets. This demonstrates
the generalization ability and robustness of the model. To analyze the bias of each
dataset and identify common misclassification problems across all datasets, the resulting
confusion matrices and some classifications maps for visualization should be reviewed.
This analysis aims to draw conclusions and highlight the improvements needed to create
better training datasets.
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1.2 Objectives and Contribution
The objectives of this thesis are described in this section, addressing the implemen-

tation of a deep learning model for the classification of multispectral and hyperspectral
remote sensing imagery.

1.2.1 General Objective
To generate improved classification products of multispectral and hyperspectral re-

mote sensing imagery in the context of an AC processor, by using state-of-the-art DL
models with spatial-spectral context feature extraction, training with the state-of-the-art
pre-classification products from PACO, which are frequently based on spectral indices,
incorporating additional sources of information beyond the spectral signature, such as
altitude and illumination conditions of the scene.

1.2.2 Particular Objectives
• To describe how the classification products are improved by training a DL model

that extracts spatial and spectral features from the image to identify patterns in
previously unused features.

• To include additional data to train the DL model besides the spectral information,
such as the Digital Elevation Model (DEM) and the illumination of each pixel. This
last one considers the incident angle of light over the scene and the viewing angles
of the sensor.

• To evaluate the obtained classifier using independent test sets and assess the results
of the classifier.

• To analyze the advantages and weaknesses based on the obtained results and their
contribution to classification in remote sensing.

• To identify weaknesses in currently used validation methodologies and to pro-
pose bias-free alternatives based on physical parameters retrieved from independent
sources of information for classification evaluation.
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1.2.3 Contribution
The contributions of this work are presented below, emphasizing the methodological

advancements and practical applications derived from the proposed framework. Each
point highlights specific aspects that enhance current practices in remote sensing classi-
fication, particularly in the context of deep learning and operational processing chains.

• The implementation of DL models for global-scale applications in multispectral and
hyperspectral Earth Observation (EO) missions currently in operation is demon-
strated, contributing to the state-of-the-art.

• The classification products of the atmospheric processor PACO from DLR are im-
proved through:

– Performance evaluation of the proposed classifiers.
– Identification of limitations in current validation methodologies .
– Proposal of new bias-free validation methods based on physical parameters

retrieved from external sources.

• A framework is proposed for the compilation of training datasets and for mini-
mizing manual labeling efforts, enabling the implementation of DL-based masking
processors in future missions.

• The methodology is designed to be compatible with real data and can be applied
during any operational phase of an remote sensing mission, increasing its practical
applicability.
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1.3 Thesis structure
This thesis is organized as follows:

• Chapter 2 – Background and Related Work: This chapter presents the the-
oretical foundation relevant to this work, covering key concepts in optical remote
sensing and CNNs.

• Chapter 3 – Methodology: This chapter details the procedures used to train
the model and perform pixel-level classification, including the steps involved in the
prediction phase and the validation strategy.

• Chapter 4 – Results and Discussion: This chapter presents the experimental
results, comparing the proposed method with the baseline pre-classification model
from PACO. It also includes a discussion of the observed strengths and limitations
of the approach.

• Chapter 5 – Conclusions: This chapter summarizes the main findings and in-
sights gained during the development of the thesis and outlines directions for future
research.
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Chapter 2

Background and Related Work

This work merges two different subjects: optical remote sensing and classifiers based
on neural networks, motivated by the significant and widespread impact of CNNs in
image processing. DL models have demonstrated excellent adaptability for a wide range
of applications that involves high volumes of data. Therefore, a natural step is to extend
the current state-of-the-art remote sensing applications using neural networks. However,
this is not a plug-and-play task, given the significant challenges associated with global-
scale models for Earth’s surface optical monitoring missions. In this chapter, the most
important concepts for the work are detailed and analyzed.
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2.1 Optical Remote Sensing
Remote sensing is defined as the measurement of object properties. It is, therefore,

an attempt to measure something at a distance, rather than in situ [17]. The sensor is
not in direct contact with the object of interest and works with propagated signals of
some sort, for example, optical, acoustical, or microwaves. In this thesis, the discussion
is limited to remote sensing of the Earth’s surface using optical signals. This section
addresses the basics of light physics and the imaging systems used for remote sensing
optical monitoring missions.

2.1.1 Physics of Light
In a nutshell, to measure the properties of an object at a distance, the Electromagnetic

(EM) waves emitted by the sun interact with objects or materials on the Earth’s surface.
The energy is then reflected to the sensor and captured by the imaging system. The
resulting signal contains information about the object’s physical and chemical proper-
ties, which can be decoded through radiometric and geometric analysis. Each physical
principle involved in this process (such as photon energy, frequency, wavelength, and the
radiometric quantities used to characterize the incoming radiation) is briefly described in
Appendix A.1.1 for completeness, as it provides the theoretical foundation upon which
remote sensing measurements are based.

2.1.1.1 Electromagnetic Spectrum

In the context of remote sensing, the wavelength of each photon in the EM spectrum
determines how it interacts with matter, making it a key variable for interpreting surface
and atmospheric features. Light and other forms of EM radiation are commonly described
in terms of their wavelengths [18]. In figure 2.1, a representation of the EM spectrum is
shown.

For instance, visible light is a type of EM radiation that can be sensed by the human
eye. The visible band of the EM spectrum spans the range from approximately 380 nm
(violet) to about 750 nm (red), but optical remote sensing is not limited only to the visible
range of the EM spectrum; the infrared and the ultraviolet also provide information
through their interaction with matter on the Earth’s surface.

The following portions of the EM spectrum are widely used in the literature for
optical remote sensing [20], with some applications listed alongside their wavelength range
definitions:

• Infrared (IR) (0.75 µm - 15 µm) [21]:

– Thermal infrared(3 µm - 15 µm): Usually divided into Long-wave infrared
(LWIR) (8 µm - 15 µm) and Mid-wave infrared (MWIR) (3 µm - 8 µm), both
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2.1. Optical Remote Sensing

Figure 2.1: Electromagnetic spectrum. Image credit: Encyclopaedia Britannica, 2009
[19].

portions associated with thermal phenomena in the infrared. LWIR is used
for night-time imaging and surface temperature mapping, while MWIR is used
for detecting heat emissions, wildfire monitoring, and volcanic activity.

– Short-wave infrared (SWIR) (1.4 µm - 3 µm): This portion is less affected by
the atmosphere compared to portions of the EM spectrum with shorter wave-
lengths and is particularly sensitive to water content in vegetation, soil, and
the atmosphere. It is used for agricultural applications, geological mapping,
and wildfire damage evaluation.

– Near-infrared (NIR) (750 nm - 1400 nm): This portion is highly reflected by
healthy vegetation. Therefore, it is widely used for vegetation health moni-
toring, agricultural applications, and water quality assessment. Additionally,
some of its bands are used to retrieve atmospheric characteristics, such as
Water Vapor (WV) content.

• Visible (VIS) (380 nm - 750 nm) [22]: It is usually categorized into three bands
corresponding to the peak sensitivities of the cone cells in the human retina: Blue
(450 nm – 485 nm), Green (500 nm – 565 nm), and Red (620 nm – 700 nm). Note that
although the visible spectrum nominally extends up to 750 nm, human sensitivity
decreases significantly beyond 700 nm. It is used for the “natural” representation
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of remote sensing imagery, vegetation analysis, land cover classification, and atmo-
spheric analysis such as aerosol concentration estimation. In addition, the Visible
and Near-infrared (VNIR) range is widely used in the literature, encompassing the
VIS and an adjacent portion of the NIR as a single portion (400 nm - 1100 nm). As
an example, the hyperspectral mission EnMAP [23] has two sensors onboard; one
capturing a portion of the VNIR (420 nm - 1000 nm) and the second one capturing
a portion of the SWIR (900 nm - 2450 nm).

• Ultraviolet (UV) (10 nm - 400 nm) [20]: Since UV radiation is strongly affected
by atmospheric components, it is primarily used for atmospheric studies, including
ozone estimation and pollution monitoring. In particular, changes in UV backscat-
ter are used to infer aerosol concentrations and trace gases.

Although this classification follows the cited sources, other authors define the wave-
length ranges of the EM spectrum differently, even when using the same band names.
The rest of the spectrum, such as X-rays, Gamma-rays, and radio waves, are observed
using different techniques and are not within the scope of this thesis.

2.1.1.2 Radiative Transfer Theory

Once the solar radiation interacts with the atmosphere and reaches the Earth’s surface
(readers interested in the interaction of radiation with matter and atmospheric dynamics
may refer to the Appendices A.1.1.2 and A.1.1.3), it begins its return path toward space.
At this stage, the portion of energy reflected or emitted by the surface is detected by a
sensor onboard a satellite or airborne platform. In functional terms, a sensor is a device
that captures radiometric information across specific spectral bands and converts it into
digital signals for further processing. This mechanism forms the basis of remote sensing,
enabling the observation and characterization of surface properties from a distance. The
relevant spectral ranges used in this work are summarized in Subsection 2.1.1.1, while
specific details about the optical sensors involved are discussed in Section 2.1.2.

However, the sensor does not capture a single light beam in isolation; instead, it
receives a mixture of radiative components resulting from multiple reflections and scat-
tering events occurring in the atmosphere and at the Earth’s surface. These interactions
are described and modeled by Radiative Transfer Theory (RTT). For the purposes of this
thesis, only a brief and intuitive overview of RTT is included, as the detailed modeling
is already handled by the atmospheric correction processor, whose output serves as the
input to the algorithm developed in this study.

“The Radiative Transfer Equation (RTE) for a homogeneous surface under clear sky
conditions can be formulated as”[24]:

L = Lp + τ (Edir cos θs + Edif ) ρ/π

1 − ρ · s
(2.1)
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where: L = At sensor radiance,
Lp = Path radiance (reflected from the atmosphere),
τ = Ground-to-sensor transmittance,
Edir, Edif = Direct and diffuse solar flux on the ground,
θs = Solar zenith angle,
ρ = Surface BOA reflectance,
s = Spherical albedo of the atmosphere.

Since L is the radiance measured by remote sensing sensors, it is possible to solve
the RTE for ρ using different approaches, being one of the most widely used being the
numerical approximation through radiative transfer models [25]. These models estimate
each variable in Equation (2.1) based on known atmospheric conditions (e.g., aerosol
content, water vapor, ozone), as well as observational geometry, including solar zenith
and sensor viewing angles. The use of Look-Up-Tables (LUTs) as precomputed solutions
for a wide variety of atmospheric conditions is common during the AC process, discussed
further in Subsection 2.2.3.2.

These models estimate each variable in Equation (2.1) based on
From the obtained reflectance ρ (referred to as BOA reflectance), insights are gained

about the interaction of incoming light with matter, excluding atmospheric influence.
This allows for consistent analysis over time under variable atmospheric conditions.

2.1.1.3 Spectral Signature

The wide variety of matter on the Earth’s surface and constituents of the atmosphere,
in addition to all possible illumination conditions and light scattering, spans an infinite
set of possible combinations of captured radiant flux by optical sensors. The generic term
for this is spectrum, and in plural, spectra.

The unique combination of reflected flux for each wavelength that characterizes the
elements present in a captured scene is known as the spectral signature. Even though
there are many sources contributing to variability, in general terms, spectra of similar
matter are highly correlated. Therefore, the common spectral segments between samples
are considered to represent the spectral signature. An example of three different types of
matter and their associated spectral signatures is shown in Figure 2.2.

The spectral signature is the main characteristic used for classification, given that
allows us to find patterns between samples and define common classes based on them,
i.e. soil, water, snow, cloud, vegetation, etc.
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Figure 2.2: Different characteristic spectral signatures of leaf, rock, soil, water, snow and
urban areas. “Reflectance data are derived from the United States Geological Survey
(USGS) Digital Spectral Library. The laboratory measurements represent samples of
an oak leaf from Colorado (leaf), Aventurine quartz from India (rock), montmorillonite
and illite from Virginia (soil), seawater from the Pacific Ocean (water), fresh snow from
Colorado (snow), and black road asphalt from Colorado (urban)”. Source: EnMAP
science plan [26].
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2.1. Optical Remote Sensing

2.1.2 Optical Sensors
In this section, the operating principles of an optical imaging system are intuitively

described. By briefly describing the capturing process, important concepts are addressed,
including different types of resolution, the covered area, details about each specific mount-
ing platform, and the noise processes associated with electronics and optical system con-
struction.

All these aspects are crucial as they define the characteristics and quality of the output
spectral image, ultimately determining its suitability for a given application. This is
particularly relevant in the context of this thesis, which involves models applied across
multiple sensors and validated using reference datasets with varying spatial and spectral
resolutions.

2.1.2.1 Operating Principles

Similar to the generic EM sensor concept described in Appendix A.1.2.1, a spectral
sensor can be understood as a collection of detectors, each capturing the energy reflected
from a scene within a specific portion of the EM spectrum. These discrete portions,
commonly referred to as bands or spectral channels, together form the sensor’s spectral
coverage. For instance, the sensors onboard EnMAP span a spectral range from 418.2 to
2445.5 nm, divided into 224 bands [11].

Extending the definition of a digital image in AppendixA.1.2.1[27], a spectral image
is a three-dimensional function f(x, y, z), where x and y are spatial (plane) coordinates,
and z is the spectral coordinate. The amplitude of f at any triplet of coordinates (x, y, z)
represents the radiance measured by the sensor at that spatial location and wavelength.
A spectral cube is illustrated in Figure2.3.

yx

z

Figure 2.3: Spectral cube from EnMAP mission. Image credit: German Research
Helmholtz Centre for Geosciences “Helmholtz-GeoForschungsZentrum” (GFZ)
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Using the notation from [28] and the representation of spectral cubes with tensors,
where a is a scalar, a is a vector, A is a matrix, and A is a 3rd- or higher-order tensor, a
spectral image of an observed scene X is represented as a 3rd-order tensor:

X ∈ RI×J×K , (2.2)

where I (rows) and J (columns) are the spatial dimensions of the image, and K is the
number of spectral bands. Then, the element xi,j,k is the reflectance value at position
(i, j) in band k, such that:

{∀i, j, k ∈ Z | (1 ≤ i ≤ I) ∧ (1 ≤ j ≤ J) ∧ (1 ≤ k ≤ K)}, (2.3)

and the vector containing the spectral signature of a pixel is represented by xi,j,:. Each
ordered pair (i, j) represents coordinates of a specific location on the Earth’s surface in
the observed scene.

2.1.2.2 At Sensor Reflectance

Remote sensing sensors do not measure radiance values directly. Instead, they record
a digitized signal called the Digital Numbers (DNs), whose precision depends on the
sensor’s radiometric resolution, defined by the number of bits used to encode each pixel.
This bit depth determines the sensitivity to radiance variations (lower resolutions can
cause quantization noise and loss of detail, see Appendix A.1.2.3 for further explanation
and visual examples).

Lk is the measured radiance for band k, defined by [12, 29]:

Li,j,k = ck
0 + ck

1 · DNi,j,k, (2.4)

with DN as the scaled radiance (named Digital Number) and the radiometric offset ck
0

and gain ck
1 obtained during radiometric calibration.

The reflectance of a pixel refers to TOA reflectance (also named at-sensor reflectance)
represented by the Greek letter ρTOA

i,j,k , and computed for each of the k bands. It is defined
in [12, 29] as follows:

ρTOA
i,j,k = π · d2 · Li,j,k

Ek · cos(θs)
, (2.5)

where d represents the Earth-Sun distance in astronomical units, Ek is the extraterrestrial
solar irradiance for band k, and θs denotes the solar zenith angle at the time of acquisition.
Most of the classification and masking algorithm have as input the TOA reflectance.
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2.1.2.3 Multi/Hyperspectral Imaging

The response of each spectral band corresponds to a specific range of wavelengths
where the sensor is sensitive, typically characterized by its central wavelength and the
bandwidth of its Spectral Response Function (SRF). These concepts, along with related
topics such as responsivity, spectral sampling, and band definition, are discussed in more
detail in Appendix A.1.2.2.

The spectral resolution of optical remote-sensing missions can be grouped, in order
of increasing band count, usually into five classes: panchromatic (1 broad band), RGB
(3 bands), multispectral (≈5–15 bands), superspectral (≈10–100 bands), hyperspectral
(≈100–250 bands), and ultraspectral (hundreds to thousands of ultra-narrow bands).

In this work, we focus exclusively on the multispectral and hyperspectral sensors.
Figure shows 2.4, a simplified visualization to compare the spectral features categories.
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Figure 2.4: A simplified visualization of the spectral features of Red-Green-Blue (RGB),
multispectral, and hyperspectral imagery for comparison, with different number of spec-
tral features.

• Multispectral sensors have a limited number of selected bands (typically between
5 and 15) with a wide bandwidth, covering the most relevant wavelengths in
the VNIR-SWIR range to retrieve physical properties of the Earth’s surface and
atmosphere. Examples of currently operational missions include Sentinel-2 [9],
Land Satellite (Landsat) [8, 30, 31], Moderate Resolution Imaging Spectroradiome-
ter (MODIS) [32, 33], among others.

• Hyperspectral sensors offer finer spectral resolution (between 100 and 250 bands),
with Full Width at Half Maximum (FWHM) values below than or equal to 10 nm,
acquiring more spectral information. Examples of currently operational missions
are EnMAP [10, 11] and DLR Earth Sensing Imaging Spectrometer (DESIS) [5, 34]
from DLR, Earth Surface Mineral Dust Source Investigation (EMIT) [35, 36] from
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NASA Jet Propulsion Laboratory (JPL) Hyperspectral Precursor of the Application
Mission “Precursore Iperspettrale della Missione Applicativa” (PRISMA) [4] from
Italian Space Agency “Agenzia Spaziale Italiana” (ASI) and Hyperspectral Imager
Suite (HISUI) [37] from Japan Aerospace Exploration Agency (JAXA).

The tendency is that multispectral sensors tend to have a smaller GSD (better spatial
resolution, explained below) with broader FWHM at specific wavelengths of interest and
a shorter revisit time, allowing for constant monitoring. On the other hand, hyperspectral
imagery usually offers uniformly distributed bands over the EM spectrum with narrower
FWHM, allowing a “continuous” interpretation of the spectra at the expense of increased
storage and processing requirements due to the extensive amount of spectral features.

Spatial resolution refers to the level of detail a sensor can capture on the Earth’s sur-
face, typically defined by the GSD. Most optical EO missions use push-broom scanners,
which acquire image rows as the satellite moves forward, with each pixel representing a
footprint on the ground. The width of the swath and sensor geometry determine the GSD,
while motion and integration time define pixel dimensions. A more detailed explanation
of this acquisition process is provided in Appendix A.1.2.4.
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2.2 Remote Sensing Missions
The increasing interest in remote sensing data from space agencies, governments, and

the private sector has led to the launch of a steadily growing number of satellites dedicated
to EO each year. This growth parallels the rising interest from the scientific community,
which aims to develop algorithms for processing images and deriving products for EO
applications.

Sensors used in optical remote sensing can be deployed on a variety of platforms,
including satellites, aircraft, drones, and ground-based instruments. Each platform type
influences the image resolution, coverage, and frequency of observations, making them
suitable for different monitoring purposes. In-situ measurements from ground-based spec-
trometers are particularly important for validating the accuracy of satellite-derived re-
flectance data, as shown in Figure 2.5. A detailed description of the platforms and their
characteristics is provided in Appendix A.1.2.5.

Figure 2.5: In-situ measurements for PACO-Level-2A (L2A) validation campaign of
Sentinel-2 and EnMAP missions. Klosterwiese, Fürstenfeldbruck, Bavaria.

The current status of optical remote sensing research looks promising, with exciting
new missions upcoming for hyperspectral data, such as CHIME [14, 15] from the ESA,
and the SBG mission from NASA. In Figure 2.6, a plot from [38] provides an overview
of current and future spectroscopy missions.

A compromise between spectral, spatial, and temporal resolution is present in optical
remote sensing missions. However, as storage capacity, computational resources, and
sensor construction and capabilities increase, newer missions are surpassing the current
state. In the following subsections, the main characteristics and derived products of the
remote sensing missions used throughout this thesis are described in detail. These include
the Sentinel-2 mission for multispectral imagery (Section 2.2.1), the EnMAP mission
for hyperspectral data (Section 2.2.2), and the Sentinel-5P mission with its TROPOMI
sensor for atmospheric monitoring (Section 2.2.6.1). Additionally, the PACO processor
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Figure 2.6: Overview of operational and future multispectral and hyperspectral missions.
Circle size indicates GSD. Gray circles denote multispectral, colored denote hyperspectral
missions. Plot credit: [38].

(Section 2.2.4) and related processing levels (Section 3.4) are presented, as they play
a crucial role in generating products derived from atmospheric correction used in this
work. These sections establish the foundational understanding necessary for interpreting
the input data and the subsequent processing stages analyzed in this thesis.
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2.2.1 Multispectral: Sentinel-2
The first satellite of the Sentinel-2 mission was launched in 2015 and it belongs to

the Copernicus Program of the ESA. Nowadays, it consists of a constellation of three
satellites, all equipped with sensors of identical characteristics (Sentinel-2A, -2B, and -
2C) flying at a mean altitude of 786 km in an Sun-Synchronous Orbit (SSO) with 98.62◦

of inclination, capturing multispectral imagery with a high revisit frequency of 10 days
at the Equator for each spacecraft, which is reduced to 5 days when two satellites are
available [39]. The recent launch of Sentinel-2C in September 2024 was intended to
replace the Sentinel-2A spacecraft at the end of its lifetime, but recently, the ESA made
the decision to keep the spacecraft, extending the operational phase exceptionally for one
year [40]. In Figure 2.7, the schematic of the Sentinel-2 spacecraft is shown.

(a) Spacecraft. Image credit: ESA. (b) Spacecraft before launch. Image credit:
ESA-French National Space Agency “Cen-
tre national d’études spatiales” (CNES)-
ARIANESPACE/Optique vidéo du CSG–S.
Martin.

Figure 2.7: Sentinel-2.

“Each of the satellites in the Sentinel-2 mission carries a single payload: the optical
multispectral instrument that samples 13 spectral bands: four bands at 10 m, six bands
at 20 m, and three bands at 60 m spatial resolution. The orbital swath width is 290 km”
[39]. In Table 2.1, the description of the bands’ characteristics is shown.

As mentioned in subsection A.1.2.2, although the spectral response of each band is
assumed to be Gaussian, the shape varies by band for the multispectral sensor onboard
each spacecraft of the Sentinel-2 mission. In Figures 2.8a and 2.8b are displayed the SRFs
for each band of the VNIR and SWIR sensors, respectively, onboard each satellite (A, B
and C) of the Sentinel-2 mission.
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Spatial
Resolution

(m)
Band #

Central
Wavelength

(nm)

FWHM
(nm) Purpose

60 m
1 443 20 Aerosol scattering
9 945 20 Water vapour absorption
10 1375 30 Detection of thin cirrus

20 m

5 705 15 Position of red edge
6 740 15 Retrieval of aerosol load
7 783 20 Leaf Area Index (LAI)
8a 865 20 Sensitive to total chlorophyll, biomass
11 1610 90 Snow/ice/cloud separation
12 2190 180 Soil, live and dead biomass

10 m

2 490 65 Aerosol scattering
3 560 35 Green peak, sensitive chlorophyll
4 665 30 Maximum chlorophyll absorption
8 842 105 LAI

Table 2.1: Band characteristics of Sentinel-2 sensors. Each satellite slightly varies in the
FWHM and central wavelength due to differences in construction. Source: Copernicus
Program [41].

Figure 2.8: Spectral response of Sentinel-2 mission sensors with three satellites in the
constellation: Sentinel-2A,-2B and -2C. Plot credit: Copernicus Program [41].
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(a) VNIR spectral response functions.
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(b) SWIR spectral response functions.

Since its launch, multispectral imagery and derived products from the Sentinel-2 mis-
sion have been publicly provided to the scientific community, leading to a significant
number of studies utilizing the data for new algorithms and applications [42]. The Level-
1C (L1C) product contains ortho-images representing TOA reflectance, radiometrically
corrected and projected onto a cartographic grid (UTM/WGS84). In Figure 2.9 an ex-
ample of RGB and False color composites of a Sentinel-2 multispectral image.

(a) RGB True Color composite based on
bands B4 (Red), B3 (Green), and B2
(Blue).

(b) False color composite based on bands
B8 (NIR), B4 (Red), and B3 (Green) to
RGB components directly. This composite
is used to assess plant density and health.

Figure 2.9: Sentinel-2 multispectral image products. Guadalajara city and Chapala lake
in the image, captured on 2024/10/03 over Jalisco, Mexico. Image credit: Copernicus
data space.
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2.2.2 Hyperspectral: EnMAP
The Environmental Mapping and Analysis Program (EnMAP) is a German hyper-

spectral satellite mission that monitors and characterizes Earth’s environment on a global
scale. It was launched in April 2022. The project is managed by DLR Space Agency in co-
operation with GFZ (Scientific principal investigator) and Otto Hydraulik Bremen (OHB)
(Space segment) [43]. The DLR’s ground segment is in charge of the operations, payload,
and processing. It consists of two hyperspectral sensors (for VNIR and SWIR) flying at
a mean altitude of 650 km in an SSO with 97.96◦ of inclination, capturing hyperspectral
imagery with a swath width of 30 km and GSD of 30 m × 30 m close to the equator, with
a target revisit time of 27 days (viewing zenith angle ≤ 5◦). The sensor can be tilted to
point to a specified location, reducing the revisit time to 4 days at the expense of larger
viewing zenith angles of capture (viewing zenith angle ≤ 30◦) [11]. In Figure 2.10, the
schematic of the EnMAP spacecraft is shown.

(a) Spacecraft. Image credit: Earth
Observation Center (EOC) of DLR
[44].

(b) Spacecraft before launch on the
Falcon 9 rocket. Image credit:
SpaceX.

Figure 2.10: EnMAP.

Onboard the EnMAP spacecraft, two hyperspectral sensors capture the VNIR (420 nm
- 1000 nm) with a spectral sampling interval of approximately 6.5 nm in 91 bands, and
the SWIR (900 nm - 2450 nm) with a spectral sampling interval of approximately 10 nm
in 155 bands, with a total of 246 bands (with an overlap between 900 nm - 1000 nm) [11].

The FWHM varies depending on the captured wavelength, and the spectral response
functions are characterized as Gaussian, as explained in Appendix A.1.2.2. In Figure
2.11, plots display the center wavelength and its FWHM for both sensors [11].

“The primary goal of the EnMAP mission is to provide accurate and diagnostic in-
formation for research and applications in fields such as agriculture and forestry, geology
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(a) Center wavelength. (b) FWHM.

Figure 2.11: Center wavelength and FWHM for each spectral band of VNIR and SWIR
sensors. Plot credit: Storch et al. [11].

and soils, urban areas, coastal and inland waters” [44]. The EnMAP data is publicly
available since its launch for the researchers community. The L1C product contains geo-
referenced hyperspectral images representing TOA (or at-sensor) radiances in units of
[W m−2 sr−1 nm−1], radiometrically corrected and geo-referenced in (UTM/WGS84). In
Figure 2.12 an example of RGB composites of EnMAP hyperspectral on two examples of
urban areas.

(a) Guadalajara city (top) and Cajititlán La-
goon (bottom right).

(b) San Marcos Lagoon (left) and Chapala Lake
(right).

Figure 2.12: RGB True Color composites based on bands at 850 nm (Red), 670 nm
(Green), and 550 nm (Blue), of EnMAP. Both images were captured on 2024/01/05
over Jalisco, Mexico. Image credit: EnMAP DLR.
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2.2.3 Processing Levels
Remote sensing missions continuously capture new spectral data, requiring a pro-

cessing pipeline to make the products available to end users for further analysis. This
processing is performed by the “Ground Segment,” which is responsible for designing and
implementing algorithms for radiometric and geometric correction in the Level One (L1)
level of processing, and AC in the Level Two (L2). In Figure 2.13, a simplified diagram
of the processing pipeline performed by the ground segment of a remote sensing mission
is shown. Each processing level is described in the following subsections.

Level 0

Transcription

Level 1B

Radiometric
correction

Level 1C

Geometric
correction

Level 2

Atmospheric
correction

Raw data

L1
L2

Figure 2.13: Ground segment processing pipeline of a remote sensing mission.

The pipeline’s different levels of processing vary in their definitions and names across
remote sensing missions. The generic example presented in this subsection is based on
EnMAP’s ground segment processing [45].

2.2.3.1 Level 0 (Raw Data) and Level 1 (Top-of-Atmosphere)

After the capture performed by the sensor, the raw data is transmitted from the
spacecraft to a terrestrial base, which stores it and makes it available for further processing
in the pipeline. The data is composed of an Earth data take tile, together with auxiliary
information, such as orbit and altitude information, capture time, calibration tables, and
other metadata. This product is known as Level Zero (L0).

The L1 is divided into two processing levels (in common for EnMAP and Sentinel-2
missions):

• The Level-1B (L1B) [46] takes the L0 product as input, where systematic and
radiometric corrections are performed from the DNs to obtain calibrated TOA or
at-sensor radiances (in W m−2 sr−1 nm−1 or normalized to the solar irradiance). The
processing includes various algorithms related with radiometric calibration using
measured dark signals; a trimming process; and sensor non-linearity correction,
among other processes and quality check routines.

• The L1C [47] takes the L1B product as input, where geometric corrections related to
satellite motion and terrain distortion are performed. Then, the image is resampled
to a specific grid (orthorectification) and georeferenced, making it ready for the users
and further levels of processing in TOA radiances, like L2 for AC.
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2.2.3.2 Level 2 (Bottom-of-Atmosphere)

The Atmospheric Correction (AC) takes as input the radiometrically corrected TOA
radiances, orthorectified, and geocoded L1C products, together with the cropped and
coregistered DEM, matching the image dimensions and geolocation. In addition, a col-
lection of databases provides information about solar irradiance and Radiative Trans-
fer (RT), along with external auxiliary information that varies with the processor. In the
case of EnMAP, they consist in atmospheric properties, like the air temperature and the
total column of Ozone (O3) concentration [24].

Several atmospheric correction processors have been developed for different remote
sensing missions. For Sentinel-2, Sen2Cor [48] is the official processor developed by ESA.
The ATCOR algorithm [49] has been widely used across multiple missions and forms the
basis of PACO [12], a Python-based implementation developed by DLR. The ISOFIT
framework [50] offers a physically rigorous, modular approach to atmospheric correction
using optimal estimation. For hyperspectral data from PRISMA, the official PRISMA L2
processor [51] provides operational surface reflectance products. These processors differ
in complexity, radiative transfer modeling, and the types of auxiliary data used but all
aim to retrieve accurate surface reflectance under variable atmospheric conditions.

Figure 2.14: TOA (left) and BOA (right) side-by-side-comparison. Image: Sentinel-2,
T32NPM, 2016/12/23.

The main output products of L2 are the Bottom-Of-Atmosphere (BOA) reflectances,
representing surface reflectance values as if the measurements were taken directly at
the Earth’s surface, without the influence of atmospheric effects. These products are
retrieved under constantly varying atmospheric conditions, which introduce absorption
and scattering. By correcting for these effects, L2 products enhance the comparability
of measurements across time and sensors, enabling more consistent scientific analyses,
broader data usage, and statistically robust insights. In addition, products generated
during the AC are also included in the output products, such as the pre-classification
masks of various classes of interest, e.g., land, water, cloud, cirrus, haze, cloud and
topographic shadows, snow/ice, no data (background), or L1 data quality information,
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like dead pixels [12, 24]. Figure 2.14 shows an example of an output image in BOA
reflectance, within the L2 products.

As a final remark, this thesis is developed in the context of this level of processing,
performing classification tasks using as input the products generated at the early stages
of L2 processing, more specifically concerning the pre-classification, aiming to improve
the current delivered products to be used for later processing steps and users.

2.2.4 PACO
The Python-based Atmospheric Correction (PACO) [12] is a proprietary atmospheric

correction software developed by DLR for L2 processing. It is a Python implementation of
the established ATCOR algorithm, originally written in Interactive Data Language (IDL),
and is used to perform atmospheric correction of multispectral and hyperspectral imagery.
Currently the supported sensors by PACO include Sentinel-2, Landsat-8 (multispectral),
and DESIS and EnMAP (hyperspectral). However, the inherent modularity of PACO
allows the core to be reused, enabling the easy implementation of additional spaceborne
remote sensors.

As a L2 processor, the main input consists of the TOA radiances along with the asso-
ciated metadata, but information from external databases is also used during processing
(elevation, pre-computed Radiative Transfer Functions (RTFs), solar irradiance spectra,
among others). The primary output of PACO is the surface reflectance image at BOA
level. In addition, PACO exports several intermediate products generated throughout
the atmospheric correction process, such as cloud and shadow masks, snow detection,
illumination geometry parameters (e.g., sun and view angles), and elevation information.
These products are particularly relevant in this thesis, as some of them were selected as
inputs to the classification models. A detailed overview of PACO’s outputs is provided
in Table 2.2.

Product Name Label Units
Masks hcw
Dense-dark Vegetation mask ddv
Visibility index visindex
Aerosol Optical Thickness aot 1000 * [unit-less]
Water vapor column wv 1000 * [cm]
Illumination ilu
Quicklook ql
BOA surface reflectance atm 100 * [%]

Table 2.2: Intermediate and final products resulting from PACO software execution.
Table source: De Los Reyes, et al. [12].
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From all these products, only those generated prior to the final atmospheric correction
were selected; masks, illumination and DEM (this last one is a external input of the
atmospheric correction). described in Subsection 2.2.5.2. The remaining products fall
outside the scope of this work, as the aim is to perform classification at early stages of
the atmospheric correction process.

Within PACO, masks are internally a multi-label classification of the pixels, describing
the type of matter on the Earth’s surface or in the atmosphere that blocks the view
(completely or partially). It includes 21 different masks as described in Table 2.3, obtained
by applying logical combinations of thresholds over spectral indices and specific decision
rules. Detailed definitions of the classes can be found in [12], and additional information
about mask computation is provided in Subsection 2.2.5.1, while complete definitions are
available in [24].

Class
#

Class Name Description

0 Background Pixels flagged as background or with a data value of
zero.

1 Shadows Spectrally detected shadows, including possible topo-
graphic effects.

2–4 Cirrus over Water Thin (2), medium (3), and thick (4) cirrus clouds
identified over water.

5 Land Clear land pixels not flagged by other mask criteria.
6 Saturated Pixels likely affected by sensor saturation.
7 Snow/Ice Pixels classified as snow or ice.

8–10 Cirrus over Land Thin (8), medium (9), and thick (10) cirrus clouds
identified over land.

11, 13 Haze Haze detected over land (11) and over water (13).
15–16 Clouds Clouds detected over land (15) and water (16).

17 Water Water pixels under clear atmospheric conditions (no
haze or clouds).

18–19 Cirrus Cloud Cirrus (18) and thick cirrus (19) where surface type
(land/water) is uncertain.

20 Bright High-reflectance pixels not otherwise flagged as cloud
or haze.

21 Topographic Shadows Shadows cast by terrain, calculated using DEM and
solar geometry.

Table 2.3: Masks labels, name, and description. Information extracted from: [12]
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The binary cube formed by the internally computed masks is represented as:

M ∈ {0, 1}I,J,Classes, (2.6)

where a pixel can belong to one or more classes. From a pixel perspective, the vector
is one-hot encoded, indicating with a high value the class or classes to which it belongs,
described as follows:

xi,j,: ∈ {0, 1}Classes. (2.7)
Then, a mapping based on empirical rules is performed from the masks cube to a

classification map with a unique integer label, named “hcw” in Table 2.3. This mapping
is defined as follows:

fmapping : M → M ∈ ZI,J . (2.8)
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2.2.5 Products
Among a wide variety of derived products from remote sensing missions, this subsec-

tion includes a brief description of the products used in this thesis. These are obtained
from L1C products processed at the early stages of L2 processing, or (in the case of the
DEM) obtained from external sources.

2.2.5.1 Masking

Masking (also called semantic segmentation) is based on identifying pixels that belong
to a class based on their spectral features. The product is a mask (in the form of
a binary matrix) with the same dimensions as the image, containing True values at
the locations (coordinates) where a pixel of the class was detected. Usually masking
algorithms rely on spectral indices, which are simple mathematical combinations (usually
ratios or differences) of the reflectances at different wavelengths (bands) of a multispectral
or hyperspectral image.

Masking algorithms leverage spectral indices (see Appendix A.3) by using a defined
set of rules composed of empirical thresholds applied to one or multiple spectral indices,
ratios, or simply reflectance ranges. These rules often include multiple conditions evalu-
ated together using logical expressions, along with other sources of information such as
altitude, slope, or season, among others.

The masking process is performed class by class, obtaining a binary mask for each one
with the same spatial dimensions as the spectral image, resulting in a mask cube used for
internal processing during AC. As an example, the case of cloud over land detection in
PACO for the L2 processing of EnMAP [24] is addressed. The cloud mask is defined as
follows:

ρ∗(Blue) > Tc and ρ∗(Red) > 0.15 and ρ∗(NIR)
ρ∗(Red) < 2 and ρ∗(NIR) > 0.8 · ρ∗(Red) and

ρ∗(NIR)
ρ∗(SWIR1) > 1 and NDSI < 0.7 and DN(blue) > Tsaturation (2.9)

where: p∗ = TOA reflectance,
Tc = Cloud threshold, default Tc = 0.25,
Tsaturation = Saturation DN, default Tsaturation = 14746.

Figure 2.15 shows an example of cloud-over-land detection using the PACO masking
algorithm.
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(a) RGB. (b) Cloud Mask.

Figure 2.15: True color and cloud mask computed using equation (2.9). Image: EnMAP,
DT0000032132 005, captured on 2023/08/10.

One of the commonly distributed product in L2 is a classification map, which combines
each mask by mapping a unique class label. As an example, Figure 2.16 shows the Scene
Classification Map (SCL) processed by Sen2Cor [52], the atmospheric processor of the
Sentinel-2 mission.

Some of the classes are not obtained from spectral information. For example, the
topographic cast shadows are obtained by computing the cast shadows using the DEM
(see Subsection 2.2.5.2) and the sun angles, present at the top right (where the Huentitán
Canyon is located, with an average depth of 600 m) in Figure 2.16.
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(a) RGB. (b) SCL.

Figure 2.16: True color and SCL from Sen2Cor. Image: Sentinel-2, over Guadalajara and
surrounding areas, captured on 2025/01/01. Source: Copernicus Data Workspace.

2.2.5.2 Digital Elevation Model and Illumination Map

In addition to spectral data, a Digital Elevation Model (DEM) provides information
about the altitude of every ground mapped pixel on Earth, expressed in Meters Above
Sea Level (MASL). The DEM includes only the elevation of the bare Earth. Usually, a
DEM is obtained by filtering a Digital Surface Model (DSM), while the DSM also includes
buildings, trees, infrastructure, and any object on the Earth’s surface.

These are created using a wide variety of technologies, such as Synthetic Aperture
Radar (SAR), Light Detection and Ranging (LIDAR), and stereo images to estimate ter-
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rain elevation relative to a previously measured reference point. The Copernicus program
provides the GLO-30, a DSM with worldwide coverage at 30 m resolution, acquired by
the TanDEM-X mission between 2011 and 2015 [53]. In Figure 2.17b, an example of the
DEM GLO-30 is shown, cropped and resampled to match a Sentinel-2 scene.

(a) RGB. (b) DEM. (c) Illumination map.

Figure 2.17: (a) RGB composite for visual reference . (b) DEM from GLO-30, resampled
to match the Sentinel-2 scene, with elevation ranging from deep blue (lowest, riverbed)
to dark red (highest, mountaintop). (c) Illumination map derived from solar geometry,
highlighting cast shadows caused by terrain. Scene: Sentinel-2 tile T11TMM over Rim-
rock, US, captured on 2018/05/12.

In Figure 2.17c, an example of an illumination map is shown, computed after deriv-
ing slope and aspect from the DEM in Figure 2.17b, together with the solar zenith and
azimuth angles. This map is used during L2 processing to detect cast (topographic) shad-
ows in the masking stage, and it also supports the AC process, as steep terrain—under
the assumption of Lambertian reflectance—can produce over-corrected (i.e., artificially
bright) surface reflectance values. In the image, cast shadows are clearly visible in areas
with strong topographic variation, particularly in the mountainous region at the bottom
and along the river valley traversing the scene.
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2.2.6 Atmosphere Monitoring
In contrast to remote sensing missions designed for observing the Earth’s surface,

some missions are specifically developed for atmospheric monitoring, providing valuable
products for meteorology, air quality assessment, UV radiation monitoring, and climate
change studies.

These missions offer global coverage on a daily basis, at the expense of lower spatial
resolution, which remains suitable for monitoring atmospheric phenomena.

2.2.6.1 Sentinel-5P

Sentinel-5 Precursor is the first mission of the Copernicus Program dedicated to mon-
itoring the atmosphere with high spatio-temporal resolution. Its applications include air
quality monitoring, measurements of ozone and UV radiation, and climate monitoring
and forecasting [54].

The payload is the Tropospheric Monitoring Instrument (TROPOMI), which consists
of four spectrometers (each with two bands, totaling eight) for UV (270 nm − 320 nm),
VIS (320 nm−490 nm), NIR (710 nm−775 nm), and SWIR (2305 nm−2385 nm), flying at
a mean altitude of 824 km in an SSO (near-polar orbit) with a 98.7◦ inclination, capturing
spectral radiance with a swath width of 2600 km and a GSD of 5.5 km × 3.5 km, allowing
full daily surface coverage [54]. In Figure 2.18, the Sentinel-5P spacecraft is shown.

(a) Spacecraft. Image credit: EU Coperni-
cus Marine Environment Monitoring Service
(CMEMS).

(b) Spacecraft before launch. Image credit:
ESA.

Figure 2.18: Sentinel-5P.
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2.2.6.2 Sentinel-5P Products

In addition to the spectral data, a compilation of useful derived products is provided
within the mission. In Table 2.4, a summary is provided of the derived products obtained
from the mission processed by different organizations.

Product Identifier Institution
Cloud L2 CLOUD DLR

NPP-VIIRS Clouds L2 NP BDx RAL
HCHO L2 HCHO BIRA/DLR

SO2 L2 SO2 BIRA/DLR
O3 Total Column L2 O3 BIRA/DLR

O3 Tropospheric Column L2 O3 TCL IUP/DLR
Aerosol layer height L2 AER LH KNMI

Ultra violet aerosol index L2 AER AI KNMI
O3 Full Profile L2 O3 PR KNMI

NO2 L2 NO2 KNMI
CO L2 CO SRON/KNMI
CH4 L2 CH4 SRON/KNMI

Table 2.4: Sentine-5P products and their developing institutions. Source Sentinel-
5P/TROPOMI L2 Products User Manual [55].

An extensive collection of products for trace gas concentration retrieval and cloud
characterization is provided. Given the objectives of this thesis, the interest relies on
the mentioned cloud products, described in [56], and not on the spectral data, used as
reference for cloud classification assessment for the hyperspectral mission EnMAP.

Belonging to the cloud products, the Cloud Fraction (CF) is obtained using the
Optical Cloud Recognition Algorithm (OCRA) to retrieve the percentage of the pixel
covered by clouds. The cloud fraction retrieval is computed radiometrically, considering
the UV and VIS bands and analyzing the influence of clouds by comparing changes in
reflectance with a database of cloud-free background reflectance [56]. Using the cloud
fraction as an input, the algorithm of Retrieval of Cloud Information using Neural
Networks (ROCINN), obtains the Cloud Top Height (CTH) and Cloud Optical Thick-
ness (COT), also named albedo. “The algorithm is based on the comparison of measured
and simulated satellite sun-normalized radiances in and near the Molecular Oxygen (O2)
A-band”[56]. In Figure 2.19, examples of Sentinel-5P CF visualizations are shown.

These products are used to monitor and analyze large-scale atmospheric phenomena
such as tropical cyclones, hurricanes, and severe storm systems by providing critical
input for weather forecasting models, early warning systems, and climate research. In
Figure 2.20, the mentioned products are shown highlighting Hurricane Otis, a category 5
major hurricane which impacted Acapulco, Mexico, causing significant damage and loss
of life [57].
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(a) CF in its matrix form. (b) CF map in an equidistant cylindrical projection.

Figure 2.19: CF retrieved from Sentine-5P data. Image captured on 2024/03/05. Capture
start and end (in Coordinated Universal Time (UTC)): 09:31:31 - 11:13:02.

(a) Reference Map. (b) CF. (c) CTH. (d) COT.

Figure 2.20: Hurricane Otis. Sentinel-5P Image captured on 2023/10/24 over Acapulco,
Guerrero, México.
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2.3 Classifiers Based on Neural Networks
“Artificial neural networks are popular machine learning techniques that simulate

the mechanism of learning in biological organisms” [58]. Neural networks are composed
of neurons, which are computational units connected to one another through weights
(analogous to synaptic connections in biological organisms). Each input to a neuron is
affected by the weight of the connection, which influences the function computed at that
unit [58]. “An artificial neural network computes a function of the inputs by propagating
the computed values from the input neurons to the output neuron(s) and using the
weight as intermediate parameters. Learning occurs by changing the weights connecting
the neurons” [58].

Like biological organism, the learning is based in external stimuli. For the case of
supervised learning of a classifier, the neural network training need to feed it with training
data composed of two components:

(X, y) X ∈ RN×D; y ∈ ZN (2.10)

where: X = The data that characterize each sample,
y = The reference label indicating the class of the sample.

X is the input data of the model with N samples and D dimensions (features), and y
the desired output.

During training, the function (usually called neural network model) is fed with the
data and then the output (prediction) is evaluated, denoted as ŷ. If the prediction is
wrong, the neural network receives feedback to adjust the weights. Therefore, the error
is propagated, modifying the model’s weights in order to better fit the data and produce
improved predictions in future iterations [58]. These iterations are called epochs.

For instance, in the implementation case of spectral imagery classification, a neural
network can be trained to predict the class a pixel belongs to. The training data is
composed of the spectral signature (previously mentioned in Subsection 2.1.1.3) of a set
of pixels and their reference labels (e.g., vegetation, land, water...). During training,
the model extracts the features that make the spectral signature unique and allow it to
differentiate each sample among the set of possible classes.

The correctness of the prediction depends on how well the training data represents the
entire universe of possible samples and how capable the model is at extracting characteris-
tic features, among other factors. If a neural network is fed a completely different sample
(an unknown spectral signature), the prediction will be based on the current knowledge
learned from the training dataset, and the predicted class will be the one closest in terms
of distance defined in the model’s latent space.
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2.3.1 Spectral Data
This subsection addresses all the important topics to consider in per-pixel classification

of multispectral and hyperspectral imagery. In this thesis, the concept of spectral data is
used to refer to all the information contained in all wavelengths and neighboring pixels
that define a pixel, together with additional data retrieved from external sources and
temporal series.

2.3.1.1 Spectral Data Space

Considering a single location on the Earth’s surface with coordinates (i, j), let S
be a stochastic process that defines interactions between the sunlight and the observed
material, and let T be a time series of observations of S, considering that S evolves (or
changes) over time according to an associated Probability Density Function (PDF). The
changes in the PDF are caused by many factors related to natural phenomena and human
intervention.

Then, when an optical sensor captures an image that contains the location (i, j), the
associated pixel at the specified location is an observation zt at some timestamp t ∈ T , cor-
responding to the capture time. Therefore, the observation zt corresponds to a realization
of a random variable with Probability Mass Function (PMF) p(zt). Similarly, the observa-
tions zt captured at times t that belong to a time series are described by an N -dimensional
random variable (z1, z2, . . . , zN) with the associated PMF p(z1, z2, . . . , zN) [59].

Therefore, all the measured variables related to the changes in the PDF of the stochas-
tic process S contribute to the characterization of the pixel capturing the location (i, j),
e.g., the captured spectrum, viewing angles, sun angles, atmospheric conditions, surface
temperature, biome, season, among many others. In addition, given that remote sensing
data tend to be spatially correlated (locally), the spatial information of neighboring pixels
helps to characterize the pixel of interest (only if the GSD is small enough), e.g., a pixel
in the middle of a cloud, a water body, or an agricultural crop. The temporal series also
add valuable information, but these are out of the scope of this thesis.

According to the presented definition of a realization, each pixel represents a data
point (a vector) in the data space (a vector space), which is defined by all possible
locations (i, j) on Earth’s surface. Typically, each sample is composed of F features
representing the spectrum, which explains the intensity values measured at each wave-
length (additional features may also be included). The number of features is known as
the dimensionality of the data.

To visualize how the data points are distributed in the data space, it is common to use
dimensionality reduction techniques such as Principal Component Analysis (PCA)[60] or
Uniform Manifold Aproximation and Projection (UMAP)[61], allowing the data to be
represented in a new space with smaller dimensionality (e.g., three or two dimensions
for visualization in a 3D or 2D plot, respectively). An example is shown in Figure 2.21,
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where even when using the same data, completely different data space representations
can be obtained depending on the dimensionality reduction technique applied.

(a) PCA. (b) (c) UMAP.

Figure 2.21: 3D scatter plot of two different data spaces obtained using dimensionality
reduction techniques, showing the class of each pixel in different colors. Data corresponds
to a Sentinel-2 image (with 13 spectral features) over Antarctica: T21EVK, captured on
2019/02/03.

Analogously to the presented 3D representation, in the original F -dimensional space,
the data points are distributed in a similar manner within this high-dimensional space.
Depending on the case, the dimensionality can be reduced without losing variance in the
data, e.g., when a variable is fixed or proportional to another variable.

2.3.1.2 Curse of Dimensionality

Although high dimensionality allows for better characterization of data due to the
increased amount of information, handling the resulting high-dimensional space intro-
duces new challenges, as intuitions from 2D or 3D spaces do not extrapolate to higher-
dimensional ones. The set of problems that arise when processing a large number of
features is known as the curse of dimensionality [62].

The first challenge is that distance behaves differently in high-dimensional spaces.
Compared to low-dimensional spaces (2D or 3D), where distance is typically measured
using the Euclidean distance, increasing the number of features causes differences between
data points to become less distinguishable. For example, in hyperspectral imagery (∼ 200
bands), a homogeneous region (e.g., an agricultural crop) will have many similar feature
values. A local anomaly (e.g., a small portion of the crop under stress due to a plague)
may result in slight variations in a single or a few adjacent bands. From the perspective of
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Euclidean distance, all data points may appear equally far apart, as these small variations
are negligible compared to the overall feature set [62].

The second challenge is that, as the number of features increases, data tend to become
sparse in the high-dimensional space. Each additional dimension expands the space
exponentially, requiring a proportionally larger number of samples to maintain adequate
coverage of the high dimensional data space. For neural network-based classifiers, the
unavailability of such large labeled datasets makes overfitting a key concern when working
with high-dimensional inputs [63].

The third challenge is the increased likelihood of introducing noise. Not every added
feature contributes useful information; some may be irrelevant to the target patterns and
only introduce noise. If a classifier learns from such irrelevant bands, its performance
may be decreased, as those features can mask small but meaningful variations for pattern
detection [64].

Nevertheless, the challenges posed by the curse of dimensionality can be mitigated
using various strategies. One approach is band selection, which identifies the most in-
formative features through importance analysis [65]. Another common method involves
dimensionality reduction techniques such as PCA [60], Singular Value Decomposition
(SVD) [66], or tensor algebra approaches like the Tucker or CANDECOMP/PARAFAC
(CP) decompositions [28]. Additionally, neural networks can be trained with a focus on
avoiding overfitting, employing methods such as regularization or early stopping [67].

This thesis adopts early stopping as the main strategy, since conventional dimension-
ality reduction techniques project data into a new vector space derived from the training
distribution, limiting their applicability to unseen scenes in a global-scale context. Al-
though band selection based on feature importance is a promising alternative, the full
spectral signature was preserved to retain subtle patterns essential for distinguishing spec-
trally similar classes, such as clouds and snow. Incorporating regularization (particularly
guided by a physically meaningful parameter) is considered a valuable next step, to be
combined with early stopping in future developments.

2.3.1.3 Data Normalization

The data features must have the same value range to ensure equal weighting at the
neural network input. Common normalization techniques include Z-score normalization
(also known as the standard score) and Min-Max normalization, as described in equations
(2.11) and (2.12), respectively. These transformations are applied to each dimension d of
the input data.

zi,j,d = xi,j,d − µd

σd

(2.11)

where µd is the mean and σd is the standard deviation of feature d. After normaliza-
tion, the transformed features have µd = 0 and σd = 1.
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x′
i,j,d = xi,j,d − xmin

d

xmax
d − xmin

d

∈ [0, 1] (2.12)

where xmax
d and xmin

d are the maximum and minimum values of feature d, respectively.
The transformed feature values are constrained to the range [0, 1].
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2.3.2 Single-Layer Neural Network and Basic Concepts
This section explains some basic concepts of neural networks using a minimal archi-

tecture as an example. The theory is then extended to multi-neuron and multi-layer
networks.

Also known as a perceptron, this simple network connects all inputs directly to a single
output through a linear function. It consists of one input layer and one output node, as
illustrated in Figure 2.22 [58].

Input   nodes

Output   node

Figure 2.22: Perceptron without bias.

Considering the tuple of the form
(
X̄, y

)
, where each X̄ = [x1, · · · , xd] contains the

d feature variables, and y ∈ {−1, +1} contains the reference binary class variable (of-
ten called ground truth, but in this thesis avoided because noise in labels is expected).
“Reference” refers to the fact that this information is provided as training data, and the
goal is to predict the class variable for cases in which it is not known (or observed).
The input layer contains d nodes that transmit the d features via edges with weights
W̄ = [w1, · · · , wd] to an output node. This input layer does not perform any compu-
tation on its own [58]. The following linear function is then computed at the output
node:

W̄ · X̄ =
d∑

i=1
wixi (2.13)

Finally, the sign of the result in Equation 2.13 is used to predict the class of X̄.
Therefore, the prediction ŷ is computed as:
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ŷ = sign
{
W̄ · X̄

}
= sign


d∑

j=1
wjxj

 (2.14)

The linear function in Equation 2.13 can be improved by adding a bias neuron, which
prevents it from being constrained to pass through the origin, thereby improving classi-
fication performance. This is achieved by adding a neuron that always transmits a value
of 1 to the output node, allowing the entire linear activation function to shift without
changing its shape [58]. This bias is illustrated in Figure 2.23.

Input   nodes

Output   node

Bias   
neuron

Figure 2.23: Perceptron with bias.

2.3.2.1 Activation functions

There are nonlinear activation functions, which become essential when using multi-
layered architectures. Let Φ denote the activation function:

ŷ = Φ
(
W̄ · X̄

)
(2.15)

The most basic activation function, which provides no nonlinearity, is the identity or
linear activation [58]:

Φ (v) = v (2.16)
Linear activation functions are often used in the output node when the target is a

real-valued variable, in tasks known as regression. One of the most popular activation
functions is Rectified Linear Unit (ReLU), defined as follows:

Φ (v) = max(0, v) (2.17)
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Classical activation functions for classification include the sign (Equation 2.18), sig-
moid (Equation 2.19), hyperbolic tangent (Equation 2.20), and hard hyperbolic tangent
(Equation 2.21) functions [58]:

Φ (v) = sign (v) (2.18)

Φ (v) = 1
1 + e−v

(2.19)

Φ (v) = e2v − 1
e2v + 1 (2.20)

Φ (v) =


−1 if v < −1
v if − 1 ≤ v ≤ 1
1 if v > 1

(2.21)

There are many activation functions, each of which transforms the output in a different
way, modifying the network’s behavior to better suit different applications. For example,
Equations (2.18), (2.19), (2.20), and (2.21) are well suited for classification tasks, as
their outputs are constrained to high or low values, indicating whether the input sample
belongs to a class or not.

All the activation functions mentioned are illustrated in Figure 2.24.

Figure 2.24: Various activation functions. C. C. Aggarwal, 2018 [58].

45



Chapter 2. Background and Related Work

2.3.2.2 Loss Function and Optimization

The training process relies on minimizing the prediction error. The objective of the
perceptron can be written in least-squares form with respect to all training instances in
a dataset D containing feature-label pairs [58]:

MinimizeW̄L =
∑

(X̄,y)∈D

(y − ŷ)2 =
∑

(X̄,y)∈D

(
y −

{
W̄ · X̄

})2
. (2.22)

This type of minimization objective is also referred to as a loss function, in this case
based on the Sum of Squared Errors (SSE) [58]. Specifically, the loss function measures
the difference between the reference and predicted labels, but it can be designed to
evaluate any target characteristic available for training, thereby optimizing the model
with respect to a specific behavior using one or more variables.

There are different training algorithms, usually referred to as optimizers, all of which
work by feeding each input data instance X̄ into the network one by one (or in small
batches) to generate a prediction ŷ. The weight vector W̄ is updated at each itera-
tion based on the error value given by E(X̄) = (y − ŷ). This update is represented in
Equation 2.23.

W̄ ⇐ W̄ + α (y − ŷ) X̄ (2.23)
where: α = Learning rate.

Training algorithms repeatedly cycle through all the training examples in random
order and iteratively adjust the weights until a certain condition is met (for example,
a fixed number of iterations, a target error value, or minimal change in error between
iterations). A single training data point may be used multiple times. Each such cycle is
referred to as an epoch [58].
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2.3.3 Multi-layer Neural Network
The perceptron (basic unit of a neural network) is a linear model, in which the equation

W̄ · X̄ = 0 defines a linear hyperplane. The values of W̄ · X̄ can be positive or negative
depending on whether X̄ lies on one side or the other of the hyperplane. This type of
model performs particularly well when the data is linearly separable [58].

Examples of linearly separable and non-linearly separable data are shown in Fig-
ure 2.25.

Linearly separable Not linearly separable

Figure 2.25: Examples of linearly separable and non-linearly separable data for two
classes.

This limitation is analogous to fitting a linear function to a dataset. To address
this, the combination of linear models (or multiple-layered interconnected perceptrons)
can be interpreted as an extension from linear models to polynomial or more complex
functions. By stacking layers and applying nonlinear activation functions, multi-layer
neural networks can learn to approximate a wide range of nonlinear mappings. Each
additional layer allows the network to compose abstract features from the raw input,
enabling it to capture the complex structures required to solve non-linearly separable
problems.

Multi-layer architectures contain more than one computation layer. The additional
computation layers (between input and output) are referred to as hidden layers because
the computations performed are not visible to the user. These networks are also known as
feed-forward networks, as successive layers feed into one another in the forward direction
from input to output. ”The default architecture of feed-forward networks assumes that
all nodes in one layer are connected to those of the next layer. Therefore, the architecture
of the neural networks is almost fully defined, once the number of layers and the num-
ber/type of nodes in each layer have been defined” [58]. Examples of multilayer networks
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with and without bias neurons are shown in Figure 2.26. The network shown contains
three layers. Note that the input layer is often not counted, as it simply transmits the
data and performs no computation.

Input   layer

Hidden   layer

Output   layer

Input   layer

Hidden   layer

Output   layer

Bias   neurons
(a) No bias neurons (b) With bias neurons

Figure 2.26: Basic architecture of a feed-forward network with two hidden layers an a
single output layer.

The hidden layers, also known as Fully Connected (FC) layers, apply a linear trans-
formation between the input layer data X(l−1) and the layer parameters, weights W(l),
and biases b(l):

X(l) = W(l) · X(l−1) + b(l) (2.24)
The number of parameters can be calculated as the sum of all the connections between

adjacent layers [68]:

nparameters =
L−1∑
i=0

(
n

(l)
nodes · n

(l+1)
nodes + 1

)
(2.25)

The input data and the extracted features are limited to a vector representation,
which leads to the loss of some spatial-contextual information relevant to remote sensing
imagery [68].
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2.3.4 Convolutional Neural Network
CNNs are biologically inspired models based on human vision. These networks have

been widely used in computer vision for classification tasks [58]. One of the first basic
architectures inspired by this biological concept was the neocognitron, which was later
generalized into the LeNet-5 architecture (Figure 2.27) [69].

There are two main types of layers in CNNs: convolutional and subsampling layers.
In convolutional layers, a convolution operation is defined in which a filter is used to map
the activations from one layer to the next. A convolution operation uses a filter (also
known as a kernel) with the same depth as the input layer but with a smaller spatial
extent. The dot product between all the weights in the filter and a spatial region of the
same size in the input layer defines the value of the hidden state in the next layer (after
applying an activation function). This operation is repeated across all possible positions
in the input to compute the output of the next layer [58].

Figure 2.27: LeNet-5: One of the earliest CNNs. C. C. Aggarwal, 2018 [58].

2.3.4.1 Convolutional Layers

Spectral imagery classification relies on analyzing the statistical properties of X ∈
RnI×J×nbands , which can be considered a stationary source of spectral pixels, where data
features are distributed across the image according to spatial positions. This suggests
that the learned features can be generalized for predicting other pixels in different images
with similar data characteristics [68].

In contrast to FC layers, Convolutional (CONV) layers offer greater versatility, as the
size of the chunks or windows is defined by the receptive field of the layer, denoted as
k(l) × k(l) × q(l), where k(l) is applied over the two spatial axes and q(l) over the spectral
axis. This flexibility allows CONV layers to accept 1-D, 2-D, and 3-D inputs and to
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extract spatial, spectral, or spatial-spectral features.

The l-th CONV layer applies K(l) linear 3D kernels over the input layer X(l−1), per-
forming a dot product between its weights and biases, W(l) and b(l), respectively, and
small chunks of the input volume data. As a result, an output volume X(l) composed of
K(l) feature volumes is obtained [68].

X(l) =
(
W(l) ∗ X(l−1) + b(l)

)
K(l)×k(l)×k(l)×q(l)

(2.26)

The following equation indicates the general calculation of the feature at position
(i, j, t) for the z-th feature map of the output volume, denoted as x(l)zi, j, t.

x
(l)z

i,j,t =
k(l)−1∑

î=0

k(l)−1∑
ĵ=0

q(l)−1∑
t̂=0

(
w

(l)
î,ĵ,t̂

· x
(l−1)
(i·s(l)+î),(j·s(l)+ĵ),(t·s(l)+t̂)

)
+ b(l) (2.27)

Dot   product

Kernel

z–th  feature   map   

Figure 2.28: Graphical visualization of the CONV layer from a 2D point of view.
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z–th  feature   map   

Figure 2.29: Graphical visualization of the CONV layer from a 3D point of view.

The architecture of a CNN used for spectral imagery classification is composed of two
well-differentiated parts that can be interpreted as two separate networks:

• The Feature Extraction Network (FE-Net), composed of a hierarchical stack of
feature extraction and detection stages that learn high-level representations of the
inputs.

• The classifier, composed of a stack of FC layers that performs the final classification
task by computing the membership of each input sample to a specific class [70].

These coupled networks are trained together as an end-to-end model to optimize
all the weights in the CNN. Focusing on the classifier network, it performs the final
classification by taking into account the information obtained by the FE-Net. This part
is usually implemented with several stages composed of FC and ReLU layers, ending with
an activation function applied to the last FC layer [68].

The output of the network can be interpreted as a confidence index indicating the
likelihood that the input data (a pixel) belongs to a given class. The optimization function
used for this task is the cross-entropy, defined in Equation 2.28, which measures the
difference between yi (the reference label of each pixel) and ŷi (the predicted values) [68].

Φc = −
∑

i

ŷi − log (yi) (2.28)
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2.3.4.2 Down-sampling Layers

Also known as Pooling (POOL) layers, they are inspired by the spatial processing
of CONV layers and perform a non-linear sub-sampling strategy with three main objec-
tives [68]:

• Reducing the spatial dimensions of the extracted feature maps by summarizing
them into a reduced volume.

• Providing a degree of invariance to small transformations in the input data.

• Reducing computation time and complexity in terms of both data size/dimensionality
and the number of network parameters [71].

The POOL layer implements a sample-based discretization process (Figure 2.30),
where the dark cells may represent the selected values in a max-pooling operation. How-
ever, other pooling strategies exist, such as computing the average or the sum of the
values within a region of pixels. In fact, the pooling layer can be interpreted as a kernel
of size k(l) × k(l)[68]. The most common operations are average pooling, sum pooling,
and max pooling [72].

Pooling

Figure 2.30: Graphical visualization of the POOL layer from a 2D point of view.
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2.3.5 CNNs for Spectral Imagery Feature Analysis

Among many different architectures for pixel-based classification, three types of CNN
models are addressed in this thesis for optical remote sensing imagery classification. These
are categorized based on whether they perform spectral, spatial, or spectral–spatial fea-
ture extraction [68].

2.3.5.1 CNN1D for Spectral Feature Extraction

An backbone of a 1D - Convolutional Neural Network (CNN1D) architecture is shown
in Figure 2.31, where the spectral pixels xi ∈ Nnbands are the input data, where nbands is
the number of bands in the image, with or without compression. One-dimensional kernels
of size K(l) × q(l) are applied at each CONV layer, resulting in an output X(l) composed
of K(l) feature vectors [68].

  Pixel vector   

Compressed  HSI
Fully   connected   

layers

C
lassi fica tio n

Feature vector Output

Figure 2.31: Architecture of spectral convolutional model employed by CNN1D.

2.3.5.2 CNN2D for Spatial Feature Extraction

These CNN models consider the spatial information obtained from spectral images.
To process spatial information, each CONV layer applies K(l) ×k(l) ×k(l) kernels over the
input data, resulting in K(l) feature maps (see a backbone of a 2D - Convolutional Neu-
ral Network (CNN2D) architecture in Figure 2.32). The spatial information is extracted
by cropping spatial patches of d × d pixel-centered neighborhoods from the spectral im-
age [68]. After obtaining the feature maps for each band, these are used as input to the
FC layer, which performs classification based on the relationships between the spatial
features extracted across bands.
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Spatial-Spectral 
patches   

Compressed  HSI Fully   connected   
layers

C
lassi fica tio n

Output   
volumeFeature   map

Figure 2.32: Architecture of spatial convolutional model employed by CNN2D.

2.3.5.3 CNN3D for Spectral-Spatial Feature Extraction

The 3D - Convolutional Neural Network (CNN3D) model (backbone shown in Fig-
ure 2.33) is naturally adapted to optical remote sensing imagery, where spatial and spec-
tral correlations are typically high. It performs convolution using K(l) 3D filters, such
that K(l) × k(l) × k(l) × q(l), which are used to extract 3D features. These filters simul-
taneously capture spatial information from neighboring pixels and spectral information
from contiguous bands, producing as output K(l) feature volumes [68].

Spatial-Spectral 
patches   

Compressed  HSI
Fully   connected   

layers

C
lassi fica tio n

Feature vol.

Output vol.

Figure 2.33: Architecture of spectral-spatial convolutional model employed by CNN3D.

The parameter definitions of the aforementioned architectures (such as kernel size, the
number of CONV and POOL layers, and the window size for pixel patches) depend on
various characteristics of the input image, including spatial resolution, number of bands,
and the observed target. For example, agricultural crops tend to exhibit strong spatial
correlation due to vegetation uniformity. In contrast, urban areas present the opposite
case, where the captured targets are smaller and typically lack uniformity.
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Therefore, the model parameters are usually selected empirically or, when sufficient
computational resources are available, through an exhaustive search strategy. This ap-
proach aims to identify the parameters that enable the extraction of the most meaningful
features by evaluating classification performance on a validation dataset.
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2.4 Related Work
This section will revise the topics regarding the related work in three different context:

• Domain generalization for global-scale implementation (Subsection 2.4.1)

• An intercomparison exercise for revision of classifiers in the same application sce-
nario (Subsection 2.4.2)

• State-of-the-art neural network-based classifiers (Subsection 2.4.3)

2.4.1 Domain Generalization
“Machine learning systems generally assume that the training and testing distributions

are the same. To this end, a key requirement is to develop models that can generalize
to unseen distributions”. “Domain generalization deals with a challenging setting where
one or several different but related domain(s) are given, and the goal is to learn a model
that can generalize to an unseen test domain.” [73].

Given training samples (xi, yi) for i = 1, . . . , n and a loss function L(h(x), y), where
h(x) is the hypothesis function. From a classical perspective view for model’s fitting,
there is a trade-off when minimizing the following risks [74]:

• Empirical Risk Minimization (ERM) involves obtaining a function from an hypoth-
esis space that minimizes the average loss over the training data, such that:

Remp(h) = 1
n

n∑
i=1

L(h(xi), yi) (2.29)

Therefore, the hypothesis h∗ is obtained by:

h∗ = arg min
h∈H

Remp(h) (2.30)

This approach assumes that by minimizing the error, the hypothesis function will
generalize well for the unseen data, but this depend on the data distribution of the
testing dataset. In single-image analysis or single-site analysis remote sensing clas-
sification implementation, ERM is a well-suitable approach, given that the variation
of samples in the domain is small, even allowing to perform manual discarding of
samples (e.g. discarding cloudy scenes), making overfitting not as harmful as when
the domain is difficult to represent, e.g. for global-scale applications.
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• Structural Risk Minimization (SRM) in contrast, deliberately controls the model
training to prevent overfitting, aiming to achieve high generalization. In other
words, underfitting the models to achieve robustness. This is represented by a
regularization term that penalizes complexity (or low training error) and weighted
by a parameter which controls the trade-off between empirical and structural risk.
, defined as follows [74]:

Rstruct(h) = Remp(h) + λ · Ω(h) h∗ = arg min
h∈H

Rstruct(h) (2.31)

where: Ω(h) = Regularization term which measures hypothesis overfitting
λ = Regularization parameter

Specially useful when training and test sets differ in distribution (domain shift).
In the context of optical remote sensing missions with global coverage, a classifier

must be able to generalize across diverse domains. This thesis addresses this challenge
by training deep learning models on data from multiple geographic locations and under
varying atmospheric conditions. Early stopping criteria were determined through a grid
search over the training hyperparameters. While this represents a fundamental approach,
it typically requires several iterations and careful interpretation of inference outcomes.

A natural next step is to incorporate a regularization term into the training loss func-
tion that promotes the retrieval of physically meaningful parameters, thereby improving
the stability and generalizability of the training process. However, this introduces new
challenges—such as the need to fit a classifier per class or for groups of physically related
classes—since physical parameters are often specific to distinct observable phenomena in
remote sensing imagery. These considerations are further discussed in Section 4.3.

Recent works in remote sensing have explored large-scale classification using self-
supervised or weakly supervised approaches, often leveraging unlabeled or physically
derived data. Notably, Tuia et al. [75] provide a perspective on physically informed
learning as a key direction for advancing Earth observation. In related work [76, 77, 78,
79, 80], the Copernicus land cover product CORINE [81] has been used in conjunction
with BigEarthNet [82] to train classification models while explicitly accounting for label
noise. Our work follows a similar trend by combining physically based label generation
with learning-based refinement, applied to globally distributed Sentinel-2 data. One of
the few works that incorporate information from spectral indices or derived masks for
training is the work presented in [83] on water applications to delineate water bodies from
widely used water spectral indices.
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2.4.2 Inter comparison Exercises
For the review of the current state of classification algorithms in optical remote sens-

ing, specifically for Sentinel-2, the latest Cloud Mask Intercomparison eXercise (CMIX)
[84] is considered the main reference. This is an international collaborative effort initi-
ated within the framework of the Committee on Earth Observation Satellites (CEOS)
Working Group on Calibration and Validation (WGCV), with participation from public
and private entities. Although this exercise focuses on cloud masking, the classification
algorithms evaluated in CMIX classify pixels into several classes, such as clear sky, water,
snow, cloud shadows, thin clouds, and more. Table 2.5 provides a brief summary of the
participating processors from the latest edition of CMIX.

It is important to note that some of the algorithms listed in this table have already
been implemented in processing chains of remote sensing missions, thus enabling global-
scale implementation. In these kinds of exercise, the reference datasets were indepen-
dently and manually labeled and are not considered in the fitting process of any of the
algorithms, unlike most state-of-the-art classifiers, which typically split a single dataset
into training and test sets. The unique-labeling-source approach meets the needs of the
dataset’s specific problem by using labels based on strict specifications. However, this
method is not fully applicable to generic classification products of remote sensing missions
with global coverage, given the high variability of subclasses.

There are three major areas on which the classification techniques are based: spectral
tests (or spectral indices thresholding), machine learning, and multi-temporal analysis.
Those algorithms based on spectral tests, which run test on empirically defined thresholds
tested over computed indices of different bands combination of the spectral image. Each
of the indices is designed to highlight one of the physical properties of the materials
that interact with the light in the Earth’s surface or the atmosphere [29]. Among those
in Table 2.5, ATCOR stands out as one of the most established atmospheric correction
algorithms, forming the basis for PACO, which is the atmospheric correction processor
used in this thesis.

Machine learning approaches fit different types of artificial neural network models
with high-quality data. The main challenge for training is to obtain high-quality classifi-
cation maps on a global scale with sufficient representation of all types of Earth’s surface
materials under different atmospheric conditions. In addition, this process must be per-
formed for every sensor that is intended to be supported. Alternatively, the support to
multispectral and hyperspectral sensors arises a need to transform the data into an equiv-
alent space to generalize the model for a variety of sensors, usually resulting in a loss of
spectral information. This is the approach adopted in this thesis, and the methodology
will be suited in the state-of-the-art in the following Subsection 2.4.4.

For multi-temporal analysis, repetitive observations with a short time difference be-
tween captures at similar viewing angles are needed to compare changes in reflectance
with the background, obtaining promising results. However, these approaches are limited
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Processor Organization Methodology Application

ATCOR
[29, 49] DLR Spectral tests

Multi-/
hyper-

spectral
CD-FCNN

[85, 86]
University
of Valencia Machine learning Multi-

spectral
Fmask

[87, 88, 89] USGS Spectral tests Multi-
spectral

FORCE
[90, 91, 92]

Humboldt-
Universit¨at zu

Berlin /
Trier University

Spectral tests Multi-
spectral

Idepix
[93]

Brockmann
Consult Spectral tests Multi-

spectral
S2cloudless

[94] Sinergise Machine learning Multi-
spectral

InterSSIM
[95] Sinergise

Machine learning
and spatio-temporal

context

Multi-
spectral

LaSRC
[7, 96, 97]

NASA /
University of Maryland Spectral tests Multi-

spectral
MAJA
[98, 99]

CNES /
CESBIO

Multi-temporal data
and spectral tests

Multi-
spectral

Sen2Cor
[100, 101]

ESA /
Telespazio France

Spectral test
and auxiliary data

Multi-
spectral

Table 2.5: Participant masking algorithms in the last edition of CMIX. Table extracted
from [84].

in their implementation due to the need for a location’s temporal series.
It is not possible to declare a single best classification algorithm, because the results

depend on the dataset being tested. The main issue is that there is no consensus on the
quantitative definition of clouds. As a result, every dataset has a bias that favors certain
algorithms. For example, the Atmospheric Correction Algorithm (ATCOR), CD-FCNN,
InterSSSIM, LaSRC, and Sen2Cor have been shown to be cloud conservative, meaning
these algorithms detect fewer clouds over clear regions, at the expense of missing some
clouds. Conversely, Fmask, FORCE, Idepix, MAJA, and S2cloudless provide a balance
between commission and omission errors, but at the cost of also classifying out valid,
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non-cloudy observations.
The results reported in [84] show that machine learning-based masking algorithms do

not perform significantly better than spectral test-based algorithms, as their predictions
depend on the data quality used for training, and these datasets are not available for all
sensors. Since the spectral tests of currently used masking algorithms typically do not
consider all available spectral bands, DL-based classification algorithms could potentially
identify hidden patterns within spectral signatures, but only if the training pixels are
correctly labeled.

Future CMIX activities plan to test the processors with hyperspectral datasets, en-
couraging processors to support hyperspectral products.
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2.4.3 Classifiers State-of-the-art based on Neural Networks
Recently published methods for pixel-level classification, which exploit the growing

area of DL models [102], have recently been applied to remote sensing applications, usu-
ally based on CNNs [68, 103], Generative Adversarial Networks (GANs) [104, 105, 106],
or Transformers [107, 108, 109] among other approaches. In addition, the use of attention
strategies [110, 111] has shown advantages in identifying fine features to improve classi-
fication performance on single-image datasets. All these works show promising results,
and it is expected that emerging large models will make a huge impact on classifica-
tion performance, as demonstrated in other study areas in recent years. However, the
lack of high-quality harmonized labeled data limits researchers and developers to using
datasets with the same labeling source for both training and testing sets. This approach
on training with a splitted dataset intro training and testing demonstrates the model’s
capability of differentiating between the specified classes in the dataset (the requirements
of the specific application are described in the labels), but it is limited by the sensitivity
of the labeling source, and therefore, not demonstrating generalization for other appli-
cations. Thus, this restriction limits the interpretability of the results for global-scale
remote sensing missions.

DL models based on CNNs for pixel-level classification are able to retrieve more spatial
and spectral features compared to classic masking algorithms based on physics models.
This is because they analyze high data volumes, considering all the spectral signatures
and the information from neighboring pixels [112]. However, they highly dependent on
the data and reference labels for training, with the added challenge of interpreting the
retrieved features. Although models like CNN3D [113] can simultaneously extract spatial
and spectral features, they also increase computational complexity.

2.4.4 Methodological Scope
In this work, three lightweight architectures are compared: CNN1D [114], CNN2D [112,

115], and CNN3D [113], which respectively represent purely spectral, spatial–spectral,
and fully joint spectral–spatial feature extractors. These models have demonstrated solid
performance compared to traditional machine learning approaches [68]. Encoder–decoder
architectures such as U-Net [116] are typically designed for dense ground-truth masks;
however, the supervision strategy in this thesis explicitly excludes ambiguous pixels,
which do not contribute to the loss function or its backpropagation [117], making U-Net
less suitable for the chosen setting. The selected CNN1D, CNN2D, and CNN3D architec-
tures span a representative spectrum of modeling capacities, aligned with the taxonomy
proposed by Paoletti et al. [68].

Advanced methods based on GANs, transformers, or attention mechanisms are not
included in this study. Their evaluation is reserved for future work, as the primary goal
here is to validate the general concept introduced in [118], specifically to improve training
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datasets through conservative, physics-based pixel selection strategies, and to provide a
detailed methodology and robust evaluation of the results. The core motivation for
adopting deep learning in this work stems from the limitations of the current PACO
masking algorithm, which relies on simple spectral thresholding and does not exploit
complex spatial–spectral patterns that CNNs are well-equipped to model.

For classification evaluation, widely used metrics such as Overall Accuracy (OA) and
F-1 score (F1) have been shown to be unreliable for imbalanced datasets [119, 120],
as they become biased when class distributions are uneven. Therefore, more robust
alternatives are required, such as the nMCC, which is detailed in Subsection 3.8.1. nMCC
corresponds to the Rk statistic for the multi-class case and to the Phi coefficient in the
binary case. In addition, confusion matrices and class-wise precision (Precision (P))
and recall (Recall (R)) are included to support a more comprehensive interpretation of
performance across individual classes.
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Methodology

In this chapter, the methodology developed for training and evaluating CNNs in
the context of operational masking tasks is presented. The approach leverages existing
classification products derived from operational algorithms as training references, while
validation is performed using independent data sources, including products from external
sources. This strategy enhances the generalization capability of the models and ensures
a more robust and less biased evaluation framework. Therefore, this work addresses the
pixel-level classification task with a supervised deep learning model fitted with the cur-
rent masks of PACO currently derived from spectral indices. To improve classification
performance, the model must extract more significant spatial and spectral features, as
well as the correlations between them, than those used by the current labeling source
algorithm. This enables it to redefine the classes in the new classification space of the
fitted model, differentiate between the classes, and thereby improve performance. In this
section, the main characteristics of the implemented methodology are presented and dis-
cussed, covering the notation used, the problem statement together with the big picture
of the implemented workflow (shown in Fig. 3.1). At the end, the guidelines followed
throughout the process are described, including data preprocessing, pixel selection, re-
trieval of higher-quality pixels for training, and finally, the model architecture and fitting
details, along with its evaluation.

Using the notation from [28] and the representation of spectral cubes with tensors,
where a is a scalar, a is a vector, A is a matrix, and A is a 3rd- or higher-order tensor, a
spectral image of an observed scene X is represented as a 3rd-order tensor:

X ∈ RI×J×K , (3.1)

where I (rows) and J (columns) are the spatial dimensions of the image, and K is the
number of spectral bands. Then, the element xi,j,k is the pixel value at position (i, j) in
band k, such that:

{∀i, j, k ∈ Z | (1 ≤ i ≤ I) ∧ (1 ≤ j ≤ J) ∧ (1 ≤ k ≤ K)}. (3.2)
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and the vector containing the spectral signature of a pixel is represented by xi,j,:.
Each ordered pair (i, j) represents the coordinates of a specific location on the Earth’s

surface in the observed scene.
A classification algorithm is defined as a function:

fmulti-class : X → Ŷ, Ŷ ∈ ZI×J , (3.3)

which maps from the spectral image X to the predicted classification map Ŷ, matching
the spatial resolution. This process is also known as pixel-based multi-class classification,
where each element ŷi,j of Ŷ, represents a positive integer, so-called label, indicating the
class to which it belongs.

Optionally, the masks could also be provided in a binary cube for multi-label classifi-
cation (masks cube), such that:

fmulti-label : X → Ŷ, Ŷ ∈ {0, 1}I×J×C , (3.4)

where C is the number of classes, allowing a pixel to belong to more than one class.
Furthermore, Ŷci represents the confidence index (denoted in the subscript as “ci”) of
each pixel belonging to a class, such that:

fconfidence-index : X → Ŷci, Ŷci ∈ RI×J×C , (3.5)

where each of the elements ŷci
i,j,c follows the axioms of probability, such that:(

0 ≤ ŷci
i,j,c ≤ 1

)
, (3.6)

C∑
c=1

ŷci
i,j,c = 1. (3.7)

The term confidence index is used instead of probability because the output of the
last layer of a neural network is generated by activation functions, not by PDFs, although
the general interpretation is similar.
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3.1 Problem Statement
The following section provides a general description of the inputs, outputs, and pro-

cesses of the proposed methodology in this thesis. Each product and steps are summarized
in Figure 3.1, which presents an overview of the workflow.

The main objective of this thesis is to obtain a classifier based on a Deep Learning (DL)
model such that:

fDL : X → Ŷci, (3.8)
where X ∈ RI×J×F , is a cube containing the spectral data, DEM, and illumination,

normalized and stacked into one cube. Here, I and J correspond to the rows and columns
of the image, respectively, and F to the number of features. These dimensions correspond
to the input tensor X, illustrated as the purple cube in Figure 3.1.

Given that the classification is performed pixel-wise, the input size of the model is
a small patch Xpatch ∈ RW ×W ×F , where the window size W is odd to ensure that the
pixel of interest is located at the center of the patch cube and surrounded by neighboring
pixels, providing the spatial context for feature extraction. This is particularly helpful
for high-spatial-resolution sensors, where the spatial correlation is high.

The output is a cube Ŷci ∈ RI×J×C containing the predicted confidence index, where
C is the number of target classes. For the case of a multi-class classifier, fDL : X → Ŷ,
where Ŷ ∈ ZI×J is a classification map, the highest confidence index from ŷci

i,j,: is selected
as the most likely class, assigning a label represented as an integer in Ŷ. These outputs
are illustrated as blue matrices at the output stage of the DL model in Figure 3.1.

To fit the model fDL, the starting point is the collection of an extensive database of
scenes from a particular remote sensing monitoring mission to train the model. These
scenes are pre-processed by the mission’s atmospheric correction processor (PACO in
this study), to obtain the TOA reflectance, DEM, and illumination products mentioned
earlier. In addition, the masks cube M ∈ 0, 1I×J×K is obtained, where K is the number of
classes from the source. The information from the multi-label product is then leveraged
by filtering the pixels and keeping those with low classification uncertainty. Furthermore,
the binary masks cube is mapped to the target set of classes, which contains C classes,
usually C ≤ K. The resulting cube is defined as Mt ∈ 0, 1I×J×C , and it will be used
by the optimizer to fit the model through supervised learning (see red-dashed box in
Figure 3.1).

As a last step, for the testing phase, a representative database of scenes is required,
where the reference labels are obtained from a reliable source using additional information,
instruments, or expert-driven criteria to increase their sensitivity (see orange-dashed box
in Figure 3.1). For example, each scene can be manually labeled by an independent human
expert using diverse additional information sources to demonstrate the robustness and
generalization of the trained model. In addition, measurements from accurate instruments
can be used to compare the obtained products with the measured reference.
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Figure 3.1: Workflow of the implemented deep learning-based approach for classification. For the training stage
(upper section), training scenes are pre-processed using PACO to generate TOA reflectances (Xs), DEM (D), and
illumination (I), which are normalized and stacked into X. The masks cube (M) is filtered by selecting pixels to
create high-quality labels (Mt), used to train the DL model. For evaluation (lower section), independent testing
datasets with manually labeled references (Y) are compared against predictions (Ŷ), generating a classification
report with performance metrics.
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3.2 Input L2 Products and Preprocessing
This Section describes the input data obtained from PACO and its normalization

preprocessing of the DL model, together with the labels used for the training (see green-
dashed box in Figure 3.1). As discussed in subsection 2.3.1.3, normalization ensures that
the value range is consistent across all features. However, for the proposed methodology
designed for continuous training, features were normalized by linearly re-projecting them
into the range [0, 1] as using Min-Max normalization. This was achieved by dividing each
input dataset by its maximum expected theoretical value of the corresponding physical
parameter.

For the spectral data, TOA reflectance values greater than 1 are not considered out-
liers, as they commonly occur when light is specularly reflected from different surfaces
to the same captured pixel [121]. Thus, normalization is performed with a maximum
reflectance of 1.5 as follows:

X′
s ∈ {x|0 ≤ x ≤ 1}Rows×Columns×Bands = Xs

1.5 . (3.9)

The DEM was normalized using the highest point on Earth, Mount Everest, at 8850 m.
Negative elevations were corrected to zero (e.g., in the Netherlands):

D′ ∈ {d|0 ≤ d ≤ 1}Rows×Columns = D
8850 . (3.10)

Lastly, the illumination map, generated by PACO within the range [0, 100], was nor-
malized using its maximum expected value:

I′ ∈ {i|0 ≤ i ≤ 1}Rows×Columns = I
100 . (3.11)

This fixed-value normalization approach enables the continuous addition of new scenes
to the training database without requiring re-normalization based on updated maximum
or minimum values.

The final normalized datasets are then stacked into a single data cube, such that:

stack(X′
s, D′, I′) = X ∈ {x|0 ≤ x ≤ 1}Rows×Columns×(Bands+2) , (3.12)

where elevation and illumination are included as additional features of the spectral bands
(Bands).

In addition, the multi-label masks used to fit the DL model correspond to the L2
products also generated by PACO, and are defined as:

M ∈ {0, 1}Rows×Columns×Classes (3.13)

where each frontal slice represents a binary mask for a specific class. These masks are
subsequently used to select high-quality training pixels, as further detailed in Section 3.5.
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3.3 Multi/Hyperspectral Case Studies

The classification methodology was performed in two different datasets: multi- and
hyperspectral data, described in Subsections 3.3.1 and 3.3.2, respectively). The same
study principle is applied to both types of data, but the training and validation steps
differ depending on the available validation datasets. In both the multispectral and
hyperspectral cases, a DL model was trained using PACO’s products as input, processed
at the early stages of atmospheric correction.

First, given the availability of data for testing, a multispectral case was addressed using
data from the Sentinel-2 mission. Regarding compatibility with other sensors, although
other missions processed with PACO exist, independent validation labels remain limited
or are not directly compatible. Furthermore, other sources of information, such as in-situ
measurements, are difficult to obtain on a global scale. Therefore, an alternative approach
was adopted. The methodology was tested for the hyperspectral case using data from
the EnMAP mission, but given the lack of standardized test datasets for EnMAP, a
strategy was proposed to compare the estimated cloud fraction with observations from
the Sentinel-5P mission. The main objective is to retrieve reference data from missions
specifically designed to sense a particular characteristic of the atmosphere or Earth’s
surface and use it to validate the masking products of other missions, particularly those
in optical remote sensing. To achieve this, it is necessary to implement an interface that
transforms the masking products into physical properties that match the format of the
mission products used as a reference. Both case studies are described in detail below.

3.3.1 Multispectral Case for Sentinel-2 Imagery

In Figure 3.2, the Unified Modeling Language (UML) activity diagram for the multi-
spectral case is presented.

As mentioned before, the models were trained for this case using data from the
Sentinel-2 mission (described in Subsection 2.2.1). The test datasets belong to other val-
idation activities from the Sentinel-2 Optical Mission Performance Cluster (OPT-MPC)
[122] and DLR’s internal validation of the Fmask, ATCOR, and Sen2Cor processors [123].
These reference labels (usually referred to as the ground truth) are composed of the tuple
(X, Y) where X is the spectral data and Y its associated reference labels, both with the
same spatial dimensions.

The classifier’s evaluation is accomplished by generating a classification report, which
includes the confusion matrix and classification metrics that are robust to class imbalance.

This is considered the standard case, illustrated in Figure 3.1, given that most testing
is conducted this way, following the example and guidelines proposed in the last CMIX
[84] exercise, where testing is performed with independently labeled data.
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PACO ProductsDatabase of Sentinel-2 Multispectral Imagery

Spectral Data, DEM, IlluminationPreprocess Data Masks CubeMulti-Label Mapping

Train Deep Learning Model

Manually Labeled Sets
from OPT-MPC and DLRMulti-Class Mapping on Validation Sets

Test Model on Validation Sets

Confusion Matrix, Robust MetricsGenerate Classification Report

Figure 3.2: UML activity diagram of the multispectral classification case using Sentinel-2
and PACO products. Independent validation is performed with manually labeled datasets
from OPT-MPC and DLR, allowing independent assessment using robust metrics.

3.3.2 Hyperspectral Case for EnMAP Imagery
In Figure 3.3, the UML activity diagram for the hyperspectral case is presented.
The hyperspectral case focuses on cloud classification, fitting a DL model with hyper-

spectral data from the EnMAP mission (described in Subsection 2.2.2) using exactly the
same methodology as the multispectral case mentioned in subsection 3.3.1. The difference
relies on the testing methodology, given that at the time of this thesis’s development, no
testing datasets were available for this hyperspectral mission.

As mentioned before, most testing exercises for masking algorithms or classifiers rely
on hand-made annotations, but these require significant qualified manpower, given that
the validation of each sensor requires the creation of a new dataset, such as the mul-
tispectral case described above. The lack of testing data for this case motivated the
development of a testing dataset for this study, but this is complicated by the issue
described in [96], which highlights misinterpretation of class definitions, often causing
overlaps in annotations between classes.

Therefore, for the hyperspectral case, this study proposes a testing methodology that
uses more sensitive and global sources of information, employing physical properties to
validate classification products.

In this testing exercise, the cloud fraction is calculated from the cloud classification
obtained from the models and compared with the reference retrieved from the TROPOMI
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PACO ProductsDatabase of EnMAP Hyperspectral Imagery

Spectral Data, DEM, IlluminationPreprocess Data Masks CubeMulti-Label Mapping

Train Deep Learning Model

from the whole archive
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from the Matching OverpassesTest Model on EnMAP Scenes

from EnMAP Cloud Classification
to TROPOMI pixels GSD and LocationCompute Cloud Fraction and Resample

APU plot and Correlation MetricsGenerate Classification Report

Figure 3.3: UML activity diagram of the hyperspectral classification case using EnMAP
imagery and PACO products. Validation is performed by comparing cloud fraction from
model predictions with Sentinel-5P observations, using matching overpasses and robust
correlation metrics.

instrument onboard Sentinel-5P (described in Subsection 2.2.6.1) [56, 124], taking into
account the availability of samples across different ranges of cloud fraction.

This methodology involves finding matching overpass locations with short time differ-
ences between the two missions, ideally on the order of seconds, but limited in practice
to a maximum of three minutes due to the scarcity of overlapping acquisitions (see Sec-
tion 3.4.4 for details). In Figure 3.4, an artistic visualization of a matching overpass
location between EnMAP and Sentinel-5P is shown.

Thus, the EnMAP cloud mask (with a 30 m × 30 m resolution) is resampled to the
spatial resolution of TROPOMI products (5.5 km × 3.5 km) by computing the CF of the
EnMAP cloud mask projected into a TROPOMI pixel, and then it is compared with
the CF product of TROPOMI using robust metrics and visualizations to analyze the
differences. In Figure 3.5, a comparison between an EnMAP scene and the corresponding
TROPOMI pixels is shown.

The details involved in calculating the CF from EnMAP scenes, including the re-
sampling process via the projection of TROPOMI pixels, will be discussed further in
subsection 3.4.4. This section will also address the challenges associated with minimizing
uncertainty when comparing matching overpasses.
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Figure 3.4: Illustration of a matching overpass between EnMAP and Sentinel-5P (not
to scale). For cloud fraction comparison between the products of the TROPOMI instru-
ment onboard Sentinel-5P and the predicted cloud mask from EnMAP, only matching
overpasses with a small time difference should be considered (on the order of seconds),
depending on wind speed and cloud altitude.

3.4 Datasets Description

DL approaches are designed to handle large data volumes for training, which enables
the global-scale application of classification algorithms. Ideally, the training dataset
should be as complete as possible to ensure representation of all potential atmospheric
conditions across Earth’s surfaces. However, the fact of not being diverse enough, or
incorporating the entire archive of an optical remote sensing mission poses significant
challenges and is computationally intensive. Therefore, a limited Database (DB) of rep-
resentative L1 scenes has been created, with the potential for continuous expansion to
support ongoing learning.

The datasets utilized in this thesis, both for training and testing, were obtained from
the missions described in Subsections 2.2.1 and 2.2.2. However, the approach is not
restricted to these missions, as it can be adapted to different spectral bands and spatial
dimensions due to its pixel-level classification approach.
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Figure 3.5: EnMAP true-color image (GSD: 30 m × 30 m) and TROPOMI CF product
(GSD: 5.5 km × 3.5 km) comparison. EnMAP image: DT0000063937 004, captured on
2024-03-05 at 12:18:35 UTC.

3.4.1 Training Dataset for the Multispectral Case
The training dataset used in this case consists of 71 scenes selected to match the

locations of the Aerosol Robotic Network (AERONET) sites [125], comprising ≈ 2, 123
million pixels distributed across the globe in a wide variety of biomes and atmospheric
conditions. Additionally, a number of images were selected from the same geographic
locations as the testing datasets; however, these correspond to different acquisition dates.
Table 3.1 shows the pixel count by class for the training dataset.

Table 3.1: Training dataset class distribution and pixel count.

Color Target Class Pixel Count
Clear 69.92 %

Atmosphere 11.41 %
Shadows 2.50 %
Water 12.81 %
Snow 3.37 %
Total 2,122,676,571

As explained in Subsection 2.2.4, the labels for training are generated by PACO’s
masking, and these consist of 21 non-mutually exclusive masks, each corresponding to a
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pre-classification class. Therefore, a single pixel could belong to one or more masks, which
in this work are also referred as a multi-label masks cube. These masks are represented
in a cube M ∈ {0, 1}5490×5490×21. A mapping is required to match the set of classes from
the testing datasets. Consequently, five common classes are defined:

• Clear - Clear sky soil pixels

• Atmosphere - Semi-transparent clouds, clouds and cirrus

• Shadows - Shadows from clouds or terrain elevations

• Water - Seas, lakes, lagoons, rivers or any water body

• Snow - Permanent or temporal snow or ice

In addition, each mapping can incorporate the bias introduced by the subjective
definition of each class (e.g., how transparent a cloud must be to be considered a semi-
transparent cloud). Therefore, each mapping must be manually defined according to the
specific definition of each class. Ideally, the classes should be defined in terms of physical
metrics to harmonize classification products across different studies and applications.
However, given the available testing datasets, a mapping has been defined for these
specific cases. The first and second columns in Table 3.2 show the mapping from PACO
pre-classification classes to the corresponding target classes addressed in this work, while
the rest of the columns describe the mapping for the testing datasets, which will be
explained in more detail in subsection 3.4.2. More details about the decisions made
to define the mapping will be also reviewed in section 3.4.2. Further details on PACO
masking and pre-classification can be found in [12].

The input dataset for the proposed classification algorithm is composed of three dif-
ferent sources pre-processed by PACO in the early stages of the atmospheric correction
process and resampled to a resolution of 20 meters: the spectral information from the
Sentinel-2 mission, denoted as Xs ∈ R5490×5490×13; the DEM from the Copernicus Mission
[53], D ∈ Z5490×5490 containing the altitude in MASL; and the corresponding illumination
map I ∈ R5490×5490, produced using the geometrical relation between the sun light beam
and the ground terrain surface.
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Training Testing
Target Class PACO TD1 TD2

Background
- Background - No data - Background
- Dead pixels - Saturated

or defective

Clear
- Bright - Vegetation - Clear land

- Haze land - Non vegetated
- Land

Atmosphere

- Cirrus cloud
- Cirrus cloud thick

- Clouds - Cloud medium - Semi
- Medium cirrus land probability transparent
- Medium cirrus water - Cloud high cloud

- Saturated probability - Cloud
- Thick cirrus land - Thin cirrus
- Thick cirrus water
- Thin cirrus land
- Thin cirrus water

Shadows
- Cloud Shadows - Cast shadows - Cloud shadow
- Litopo shadows - Cloud shadows - Topographic

- Spectral shadows - Unclassified shadow

Water - Haze water - Water - Clear water
- Water

Snow - Snow - Snow - Clear snow/ice

Table 3.2: Mapping to common target classes from PACO masking for training and from
TD1 and TD2 for testing.
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3.4.2 Testing Dataset for the Multispectral Case
This section describes the Testing Datasets (TD) used in this work, including their

labeling criteria, observed biases, and sample availability. The model is evaluated using
two independently and manually labeled datasets, which were originally developed for
external classification evaluation exercises unrelated to PACO or the proposed approach.
For simplicity, these are referred to as Testing Dataset # (TD#). The class distribution
and pixel counts for each evaluated testing dataset are provided in Table 3.3.

Pixel Count
Color Target Class TD1 TD2

Clear 34.93 % 83.86 %
Atmosphere 31.56 % 5.75 %

Shadows 14.59 % 7.01 %
Water 15.03 % 2.53 %
Snow 3.88 % 0.84 %
Total 1,831,038 1,040,116

Table 3.3: Testing datasets class distribution and pixel count.

Given that the testing datasets belong to other testing and validation exercises (TD1
and TD2, described in Subsections 3.4.2.1 and 3.4.2.2, respectively), a mapping is needed
for the common target classes defined for this work. The mapping described in Table 3.2
(columns three and four) ensures consistency between the test datasets and the target
classes defined for this work. By standardizing the class definitions, the performance
metrics can be uniformly evaluated, allowing a fair comparison of the model’s predictions
across different datasets. This mapping was empirically defined by analyzing the classes
definitions in the testing sets and comparing the results from PACO pre-classification with
the available labels for testing. This step is necessary due to the man-made definition
of the classes (described in detail in Sections 2.2.4 and 3.4.2.1) and the overlap between
them. For example, an analysis of PACO’s pre-classification class cirrus cloud revealed
that it is mapped almost equally to the classes cloud high probability and thin cirrus from
the source set of classes SCL from TD1. Thus, it is impossible to map one class to two
without additional information. In this example, all cloud-related classes were merged to
create a new class named atmosphere (see Table 3.2).

An example of the pixel count matrices used in this study is shown in Table 3.4.
Note that some of the split mappings result from well-known problems, such as the
misclassification between water and cloud shadows or between snow and cirrus. The
missing classes were omitted because they do not have a representation in TD1.
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Cirrus
cloud 0.0 0.0 0.0 0.0 3.3 43.6 53.0 0.0

Cirrus
cloud thick 0.0 0.0 0.0 0.0 9.1 86.0 4.9 0.0

Cloud
shadows 78.3 0.1 2.9 18.4 0.0 0.0 0.2 0.0

Clouds 7.8 0.1 0.1 0.0 2.1 68.4 8.2 13.3

Haze
land 4.4 3.4 26.8 6.8 3.1 2.1 53.2 0.0

Haze
water 0.1 51.4 0.0 48.3 0.0 0.0 0.0 0.0

Land 7.0 25.6 57.4 0.7 0.1 0.3 8.7 0.0

Medium
cirrus land 1.0 0.0 0.0 0.0 2.7 19.2 74.3 2.8

Snow 4.2 0.3 0.0 0.0 0.0 0.9 13.7 80.9

Thick
cirrus land 0.0 0.8 0.0 0.0 3.9 21.0 74.2 0.0

Thin
cirrus land 0.0 0.8 0.0 0.0 3.9 21.0 74.2 0.0

Water 16.6 2.1 0.0 81.1 0.0 0.0 0.1 0.0

Table 3.4: TD1 pixel count (in percentage by row) for the comparison of class definitions
between PACO and Sentinel-2 SCL.

3.4.2.1 TD1: Sentinel-2 Fixed- and Random-sites 2020-2023

This dataset was generated for the Copernicus Sentinel-2 SCL validation activi-
ties [122]. A labeling tool was used to generate visually labeled reference pixels in ran-
domized subsets as the validation data. The annotations were based on the visualization
of the selected Sentinel-2 Level-2 granule in true- and false-color composites, as well as
spectral profiles. The two SWIR bands and the narrow NIR band were selected for the
false color composite, along with the L1C cirrus band, to help differentiate the clouds,
land and water surfaces.

The scenes were labeled into the following SCL classes [52]: vegetation, non-vegetated,
water, snow, topographic and cast shadows, cloud medium probability, cloud high probabil-
ity, thin cirrus, and cloud shadow. The number of pixels per class was manually controlled
to be balanced (stratified); however, this depends on the land cover composition of the
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scenes, as some scenes might not naturally include all the SCL classes.
It comprises 53 manually labeled Sentinel-2 scenes, selected using two different strate-

gies: fixed and randomly selected sites. The fixed site scenes set comprises 40 scenes from
the time range of 2020 to 2023, corresponding to the validation exercise of Sentinel-2 [122].
This validation include Germany, Spain, the United States, Russia, and Indonesia. These
5 fixed sites were selected because they are distributed across different continents, cov-
ering various climate zones, seasons, and environments. The scene selection is rotated
monthly for each site in order to observe seasonality. The chosen monthly products are
those with cloud cover closest to 20% and with no-data pixels of less than 33%.

The randomized sites were selected proportional to the number of product requests
per continent, comprising 13 annual randomized site scenes from all continents. The
Sentinel-2 archive was used to selected the scenes in the Google Earth Engine cloud
platform. The first step was to select the time range of the products, then filtered by
continent, cloud percentage between 15–25%, snow less than 15%, water less than 20%,
and no-data pixels less than 10%. Then random numbers were assigned to each image,
and the first image based on these random numbers was selected. A total of three scenes
were selected in in Asia, four in Europe, two in North America, one in South America,
two in Africa, and one in Australia.

3.4.2.2 TD2: Sentinel-2 High Uncertainty Pixels

This dataset was defined in a previous validation work, also using Sentinel-2 images,
presented by Zekoll et al. in [123] to test the Fmask, ATCOR, and Sen2Cor masking
algorithms. The tests performed on 20 scenes include a manually labeled reference by
a human expert, corresponding to pixels with high uncertainty. The selected pixels
for labeling were chosen from those where the three mentioned classifiers disagreed in
classification. Therefore, poor performance and low metrics are expected for this dataset,
as it does not include average classification cases. Further details and results for this
dataset can be found in the aforementioned paper.
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3.4.3 Training Dataset for the Hyperspectral Case
In contrast to the multispectral case, where independent manually labeled testing

datasets were available for a multi-class classification task, the hyperspectral use case
adopts a different validation approach based on physical parameters, as introduced in
Section 3.3. Consequently, the training dataset is used to train a DL model for a binary
classification task focused on cloud detection.

The training set comprises 55 EnMAP scenes with a wide variety of atmospheric
conditions over different types of Earth surfaces. The total number of pixels from all
scenes is approximately 90.2 million. However, due to the projection of the scenes, the
data is slightly rotated within the distributed EnMAP images, as shown in Figure 3.5,
leaving 61.6 million pixels available for training.

Table 3.5 presents the pixel distribution for the binary classification task in the train-
ing dataset.

Table 3.5: Training dataset class distribution and pixel count.

Color Target Class Pixel Count
No Cloud 79.39 %

Cloud 20.61 %
Total 61,595,929

Among the cloud-related products available from the Sentinel-5P mission, the CF was
identified as a suitable parameter to validate the cloud mask generated by the classifier.
Consequently, the masks cube from PACO was mapped according to the criteria presented
in Table 3.6, where all atmosphere-related classes were assigned to the Cloud class, while
the remaining ones were grouped under No Cloud.

Since the testing dataset is designed solely to evaluate cloud detection, as previously
mentioned in subsection 3.3.2 and described in detail in subsection 3.4.4, the mapping
used to generate the training dataset was limited accordingly. Including additional land-
cover or atmospheric classes would not provide any added value to this specific evaluation
task, as they are not represented or validated in the testing dataset. Therefore, a sim-
plified binary classification approach was adopted to ensure consistency between training
and evaluation. However, future work aims to develop a model with class definitions
aligned with those in the multispectral case described in subsection 3.4.1. The model
itself is not restricted by this limitation and can accommodate any number of classes.

The input dataset for the hyperspectral case follows the same structure as the multi-
spectral case. The spatial dimensions of EnMAP imagery are not fixed but vary between
approximately 1,000 and 1,415 rows and columns due to image rotation within the dis-
tributed image, generally maintaining a squared proportion factor.
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Target Class PACO

Background - Background
- Dead pixels

No Cloud

- Bright
- Haze land

- Land
- Cloud Shadows
- Litopo shadows

- Spectral shadows
- Haze water

- Water
- Snow

Cloud

- Cirrus cloud
- Cirrus cloud thick

- Clouds
- Medium cirrus land
- Medium cirrus water

- Saturated
- Thick cirrus land
- Thick cirrus water
- Thin cirrus land
- Thin cirrus water

Table 3.6: Mapping to target classes from PACO masking for training in the hyperspectral
case.

The input data for the hyperspectral case includes spectral information from the
EnMAP mission, a DEM from the Copernicus Mission [53], and an illumination map. All
inputs are processed by PACO at 30 m GSD, as previously described in Subsection 3.4.1.
For this case, the spectral tensor Xs ∈ RRows×Columns×224, the elevation matrix D ∈
ZRows×Columns, and the illumination map I ∈ RRows×Columns are used to form the model
input.
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3.4.4 Testing Dataset for the Hyperspectral Case
The testing dataset is created by identifying matching overpasses between EnMAP

and Sentinel-5P. This search is conducted across the entire archive of both missions, from
May 2023 to September 2024, focusing on two key criteria: intersection of the captured
area and minimal time difference between acquisitions.

Since clouds are constantly moving, the time difference between captures should be as
small as possible to minimize the effects of temporal mismatch (see Figure 3.6 and 4.2.3
for details on the temporal thresholds used). As this difference increases, uncertainty in
the comparison also grows, influenced by secondary factors that are difficult to quantify.
These factors include inherent uncertainties in cloud retrieval from the OCRA algorithm,
as discussed in subsection 2.2.6.1, as well as location accuracy and CF retrieval accuracy.

Figure 3.6: Time difference between matching overpasses. CF is retrieved from EnMAP
metadata (named cloud coverage).

• Cloud location: The displacement in cloud location depends on cloud velocity, which
is influenced by factors such as wind speed and cloud altitude. Even if wind speed
can be measured at Earth’s surface, it is not uniform across all altitudes. Reducing
the time difference between captures minimizes the impact of these secondary fac-
tors. Additionally, inherent spatial shifts related to spatial accuracy and geometric
corrections contribute to the uncertainty in location matching, which decreases with
the CF.
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In addition, since captures are not performed at a nadir angle, clouds appear at
different locations depending on the variation in sensor viewing angles and cloud
altitude [126]. While smaller viewing angle differences and lower cloud altitudes
may reduce this displacement, accurate correction is not feasible in this study due
to the lack of cloud height information.

• Cloud fraction retrieval accuracy: Due to the approach used by the OCRA al-
gorithm, the accuracy of cloud fraction retrieval decreases when the background is
highly reflective or undergoes changes that are not updated in the reference database
used for reflectance comparison.

Figure 3.7: Time difference histogram of TROPOMI pixels within EnMAP scenes. Cloud
fraction is per pixel from TROPOMI CF product.

The matching TROPOMI pixels with EnMAP scenes are displayed in Figure 3.7. As
shown in the plot, the majority of matching pixels with small time differences are con-
centrated in scenes with either clear skies (0 %) or complete cloud cover (100 %). This
distribution is primarily influenced by the acquisition strategy of the EnMAP mission,
which is not a systematic monitoring mission but rather task-driven, capturing scenes
based on user requests. Consequently, most acquisitions tend to favor cloud-free condi-
tions. However, in regions such as Europe (where the majority of acquisition requests
are concentrated) persistent cloudiness is common throughout the year [127], increasing
the likelihood of acquiring fully overcast scenes when urgent observations are required
despite unfavorable weather conditions.

Given this, all scenes with a capture time difference of less than 180 seconds were
included in the testing dataset, resulting in a total of 105 EnMAP scenes with 15 scenes
from Sentinel-5P. The time threshold was empirically defined to maximize the number of
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included scenes and ensure a meaningful statistical representation across different cloud
fraction ranges (see Figure 3.7). As the missions continue capturing images, this time
threshold could be further reduced.

Given that EnMAP scenes are considerably smaller than the TROPOMI cloud prod-
ucts, only the TROPOMI pixels located within the spatial extent of the EnMAP scenes
are retrieved. Figure 3.8 illustrates a matching overpass, where the magenta square rep-
resents the EnMAP scene and the blue dots indicate the centers of the corresponding
TROPOMI pixels. This selection is performed by comparing the geographic coordinates
(latitude and longitude) of the TROPOMI pixel centers with the corner coordinates of
the EnMAP scene.

(a) Location over Sweden. (b) Zoom in.

Figure 3.8: Matching overpass between EnMAP and Sentinel-5P. Magenta outlines denote
the boundaries of the EnMAP scene, while blue dots mark the centers of TROPOMI
pixels.

Once the TROPOMI pixel centers within the EnMAP scene are identified, the entire
area of each TROPOMI pixel must be contained within the EnMAP image, as cloud frac-
tion is computed using the EnMAP pixels enclosed by a TROPOMI pixel for comparison.

If any portion of a TROPOMI pixel extends beyond the boundaries of the EnMAP
image, it must be discarded. The geolocation of pixel centers and corners is provided in
the TROPOMI metadata [55]. In Figure 3.9a, a representation of how the TROPOMI
metadata defines pixel corners is displayed, while Figure 3.9b illustrates the outlines of
TROPOMI pixels.
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(a) Geolocation of
TROPOMI pixel cen-
ters and corners, included in
metadata of cloud products.
Plot credit: L2-Algorithm
Theoretical Basis Docu-
ment (ATBD) TROPOMI
[55].

(b) TROPOMI pixels contained within the EnMAP scene.
The magenta outlines indicate the boundaries of the
EnMAP scene, while the blue dots represent the pixel cen-
ters, and the blue lines denote the outlines of TROPOMI
pixels.

Figure 3.9: TROPOMI pixel geolocation within an EnMAP scene.

After obtaining the geolocated corners of TROPOMI pixels over the EnMAP scenes,
rectangles are drawn onto binary masks using linear regression to determine the incident
lines between pairs of adjacent corners. These lines are mapped onto the binary mask
corresponding to the EnMAP scene, and the pixels within the four sides of each rectangle
are then filled. These masks serve as filters to extract the EnMAP pixels contained within
each TROPOMI pixel. In Figure 3.10, the binary masks corresponding each of the ith

pixel displayed (denoted as Pi) in Figure 3.9b are shown.
As a last step, the EnMAP CF to evaluate is computed from the cloud mask of the

EnMAP scene using equation (3.14) for each of the ith pixels of TROPOMI.

CF EnMAP
i = pcloud

ptotal
(100%) (3.14)

where: ptotal = Number of EnMAP pixels inside a TROPOMI pixel.
pcloud = Number of Cloud EnMAP pixels inside a TROPOMI pixel.

83



Chapter 3. Methodology

(a) P1 (b) P2 (c) P3 (d) P4 (e) P5 (f) P6 (g) P7 (h) P8 (i) P9 (j) P10

(k) P11 (l) P12 (m) P13 (n) P14 (o) P15 (p) P16 (q) P17 (r) P18 (s) P19 (t) P20

Figure 3.10: Binary masks of TROPOMI pixels within the EnMAP scene, illustrating 20
different pixels.

Figure 3.11 shows, an example of an EnMAP cloud mask (GSD: 30 m) and the
resulting CF, adjusted to match the location and spatial resolution of TROPOMI pixels
(GSD: 5.5 km × 3.5 km).

Figure 3.11: EnMAP cloud mask (left plot) is transformed into CF (right plot), matching
the spatial resolution and location of TROPOMI pixels.

According to the OCRA algorithm validation [128], this method of calculating cloud
fraction is known as geometric cloud fraction, as it is derived from a higher spatial reso-
lution source. In contrast, the cloud fraction retrieved with TROPOMI is referred to as
radiometric cloud fraction, since it relies solely on sensor measurements.

Geometric cloud fraction is expected to overestimate the actual CF [56]. This occurs
because the radiometric approach assigns lower weight to clouds with low reflectance. For
instance, when a high-altitude cloud casts a shadow over neighboring clouds, thereby,
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reducing the total cloud fraction accounted for. In contrast, geometric cloud fraction
does not incorporate radiometric variations and instead classifies pixels as either cloudy
or non-cloudy, leading to a systematic discrepancy.

After applying this process to all available overlapping overpasses available from May
2023 until September 2024, a total of 982 TROPOMI pixels were obtained matching
EnMAP for use as reference data in the testing dataset for the hyperspectral case.

3.5 Pixel Selection
For each of the use cases, the first step in the training process (red-dashed box in

Figure 3.1) is the “Pixel Selection”, where high-quality pixels are chosen to train the
model. Since the quality of the training data has a strong impact on the generalization
capacity of deep learning models, this step aims to reduce label noise on training datasets
to improve performance of DL models.

This work analyzes the model’s behavior when trained using three pixel selection
strategies taking or not into account the confusion present in the original PACO masking
cube (M).

• No filter : using all the pixels, regardless of the uniqueness of the classification in
the previous PACO output, as described in Section 3.5.1.

• Uniclass filter : selecting pixels classified into a unique class in the original M masks
cube from PACO, described in 3.5.2.

• Physics filter : selecting pixels based on the physics rules defined in Table 3.7,
described in 3.5.3.

The proposed pixel selection strategies leverage the multi-label classification from
spectral indices thresholding (M), allowing classification of a pixel into one or more
pre-classification classes. Furthermore, this characteristic can be used to identify pixels
with high classification uncertainty when the active masks are contradictory, e.g., when a
pixel is classified as snow and thick clouds. These pixel selection strategies for composing
training datasets are described in the following subsections.

3.5.1 Baseline - No Filter
For baseline comparison, a training set was defined using all the available pixels to

evaluate how our pixel selection strategy performs relative to the complete dataset. This
filter is referred to as “No filter” in the results section.
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3.5.2 Unique Class Filter
This filter was incorporated as a conservative approach for composing the training

dataset, that selects only pixels classified into a single class. In this context, the greater
the number of active masks in a pixel, the higher the uncertainty in its class assignment.
Therefore, to ensure that only reliable labels are used during training, this method se-
lects only pixels classified into a single class. For example, a Sentinel-2 image and its
corresponding active mask map are shown in Figure 3.12.

In the image displayed in Figure 3.12, pixels with a value of 1 in the right plot
are retained. In contrast, some pixels are discarded because, although the water mask
is active, they also have values corresponding to snow/ice (i.e., 2 and 3.), indicating
overlapping or ambiguous classifications.

Figure 3.12: Example of active masks in a Sentinel-2 image (right). The RGB image on
the left serves as a reference. Image: Sentinel-2, T23VMH, 2017/09/04.

This filtering method provides labels with lower uncertainty than the original masks
cube (M) at the expense of under-representing certain classes. As the classification
remains conservative, borderline cases (higher uncertainty classification cases) are left for
the neural network to handle. This filter is referred to as the Uniclass filter in the results
section.
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3.5.3 Filtering Based on Physics Rules
In addition to the proposed pixel selection criteria, a pixel selection strategy was

defined based on physics-based rules, as presented in Table 3.7. In this context, physics-
based refers to grouping classes according to their physical compatibility, particularly
in terms of expected land surface and atmospheric properties. Pixels exhibiting class
combinations that are physically inconsistent or contradictory (e.g., such as pixels labeled
simultaneously as both snow and water as illustrated in Figure 3.12, or the co-occurrence
of thick clouds and clear-sky land in the same pixel) are excluded from the training
set. These contradictions are indicated by gray cells in Table 3.7. By removing such
ambiguous cases, the model is trained on physically coherent examples, enabling it to
infer class confidence from representative patterns in spatial and spectral contexts. At
the same time, this strategy preserves valuable information from valid multi-label cases,
where a pixel legitimately belongs to more than one compatible class. This filter is
referred to as the “Physics filter” in the results section.

Table 3.7 shows the rules for pixel selection used in this work. These rules were defined
by grouping compatible classes and identifying physically contradictory principles, based
on the principles of radiative transfer and the expected spectral behavior of surfaces and
clouds. The rules also reflect the current implementation and definitions used in the
PACO masking algorithm, such as the presence of non-optically opaque clouds or cloud
shadows over different surfaces. Note that in some cases, even if the spectral information
does not allow the detection of certain elements, e.g., cloud shadows under a cloud,
shadows physically exist and can be masked from the projection of the clouds. Another
example is the topographic shadow under clouds; even if the cloud is blocking the view,
the topographic shadow is computed from the DEM.

Figure 3.13 shows an example of the performed pixel selection, where pixels classified
as snow and clouds (a gray cell in Table 3.7) are discarded by this filter from the training
datasets by assigning them the background label. In contrast, the pixels of snow/ice in
the river are included, as they pass the filter (green cells in Table 3.7).
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Land x

Water x

Snow x

Bright x

Cloud
shadows x

Spectral
shadows x

Litopo
shadows x

Haze
land x

Haze
water x

Clouds x

Thin cirrus
land x

Thin cirrus
water x

Medium cirrus
land x

Medium cirrus
water x

Thick cirrus
land x

Thick cirrus
water x

Cirrus
cloud x

Cirrus cloud
thick x

Background x

Saturated x

Dead
pixels x

Table 3.7: Physics rules for pixel filtering. Pixels classified as coincident green cells are
included in the training set, while gray cells are discarded.
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Figure 3.13: Example of pixel selection for training. The binary masks at the bottom,
from PACO’s masks cube, indicate contradictory classifications of snow and clouds. Pixels
with both masks active are discarded from training by assigning them the background
label. A comparison of unfiltered and filtered mapping is shown in the two middle images.
The RGB image at the top serves as a reference. Image: Yakutsk, Russia. Sentinel-2,
T52VEP, 2023/03/17, 11:45, -13°C.

89



Chapter 3. Methodology

3.6 Deep Learning-Based Classifier
DL models, particularly those based on CNNs, have demonstrated outstanding per-

formance in image classification by effectively capturing characteristic spatial features for
object identification [129, 130, 131]. On the other hand, remote sensing optical imagery,
which consists of highly spatially correlated pixels, also incorporates spectral informa-
tion. Characteristic patterns in the spectrum enable the classification of elements on the
Earth’s surface or in the atmosphere. Given the high volumes of data retrieved daily
from EO missions, this challenge is a suitable candidate for the implementation of DL
models.

The approach implemented in this thesis involves training a DL model using the
multi-label classification outputs generated by spectral index-based masking algorithms,
such as those implemented in PACO or similar atmospheric correction tools. This strat-
egy enables the efficient compilation of large-scale training datasets without requiring
manual annotation, which is often unfeasible at a global scale due to the complexity and
resource demands of producing high-quality reference labels. By relying on algorithmic
pre-classification masks, the resulting labels remain consistent with physically-informed
class definitions, grounded in prior knowledge from radiative transfer theory and spec-
troscopy. Although this work focuses on a specific model architectures based on CNNs,
the proposed methodology is designed to be adaptable and may serve as a framework for
the implementation and evaluation of emerging DL models in operational remote sensing
applications.

In this case, where pixels are discarded as explained in subsection 3.5, the model
processes input pixel by pixel and in the case of CNN2D and CNN3D, along with its
neighboring pixels, forming spatial-spectral patches. Figure 3.14 illustrates the structure
of these patches.

A key advantage of this input representation for the DL model is that, even if the
neighboring pixels included in the patch are not labeled or used directly for training, they
still contribute to the spatial context to the labeled pixels. For example, at the boundary
between cloud and snow pixels, both classes may be active, leading to their exclusion.
However, these pixels remain within the spatial neighborhood of low-uncertainty pixels,
providing useful information to the model of the spatial context of a pixel.

As mentioned in the state-of-the-art review (subsection 2.4.3), a set of CNNs with
variant feature extractors were selected due to its relatively low computational complex-
ity and proven outstanding performance [68]. The architectures of the models used in
this thesis are shown in Table 3.8. Originally presented in [68] for hyperspectral im-
agery, the model was adapted for the multispectral case by reducing the size of the filters
that perform convolutions in the spectral domain. For the hyperspectral case, the re-
duced architecture presented in this thesis was retained, further lowering computational
complexity.

For the methodology proposed in this thesis, a window size of 11 × 11 pixels was
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Spatial-Spectral
patches  

Figure 3.14: Input of the implemented DL model. Spatial-spectral patches with the
pixel of interest at the center. The blue cube represents a multi/hyperspectral image
X ∈ RRows×Columns×F , while the red cube denotes Xpatch ∈ RW ×W ×F , where W is the
window size and F is the number of features, defining the input of the CNN2D and
CNN3D models.

selected, resulting in an input tensor Xpatch ∈ R11×11×F centered at (6, 6). This size
provides enough spatial context (220 m for Sentinel-2 and 330 m for EnMAP) to capture
spatial patterns to characterize the observed objects on Earth surfaces. Larger window
sizes were tested empirically, but no significant performance improvements were observed,
while computational complexity increased. In CNN models, increasing the window size
proportionally increases the number of convolutions required for each new pixel (assuming
unit stride) at each layer.

Each model performs feature extraction in different domains. CNN1D analyzes local
relationships among neighboring wavelengths by performing 1D convolutions with kernels
of size (1 × F ). Therefore, the feature extraction only depends on the spectral signature
for each pixel. CNN2D first extracts spatial features for each band independently with
kernels of size (5 × 5). These band-specific feature maps are then passed to the detection
stage, where spectral relationships across bands are jointly modeled. Similarly, CNN3D
extracts spatial and spectral features jointly with 3D convolutions using kernels of size
(5×5×10), extracting complex relationships between the spatial and spectral information
and then passed to a detection stage.

In subsequent layers of the three architectures mentioned, the spectral, spatial, and
spatial-spectral features are progressively reduced and passed through a fully connected
layer, which assigns confidence indices at the output of the CNNs using a softmax acti-
vation function [68].

In order to include the information from the multi-label mask cube, the softmax
activation function f(s)c is used for each class c ∈ 1, 2, · · · , C, as defined in equation
(3.15), in conjunction with the categorical Cross-Entropy (CE) loss, denoted as CE(t, s),
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Model Main
Layer Norm Activation

function
Down

sampling

CNN1D

Linear input (1 × F ) - - -
Conv1D(50 × 15) - ReLU -

Dense(100) BN ReLU -
Dense(n class) - Softmax -

CNN2D

Linear input (11 × 11 × F ) - - -
Conv2D(50 × 5 × 5) - ReLU -
Conv2D(100 × 5 × 5) - ReLU POOL(2 × 2)

Dense(100) - ReLU -
Dense(n class) - Softmax -

CNN3D

Linear input (11 × 11 × F ) - -
Conv3D(32 × 5 × 5 × 10) BN ReLU -
Conv3D(64 × 5 × 5 × 5) BN ReLU POOL(2 × 2 × 1)

Dense(300) BN ReLU -
Dense(n class) - Softmax -

Table 3.8: CNN1D, CNN2D, and CNN3D model descriptions [68].

defined in equation (3.16):

f(s)c = esc∑C
i esi

, (3.15)

CE(t, s) = −
C∑
c

tc · log (f(s)c) , (3.16)

where s is the vector containing the scores sc inferred at the output of the model, and t is
the reference (also called truth) multi-label vector. This loss function compares the con-
fidence index at the output of the softmax activation functions, [f(s)1, f(s)2, · · · , f(s)C ],
with the multi-label classification used as a reference for training. A confidence index vec-
tor is obtained from the one-hot encoded classes by dividing each binary value tb

c (casted
to float) by the number of active masks, such that:

t = [tb
1,tb

2,··· ,tb
C]∑C

i=1 tb
i

, (3.17)

in this way, the multi-label reference matches the confidence index format of the softmax
function by assigning equal values to each class. Future work will explore assigning
the confidence index of the reference multi-labels using information from physics-based
models and investigating the behavior with other activation functions. This is motivated
by the fact that softmax, as a generalization of the sigmoid activation function, is widely
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used for binary classification but tends to polarize the confidence index [132]. Lastly,
to address the naturally imbalanced representation of each class in the training set, a
weighting scheme is applied for each class as follows [133]:

wc = |P|
C · |Pc|

, (3.18)

where |P| is the cardinality of the set of pixels and Pc the set of pixels of class c
for training. To obtain |Pc|, a mapping is performed from the multi-label mask cube
to a single-label classification map using a fixed priority hierarchy in the following or-
der: Atmosphere, Shadows, Snow, Water, and Clear. The obtained pixel count provides
an approximate class distribution for computing loss weights. Hence, the loss function
leverages the multi-label classification from threshold-based classifiers, as it compares
the confidence index of a pixel belonging to a class with the confidence indices of other
classes, which enables a more informed classification criterion for mixed pixels, such as
cloud edges, or for pixels with similar spectral signatures, such as snow and clouds.

3.7 Training
Global-scale applications require a high level of generalization, which is achieved by

preventing overfitting during the model fitting process. This is particularly crucial in
this thesis, as the testing dataset consists of scenes not used during training, and the
corresponding labels originate from independent sources.

Training is the most computationally intensive phase of neural network implemen-
tations and is highly dependent on the Central Processing Unit (CPU), Random Ac-
cess Memory (RAM), and Graphics Processing Unit (GPU) available. GPU computing
performance depends on the available GPU memory, Compute Unified Device Archi-
tecture (CUDA) cores, memory bandwidth, associated accelerators such as tensor cores
for tensor multiplication, and the architecture itself. Therefore, training was performed
using High Performance Computing (HPC) centers, highlighting below some of the key
characteristics. During the early stages of this thesis, we used the HPC in Cinvestav
Guadalajara, featuring ×1 Nvidia Tesla V100 16 GB. Then, we used the Othrys HPC,
featuring ×16 Nvidia GeForce RTX 2080Ti 11 GB, ×8 Nvidia TITAN RTX 24 GB, ×2
Nvidia Quadro P6000 24 GB, and ×12 Nvidia Titan X 12 GB. During the final phase of
this thesis, we used the HPC Terrabyte of LRZ, which has 45 nodes, each with ×2 CPU
40-core Intel Xeon, 1024 GB of RAM, and ×4 GPU Nvidia A100 80 GB.

3.7.1 Training the Model for the Multispectral Case
The results presented in this work for the multispectral case are from models trained

with the Adam optimization algorithm [134], using 1 % (approximately 20 million pixels)
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of the available 71 Sentinel-2 scenes with 15 features (13 spectral bands, DEM, and
illumination), and a batch size of 100,000 samples. This small fraction is sufficient to
train the model effectively due to the high spatial redundancy in remote sensing imagery
and the random selection of pixels across diverse locations. These fitting hyperparameters
(including learning rate, batch size, optimizer, train size) were selected based on an
exhaustive grid search evaluating the model’s performance across different parameter
combinations.

After applying the pixel selection strategies described in Section 3.5, two subsets are
selected: one for training and one for validation. Each subset is selected with a random-
stratified strategy, maintaining the same proportion of pixels for each class. The objective
of including a validation set is to avoid over-fitting by evaluating the model at the end
of each epoch, and discarding any further changes if the validation evaluation does not
improve.

The validation set consists of 1 % (≈ 20 million pixels) of the available data for
training and is fixed for consistent comparison across trainings. The loss curves obtained
by training for the three pixel selection strategies, using the hyperparameters previously
mentioned, are shown in Fig. 3.15a, 3.15b, and 3.15c, for CNN1D, CNN2D, and CNN3D,
respectively.

Table 3.9 reports the parameters counts and wall-clock times measured using a GPU
NVIDIA A100 (80GB) with a 12-core CPU and 256GB of RAM. For CNN2D and CNN3D,
the spatial patches require extensive use of memory (with size 11 × 11 × 15 per pixel),
so a custom batch generator streams the data during both training and inference. All
Sentinel-2 scenes were resampled to 20 m spatial resolution; times therefore reflect the
operational cost at that resolution.

Table 3.9: CNNs size and time complexity training for the multispectral case.

Model Parameters Epochs Training
time (min)

Prediction
time (min)

CNN1D 76,805 20 161.9 0.6
CNN2D 154,505 10 162.0 3.0
CNN3D 305,885 30 482.9 3.0

To avoid introducing any information from the testing dataset into the training pro-
cess and to explore methods for obtaining a generalized model applicable to any case,
an analysis revealed that increasing the number of training pixels or training epochs (de-
spite slight improvements in the validation set with each epoch) does not lead to better
performance for the testing datasets. This behavior is likely due to the fact that in-
creasing the size of the training set also increases the likelihood of introducing outliers.
Additionally, by introducing highly correlated pixels corresponding to average cases, the
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Figure 3.15: Training (T) and validation (V) loss curves for the three CNN models under
the three pixel-selection strategies for the multispectral case. The model saved during
training corresponds to the epoch with the lowest validation loss, evaluated at each epoch.

training process may overfit the original model, replicating its behavior and losing the
generalization that comes from a sparse input. However, these observations remain hy-
pothetical and should be further investigated. More details on this topic are discussed in
Subsection 4.3.3.
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3.7.2 Training the Model for the Hyperspectral Case
For the hyperspectral case, using the same optimizer and architecture backbone as

in the multispectral case (keeping the same size of the filters but modifying the linear
input from (11 × 11 × 15) to (11 × 11 × 226). The models were trained during 10 epochs
using 10 % (≈ 12 million pixels) of the available 55 EnMAP scenes after applying the
pixel selection strategies described in Section 3.5. The use of 10% was found to be a good
balance between model generalization and available computational resources, considering
the higher dimensionality of hyperspectral imagery, with 226 features (224 spectral bands,
DEM and illumination) and a batch size of 5000 samples.

The validation set consists of 10 % (≈ 12 million pixels) of the available data for
training and is fixed for consistent comparison across trainings.

Table 3.10 reports the parameters counts and wall-clock times measured using a GPU
NVIDIA A100 (80GB) with a 12-core CPU and 256GB of RAM with the previously
mentioned custom batch generator for spatial patches of size 11 × 11 × 226 per pixel.
All EnMAP scenes have a 30 m spatial resolution; times therefore reflect the operational
cost at that resolution. It can be observed that the parameters for CNN1D and CNN3D
(models that extract spectral features) increase significantly the number of parameters
to train, this is due to the significant increase of features in the spectral domain (from
15 to 226, a ×15 increase), therefore the number of features and operations within layers
increase accordingly. On the other hand, CNN2D only present a linear increase in the
amount of spatial features (in the first layer, one for each new band), as well in the
number of connections on the classification stage (last layers), where all spatial maps are
flattened in the fully connected layer.

Table 3.10: CNNs size and time complexity training for the hyperspectral case.

Model Parameters Epochs Training
time (min)

Prediction
time (min)

CNN1D 1,142,052 10 8.58 1.2
CNN2D 417,952 10 179.2 1.8
CNN3D 4,356,182 10 520.5 1.8

The loss curves obtained by training for the three pixel selection strategies presented
using the hyperparameters previously mentioned are shown in Figure 3.16.

Although the training procedure is consistent across the multispectral and hyperspec-
tral cases (with equivalent model architectures, patch sizes, and pixel selection strategies)
the resulting loss curves show notable differences, as seen in Figures 3.15 and 3.16. In the
multispectral case, the models show generally higher loss, particularly at the beginning of
the training and slightly noisier validation curves, particularly in CNN3D, possibly due
to the limited number of spectral features and the more diverse class set used in training
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Figure 3.16: Training (T) and validation (V) loss curves for the three CNN models under
the three pixel-selection strategies for the hyperspectral case. The model saved during
training corresponds to the epoch with the lowest validation loss, evaluated at each epoch.

(5 classes for the multispectral case, 2 classes for the hyperspectral case). In contrast,
the hyperspectral training curves are smoother and converge more rapidly across all CNN
architectures. This is likely due to the binary classification setup and the increased spec-
tral resolution of EnMAP, which provides richer spectral signatures that improve class
separability. However, this increased dimensionality also introduces challenges related to
the curse of dimensionality (such as sparsity, distance distortion, and risk of overfitting)
as discussed in Section 2.3.1.2.
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3.8 Testing
Once the models are fitted, the testing phase must be conducted using different scenes

and independent sources of information. This step is necessary to align with the global
implementation perspective of this work and to demonstrate the generalization ability and
limitations of the proposed approach. To evaluate this for the multispectral, multi-class
classification testing sets are compared with the model’s predictions using classification
performance metrics, analyzing the bias of each while considering the imbalanced avail-
ability of samples of each class. On the other hand for the hyperspectral case, correlation
metrics are used to evaluate a linear regression evaluating the CF.

3.8.1 Classification Metrics
Given a confusion matrix C of K classes:

C ∈ ZK×K , (3.19)

such that:

C =


c1,1 c1,2 · · · c1,K

c2,1 c2,2 · · · c2,K
... ... . . . ...

cK,1 cK,2 · · · cK,K

 e.g., for K = 2, C =
[
TP FN
FP TN

]
, (3.20)

where columns and rows correspond to the reference and predicted labels respectively.
When K = 2, TP, TN, FP, and FN are the true positives, true negatives, false positives,
and false negatives, respectively.

The confusion matrix provides a general overview of correctly classified pixels (in
diagonal), such that {ci,j|i = j}, and misclassifications with other classes {ci,j|i ̸= j},
while allowing the computation of any needed metric for comparison.

In addition, most of the results are presented in terms of Matthew’s Correlation
Coefficient (MCC) for the general evaluation and comparison between the baseline and
the prediction obtained. It is used for the multi-class case (as a single-score metric for
each testing dataset) and also for class-wise comparisons. However, also the inclusion
of precision and recall metrics allows for an intuitive interpretation of overestimation or
underestimation of a class.

To individually evaluate each class, the multi-class confusion matrix is transformed
into a binary confusion matrix, where the positive class is the class of interest k, and
the negative class includes all other classes. The used metric is MCCk ∈ [−1, 1], for the
binary classification case [135, 136], defined for class k as follows:

MCCk = TP · TN − FP · FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

∈ [−1, 1]. (3.21)
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For the multi-class case [137, 138], with K classes, MCC is defined as:

MCC = c · s − ∑K
k=1 pk · tk√(

s2 − ∑K
k=1 p2

k

) (
s2 − ∑K

k=1 t2
k

) ∈ [−1, 1] (3.22)

where: c = ∑K
k=1 Ck,k = total number of correctly classified samples

s = ∑K
i=1

∑K
j=1 Ci,j = total number of samples

tk = ∑K
i=1 Ci,k = number of times class k truly occurred

pk = ∑K
i=1 Ck,i = number of times class k was predicted

For both cases, the results of MCC are presented in their normalized version, nMCC,
linearly projected to the interval [0, 1] as the majority of metrics, defined as:

nMCC = MCC + 1
2 ∈ [0, 1] (3.23)

In addition, Precision (P) and Recall (R) metrics, denoted as Pk and Rk for class k
respectively, are also included. In remote sensing, P and R are also known as User’s and
Producer’s accuracy, respectively, defined as:

Pk = TP
TP + FP ∈ [0, 1] (3.24)

Rk = TP
TP + FN ∈ [0, 1] (3.25)

The widespread use of Overall Accuracy (OA) is due to its intuitive interpretation of
the proportion of correctly classified pixels relative to the total; however, it can conceal
biases when the dataset is imbalanced [119]. OA for class k is defined as:

OAk = TP
TP + TN + FP + FN ∈ [0, 1] (3.26)

Each metric provides a different interpretation of the results, and depending on the
application, users may prioritize one over the others, although MCC is less biased by
the class imbalance of the testing datasets [119]. For instance, when analyzing cloud-free
pixels with sufficient data, users tend to prioritize the overestimation of clouds to ensure
that the identified pixels are indeed clear skies. In such cases, R is the preferred metric,
as it highlights the presence of cloud pixels that have been misclassified as clear sky. In
this way, classification reports are provided to end users to help interpret the bias and
limitations of classification products.
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3.8.2 Testing Classification Report
Given the need to deeply analyze the behavior of the classifier and assess its perfor-

mance compared to the original PACO masks, a testing report was developed to provide
an overview of the results obtained during model testing on independent datasets. It
summarizes the previously reviewed classification metrics in a condensed format and is
automatically generated after the prediction. In addition, a brief subjective interpreta-
tion was conducted for scenes where it was previously known that predictions tended to
fail and negatively impact the reported metrics.

Therefore, the implemented methodology is described in this section, allowing for the
evaluation of the results, the tools that compose it, and some lessons learned.

3.8.2.1 Metrics Report

After the prediction of the testing dataset, a metrics report was included as a product
of this phase. Thanks to the pixel-by-pixel classification approach of the proposed model
(instead of tile-by-tile), the prediction can be performed only over the labeled pixels,
avoiding the need to classify all pixels from all scenes (if specified) to reduce computation
time. In Table 3.11, an example of a testing report is shown, including the confusion
matrix and associated classification metrics, as well as a comparison with the baseline
model (PACO in this study) to highlight performance differences.

Ground Truth
Clear Cloud Shadows Water Snow SUM Precision Recall nMCC Accuracy 0.69

Clear 578768 9812 5107 454 783 594924 0.97 0.66 0.71
Cloud 46705 46202 752 7 1150 94816 0.49 0.77 0.79 nMCC 0.74

Shadows 36437 1137 64288 4460 9 106331 0.60 0.88 0.86
Water 1347 188 648 21317 41 23541 0.91 0.81 0.93

Prediction

Snow 208912 2464 2166 62 6798 220402 0.03 0.77 0.57
SUM 872169 59803 72961 26300 8781

Clear Cloud Shadows Water Snow SUM Precision Recall nMCC Accuracy 0.60
Clear 500584 9014 18910 6824 2167 537499 0.93 0.57 0.63
Cloud 73808 45349 2627 62 219 122065 0.37 0.76 0.75 nMCC 0.67

Shadows 93861 165 49080 1112 0 144218 0.34 0.67 0.71
Water 1087 151 344 18121 107 19810 0.91 0.69 0.90

Baseline

Snow 202829 5124 2000 181 6288 216422 0.03 0.72 0.56
SUM 872169 59803 72961 26300 8781

Table 3.11: Example of a testing report generated after prediction. Comparison between
the baseline model results and the predictions from the fitted model.

Different insights can be drawn from Table 3.11. For instance, the total sample
counts reveal the strong imbalance in the testing dataset. To support interpretation,
all reported values are color-coded: pixel counts range from white-blue (lowest) to dark
blue (highest), and performance metrics use a red-to-beige scale (with red indicating the
lowest values). The confusion matrix, with its blue shading, shows that most predictions
lie along the diagonal, indicating correct classifications. However, a considerable number
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of misclassifications remain. For example, many Clear pixels are misclassified as Snow.
Conversely, the model tends to confuse Snow pixels with Cloud, though it improves over
previous results by reducing the misclassification of Shadow pixels as Clear. Regarding
the metrics, red shading highlights classes with comparatively lower scores, as in the case
of precision and nMCC for Snow.

Another example that illustrates how the overall evaluation can be quickly interpreted
is shown on the right side of Table 3.11. It is easy to observe the overall increase in nMCC
from 0.67 to 0.74, indicating a substantial improvement between the baseline model and
the fitted model. Although this improvement is not observed across all the labels. For
example, very low precision is observed for the Snow class in both cases; however, recall
improves from 0.72 to 0.77. Precision and recall for all classes are overall improved, which
also results in better nMCC values for each class.

3.8.2.2 Subjective Visual Interpretation

The objective of a classifier is usually to maximize the metrics during the testing phase,
and these depend on the reference labels, as the requirements are defined by the labels
themselves. However, there is a drawback, as it is difficult to define the completeness of
the testing dataset; this task could become a never-ending problem.

To illustrate this situation, a case is briefly discussed during the testing phase of this
thesis. A significant improvement was observed by analyzing the obtained classification
map and the RGB quick look, shown in Figure 3.17, where a significant number of wa-
ter pixels are misclassified as clear pixels. However, this is not reflected in the metrics,
because most of the water pixels in that area were unlabeled. Thus, even if the improve-
ment is evident, there is no formal scientific way to report it, apart from explaining and
displaying the result. This case is further described in the Results chapter 4.

Figure 3.17: Improvement in the predicted water pixels compared to the baseline PACO
classification map. Image: Sentinel-2 T35TNG 2023/08/05.

This experience highlighted the need to develop a robust testing methodology, con-
sidering various sources to evaluate the results of the fitted models, and even if one of the
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testing requirements is completely satisfied, it should provide different points of view in
an attempt to avoid biases in evaluation. Although subjective interpretation of the results
is not well appreciated during scientific exercises, it provides an intuition of the behavior
and overall performance, although this insight cannot be used to refine the model.

On the other hand, the same subjective interpretation is widely implemented during
the construction of validation and testing exercises, when provided by an independent
source, defining the classes based on the interpretation of the labeler, and not on fixed re-
quirements. This was the main motivation to develop the testing methodology presented
for the hyperspectral case in subsection 3.3.2, by comparing physical parameters, which
are numerically defined and do not change between exercises, allowing for harmonized
classification targets.

3.8.3 Regression Metrics
Although this thesis addresses a classification problem, the evaluation of the hyper-

spectral case is framed as a regression problem. This is because the cloud classification
output is transformed into CF based on a patch of EnMAP pixels corresponding to the
location of each TROPOMI pixel. The evaluation is conducted by comparing CF val-
ues through regression plots, also considering the distribution of samples across different
CF ranges through the use of various types of histograms to provide further insight into
the statistical significance of the evaluation, along with single-score metrics to compare
overall performance. Additional details about the regression plots and histograms are
provided in Appendix B.1.

Given two variables with an assumed linear relationship, the following is defined:

∆yn = ŷn − yn ŷ, y ∈ R (3.27)

where: y = Reference variable,
ŷ = Predicted variable,
∆yn = Difference between the predicted and reference variables,
n = As a subscript, is the nth sample of N samples.

These metrics are used to evaluate the overall performance of the prediction compared
to the reference variable. Each of the metrics provide an assessment of different aspects
of the overall fit.

The Root Mean Squared Error (RMSE) measures the accuracy of the prediction and
is defined by the square root of the mean of the squared differences, as follows:

RMSE =

√√√√ 1
N

N∑
n=1

(∆yn)2 ∈ [0, ∞) (3.28)
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The Mean Bias Error (MBE) indicates the average bias based on the sum of the
differences, preserving the sign. A positive MBE indicates that the predicted variable
overestimates the reference values, while a negative value indicates underestimation.

MBE = 1
N

N∑
n=1

∆yn ∈ (−∞, ∞) (3.29)

Lastly, the coefficient of determination, denoted as R2, indicates the model fit. A
value of R2 = 1 corresponds to a perfect fit, while values of R2 ≤ 0 indicate that the
prediction performs worse than a horizontal line predicting the mean ȳ.

R2 = 1 −
∑N

n=1 (∆yn)2∑N
n=1 (yn − ȳ)2 ∈ (−∞, 1] (3.30)

where: ȳ = Mean of the reference variable y over N samples.

Although these are informative single-score metrics, the analysis should always be
complemented with regression plots and histograms to support the statistical evaluation
and provide a deeper understanding of the regression results.

3.8.3.1 APU Plots

For statistical analysis of the regression, the use of Accuracy, Precision and Uncer-
tainty (APU) plots [7, 139, 140, 141] enables evaluation across different ranges of the
reference variable. APU plots are commonly used to compare various physical param-
eters in the ESA Atmospheric Correction Inter-comparison eXercise (ACIX) exercises
[142, 143].

The APU plot begins with the discretization of the range of the reference variable
by creating a histogram. Then, three evaluation metrics are computed for each bin of
the reference variable, revealing different aspects of the regression performance, while
taking into account the statistical significance based on the number of samples in each
bin. Therefore, the difference ∆yn = ŷn − yn is also used in the APU plots. However, in
contrast to the previous definition in equation (3.27), it is now evaluated bin by bin from
the histogram, where the subscript n represents the nth sample of Nb samples in bin b
out of B total bins.

The Accuracy (A) reflects the mean bias, the Precision (P ) represents the repeata-
bility of the predicted variable by computing the standard deviation with the mean bias
corrected, and the Uncertainty (U) is the statistical deviation of the predicted variable
from the reference [139]. The APU metrics are then defined in equations (3.31), (3.32),
and (3.33).
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A = 1
Nb

Nb∑
n=1

∆yn (3.31)

P =

√√√√ 1
Nb − 1

Nb∑
n=1

(∆yn − A)2 (3.32)

U =

√√√√ 1
Nb

Nb∑
n=1

(∆yn)2 (3.33)

Note that A (equation 3.31) is equivalent to the MBE (equation 3.29), and similarly,
U (equation 3.33) corresponds to the RMSE (equation 3.28). Although mathematically
equivalent, these metrics differ conceptually. In the APU plot, the metrics are computed
per bin and reflect the statistical significance of each bin, depending on its sample popu-
lation. In contrast, the metrics defined in subsection 3.8.3 are computed over the entire
dataset, providing a global assessment.

In Figure 3.18, an example of an APU plot is shown, displaying the three described
metrics across all bins spanned by the reference variable. The plot examples in this
subsection are generated using N = 1500 synthetic samples from a uniform distribution
with additive normal noise, such that {y ∼ U(a = 0, b = 100)} and {ŷ = y + N (µ =
0, σ = 5) | ŷ = min(max(ŷ, 0), 100)}.

Figure 3.18: Example of an APU plot showing Accuracy (A), Precision (P), and Uncer-
tainty (U) metrics across B = 20 bins using N = 1500 samples.
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Results and Discussion

This chapter presents the results obtained in this thesis, divided into two main sec-
tions, as described in the case studies presented in Section 3.3:

• The multispectral case using Sentinel-2 imagery, evaluating the classification with
independently labeled datasets.

• The hyperspectral case using EnMAP imagery, translating the evaluation from a
classification product into physical parameters by comparing the obtained cloud
maps with the TROPOMI CF products from the Sentinel-5P mission.

Therefore, the following sections discuss the results using the workflow and tools
presented in Chapter 3, providing insights, hypotheses, and analyzing the behavior of the
fitted models with different training sets.
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4.1 Results for the Multispectral Case
This section presents the evaluation of the predictions obtained from the trained mod-

els compared with the base pre-classification maps from PACO, hereafter PACO “hcw”
(see [12]). Table 4.1 provides an overview of the results obtained for each testing dataset
(in terms of nMCC, darker blue = higher), produced by the three tested models, CNN1D,
2D and 3D, for the three pixel-selection strategies—no filter, physics filter, and uniclass
filter (Section 3.5)—. The metrics are then compared in terms of absolute improvement,
expressed as Percentage Points (pp). All values are single-run scores; variance analysis is
left for future work due to the high computing cost.

Table 4.1 summarizes the normalized Matthews correlation coefficient (nMCC) for
all models and pixel-selection strategies. Across both test datasets, every CNN variant
outperforms the PACO’s “hcw” baseline by 1.8–18.3pp.

• On TD1, the best result is 0.888 nMCC obtained by CNN2D-uniclass filter, a gain
of +3.3pp over PACO “hcw”.

• On TD2, the largest improvement comes from CNN1D-uniclass filter (0.848 nMCC,
+18.3pp), followed closely by CNN3D-uniclass filter (0.833 nMCC, +16.8pp)

Model TD1 TD2
PACO 0.855 0.665

No filter 0.867 0.723
Physics filter 0.877 0.848CNN1D
Uniclass filter 0.879 0.764

No filter 0.884 0.730
Physics filter 0.883 0.755CNN2D
Uniclass filter 0.888 0.732

No filter 0.872 0.734
Physics filter 0.879 0.741CNN3D
Uniclass filter 0.874 0.833

Table 4.1: Overview of the obtained classification results across all testing datasets. The
results are expressed in nMCC; darker blue indicates higher scores per testing dataset.

These gains are observed across the diverse surfaces and atmospheric conditions rep-
resented in TD1/TD2. We attribute them to the richer feature extraction of the CNNs
and to the integration of inter-class relationships within a single network.
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TD2 includes many complex or ambiguous pixels, hence baseline scores are lower
than for TD1. This gap is narrowed by CNN1D-physics filter and CNN3D-uniclass filter.
These results suggest that 2D spatial filtering best suits the average cases of TD1 set,
whereas spectral-focused 1D kernels cope better the ambiguous pixels in TD2. CNN3D
offers a strong but more expensive compromise (≈ 305 k vs. 77 k parameters).

Pixel-selection strategies improve over the no filter baseline. On TD2, the physics
filter lifts CNN1D by +12.5pp, while the uniclass filter adds +9.9pp to CNN3D. On
TD1 the gains are smaller (≤ 1.2pp), and CNN2D-physics filter shows a marginal drop
of -0.1pp.

The larger gains on TD2 reflect how each filter targets the dominant source of label
noise in that set. The physics and uniclass filters remove pixels whose spectral indices
fall near class-decision thresholds, eliminating many mixed or ambiguous spectra; this
particularly benefits the spectral feature extraction of CNN1D and CNN3D, which rely
on the spectral signature to resolve uncertainty, but also benefits CNN2D in a more
limited way. In TD1, the original labels are already cleaner and more balanced, hence
both filters bring only marginal additional benefit (or a slight loss when informative edge
pixels are discarded, as with CNN2D-physics filter).

4.1.1 Per-class Results Analysis
In order to achieve a deeper understanding of the behavior of the proposed pixel

selection strategies, the results for each class are presented individually in Tables 4.2
and 4.3, corresponding to TD1 and TD2, respectively. For ease of reading, only significant
improvements or losses are discussed in the text.

For both testing datasets, the biggest improvement is observed for the shadow class,
where nMCC is considerably improved by 4–9pp for TD1 and 16.7–20.2pp for TD2,
consistently across both datasets.

The next best improvement is observed for the clear class, improved by 1.1–4.1pp for
TD1 and 7.2–22.7pp for TD2, highlighting CNN1D-physics filter and CNN3D-uniclass
filter for TD2, which achieve the best results by a considerable margin. This improvement
is correlated with the improvement of the snow class in TD2 for the aforementioned CNNs,
which is not improved remarkably for any other CNN, and even loses performance in some
cases.

The atmosphere class is generally improved, except for CNN1D-no filter for TD2, with
improvements of ≤ 3pp for TD1 and ≤ 6.1pp for TD2. On the contrary, the water class
shows improvements of ≤ 1.3pp for TD1, but most of the trained models show losses of
≤ 2.4pp for TD2, except for CNN1D-no filter and CNN2D-uniclass filter, which show an
improvement of ≤ 1pp.

To pinpoint where the remaining errors occur and which classes are most affected,
we compare the confusion matrices of the best CNN for each test set with the PACO

107



Chapter 4. Results and Discussion

TD1
Model Clear Atmos Shadow Water Snow
PACO 0.861 0.855 0.769 0.905 0.906

No filter 0.874 0.873 0.809 0.911 0.822
Physics filter 0.876 0.878 0.834 0.915 0.889

C
N

N
1D

Uniclass filter 0.872 0.885 0.834 0.916 0.905
No filter 0.899 0.885 0.844 0.910 0.821

Physics filter 0.898 0.878 0.850 0.915 0.832

C
N

N
2D

Uniclass filter 0.902 0.881 0.859 0.918 0.861
No filter 0.878 0.873 0.832 0.911 0.825

Physics filter 0.884 0.877 0.842 0.912 0.878

C
N

N
3D

Uniclass filter 0.872 0.866 0.845 0.922 0.867

Table 4.2: Obtained classification results for TD1 presented for each class separately.
The results are expressed in nMCC; darker blue indicates higher scores per class.

TD2
Model Clear Atmos Shadow Water Snow
PACO 0.630 0.746 0.712 0.895 0.558

No filter 0.702 0.710 0.914 0.905 0.543
Physics filter 0.857 0.807 0.900 0.896 0.655

C
N

N
1D

Uniclass filter 0.757 0.794 0.891 0.883 0.577
No filter 0.712 0.749 0.880 0.891 0.556

Physics filter 0.748 0.758 0.881 0.882 0.561

C
N

N
2D

Uniclass filter 0.716 0.756 0.879 0.901 0.564
No filter 0.715 0.756 0.898 0.894 0.551

Physics filter 0.730 0.761 0.885 0.871 0.565

C
N

N
3D

Uniclass filter 0.843 0.772 0.893 0.877 0.726

Table 4.3: Obtained classification results for TD2 presented for each class separately.
The results are expressed in nMCC; darker blue indicates higher scores per class.

hcw baseline. For TD1 the top performer is CNN2D-uniclass filter, whereas for TD2 it is
CNN1D-physics filter. Tables 4.4 and 4.5 show, for each model, the percentage of pixels
predicted in every class (rows) versus the reference labels (columns). The last two columns
report class-wise precision (P) and recall (R), allowing over- and under-estimation to be
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read directly.

Table 4.4: Confusion matrices for TD1. Top: CNN2D-uniclass filter; bottom: PACO
hcw baseline. Each cell is column percentage; darker blue = higher.

TD1 - Reference labels
Model Class Clear Atmos Shadows Water Snow P R

Clear 89.1 10.0 10.9 2.4 0.0 0.86 0.89
Atmos 7.6 85.0 11.1 6.8 10.0 0.83 0.85

Shadows 1.8 0.2 71.0 11.8 0.0 0.81 0.71
Water 0.8 0.0 3.7 79.0 0.0 0.93 0.79C

N
N

2D

Snow 1.0 4.7 3.4 0.1 89.9 0.60 0.90
Clear 91.4 16.2 30.0 7.6 0.2 0.75 0.91
Atmos 6.0 78.3 16.5 6.6 0.4 0.82 0.78

Shadows 2.0 0.1 43.9 7.2 0.0 0.78 0.44
Water 0.5 0.0 8.8 78.6 0.0 0.89 0.79PA

C
O

Snow 0.1 5.3 0.8 0.0 99.4 0.68 0.99
Total 637,991 577,872 267,190 274,884 71,124

According to the confusion matrix in Table 4.4, the CNN2D model reduces a con-
siderable number of errors that the PACO hcw baseline makes between shadow pixels
classified as clear : shadow recall rises from 0.44 to 0.71, and precision for the clear class
increases from 0.75 to 0.86. The cost of this gain is an increase in the number of snow
pixels misclassified as atmosphere, with recall dropping from 0.99 to 0.90 and precision
from 0.68 to 0.60.
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Table 4.5: Confusion matrices for TD2. Top: CNN1D-physics filter; bottom: PACO hcw
baseline. Formatting as in Table 4.4.

TD2 - Reference labels
Model Class Clear Atmos Shadows Water Snow P R

Clear 92.2 20.3 10.3 5.6 25.7 0.97 0.92
Atmos 4.6 77.9 0.6 0.0 20.8 0.53 0.78

Shadows 1.3 1.1 85.4 22.6 0.1 0.78 0.85
Water 0.1 0.3 0.9 71.0 1.7 0.89 0.71C

N
N

1D

Snow 1.8 0.5 2.8 0.8 51.7 0.20 0.52
Clear 57.4 15.1 25.9 25.9 24.7 0.93 0.57
Atmos 8.5 75.8 3.6 0.2 2.5 0.37 0.76

Shadows 10.8 0.3 67.3 4.2 0.0 0.34 0.67
Water 0.1 0.3 0.5 68.9 1.2 0.91 0.69PA

C
O

Snow 23.3 8.6 2.7 0.7 71.6 0.03 0.72
Total 872,169 59,803 72,961 26,300 8,781

In Table 4.5, the CNN1D model largely removes misclassification in the clear class,
improving recall from 0.57 to 0.92. On the other hand, shadow precision goes up from 0.34
to 0.78, with recall rising from 0.67 to 0.85. The main remaining weakness is that some
snow pixels are labeled as atmosphere, so snow recall drops from 0.72 to 0.52, although
their precision increases from 0.03 to 0.20.

4.1.2 Qualitative Analysis
Because the testing datasets contain only sparse reference (or ground-truth) labels,

this subsection complements the quantitative scores with a qualitative comparison of
classification maps for representative scenes.

The observed improvement of the snow class for TD2 is shown in Fig. 4.1, where a
dried salty lake is misclassified as snow and cloud by PACO hcw. In addition, most of the
clear pixels of TD2 are labeled in this scene, causing the observed low nMCC for the snow
class. The reason this problem frequently occurs is likely due to high-reflectance bright soil
being often misclassified as snow or clouds. This issue is almost solved by CNN1D-physics
filter and CNN3D-uniclass filter, where the majority of pixels are correctly classified in
the clear class, while CNN2D-uniclass filter continues misclassifying these pixels. On the
other hand, all models correct the misclassification of shadows caused by low-reflectance
soil (black soil).

Fig. 4.2 shows how the three pixel-selection strategies affect CNN2D. While Table 4.1
suggests only a 0.5 pp spread between the CNN2D variants, the qualitative map reveals
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Figure 4.1: Qualitative comparison between PACO hcw and the prediction from tested
models with true RGB image for reference. Image: Lake Lefroy, Australia. Sentinel-2,
TD2 T51JUF, 2018/08/19.

larger practical differences. Only the uniclass filter variant succeeds in labeling the narrow
cloud-shadow pixels that lie on top of the highly reflective snow. By contrast, the physics
and no filter models, like the PACO hcw baseline, misclassify these shadow pixels as
water.

A persistent compromise of all three CNN variants is their systematic confusion of
snow with cloud. In Table 4.2 the snow class is the only one that consistently loses
accuracy. Fig. 4.2 makes this clear: regions that should be labeled snow (and in a few
cases even clear) are frequently reclassified as cloud by the CNNs, whereas the PACO
hcw baseline keeps them as snow. The error is not surprising: fresh snow and optically
thick cloud have similar high-reflectance spectra, making them hard to separate.

Conversely, Fig. 4.3 highlights the opposite side of the trade-off. Here the PACO hcw
baseline mistakes a bank of optically thick clouds for snow, whereas all three CNN models
correctly assign the cloud label.

A case that we would like to highlight is shown in Fig. 4.4, where a significant amount
of water pixels are misclassified in the clear class. This error is due to a well-known
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Figure 4.2: Qualitative comparison between PACO hcw and the CNN2D prediction with
true RGB image for reference. Image: Yakutsk, Russia. Sentinel-2, TD1 T52VEP,
2021/04/16.

parallax effect that causes a stripping signature in Sentinel-2 imagery [144, 145] caused
by different viewing angles of onboard sensors. This error is not reflected in the testing
dataset given that almost no pixels are labeled in this area, but the misclassification is
clearly visible. Our approaches solved this problem, which is attributed to the improve-
ment in the generalization of spectral signature recognition.

The gains in performance for all trained models are nevertheless consistent, and most
evident for the models trained with the physics and uniclass pixel-selection strategies.
Outside the presented scenes, most classification maps look visually similar to the PACO
hcw baseline, with only modest refinements.
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Figure 4.3: Qualitative comparison between PACO hcw and the CNN3D-uniclass filter
prediction with true RGB image for reference. Because the remaining models perform
similarly, their classification maps are omitted to avoid redundancy. Image: Indonesia.
Sentinel-2, TD1 T48MZT, 2021/11/22.

Figure 4.4: Qualitative comparison between PACO hcw and the CNN2D-uniclass fil-
ter prediction with true RGB image for reference. Because the remaining models per-
form similarly, their classification maps are omitted to avoid redundancy. Image: Bul-
garia/Turkey. Sentinel-2, TD1 T35TNG, 2023/08/05.
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4.2 Results for the Hyperspectral Case
This section presents the evaluation of the model’s predictions compared with the

cloud products from the Sentinel-5P mission. As mentioned in Section 3, the classification
maps from PACO masking and those produced by the CNN2D model for each training
dataset (obtained using the no filter, physics filter, and uniclass filter selection strategies)
are transformed into CF values corresponding to the pixel locations of Sentinel-5P. The
metrics and plots used for the evaluation of the results are described in Subsection 3.8.3.

To better interpret the results comparison, the following subsections first examine
some aspects that arose during the evaluation, related to the distribution of the pixels
and the main sources of uncertainty for CF comparison. These include the time difference
between the captures from EnMAP and Sentinel-5P, as well as the differences between
the Radiometric CF from Sentinel-5P and the Geometric CF from EnMAP.

Therefore, it is defined for ease of reading:

ŷ = Predicted CF using EnMAP imagery, (4.1)

y = Reference CF. (4.2)

4.2.1 Impact of Cloud-Free or Cloud-Full Coverage
Depending on the location and season, cloud coverage and its distribution vary. As

seen in Subsection 3.4.4, most of the matching overpasses between EnMAP and Sentinel-
5P acquired within a short time window were captured either under cloud-free conditions
or, conversely, completely covered by clouds. A histogram of the CF distribution, pixel
by pixel, is shown in Figure 4.5, where it is clearly visible that most of the available pixels
for training are concentrated at CF = 0% (cloud-free) and CF = 100% (cloud-full).

The impact of the CF distribution is evident when examining the correlation metrics.
Cloud-free and cloud-full pixels are usually correctly classified (particularly in areas where
the surface is not highly reflective, e.g., snow, ice, white sand, or greenhouses), resulting
in a difference between prediction and reference CF of ∆yn = 0. Consequently, when
computing correlation metrics (e.g., R2), the dominance of perfectly matched pixels masks
the model’s performance on the remaining pixels, obscuring the classifier’s behavior across
the full CF range. Figure 4.6 shows regression plots comparing the cases where cloud-free
and cloud-full pixels are included vs. excluded. The prediction shown (ŷ) is the baseline
CF from PACO.

Figure 4.6 shows that, even though the distribution in the regression plot appears
similar in both cases, the correlation metric R2 drops drastically by −0.41 Percentage
Points (%pt), highlighting the importance of performing evaluation assessments using a
combination of metrics and plots.
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(a) Including all pixels. (b) Excluding cloud-free and cloud-full pix-
els.

Figure 4.5: CF distribution of Sentinel-5P pixels in testing dataset

(a) R2 = 0.9. Including all pixels. (b) R2 = 0.49. Excluding cloud-free and cloud-
full pixels.

Figure 4.6: Comparison of 2D histograms including or excluding cloud-free and cloud-full
pixels for regression assessment. Note the difference between color bars scale.

These pixels are part of the evaluation and contribute to the statistics, as failing on
these “easy cases” must be considered a very harmful behavior. Consequently, misclas-
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sifying them would significantly decrease the regression metrics. However, when a large
number of these pixels is consistently correctly classified, they can mask the model’s
performance on the remaining pixels.

To mitigate this effect, APU plots provide an overview for evaluating across the whole
CF range, dividing into bins and performing the evaluation for each one. In this way, if
a bin is overrepresented, it does not affect the evaluation of the rest. In Figure 4.7, the
corresponding APU plots corresponding to the cases presented in 4.6 are shown.

(a) Including all pixels. (b) Excluding cloud-free and cloud-full pixels.

Figure 4.7: Comparison of APU plots, with and without cloud-free and cloud-full pixels
for regression assessment.

Figure 4.7 demonstrates that despite the high amount of pixels in the side-extreme
bins of the histogram, the rest of the evaluation on the remaining bins stays unchanged,
allowing independent evaluation of all sample types. Therefore, during the evaluation of
this specific study, it is recommended to consistently refer to the APU plots. In the rest
of the plots, a logarithmic scale allows differentiation of small changes.
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4.2.2 Comparison of Radiometric and Geometric CF
This subsection provides an analysis of the comparison of Geometric Cloud Fraction

(GCF), obtained by calculating the area covered by clouds using an EnMAP image, and
the Radiometric Cloud Fraction (RCF), computed from the COT measured by Sentinel-
5P. In the validation exercise of Sentinel-5P cloud products, Compernolle et al. [128]
compares the RCF of Sentinel-5P to RCF obtained from Suomi-NPP-VIIRS and MODIS,
providing the following statements [128]:

• “For optically thin clouds, the radiometric cloud fraction is smaller than the geo-
metric one”

• “In most cases, RCF ≤ GCF”

• “It should be noted that the performance of OCRA/ROCINN is optimal for high
geometric cloud fractions and optically thick clouds.”

From the presented results of this thesis, this behavior is observed through the APU
plots through the evaluation of accuracy, revealing overestimation or underestimation of
the CF. For example, in Figure 4.7, a systematic GCF (ŷ) overestimation is observed at
high values compared to RCF (y) (between 65% and 95%), but underestimation of GCF
at low values (between 5% and 50%) compared to RCF.

In Figure 4.8, a case is presented where GCF is overestimated compared to the RCF,
given that optically thin clouds cause lower RCF.

Figure 4.8: Image: EnMAP DT38193, tile-003. Captured at 2023/08/30. Time difference
between captures of 25 s.

On the other hand, in Figure 4.9, a case is presented where GCF is underestimated
compared to the RCF, as discussed for Figure 4.7 for the low range of CF. RCF appears
to be overestimated by the reference, although as mentioned, “In most cases, RCF ≤
GCF” in [128], with these results, this reveal a clear trend in the APU plot in Figure 4.7
for low RCF.
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Figure 4.9: Image: EnMAP DT44686, tile-030. Captured at 2023/10/07. Time difference
between captures of 46 s.

In addition, in the ATBD of Sentinel-5P cloud products [146], an uncertainty re-
quirement of 20% is reported for RCF. This context makes GCF and RCF not directly
comparable [128]. Therefore, the potential uncertainty in the evaluation should be con-
sidered together with the bias information provided by APU plots.

4.2.3 Effect of Time Difference Between Captures
As mentioned in Subsection 3.4.4, the time difference between captures of EnMAP

and Sentinel-5P is the main source of uncertainty when comparing RCF and GCF.
There is a trade-off between including matching overpasses with low time difference

and the completeness of the testing dataset. As both missions continue capturing images,
this trade-off vanishes, as more matching overpasses with low time difference between
captures become available. In this section, the mentioned trade-off is evaluated, in order
to find an acceptable compromise between time difference and completeness.

In Table 4.6, the regression metrics are shown by including in the testing datasets
pixels with time differences ranging from 30 s to 180 s.

Time Difference [s] Pixels Count R2 MBE RMSE
30 170 0.85 6.07 4.06
60 325 0.81 4.04 4.15
90 610 0.89 2.66 3.68
120 746 0.91 2.37 3.53
150 842 0.91 1.34 3.59
180 982 0.90 0.30 3.58

Table 4.6: Regression metrics for time differences ranging from 30 s to 180 s, including all
pixels.
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In the same manner, in Table 4.7, the regression metrics are shown, this time filtering
out the cloud-free and cloud-full cases.

Time Differece [s] Pixels Count R2 MBE RMSE
30 53 -3.43 19.66 5.43
60 171 -0.27 7.74 4.86
90 270 0.44 5.84 4.50
120 295 0.46 5.79 4.45
150 340 0.46 3.14 4.50
180 431 0.49 0.55 4.39

Table 4.7: Regression metrics for time differences ranging from 30 s to 180 s, excluding
cloud-free and cloud-full pixels.

In both cases, completeness on testing datasets seems to favor the regression met-
rics, as in both cases, the smallest MBE is obtained with a time difference of 180 s. In
addition, the RMSE and R2 present an almost consistent decreasing trend as the pixel
count increases. Therefore, completeness of the testing datasets is preferred based on the
regression metrics in this testing exercise.

In addition, the APU plots and 2D Histograms for each time difference, including all
pixels in the testing dataset, are presented in Figures 4.11 and 4.10, respectively.

Despite the daily-global coverage of Sentinel-5P, the relatively small count of EnMAP
scenes makes the matching overpasses with a time difference under 1 minute not enough
to compute metrics with low uncertainty, as observed in Figure 4.10. This is solved
by increasing the allowed time difference, at the expense of increasing the uncertainty
described in Subsection 3.4.4, mainly caused by the movement of clouds. Therefore,
although the correlation is clear, this methodology will be optimal for testing missions
with high volumes of data, featuring wide Earth coverage and high revisit frequency.
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(a) 30 s (b) 60 s

(c) 90 s (d) 120 s

(e) 150 s (f) 180 s

Figure 4.10: APU plots comparing TROPOMI and PACO across different time differences
ranging from 30 s to 180 s.
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(a) 30 s (b) 60 s

(c) 90 s (d) 120 s

(e) 150 s (f) 180 s

Figure 4.11: 2D histograms comparing TROPOMI and PACO at different time differ-
ences, from 30 s to 180 s.
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4.2.4 Results Comparison
In this subsection, the comparison is presented of the obtained results by trained CNNs

with the baseline pre-classification from PACO, both evaluations taking as a reference de
RCF from Sentinel-5P.

As discussed before in this section, the comparison is performed by including all pixels
under less than 180 s of time difference between captures, including all the discussed
plots for results evaluation. In Table 4.8 the results are shown, reporting the regression
metrics (R2, MBE, and RMSE) for each CNN model trained with different pixel selection
strategies, compared with the baseline PACO.

Classifier R2 RMSE MBE
PACO 0.90 3.58 0.30

CNN1D
No-Filter 0.90 3.63 1.07
Uniclass 0.89 3.66 0.52
Physics 0.88 3.75 -0.19

CNN2D
No-Filter 0.90 3.60 0.92
Uniclass 0.90 3.59 1.11
Physics 0.88 3.75 0.00

CNN3D
No-Filter 0.89 3.67 0.34
Uniclass 0.89 3.69 0.27
Physics 0.88 3.76 0.18

Table 4.8: Regression metrics. Testing dataset include all pixels under 180 s between
captures

.

Although some differences are observed between the CNN models and the PACO base-
line, the results remain comparable across all metrics, with R2 values between 0.88–0.90
and RMSE differences generally below 0.2. These limited variations suggest that the
improvements introduced by the pixel selection strategies may not be easily detectable
with this testing approach. Given the large GSD of Sentinel-5P relative to EnMAP, finer
spatial patterns captured by the CNN models may be averaged out when aggregated
to match Sentinel-5P’s pixel footprint. As a result, the added value of these strategies,
demonstrated in the multispectral case experiments, may be obscured in this particular
evaluation and favor the bias of the base PACO baseline classification.

A trade-off is observed between overall fit and prediction bias. Models with higher
R2 and lower RMSE, such as CNN2D-Uniclass, tend to overestimate CF, resulting in
higher MBE values. Conversely, models with lower bias, particularly those using the
Physics-based strategy, show reduced R2 and increased RMSE. This indicates that while
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some pixel selection strategies improve general alignment with the reference, they may
introduce systematic offsets, highlighting the need to balance accuracy and bias depending
on the intended application.

Correspondingly, Table 4.9 shows the regression metrics for each CNN model, this
time excluding pixels with cloud-free and cloud-full conditions compared again with the
PACO baseline.

Classifier R2 RMSE MBE
PACO 0.49 4.39 0.55

CNN1D
No-Filter 0.46 4.45 2.35
Uniclass 0.44 4.49 1.20
Physics 0.42 4.53 0.30

CNN2D
No-Filter 0.49 4.40 2.25
Uniclass 0.49 4.40 2.48
Physics 0.46 4.45 1.09

CNN3D
No-Filter 0.44 4.49 0.68
Uniclass 0.45 4.47 1.26
Physics 0.46 4.46 1.57

Table 4.9: Regression metrics. Testing dataset include non full-cloud or clear-sky pixels
(1 ≤ CF ≤ 99), under 180 s between captures.

.

When excluding the cloud-free and cloud-full pixels, the performance of all classifiers
decreases, especially in terms of R2. For example, the baseline PACO drops from 0.90 to
0.49, a decrease of -0.41, highlighting the strong influence of the discarded pixels on the
overall metrics. In this range of partial cloud cover, differences between models become
more noticeable. CNN models tend to overestimate cloud fraction, as seen in the higher
MBE values compared to PACO. Among the CNNs, CNN2D still shows the closest
performance to PACO in terms of R2, but with a larger bias.

Figures 4.12 and 4.13 show the APU plots and 2D regression histograms for all pixels,
comparing each tested CNN with the PACO baseline. These plots allow the evaluation
of predictions across the full CF range, as they separate the densely populated bins
corresponding to cloud-free and cloud-full conditions.
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(a) CNN1D No Filter (b) CNN1D Uniclass (c) CNN1D Physics

(d) PACO (e) CNN2D No Filter (f) CNN2D Uniclass (g) CNN2D Physics

(h) CNN3D No Filter (i) CNN3D Uniclass (j) CNN3D Physics

Figure 4.12: APU plots comparing TROPOMI with model predictions for all architectures and filter types.
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(a) CNN1D No Filter (b) CNN1D Uniclass (c) CNN1D Physics

(d) PACO (e) CNN2D No Filter (f) CNN2D Uniclass (g) CNN2D Physics

(h) CNN3D No Filter (i) CNN3D Uniclass (j) CNN3D Physics

Figure 4.13: 2D histograms comparing TROPOMI with model predictions for all architectures and filter types.
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From the APU plots shown in Figure 4.12, the three metrics (A, P , and U) are
evaluated across all CF bins for each tested CNN model and compared with the PACO
baseline.

• Low CF (0–20%)
Across all classifiers, including PACO, the APU metrics are fairly consistent in
this range. A is close to zero in cloud-free sky but shows underestimation between
5 ≤ CF ≤ 20, while both P and U remain relatively low and stable. There are
no major deviations between models in this region, indicating that low CF condi-
tions are generally predicted with similar accuracy across architectures and filtering
strategies.

• Mid CF (20–60%)
In this range, the differences between classifiers become more apparent. CNN2D
models, particularly with the No filter and uniclass strategies (Figures 4.12e and
f), show a clear improvement in A compared to PACO and other CNNs. The
bias remains consistently closer to zero, while U and P are comparable or slightly
reduced. In contrast, CNN1D and CNN3D models show less stability, with A values
diverging further from zero and greater variability in P .

• High CF (60–100%)
This range shows the most evident performance degradation for some models.
Specifically, CNN3D with the uniclass filter (Figure 4.12i) and all CNNs using
the physics filter (Figures 4.12c, g, j) exhibit significantly worse performance in
terms of P and U in the extreme bin of cloud-full sky. In the rest of the mentioned
range, A sharply deviates from zero (indicating a large bias), and both P and U
reach their highest values. These trends suggest that these configurations are less
reliable in densely cloudy scenes. Additionally, around CF = 75%, U reaches its
peak, while A remains systematically high, indicating overestimation of clouds in
that range.

The APU analysis shows that while performance is generally stable at low CF, clear
improvements in A are achieved by CNN2D models in the 20–60% CF range. However,
high CF bins reveal major weaknesses in CNN3D with the uniclass filter and all CNNs
using the physics filter, where both error and variability increase sharply. These results
support the robustness of CNN2D, particularly with the uniclass filter.

Although the differences are not as noticeable as in the APU plots, the mentioned
deviation in the high CF range is visible in the 2D histogram comparisons shown in Fig-
ures 4.13-c, g, and j, where the physics filter underestimates clouds. Additional variations
along the diagonal are present, but no specific patterns are clearly observed.

The rest of regression plots and differences can be consulted in Appendix C.
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4.2.5 Qualitative Analysis
In this section, the classification maps are evaluated qualitatively to allow subjective

comparison with the reference from TROPOMI, highlighting the improvements reflected
or not on by comparing with the reference data, or conversely, misclassifications or sys-
tematic deviations in either the classification or the reference CF.

For all the following presented scene results and comparisons between the baseline
from PACO and the trained CNNs, the remaining models perform comparably and are
thus omitted to avoid redundancy. Any exceptions will be explicitly indicated. In ad-
dition, the presented scenes were chosen without any particular preference including all
pixel selection strategies, or, if that was the case, with the aim of selecting those with
more pronounced differences compared to PACO.

4.2.5.1 Low-Mid Cloud Fraction

In this subsection, some improvements that are lost when averaging cloud coverage
over the TROPOMI pixel footprint are highlighted.

For instance, Figure 4.14 presents a case of coastal white sand misclassified as clouds
by PACO, which is mostly correctly classified by CNN1D-physics. The coastal area
is small enough that it does not significantly affect the CF, although the correction
constitutes a clear improvement when evaluated qualitatively.

Figure 4.14: Cloud masks and CF comparison between PACO and CNN1D-physics. Im-
age: EnMAP DT-36466, tile-001, captured at 2023/08/19.

Figure 4.15: Cloud masks and CF comparison between PACO and CNN2D-uniclass.
Image: EnMAP DT-60079, tile-001, captured at 2024/02/07.
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An example of reference deviation is shown in Figure 4.15, where isolated clouds are
visible in the EnMAP image but correspond to high CF values in the reference pixels of
TROPOMI. It is observed that most of the clouds are correctly labeled by both classifiers,
showing similar cloud masks, although CF overestimation is observed in the reference.
When evaluated qualitatively, a substantial increase in masked clouds by CNN2D to
match the reference CF would be interpreted as an overestimation.

Such difference between CF comparisons is not well understood. Some differences
are expected given the inherent uncertainties of OCRA algorithm used by TROPOMI,
together with the time difference between captures, but specifically in the case shown
in Figure 4.15, the gap is larger than expected. One hypothesis is that the DB used by
OCRA relies on background reflectances derived from very dark, dense vegetation with
low reflectance. The presence of isolated clouds together with vegetation stress, indicated
by the yellowish tone in the True Color quick-look, raises the background reflectance and
may contribute to the CF overestimation by OCRA.

A counter example is shown in Figure 4.16a, where an EnMAP image with a low-
reflectance background shows less differences between the classifiers and the reference.

(a) CNN3D-physics, tile-005.

(b) CNN2D-physics, tile-006.

Figure 4.16: Cloud masks and CF comparison between PACO and CNN-based models.
EnMAP DT-32162, captured on 2023/08/10.

The difference between cloud masks from PACO and CNN3D is small due to the
high contrast between the background and the highly reflective clouds. Contrary to the
example shown in Figure 4.15, there is a slight bias toward overestimation relative to
the reference. An interesting aspect to look is the neighboring tile of 4.16a, presented in
Figure 4.16b, where the cloud masks from PACO and CNN2D-physics are compared this
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time. It can be seen that the classification performance between CNN3D and CNN2D
appear nearly identical. This trend is present in most of the images in the testing dataset,
where the changes between classifiers are marginal.

As shown in Figure 4.16, EnMAP captures data-takes composed of multiple tiles.
Consequently, many pixels within a single scene share similar characteristics and con-
ditions, as they originate from the same geographic location and moment. Although
the testing dataset includes 105 EnMAP scenes, these correspond to only 18 distinct
TROPOMI overpasses. This spatial and temporal alignment results in clusters in the
regression plots, as groups of pixels exhibit similar conditions and thus similar predictive
behavior.

The presented examples suggest that changes in background that affect the reflectances
can influence the CF retrieved by OCRA. This is also noted in OCRA’s ATBD [146] and
during the validation of its cloud products [128], where a continuous update of the back-
ground DB is described, along with expected higher uncertainties over highly reflective
surfaces (e.g., over areas covered in fresh snow). Unfortunately, from the 105 EnMAP
scenes matching overpasses of Sentinel-5P, none of them corresponds to snow surfaces,
or, if any exist, they are completely covered by clouds.
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4.2.5.2 High Cloud Fraction

In this subsection, a similar analysis to that in Subsection 4.2.5.1 is conducted; how-
ever, the comparisons in the high CF range exhibit larger discrepancies, with the pre-
viously discussed issues related to the comparison between GCF and RCF (see Subsec-
tion 4.2.2) becoming more pronounced.

An average case is presented in Figure 4.17, showing good agreement between the
predicted and reference CF, both in spatial distribution and CF values. This example is
included to illustrate a typical scenario with a low time difference between captures.

Figure 4.17: Cloud masks and CF comparison between PACO and CNN1D-uniclass.
Image: EnMAP DT-38162, tile-010, captured at 2023/08/10.

A problem discussed in Subsection 4.2.2 is that GCF tends to produce higher values
when clouds exhibit low reflectance. This effect is illustrated in Figure 4.18, where semi-
transparent clouds on the right side of the scene show low reflectance, resulting in a lower
RCF in the reference data. Although CNN3D-uniclass underdetects clouds in the corner
of the scene, these clouds fall outside the area covered by any corresponding TROPOMI
pixel, and therefore do not affect the computed CF comparison.

Figure 4.18: Cloud masks and CF comparison between PACO and CNN3D-uniclass.
Image: EnMAP DT-38193, tile-001, captured at 2023/08/30.

Conversely, Figure 4.19 shows reduced detection of semi-transparent clouds in the
bottom-left region of the scene. In this case, the reference CF is higher than both the
CF retrieved by PACO and that predicted by CNN3D-uniclass, highlighting an overesti-
mation by the reference under these conditions.
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Figure 4.19: Cloud masks and CF comparison between PACO and CNN2D-physics. Im-
age: EnMAP DT-38193, tile-006, captured at 2023/08/30.

The most noticeable error in the proposed approach is illustrated in Figure 4.20 and
discussed in Subsection 4.2.4. This case highlights a significant underestimation of clouds
by the physics filter in scenes with high CF. A substantial portion of the scene (approx-
imately one-third) appears fully cloud-covered but is missed by CNN2D, leading to a
lower performance in this range compared to PACO.

Figure 4.20: Cloud masks and CF comparison between PACO and CNN2D-physics. Im-
age: EnMAP DT-32104, tile-001, captured at 2023/08/10.

To illustrate model performance on this challenging scene, Figure 4.21 presents the
cloud masks predicted by all trained models. The true-color image (a) reveals widespread
cloud coverage, which is mostly correctly classified by the PACO reference mask (e). The
physics filter (PF) models (i–k) perform the worst, consistently miscclassifiying the cloud-
covered area. While CNN3D-uniclass (h) and CNN2D-no filter (c) also miss a portion,
their predictions better approximate the reference.

Apart from the presented scene, most of the evaluated cases show good performance
across the CNN models, with cloud predictions generally aligning well with both the
true-color imagery and showing no major differences from the PACO cloud mask.
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(a) True color (b) CNN1D NoF (c) CNN2D NoF (d) CNN3D NoF

(e) PACO (f) CNN1D UF (g) CNN2D UF (h) CNN3D UF

(i) CNN1D PF (j) CNN2D PF (k) CNN3D PF

Figure 4.21: Qualitative comparison of cloud predictions by CNN models using different
pixel selection strategies. Rows represent filter strategies (No Filter, Uniclass, Physics),
and columns correspond to CNN architectures (1D, 2D, 3D). The first column shows the
true-color image and the PACO cloud mask for reference.
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4.3 Discussion
The results presented in the previous sections demonstrated the potential and limi-

tations of the proposed classification framework when applied to both multispectral and
hyperspectral imagery. This section interprets those results in detail, offering a critical
analysis of the factors influencing model performance and the broader implications of the
findings. Particular attention is given to how pixel selection strategies affect classifica-
tion, the challenges of generalizing across diverse conditions, and the trade-offs between
spectral and spatial feature extraction. Additionally, this discussion contextualizes the
regression-based validation for hyperspectral imagery and explores the impact of spatial
resolution mismatches and temporal uncertainties. Finally, directions for future improve-
ments, such as explainable AI, physics integration, and sensor scalability, are discussed
to guide further research and operational deployment.

4.3.1 Discussion on Results for Multispectral Imagery
This work proved that by selecting high-quality pixels from a given multi-spectral

DB with reference labels obtained by thresholding spectral indices from the atmospheric
corrector PACO, classification performance can be improved on independent test scenes
by +3.3pp on TD1 and +18.3pp on TD2 in terms of nMCC (Table 4.1) compared
with the operational baseline hcw classification map from PACO. Notably, the greatest
improvement was observed for the pixel selection using the uniclass filter for CNN2D
and using the physics filter for CNN1D, which both discard high uncertainty pixels for
composing the training set. This improvement is particularly evident in cases where
pixels are mixed at object borders or where the spectrum is similar, such as the shadow
and clear classes, with improvements of 4-20.2pp and 1.1-22.7pp, respectively, thanks to
the advanced feature extraction capabilities of the deep learning models tested in this
work. In addition, the rest of classes performed acceptably, with moderate improvements
of ≤ 6.1pp, but losing in the snow class for TD1 up to 7.4pp.

The presented experiments with different training dataset selection strategies demon-
strated significant changes in the behavior of the implemented classifier, and even if it is
not reflected in the nMCC metric, the qualitative analysis demonstrated a clear improve-
ment. For example, CNN2D results for TD1 appear similar in Table 4.1, but a noticeable
improvement can be observed in Fig. 4.2 for CNN2D-uniclass filter. The improvements
are more remarkable for TD2, which contains challenging classification cases, where the
physics filter supports the spectral feature extraction of CNN1D, while the uniclass filter
benefits the joint spatial-spectral feature extraction of CNN3D.

Despite the significant feature extraction capabilities of CNNs, their performance
heavily depends on the quality of the training set and its reference labels. The variety of
testing datasets evaluated in this work highlighted that the training dataset is limited by
the lack of representation for all possible subclasses under diverse atmospheric conditions,
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illumination angles, and noisy labels. Consequently, fully representing all classes for
previously unseen pixels remains a significant challenge.

Although qualitative analysis is subjective, some regions demonstrated clearly visible
improvements that were not included in the testing datasets, potentially concealing the
true classification performance of the proposed models.

4.3.2 Discussion on Results for Hyperspectral Imagery
The obtained results of trained models on hyperspectral imagery from the EnMAP

sensor with the proposed testing methodology comparing both GCF and RCF have not
shown significant improvements in cloud classification over PACO’s cloud masking.

However, some small improvements were identified during qualitative assessment of
the cloud mask, but these are not reflected in regression metrics due to differences in
spatial resolutions.

There are several hypotheses for this behavior when compared to the results obtained
for the multispectral case discussed earlier, where most improvements were identified
in small regions and in challenging classification cases. The improvements were smaller
for TD1, which is composed of average scenarios, whereas larger improvements were
observed for TD2. From the 105 scenes that compose the testing dataset, none appear
to be challenging classification cases for cloud masking.

In addition, the greatest improvements for the multispectral case were identified for
the shadows and clear classes. Given the limitation of the proposed testing methodology
to validate only the cloud mask, the classifier was only trained for binary classification. As
a result, the benefits of multi-class classification in a single DL model for better defining
decision boundaries are reduced.

On the other hand, the lack of available pixels across the full CF range limits the
global metrics (R2, RMSE, MBE), and this limitation depends on the number of matching
overpasses between the two missions, which can be improved as operational time increases.

The systematic differences between RCF and GCF across different CF ranges high-
light the importance of using APU plots to assess performance for each bin. In addition,
regarding completeness of the testing dataset, quantifying how uncertainty grows as the
time difference increases is an interesting topic for future work, as many sources of infor-
mation could help estimate the comparability between both cloud products.

4.3.3 Dataset Coverage and Computational Complexity
To further improve this approach, additional sources of information should be incor-

porated to reduce label noise and enhance the representation of each class. From a global
application perspective, this remains challenging due to the computational and spatial
complexity of training deep learning models. This highlights the need for advanced data
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selection strategies and novel training approaches to fully exploit the potential of mul-
tispectral imagery, and by extension, hyperspectral imagery. In addition, incorporating
supplementary features can improve data characterization, as deep learning models are
capable of learning patterns from diverse sources. For instance, viewing and solar angles
could help distinguish between cloud or topographic shadows and clear-sky land under
low illumination conditions. This differentiation can be further supported by spatial in-
formation. For example, if a shadowed region is adjacent to a detected cloud and the
solar-viewing geometry is consistent, it is likely that the shadow belongs to that cloud.

We observed that CNN1D, with only 77 k parameters, achieves outstanding per-
formance compared with CNN2D (155 k parameters) and CNN3D (305 k parameters),
highlighting the importance of pure-spectral feature extraction. In our prototype, the
wall-clock time (per epoch) of CNN2D and CNN3D is nearly identical due to the custom
data generator, which dominates total runtime by creating batches of spatial patches,
hiding the theoretical differences on computational complexity between 2D and 3D con-
volutional layers [147]. We leave an in-depth computational cost analysis for future work
because of the current implementation’s limitations.

Since we aimed to avoid introducing any information from the testing dataset into the
training process and to study methods for obtaining a generalized model applicable to any
case, we observed that increasing the number of training pixels or the number of training
epochs, despite the validation set improving slightly with each epoch, does not result in
better performance for the testing datasets. This behavior is likely because enlarging
the training set also increases the likelihood of outliers or non-representative samples.
Additionally, by introducing highly correlated pixels corresponding to average cases, the
training process may overfit the original model, replicating its behavior, and losing the
generalization that comes from a sparse input. However, these are only hypotheses and
should be further studied.

To strengthen domain generalization, the sample size must grow, but instead of in-
cluding more pixels within the same limited number of scenes, this should be done by
selecting an extensive set of additional scenes spanning diverse locations, biomes, seasons,
and atmospheric conditions. Capturing a wider spectroscopic variability should yield a
more representative training set and, therefore, improved generalization.

4.3.4 Testing Protocols
The per-class classification analysis of the multispectral case reveals the biases of the

classifier. Since each dataset provides slightly different conclusions, it is evident that
the independently and manually labeled testing datasets have varying class definitions or
are not uniformly distributed across all subclasses. Achieving such uniformity is nearly
impossible with manual labeling due to the significant manpower required.

The approach presented in this thesis for the testing phase of the hyperspectral case
is the first attempt at performing classification validation for the hyperspectral sensor
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EnMAP using external sources of information, with the aim of validating it in terms of
CF, a physical parameter. Given that GCF from EnMAP and RCF from TROPOMI are
not directly comparable, a harmonized calibration between them is currently lacking. In
addition, the difference between spatial resolutions makes it difficult to compare small
changes in classification.

In addition, more robust testing methods for automatically retrieving highly sensitive
reference data should be developed to achieve completeness and avoid biases, as well as
by incorporating other missions specifically designed for the atmospheric phenomenon
study that retrieve physical parameters for comparison.

Furthermore, a harmonized definition based on physical parameters should be estab-
lished for each class, considering a compilation of the requirements from a wide range of
applications that make use of the distributed L2 products. This would enable compar-
isons across classifiers and allow the interpretation of the generalization for global-scale
applications.

4.3.5 Future Directions: XAI and PINNs
Future work will consider the use of Explainable Artificial Intelligence (XAI) [148,

149, 150, 151, 152], to identify the most important features for classification in each class,
since the spectral characteristics are basic features for pixel classification. Additionally,
the potential incorporation of well-studied physics models from other remote sensing areas
will be explored through the use of Physics-Informed Neural Networks (PINNs) [153, 154].
This integration aims to build robust models, not relying only on a statistical perspective,
addressing the issue of sparse subclass representation while still leveraging the complex
spatial and spectral feature extraction capabilities of deep learning models.

4.3.6 Scalability to Other Sensors
Regarding the scalability of this work, while this study focuses on Sentinel-2 and

EnMAP imagery, the proposed methodology could be applied to other multispectral or
hyperspectral sensors (by training a model for each sensor), as long as a pre-classification
input is available for training. While the current implementation is built using PACO,
which supports Sentinel-2 [9], Landsat-8 [6, 7], EnMAP [10, 11], and DESIS [5, 34], the
physical rules used for pixel selection are sensor-independent and derived from fundamen-
tal reflectance-based principles. In cases where a different masking algorithm is used to
generate training masks, the same logic can be adapted to new class definitions. Further
evaluation on additional optical remote sensing missions with global-scale implementation
is left for future work.
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This thesis investigated the use of CNN1D, CNN2D, and CNN3D architectures to
improve classification products in the context of AC for multispectral and hyperspec-
tral imagery. The approach adopted in this thesis differs from common classification
strategies, where training and testing sets typically originate from the same dataset and,
consequently, share the same labeling source, often based in manual annotation. In this
thesis, the models were trained using PACO’s masking products, combined with spatial
information and additional features, addressing the general objective of generating im-
proved classification results using DL in operational EO systems. This strategy reduces
the need for manual labeling prior to training, making it particularly well-suited for im-
plementation during the commissioning phase of upcoming remote sensing missions, when
ground-truth labels are scarce or unavailable.

The particular objective of extracting spatial features from the spectral image was
fulfilled by testing CNN2D and CNN3D architectures. Results show consistent improve-
ments in classification accuracy over the baseline PACO “hcw” maps, especially in scenes
containing mixed pixels or spectral ambiguity. In the multispectral case, CNN2D and
CNN3D models outperformed CNN1D in spatially complex areas, confirming the benefit
of spatial context. This included the extra inputs; topographic elevation from a DEM
and pixel-wise illumination geometry, providing context beyond the spectral signature.

Evaluation was performed using independent testing datasets. For multispectral data,
accuracy was assessed through nMCC on more and less conservative labeled populations,
both independently and manually labeled. Hyperspectral results were validated using
regression metrics and APU plots based on CF comparisons with TROPOMI products.
This fulfilled the objective of testing model performance on unseen scenes using indepen-
dent data sources.

In terms of analyzing strengths and limitations, the CNNs demonstrated strong per-
formance in identifying classes such as shadow and clear, particularly when trained with
filtered labels that reduce classification uncertainty. However, the models were sensitive
to the quality and representativeness of the training data. While CNN1D was effective
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in cases with clean spectral features, spatial models better handled ambiguity at class
boundaries. These observations supported a broader understanding of how different ar-
chitectures behave under varying scene conditions.

A key contribution of this thesis was the identification of weaknesses in standard val-
idation protocols. Conventional metrics such as R2 and RMSE were found to be biased
by overrepresented cloud-free or fully clouded pixels. In response, this work proposed
evaluation methods based on physical parameters and adopted robust metrics for both
multi-class and binary classification cases, such as nMCC, as a more reliable alternative
to the widely used OA. The validation strategies included comparing geometric and ra-
diometric CF, and introduced the use of APU plots to evaluate model behavior across the
full CF range. This addressed the objective of proposing more robust, bias-aware testing
strategies for pixel-based classification. Furthermore, a harmonized definition of classes
is necessary for testing, allowing testing datasets to provide a more generalized inter-
pretation of results—especially when based on physical parameters characteristic of the
mask itself (e.g., snow grain size, cloud altitude, albedo, among others). The techniques
developed in this thesis contribute to defining guidelines for the future development of
robust and scalable methodologies for DL approaches in optical remote sensing missions
with global-scale application.

Addressing the case of recently launched missions, although this methodology requires
data for training, the imagery obtained during the commissioning phase is often sufficient
to set up an operational model. The reduced time frame makes it very challenging to
manually label enough data to obtain a generalized model; therefore, there is a clear need
to retrieve high-quality labels automatically, such as through the strategies presented in
this work.

Finally, this study contributes a framework for training DL-based classifiers with-
out manual labeling, using filtering rules to automatically compile high-quality datasets.
These strategies are applicable to operational remote sensing missions and are scalable to
new sensors and processing chains. The findings emphasize the importance of physically-
informed label generation, spatial-spectral learning, and validation protocols tailored to
the specific challenges of AC and cloud masking.

The following points outline the proposed future work based on the findings and
limitations identified in this thesis. They aim to enhance the scalability, robustness, and
physical interpretability of DL-based classification approaches in the context of remote
sensing and AC.

• Automatic compilation of large-scale training datasets with high-quality labels that
capture both “safe” (conservatively annotated) pixels and difficult, outlier cases
(e.g., those present in TD2).

• The development of new testing and validation methods based on physical param-
eters, and the harmonization of class definitions accordingly.
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• The integration of advanced training techniques, such as the use of Explainable
Artificial Intelligence (XAI) and Physics-Informed Neural Networks (PINNs).

• The implementation of the proposed methodology for hyperspectral missions using
more classes, where the high number of spectral bands reduces the effectiveness of
traditional threshold-based methods, and spatial-spectral learning can offer a more
scalable alternative.
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Appendix A

Background Support

A.1 Optical Remote Sensing
A.1.1 Physics of Light

“A photon is a discrete particle of EM energy having no mass, no electric charge,
and an indefinite life” [18]. “It is generally easier to think of energy as being transferred
in terms of energy packets or quanta in accordance with quantum theory”[159]. The
energy (q) [J = kg · m2 · s−2] of any photon is related to its frequency as follows, where
h = 6.626 068 × 10−34 kg m2 s−1 is the Planck’s constant and v [s−1] is the frequency, as
shown in equation A.1.

q = hv [J] (A.1)
Frequency is defined as follows [159]:

v = c

λ

[
s−1

]
(A.2)

where c [m s−1] is the speed of light and λ [µm] the wavelength.
The total energy (Q) in a beam or ray is the sum of q over all frequencies [159]:

Q =
∑

i

qi =
∑

i

nihvi, (A.3)

where ni is the number of photons at frequency i.
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Figure A.1: Illustration of radiometry functions.

A.1.1.1 Radiometric Measures

It is convenient to express the beam in terms of the rate at which the energy is
propagating, and not in terms of total energy as in equation A.3. Therefore, the rate of
flow of energy is called the radiant flux (Φ), defined as the derivative of Q with respect
to time [159]:

Φ = dQ

dt
[W]. (A.4)

To measure the rate at which the radiant flux is delivered to a surface, the term
irradiance (E) is defined as [159]:

E(i, j) = dΦ
dA

[
W m−2

]
, (A.5)

where dA [m2] is an area element on the surface defined by (i, j), generic spatial
location parameters. In the same way, a very similar term is radiant exitance, defined as
follows:

M(i, j) = dΦ
dA

[
W m−2

]
, (A.6)
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which describes the same concept of irradiance, but instead of the radiant flux deliv-
ered to a surface, it is the radiant flux radiated or reflected from a surface.

Both concepts, irradiance and exitance, are defined in terms of the area, but do not
consider angular or directional information. To address this, the radiant intensity is
defined as follows [159]:

I(θ, ϕ) = dΦ
dΩ

[
W sr−1

]
, (A.7)

where θ and ϕ are generic orientation angles. dΩ [sr] is the element of the solid angle.
Steradian, also named square radian, is the unit of solid angle for three-dimensional
geometry, representing a right circular cone projected onto a sphere, defining a spherical
cap, analogous to the radian for planar angles [160], defined as:

Ω = A

r2 [sr] , (A.8)

where the area (A) is the surface area of the spherical cap and r the radius of the sphere.
Lastly, the term radiance (L) is the most complex of all of these terms, but also the

most used for defining the received flux at a sensor, defined as [159]:

L(i, j, θ, ϕ) = d2Φ
dA cos θdΩ

[
W m−2 sr−1

]
, (A.9)

where i and j define the generic location in the plane, and θ and ϕ define the direction
relative to the normal (N) to the plane. Note that I and L are defined for incoming and
outgoing radiant flux.

These concepts were briefly described to provide an intuitive understanding of radio-
metric measurements, but they depend on additional factors, such as the surface that
interacts with the radiant flux. However, these short definitions are sufficient to address
the needs of the presented work.
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A.1.1.2 Transmission, Reflection and Absorption

Through their interaction with the medium, in particular with the Earth’s atmosphere
and surface, photons can be transmitted, reflected or absorbed [18], and depending on
the composition of the matter with which it interacts, these effects happen in different
proportions in different wavelengths.

Figure A.2: Illustrated transmission, reflection and absorption.

Considering an object with two sides, illuminating one side, with the ability to absorb
and transform energy into another kind, as shown in Figure A.2, the transmittance (τ) is
a unitless ratio of the radiant exitance from the darken side (Mτ ) to the irradiance (Ei),
for each wavelength (λ) and generic spatial location (i, j) [159]:

τλ(i, j) = Mτ,λ(i, j)
Ei,λ(i, j) . (A.10)

The reflectance (r) is the ratio of the radiant exitance (Mr) to the irradiance, both
on the illuminated side [159]:

rλ(i, j) = Mr,λ(i, j)
Ei,λ(i, j) . (A.11)

Lastly, the absorptance (α) is the ratio between the exitance (Mα), converted in
another kind of energy (i.e. heat), to the irradiance [159]:

αλ(i, j) = Mα,λ(i, j)
Ei,λ(i, j) . (A.12)
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“Since conservation of energy requires all the incident flux to be absorbed, transmitted,
or reflected” [159], such that:

τλ(i, j) + rλ(i, j) + αλ(i, j) = 1, (A.13)
for opaque objects, which is the case of most solids, where τλ(i, j) = 0 [18, 159], and

solved for the reflectance:

rλ(i, j) = 1 − αλ(i, j), (A.14)
reflectivity is also commonly referred to as albedo.
The direction of flux reflection depends on the incident angle (relative to the normal

angle N) and the roughness of the reflecting surface. In the case of a smooth surface,
reflection is specular, which is analogous to a mirror reflecting light. In the case of a
rough surface, reflection is diffuse (also named Lambertian) scattering the flux in different
directions and proportions. This scattering behaviors are illustrated in Figure A.3.

Figure A.3: Left: Specular reflection. Right: Diffuse reflection.

In summary, and in general terms, the reflection of radiant flux depends on the ab-
sorptance and transmittance of the flux for each wavelength, which is associated with the
matter, the incidence angles, the texture, and other factors not mentioned yet. From the
perspective of optical remote sensing, the only measurable quantity is the reflected flux,
captured by the sensor, while the rest can be retrieved from physical models, such as by
computing the radiance from the capturing angles, which are determined by the position
of the sun and the capturing spaceborne camera.
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A.1.1.3 Solar Radiation and Atmospheric Transmittance

The energy emitted by the sun is the main source of illumination for optical remote
sensing of the Earth’s surface, but the energy is not emitted uniformly across all wave-
lengths. The spectrum received outside the atmosphere is called exoatmospheric spectral
irradiance (or extraterrestrial solar irradiance at 1 Astronomical Unit (AU) from the sun),
and it varies over time depending on solar activity. Solar irradiance is the primary source
of energy reaching the Earth, and its measurement has been conducted from satellites
and correlated with the observation of sunspot activity [18]. There are different solar
radiation models [161, 162, 163], which are constantly updated to accurately estimate ir-
radiance from measured reflectance. Figure A.4 shows an example of the measured solar
irradiance spectrum.

Figure A.4: Solar radiation spectrum above atmosphere and at surface (sea level) with
the atmospheric absorption bands with the associated molecules. Data derived from the
ASTM. Source: EnMAP science plan [26].

In order to characterize the received radiant flux at the Earth’s surface, in addition to
the incoming solar radiation, another factor to consider are the interactions of constituents
of atmosphere with the solar spectrum.

Water vapor, ozone, and various atmospheric gases interact with radiant flux primarily
through absorption and transmission, while scattering processes account for redirection.
The extent of these interactions depends on the gases’ composition and particle size. As a
result, the atmosphere significantly attenuates specific wavelengths (known as absorption
bands) which are associated with abundant components such as O3, O2, Water (H2O) in
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the form of WV, and Carbon Dioxide (CO2), among others.
The wavelengths ranges that pass through the atmosphere with minimal absorption

are referred to as atmospheric windows. These are the portions of the EM spectrum
transmitted between absorption bands. However, their exact characteristics depend on
atmospheric conditions at a given time and location, as molecular concentrations contin-
uously fluctuate. Thus, the radiant flux reaching the Earth’s surface is the one transmit-
ted in the atmospheric windows at the specific capture time. An example of atmospheric
transmittance, specifying absorption bands is shown in Figure A.4.
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A.1.2 Optical Sensors

A.1.2.1 Operating Principles

An electromagnetic sensor takes the incoming energy reflected by the observed object
and transforms it into a voltage through a combination of input electrical power and
sensor material that is responsive to the type of energy being detected. The output
voltage waveform is the response of the sensor, and a digital quantity is obtained by
digitizing that response [27].

Scene

Imaging  
system

Energy  
source

(Internal)  
Image Plane

Output (digitized)  
image

Figure A.5: Digital image acquisition.

“An image may be defined as a two-dimensional function f(x, y) where x and y are
spatial (plane) coordinates, and the amplitude of f at any pair of coordinated (x, y)
is called the intensity. When x,y and the intensity values of f are all finite, discrete
quantities, thus, the image is a digital image” [27].

Digital images are captured by sensors that measure photon flux, and these consist of
a Charge-Coupled Device (CCD) together with a lens and a field stop for controlling the
amount of light striking the sensor. Using an analogy, the CCD, made of silicon pixels
sensitive to photons, functions like silver halide-coated film in traditional cameras [18].

“An image may be continuous with respect to the x and y coordinates and also
in amplitude. To digitize it, the function is sampled in both coordinates and also in
amplitude. Digitizing the coordinate values is called sampling. Digitizing the amplitude
is called quantization” [27]. An example of a scene, the sensor measurement, sampling,
quantization, and the final result are shown in Figure A.6.
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Figure A.6: Sampling and quantization from continuous to digital image.
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A.1.2.2 Spectral Response and Spectral Resolution

Given the discrete nature of digital images, the focus is on sampling the EM spectrum
of the received flux at the sensor. To achieve this, the analysis centers on the spectral
density, which is expressed as flux per unit wavelength interval.

Given that, the responsivity is described as a bandpass filter in terms of the wavelength
(λ), defined as the signal output (S) per unit flux incident on the sensor at the specified
wavelength [159]. Thus, the SRF, denoted as R, is defined as follows:

R(λ) = dS

dΦ(λ)
[
V W−1

]
(A.15)

Therefore, the output signal is obtained by integrating the previous expression, which
consists of the spectral flux Φ(λ) weighted by the SRF [159]:

S =
∫ ∞

0
ΦλR(λ)dλ [V] (A.16)

where the integral is computed only over the interval where the spectral response is
nonzero.

Finally, in imaging spectroscopy, it is always important to represent the output signal
in radiometric terms. In this case, the photon flux is replaced by reflectance, radiation
area, and incident angles:

S =
∫ ∞

0
LλR(λ)AΩ cos(θ)dλ [V] (A.17)

A common assumption for defining the spectral response is that it has a Gaussian
nature (idealized) [18], obtained by estimating the shape based on well-characterized
references for calibration (i.e., internal reference lamps or the sensor pointing at the
moon). The spectral response is then defined by fitting a Gaussian curve using its central
wavelength and the FWHM, also denoted by (∆λ), which corresponds to 50% of the
peak height, describing the channel bandwidth. An illustration of a SRF is shown in
Figure A.7. Usually, each band has a different spectral response with a different central
wavelength and FWHM.
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Figure A.7: Spectral response parameters. Image credit: Borengasser [18].

Using the aforementioned concepts, spectral resolution refers to spectral features such
as the wavelength detection range, number of bands, and FWHM. “The higher the
spectral resolution, the narrower the spectral bandwidth required” [164].

Although the ideal SRF is assumed to be Gaussian, its shape varies in practice due to
variations in sensor construction and quality. This can be analyzed in pre-flight studies.
In Figure A.8, examples of actual SRFs are shown.
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Figure A.8: Spectral response functions of the B4, B3, and B2 bands from the multispec-
tral sensor onboard the Sentinel-2C spacecraft. Credit: Copernicus Program [41].
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A.1.2.3 Radiometric Resolution

The voltage generated by the sensor in response to the incoming flux (for each band)
is a continuous signal. In order to transmit and store the image, the signal is digitized
by an Analog-Digital Converter (ADC), assigning a DN to each ground resolution cell.
This process is also known as quantization. The range of values that a DN takes defines
the radiometric resolution, usually depending on the number of bits (b) used to store the
intensity of each ground resolution cell, as a datum (a sequence of bits) representing a
DN as an unsigned integer of b-bits, as follows:

DN ∈ Z, (A.18)
0 ≤ DN ≤ 2b − 1. (A.19)

The radiometric resolution is often defined in terms of b-bits. An example of the effect
of different radiometric resolutions is shown in Figure A.9.

Figure A.9: Examples of different radiometric resolutions over Chicago, Illinois. Left
image of 16-bit (0 ≤ DN ≤ 65, 365). Center image of 8-bit (0 ≤ DN ≤ 255). Right image
of 4-bit (0 ≤ DN ≤ 15). Image credit: USGS, Public Domain.

There is a trade-off between numerical accuracy and the number of bits used to store
each pixel. As seen in Figure A.9, low radiometric resolution loses information about the
reflectivity of a ground resolution cell, making it harder to identify fine changes. These
errors are known as quantization noise, and this will be reviewed in more detail later.
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A.1.2.4 Spatial Resolution

Similar to the concept of spectral resolution, the spatial resolution describe how dis-
tanced are independent measurements on the Earth’s surface. To introduce this concept,
the first step is to understand intuitively how images are captured.

Most of the currently implemented optical EO missions are based on a push-broom
scanner, also known as along-track scanner, capturing a row of pixels per scan as the
vehicle moves. The scanning line is perpendicular to the satellite ground track.

The covered ground distance captured by the sensor is known as ground swath (also
called swath width), and this is defined by the Field Of View (FOV) of the sensor, and
the height (H) of the vehicle. These parameters are illustrated in Figure A.10. The
resulting captured columns in ground track direction are named footprints.

Figure A.10: Push-broom sensor operation by time. Image Credit: [155].

Lastly, to obtain the distance sampled for each pixel, the ground sampling distance
is computed by dividing the ground swath by the number of captured pixels. Note that
this distance is perpendicular to the ground track direction.

To create square pixels (which can also be rectangular), the sensor captures the photon
flux for a given time (τ), which depends on the velocity (v) of the vehicle, as illustrated
in Figure A.10.

Most monitoring missions capture long strips while traveling forward in a straight
line, which are then cropped into individual tiles (usually square) for easy distribution.
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A.1.2.5 Sensor Platforms

Sensors can be mounted on a wide variety of vehicles, affecting different characteristics
of the retrieved images, such as ground sampling distance and ground swath. Given
that this work focuses on optical remote sensing missions with spaceborne sensors, the
principal characteristics are described below [165]. In addition, other platforms are briefly
described.

• Spaceborne Sensors: These are spaceborne vehicles (satellites) orbiting the Earth
along a specified trajectory. The role of rocket companies is to use launch vehicles
carrying payloads (satellites) to pass through the atmosphere and then provide
the horizontal velocity needed to enter orbit [165]. In contrast to single-satellite
missions, a constellation of satellites consists of a network of n satellites, where
n ≥ 2, covering different locations on Earth’s surface simultaneously.
There are different types of orbits that allow remote sensing missions to perform
different tasks. The most common orbits for EO missions are described below:

– Geostationary Orbit (GEO): Satellites flying above the equator at an altitude
of 35 786 km in the direction of Earth’s rotation (from west to east) matching
the velocity, appearing to be static in the sky from the Earth’s perspective.
This orbit allows pointing to a fixed spot for constant monitoring [165].

– Low Earth Orbit (LEO): This orbit is relatively low, just high enough (180 km)
to avoid effects of atmosphere over the spacecraft (reducing its speed), and
the upper limit (2000 km) is defined by the Van Allen belts that could harsh
satellites. These satellites could have orbital planes at tilted angles. The low
altitude allows capturing images with relatively high resolution [165]. The
International Space Station (ISS) is in this orbit at an altitude of 408 km.

– Polar Orbit (PO): This is a type of LEO, with altitudes ranging from 200 km
to 1000 km. These satellites travel from one pole to the other with a small
deviation of less than 10◦. This orbit is particularly useful for Earth monitoring
missions, as the sensor points downward while traveling from pole to pole,
while the planet rotates below, allowing coverage of every location on Earth’s
surface [165].

– SSO: A particular type of PO in which satellites are synchronized with the
Sun, maintaining the same position relative to it. This allows them to capture
the same location under consistent illumination conditions (sun-zenith and
viewing angles), enabling comparisons over time. These satellites typically
orbit at an altitude between 600 km and 800 km [165].

In Figure A.11, the Sentinel-2C satellite is shown flying in an SSO at an altitude of
775 km, along with the EnMAP satellite, which operates at an altitude of 653 km.
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(a) Sentinel-2C in orbit.
Image credit: European Comission [166].

(b) EnMAP in orbit.
Image credit: OHB and DLR [167].

Figure A.11: Spaceborne vehicles.

The principal advantages of spaceborne sensors are their wide coverage and long op-
erational lifespan, allowing years of continuous monitoring, making them perfectly
suitable for global applications. The disadvantages include low spatial resolution
(compared to airborne platforms) and the presence of atmospheric elements (e.g.
clouds) that may obstruct the view.

• Airborne Sensors: Sensors mounted on aircraft at low altitudes offer some ad-
vantages compared to spaceborne sensors. For instance, if the vehicle is flying low
enough, it can avoid having its view blocked by clouds. In addition, they provide
a small ground sampling distance (on the order of centimeters) at the expense of a
narrow ground swath.
These platforms face a new challenge: geometric distortions caused by instabilities
in aircraft pitch, roll, and yaw motions during flight, in addition to changes in alti-
tude and velocity during capture [168]. Therefore, a specific geometric rectification
is required. Two of the most commonly used vehicles are listed and described below:

– Airplane: This type of aircraft provides a relatively large coverage range (hun-
dreds of kilometers), meeting the requirements for applications at regional or
national levels. It allows continuous maintenance and calibration of the on-
board sensor in a controlled environment, at the expense of the associated
costs of operating an airplane and the required infrastructure.
In Figure A.12, an illustration of the platform used for the airborne HySpex
[169] hyperspectral sensor of DLR is shown.

– UAV: Commonly known as drones, they are one of the most cost-effective
options for monitoring with high spatial resolution, but they are limited in
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(a) DLR Research aircraft - (Dornier) DO
228-212.

(b) HySpex sensor system onboard DO
228-212.

Figure A.12: HySpex hyperspectral sensor onboard DO 228-212 in DLR Oberpfaffenhofen
site. Images credit: DLR, CC BY-NC-ND 3.0 [156].

covered distance and sensor weight. A wide range of drone types is avail-
able, including multi-rotor, single-rotor, and fixed-wing aircraft. Commercial
options are widely available on the market, allowing companies to handle local-
level applications with complete image processing software suites. In recent
years, these platforms have become very popular for precision agriculture, ur-
ban planning, and development. In Figure A.12, an illustration of multi-rotor
and fixed-wing UAVs is shown.

• Ground-based: Suitable for on-site or laboratory applications, these sensors are
designed to remain static or have limited mobility. Given the limited area covered
per measurement, they are usually intended for validation campaigns of airborne
or spaceborne sensors or for monitoring fixed high-importance sites.
For example, handheld spectrometers allow for highly accurate measurements in
a controlled environment, following designated measurement protocols to mini-
mize uncertainty. For reflectance validation campaigns, measurements must be
performed by sampling the site in an equidistant pattern over a uniform surface
(e.g., a grass field). The measured site should be larger than the ground sampling
distance to mitigate the effect of variance between pixels and to take the average
of a set of pixels.
In Figure A.14, a spectrometer and an example of its application are shown.

Because of the scope of this thesis, not all remote sensing platforms are reviewed.
However, sensors can be mounted on a wide range of platforms, such as space shuttles,
helicopters, hot air and tethered balloons, ships with sensors above and below the water
surface, elevated (raised) platforms, or meteorological stations.
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(a) Multi-rotor (quadcopter) drone:
DJI Mavic 3M with a multispectral and RGB
camera onboard. Also includes a light sensor
on the top for sensor calibration and GPS for
geolocalization.
Image credit: DJI.

(b) Fixed-wing drone:
AgEagle eBee X series with modular design for
adapting a wide variety of sensors and compo-
nents depending the application. Image credit:
AgEagle.

Figure A.13: Different types of UAVs.

(a) Spectra Vista Corporation (SVC) spectrom-
eter performing the measurement of a reference
panel (white square below). The objective is to
characterize the incoming solar irradiance, al-
ready filtered by the atmosphere. Image credit:
Spectravista.

(b) In-situ measurements for PACO-L2A Vali-
dation campaign of Sentinel-2 and EnMAP mis-
sions. Klosterwiese, Fürstenfeldbruck, Bavaria.

Figure A.14: Hand-held spectrometers application examples.
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A.1.2.6 Temporal Resolution

Multiple captures of the same location at a constant time interval are key for applica-
tions that detect changes (e.g., agriculture, natural disaster damage assessment, defense).
In addition, for satellite imagery, where the atmosphere may obstruct ground reflectance
retrieval, it is important to capture images within a reasonably short time interval.

The time between captures is called the revisit time. For an orbital sensor, it depends
on the altitude, velocity, and FOV of the satellite, typically involving a trade-off between
the revisit time and the spatial resolution. Revisit time can also be reduced by adding
additional sensors to the constellation with the same characteristics and orbit but phased
at a specific angle. For instance, an extra sensor in the same orbit but phased 180◦ apart
would reduce the revisit time by half.

For airborne sensors, their revisit time completely depends on the assigned budget for
monitoring a location, generally covering a considerably smaller area with high spatial
resolution and not dependent of the cloud coverage.

In Figure A.15, an example of a wildfire damage assessment is shown. A high revisit
time increases the opportunity to detect potential dangers earlier and improves decision-
making by authorities to counter the hazards.
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(a) April 12, 2023 (b) April 17, 2023

(c) April 22, 2023 (d) April 27, 2023

(e) May 2, 2023 (f) May 7, 2023

(g) May 12, 2023 (h) May 17, 2023

Figure A.15: One-month temporal series of Sentinel-2 RGB composites with a 5-day
revisit time showing Bosque La Primavera, located on the outskirts of Guadalajara,
Jalisco, Mexico. A wildfire event started on April 26, 2023, with burn scars clearly
visible in Sentinel-2 imagery. Image credit: Copernicus data space.
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A.1.2.7 Noise Model

Noise is intrinsic to any signal, and the signal captured by an optical sensor for spectral
imaging is not an exception. There are many sources and types of noise present in the
captured signal, but in general, noise can be categorized into two classes [170]: fixed
pattern noise and random noise.

The first type arises from calibration errors or sensor defects and is not addressed
in this work. Instead, random noise, due to its stochastic nature, can be studied and
modeled using a suitable noise model.

For new-generation imaging spectrometers used in optical remote sensing, random
noise mainly originates from two sources: Signal-Dependent (SD) photonic noise and
Signal-Independent (SI) electronic noise, also known as thermal (Johnson) noise [171].

Using tensor theory, the noisy spectral image is represented as a sum of the clean
signal and additive noise [172].

Xnoisy = X + N, (A.20)
where Xnoisy,X,N ∈ RI1×I2×I3 . Xnoisy is the noisy spectral image, X is the clean signal
and N is the noise for both photon and thermal noise [170]. The noise model in equation
(A.20) is valid under the assumption of high Signal-to-Noise Ratio (SNR) of X. The
variance of the noise depends of each pixel value xi1,i2,i3 in the clean signal X. The tensor
N is composed by the sum of two tensors, the photonic noise tensor P ∈ RI1×I2×I3 and
the thermal noise tensor T ∈ RI1×I2×I3 . Thus:

N = P + T, (A.21)

where P is dependent of the clean signal X, and T is signal-independent.
The improvement of the CCD sensors for new generation instruments exhibited a

tendency to increase spatial resolution. Therefore, the number of photons that reach a
pixel per unit time becomes smaller, causing the random fluctuation of photons arriving
at the sensor. Consequently, the photonic noise is now more relevant than before [170].
Photonic noise follows Poisson distribution [173], but it can be approximated by a Gaus-
sian distribution [174]. A single photon noise element pi1,i2,i3 of tensor P ∈ RI1×I2×I3 can
be expressed in terms of its corresponding element xi1,i2,i3 of the clean signal X as follows
[174]:“

pi1,i2,i3 = (xi1,i2,i3)γ · ui1,i2,i3 , (A.22)
where ui1,i2,i3 is a stationary, zero-mean uncorrelated random process independent of
xi1,i2,i3 with variance σ2

u”. “In the case for earth remote sensing images captured by
instruments mounted in airborne or spaceborne platforms, the exponent γ is equal to
0.5” [171]. Thus:

pi1,i2,i3 = √
xi1,i2,i3 · ui1,i2,i3 . (A.23)

The thermal agitation of the charge carriers inside the electronics of the instruments
used for spectral images causes the thermal noise. A single thermal noise element of the
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noise tensor T is denoted by ti1,i2,i3 , this random process can be modeled as an additive
zero-mean white Gaussian noise with variance σ2

t [170].
From equations (A.20) and (A.21), the noise model considering both photonic and

thermal noise is:
Xnoisy = X + P + T. (A.24)

Element-wise, using equations (A.22) and (A.23), the noise model is:

xnoisy
i1,i2,i3 = xi1,i2,i3 + √

xi1,i2,i3 · ui1,i2,i3 + ti1,i2,i3 . (A.25)

To highlight dependency, another useful notation for equation (A.21) is [175]:

N (X) = NSD (X) + NSI . (A.26)

ni1,i2,i3 (X) = √
xi1,i2,i3 · ui1,i2,i3 + ti1,i2,i3 . (A.27)

Given this, equation (A.24) can be rewritten as:

Xnoisy (X) = X + NSD (X) + NSI . (A.28)

To get the noise variances of the random processes σ2
u,i3 and σ2

t,i3 , are required the
mean variance of the noise tensors NSD (X) and NSI [175]. For SD mean noise variance
tensor:

σ2
NSD(X) = 1

I1I2I3

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

σ2
u,i3 · xi1,i2,i3 . (A.29)

Let µi3 be the mean of the clean signal at band i3:

µi3 = 1
I1I2

I1∑
i1=1

I2∑
i2=1

xi1,i2,i3 , (A.30)

from (A.30), equation (A.29) can be rewritten as:

σ2
NSD(X) = 1

I3

I3∑
i3=1

σ2
u,i3 · µi3 , (A.31)

besides, the SI noise has constant variance σ2
NSI

in all bands, the SI mean variance noise
tensor is:

σ2
NSI

= 1
I1I2I3

I3∑
i3=1

σ2
t,i3 , (A.32)

thus, the mean variance of the noise tensor N (X) is:

σ2
N(X) = σ2

NSD(X) + σ2
NSI

, (A.33)
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σ2
N(X) = 1

I1I2I3

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

(
σ2

u,i3 · xi1,i2,i3 + σ2
t,i3

)
. (A.34)

From the SNR (dB) formula:

SNR = 10 · log10
∥X∥2

∥N (X) ∥2 , (A.35)

∥N (X) ∥2 in terms of X and a specified SNR is expressed as:

∥N (X) ∥2 = ∥X∥2 · 10−(SNR
10 ). (A.36)

If equation (A.36) is divided by the total number of pixels I1I2I3, note that σ2
N(X) = ∥N(X)∥2

I1I2I3

(see equation (A.34)). If PX = ∥X∥2

I1I2I3
is the mean power of tensor X, then:

σ2
N(X) = PX · 10−(SNR

10 ). (A.37)

Assuming a parameter α, which control the dominance of signal-dependent noise variance
over the signal-independent noise variance, such that:

α =
σ2
NSD(X)

σ2
NSI

, (A.38)

Then, from equations (A.38) and (A.33), follows:

σ2
NSD(X) =

σ2
N(X) · α

α + 1 , (A.39)

and:
σ2
NSI

=
σ2
N(X)

α + 1 . (A.40)

Note that both results depend only on α and σ2
N(X), which are already available in equa-

tions (A.37, A.38). Finally, solving for the noise variance of the random process σ2
u,i3

from equation (A.29):

σ2
u,i3 =

σ2
NSD(X)

µi3

, (A.41)

as well, the noise variance of the random process σ2
t,i3 , from equation (A.31):

σ2
t,i3 = σ2

NSI
. (A.42)
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A.2 Remote Sensing Missions
In the 2022 study by Qiang Zhao et al. [157], an overview of the exponentially growing

number of publications is provided, highlighting the most cited EO missions, as shown
in Figure A.16.

Figure A.16: Number of publications referencing the use of data from an EO mission.
Left: Number of publications per mission per year. Right: Total number of publications
per year. Plot credit: Qiang Zhao et al. [157]

Additionally, the study provides the distribution of publications by country. The
leading countries are the USA (14,003) and China (11,165), followed by Germany (2,960),
Canada (2,760), India (2,743), and other European countries. Mexico is still developing
in this area, with 488 publications, highlighting opportunities for advancing solutions at
the national level. The worldwide distribution is shown in Figure A.17.

The derived products from Earth monitoring missions cover a wide range of appli-
cations of interest to both the private and public sectors. For instance, the EU has
developed the Copernicus Program, a collection of Earth monitoring missions with six
principal application areas, as listed in Figure A.18.

Climate change monitoring is becoming one of the largest research areas and has
initiated a collaborative effort among public institutions worldwide, given humanity’s
shared interest in mitigating the effects of global warming.

Resource management for land and water is of interest to governments and primary
sector companies, with objectives such as food security and water management. It is also
essential for monitoring natural resources, ensuring their sustainable exploitation, and
promoting responsible waste disposal.

Atmospheric monitoring allows for tracing harmful gases emitted by industries and
cities, as well as forecasting weather, which is closely related to managing emergencies
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Figure A.17: Worldwide distribution of publications referencing the use of data from EO
missions. Image credit: Qiang Zhao et al. [157].

Figure A.18: The six missions from EU’s Copernicus Program. Image credit: Copernicus
Program, EU.

and natural disasters, such as hurricanes, floods, and earthquakes. These capabilities
aid protection authorities in preparing for events and assessing damages afterward. The
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retrieved products from EO missions enable informed decision-making and planning.
Lastly, security and defense is a growing sector due to the world’s geopolitical context

and the increasing budgets allocated by nations to this area, representing a significant
advantage for defense institutions given the vast amount of retrieved information.

All the mentioned areas benefit from the geoinformation retrieved by EO missions.
In this thesis, data captured from a multispectral sensor (Sentinel-2) and a hyperspectral
sensor (EnMAP) is used for training the models in the experiments presented. On the
other hand, cloud products from the TROPOMI sensor onboard the Sentinel-5P mission
are used for the testing phase of the resulting models.

The selection of these sensors is due to the fact that they are processed by PACO for
atmospheric correction, and some products derived from the early stages of processing
are used to create training datasets for this work. In addition, the data are publicly
available for research purposes.
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A.3 Spectral Indices
Spectral indices highlight physical characteristics of the pixel composition, and there

exists an extensive variety of spectral indices for a wide range of applications, including
land cover classification, vegetation identification, cryosphere monitoring, cloud detection,
resource mapping, among many others. To illustrate how spectral indices work, the
following three examples are selected from a wide variety of indices for deeper analysis.

The Normalized Difference Vegetation Index (NDVI) [176] measures vegetation health,
given that vegetation reflects strongly in the NIR ∼ 850 nm and absorbs in the Red ∼
660 nm. Negative values correspond to water, and values around 0 to rock, sand, or snow.
NDVI is defined as follows:

NDVI = NIR − Red
NIR + Red ∈ [−1, 1]. (A.43)

The Normalized Difference Water Index (NDWI) [177] highlights water features and
suppresses soil and vegetation, given that water reflects in the Green ∼ 560 nm and
absorbs in the NIR ∼ 850 nm. NDWI is defined as follows:

NDWI = Green − NIR
Green + NIR ∈ [−1, 1]. (A.44)

The Normalized Difference Moisture Index (NDMI) [178] detects water content in
vegetation and overall surface moisture, given that water in vegetation absorbs more
in the SWIR ∼ 1640 nm than in the NIR ∼ 850 nm. Values around 0 correspond to
vegetation with water stress, and negative values to non-vegetated soil. NDMI is defined
as follows:

NDMI = NIR − SWIR
NIR + SWIR ∈ [−1, 1]. (A.45)

The three selected spectral indices, NDVI, NDWI, and NDMI, are displayed in
Figure A.19, along with their RGB true color composite for comparison, highlighting
Guadalajara city (top right), Primavera Forest (top left), and Chapala Lake (bottom
right), with the Cajititlán Lagoon to its north (the smaller, greener lagoon).

Some insights related to vegetation can be analyzed using the NDVI map, where a
green spot can be identified in the Primavera Forest, along with other patches far from
the city and closer to the lake. Although the NDVI indicates healthy vegetation, the
NDMI reveals some water stress spots in the middle of the forest. Another observation
is that within the city, vegetation is more present in the northwest area. One possible
application of these insights could be to support the planning of an urban reforestation
campaign within Guadalajara city.

In addition, insights about water bodies and water quality can be analyzed using
the NDWI and NDMI. Although Chapala Lake is well highlighted in the NDWI map,
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(a) RGB. (b) NDVI. (c) NDWI. (d) NDMI.

Figure A.19: True color and example spectral index maps. Image: Sentinel-2, over
Guadalajara and surrounding areas, captured on 2025/01/01. Source: Copernicus Data
Workspace.

the Cajititlán Lagoon is missed, but it is clearly visible in the NDMI and also in the
NDVI, which may be attributed to dense aquatic vegetation or shallow waters. This
information could be used to monitor water levels over time using a time series, supporting
water management and monitoring applications. Furthermore, although the San Marcos
Lagoon appears dry in the RGB image and shows low NDWI values, the moisture index
provided by the NDMI reveals that the water content of the area is high. Additionally,
the highways show consistently low moisture, which means that in the case of a flood,
these areas would be expected to show higher values.

With this brief analysis, an intuitive understanding of the strengths and weaknesses of
spectral indices is provided, but they should be further interpreted with expert knowledge.
Although only three spectral index examples are analyzed in this thesis, multiple appli-
cation areas use different spectral indices that denote particular characteristics present
in the spectral signature. Some examples are listed in Table A.1.
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Index Formula Application Area
NDVI [176] NIR−Red

NIR+Red
Vegetation health and biomass

NDWI [177] Green−NIR
Green+NIR

Water body detection
NDMI [178] NIR−SW IR

NIR+SW IR
Vegetation moisture content

NDBI [179] SW IR−NIR
SW IR+NIR

Urban and built-up area
detection

SAVI [180] (NIR−Red)(1+0.5)
NIR+Red+0.5 Vegetation with soil

adjustment
EVI [181] 2.5(NIR−Red)

NIR+6·Red−7.5·Blue+1 Dense vegetation / canopy
structure

MSAVI [182] 2·NIR+1−
√

(2·NIR+1)2−8·(NIR−Red)
2 Vegetation, soil minimized

BAI [183] 1
(Red−0.06)2+(NIR−0.1)2 Burned area detection

NDSI [184] Green−SW IR
Green+SW IR

Snow cover and cloud-snow
separation

Cloud ratio Blue
SW IR

Cloud detection

Table A.1: Spectral indices and band ratios for optical remote sensing applications.

Figure A.20: Cloud ratio.

It is important to note that the quantities re-
trieved from spectral indices should be further in-
terpreted and analyzed, considering the possibility
of “false positives.” An example is shown in Fig-
ure A.20, where white greenhouses show high values
(in grayscale) using the cloud ratio (described in Ta-
ble A.1). During cloud masking, these greenhouses
could easily be classified as clouds if another spec-
tral index or external information is not included in
the masking process.
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A.4 Earth’s Spheres and Its Classification
This section describes all the classes that are of common interest to the remote sensing

research community. In the context of developing the ground segment processing chain
of an remote sensing mission, the requirements of a wide range of research areas must
be considered during processing. E.g., land cover identification, water quality analysis,
atmospheric and trace gas analysis, vegetation monitoring, cryosphere studies, among
many others.

Pixel classification performed at the L1C or L2 level allows for quick identification of
pixels of interest in subsequent processing steps. For example, during water analysis, all
land-related pixels are not relevant and should be discarded.

The following description does not aim to define Earth’s spheres within their respective
research domains. On the contrary, its purpose is to highlight the most important targets
for spectral imagery classification, addressing only the characteristics relevant to this
thesis in the context of optical remote sensing and AC. The main applications related to
the observation of these targets are discussed in Section 2.2.

A.4.1 Lithosphere, Hydrosphere and Cryosphere
The lithosphere comprises the outer solid layer of Earth’s surface. For the purpose

of this thesis, it also includes all visible land surfaces, encompassing the biosphere and
human-built structures. This class is referred to as clear sky land, or simply land, and
is further subdivided into vegetated, non-vegetated, or built-up areas. An example of the
aforementioned classes is shown in Figure A.21, capturing the municipality of “Tepatitlán
de Morelos” (built-up), surrounded by agricultural crops (some vegetated, others already
harvested, leaving the bare soil exposed).

Figure A.21: “Altos de Jalisco”, Mexico. Image: Sentinel-2 captured on 2024/10/03.
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The hydrosphere includes all the water present on Earth. For remote sensing, the
visible water on Earth’s surface comprises oceans, rivers, lakes, and lagoons, including
human-built water reservoirs. The water class can be further subdivided based on salinity,
depth, vegetation, or pollution. In Figure A.22, Chapala Lake (the largest lake in Mexico
and the main source of water supply for the city of Guadalajara) is shown with visible
algal bloom proliferation due to pollution and low water levels. This image was selected
as the Copernicus “Image of the Day” on February 2024 [185].

Figure A.22: Chapala Lake, Jalisco, Mexico. Image: Sentinel-2 captured on 2024/02/11.

The cryosphere comprises all temporal and permanent snow and ice, including glaciers.
These are mostly found near the Earth’s poles (on land or floating on water) and in high-
altitude mountains, and are highly dependent on the season. In Figure A.23, the Eastern
Alps are shown, with Innsbruck located in the middle of the Inn Valley.

Figure A.23: Innsbruck, Austria. Image: Sentinel-2 captured on 2024/12/28.
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A.4.2 Atmosphere
The atmosphere is composed of aerosols and gases distributed at different altitudes.

The troposphere (from Earth’s surface to 15 km) contains the densest part of the atmo-
sphere, including all aerosols and the majority of gases. The stratosphere (15 km–50 km)
contains significant quantities of ozone. The mesosphere (50 km–85 km) and the ther-
mosphere (85 km–600 km), where satellites orbit, contain much lower gas densities [186].
The principal components that absorb and scatter sunlight are found in the troposphere
(WV, CO2, Methane (CH2), O3, Nitrous Oxide (N2O), and O2) and the stratosphere
(primarily O3).

Clouds are the primary obstacle in optical remote sensing, as they reflect the majority
of sunlight across the EM spectrum (which gives them their white appearance by reflecting
the VIS range with approximately equal intensity). They behave differently depending
on their altitude (CTH), exhibiting variations in shape, spatial extent (CF), color, and
transparency, all of which directly affect how they interact with sunlight (COT). In
Figure A.24 a diagram is showing describing shape and color of common types of clouds
at different altitudes. In addition, in Table A.2, a brief description of each kind of cloud
is listed as follows:

Figure A.24: Common types of clouds. Image credit: University Corporation for Atmo-
spheric Research [158].

203



Appendix A. Background Support

Cloud Type Composition Key Bands Interactions with EM Spectrum
Cirrus

(Above 5,500 m)
Ice crystals 1.38 µm,

8.5–12 µm
High reflectance in 1.38 µm due to cirrus altitude

above water vapor. Often semi-transparent in VIS.

[187, 188]

Cirrocumulus
(Above 5,500 m)

Ice,
supercooled

water

VIS, NIR Thin cloud layer; weak reflectance signal. Causes

minor scattering at high altitudes, with limited

TOA impact. [189]

Altocumulus
(2,000–6,000 m)

Liquid water,
mixed-phase

0.86 µm, 1.6
µm

Strong scattering in VIS; moderate reflectance in

SWIR due to droplet size. [188, 190]

Altostratus
(2,000–6,000 m)

Water + ice
mix

6.7 µm, 11
µm

Thick, multi-layered; absorbs across thermal IR.

Significantly reduces surface visibility. [189]

Stratocumulus
(Below 2,000 m)

Liquid water VIS, NIR High reflectance in VIS/NIR; strongly affects

surface reflectance estimates. [190]

Stratus
(Below 2,000 m)

Water droplets VIS, Thermal
IR

Low, thick cloud; strong thermal IR emission.

Spectrally similar to fog. [189]

Cumulus
(Below 1,500 m)

Liquid water VIS, NIR,
SWIR

Bright reflectance; casts shadows. Commonly

masks land in classification algorithms. [188]

Aerosols
(Near surface)

Dust, smoke,
salt, organics

UV, VIS, NIR Variable scattering and absorption properties;

critical for accurate atmospheric correction.

[191, 192]

Table A.2: Characteristics of cloud types and aerosols in optical remote sensing.

In Figure A.25, an example of different types of clouds is shown over the well-known
remote sensing site “Fünf Seen” in Bavaria, Germany. Semi-transparent clouds can be
observed at high altitudes, allowing thicker clouds at lower altitudes to also be seen.

Figure A.25: Starnberg, Bavaria, Germany. Image: Sentinel-2 captured on 2024/08/03.
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A.4.3 Shadows
Shadows are dark areas where sunlight is completely absorbed or reflected. This is

the case of solid objects (e.g. a mountain) or those with low transmittance (e.g. clouds).
Although the surface with the casted shadow is slightly illuminated by reflections from
neighboring surfaces or objects, this causes very low reflectance measured by the sensor,
which is not sufficient to retrieve spectral information.

In this thesis, shadows are divided into two types depending on the object that blocks
or reduces the transmitted light:

• Cloud shadows: caused by all types of clouds that cast a shadow over land, water,
or snow.

• Topographic shadows: caused by mountains, hills, vegetation, or human-built struc-
tures.

The size and location of shadows captured by the sensors depend on the solar zenith
angle (which determines where the shadows are projected) and the viewing zenith angle
(which determines which portion of the shadows is observed). When the sensor zenith
angle is 0◦ (at-nadir capture) and the solar zenith angle is 0◦, the shadows are cast
vertically and, therefore, are not observed by the sensor.

In Figure A.26, an example is shown of thick clouds casting shadows over land and
water in the surroundings of Athens, Greece. Since this scene was captured in the North-
ern Hemisphere during the winter season, the solar zenith angle is larger, resulting in
shadows cast farther from the cloud locations.

Figure A.26: Athens, Greece. Image: Sentinel-2 captured on 2024/12/30.
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Methodology

B.1 Regression Plots and Histograms
The classic approach to reveal the linear relationship between the reference and evalu-

ated variables is to display both in a regression plot, composed of a scatter plot with y and
ŷ on the horizontal and vertical axes, respectively. In Figure B.1, a regression plot and its
corresponding difference plot between the evaluated variables are shown. The colorbar
is used to characterize the type of sample by incorporating a third “label” variable. The
plot examples in this subsection are generated using N = 1500 synthetic samples from a
uniform distribution with additive normal noise, such that {y ∼ U(a = 0, b = 100)} and
{ŷ = y + N (µ = 0, σ = 5) | ŷ = min(max(ŷ, 0), 100)}.

In addition to the regression plot, the use of histograms provides further information
about the distribution of samples across different ranges of the variables. For example, the
2D histogram shown in Figure B.2a highlights the sample distribution over the range of
the reference and predicted variables. Moreover, the histogram of the differences reveals
biases in the predictions, as displayed in Figure B.2b.
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(a) Regression plot revealing the linear relation-
ship between y and ŷ.

(b) Differences between ŷ and y.

Figure B.1: Regression and ∆y plots.

(a) 2D histogram showing the distribution of
samples, with color map indicating sample den-
sity.

(b) Histogram of differences between y and ŷ.

Figure B.2: Histograms.
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Additional Results

C.1 Results for the Hyperspectral Case
As mentioned in Subsection 4.2.4, this appendix compiles the full set of regression

plots and their corresponding difference maps, along with histograms of the differences
to better assess the distribution of prediction errors. The regression and difference plots
(Figures C.1 and C.2) provide a visual comparison between the CNN-based model pre-
dictions and the cloud fraction values derived from TROPOMI. However, due to the
clustered nature of the data and the absence of a continuous regression surface, individ-
ual data points may be difficult to interpret in detail. The color mapping based on Cloud
Optical Thickness (COT) is included to highlight internal patterns in the data, although
this information is not directly leveraged in the current analysis. The most informative
visualizations in this appendix are arguably the histograms of the prediction differences
(Figure C.3), which allow for a clearer evaluation of the distribution and magnitude of
model deviations from the reference values.
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(d) PACO (e) CNN2D No Filter (f) CNN2D Uniclass (g) CNN2D Physics
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Figure C.1: Regression plots comparing TROPOMI with predictions from all CNN models and filter types.

210



C
.1.

R
esults

for
the

H
yperspectralC

ase

(a) CNN1D No Filter (b) CNN1D Uniclass (c) CNN1D Physics

(d) PACO (e) CNN2D No Filter (f) CNN2D Uniclass (g) CNN2D Physics

(h) CNN3D No Filter (i) CNN3D Uniclass (j) CNN3D Physics

Figure C.2: Difference plots between TROPOMI and CNN predictions for all model architectures and filter types.
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(d) PACO (e) CNN2D No Filter (f) CNN2D Uniclass (g) CNN2D Physics

(h) CNN3D No Filter (i) CNN3D Uniclass (j) CNN3D Physics

Figure C.3: Histogram of differences between TROPOMI and CNN predictions across all models and filter strategies.
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