

EGU25-3659, updated on 01 Oct 2025 https://doi.org/10.5194/egusphere-egu25-3659 EGU General Assembly 2025 © Author(s) 2025. This work is distributed under the Creative Commons Attribution 4.0 License.

LunarLeaper - Unlocking a Subsurface World

Simon C. Stähler^{1,2}, **Anna Mittelholz**¹, Hendrik Kolvenbach³, Philip Arm³, Valentin Bickel⁴, Joseph Church³, Svein-Erik Hamran⁵, Adrian Fuhrer³, Michael Gschweitl², Elena Krasnova³, Ramon Margarit¹, Jordan Aaron¹, Sofia Coloma⁶, Matthias Grott⁷, Marco Hutter³, Ozgur Karatekin⁸, Miguel Olivares-Mendez⁶, Birgit Ritter⁸, Johan Robertsson¹, and Krzysztof Walas⁹

¹Institute of Geophysics, ETH Zürich, Zürich, Switzerland (simon.staehler@erdw.ethz.ch)

⁹Institute of Robotics and Machine Intelligence, Poznan University of Technology, Poznan, Poland

LunarLeaper is a mission concept designed to robotically explore subsurface lava tubes on the Moon. Lunar pits, steep-walled collapse features, are thought to be connected to such lava tube systems and more than 300 have been identified through remote sensing. These

²ETH|Space, ETH Zürich, Zürich, Switzerland

³Robotic Systems Lab, ETH Zürich, Zürich, Switzerland

⁴Center for Space and Habitability, University of Bern, Bern, Switzerland

⁵Department of Technology Systems, University of Oslo, Norway

⁶Space Robotics Research Group, University of Luxembourg, Luxembourg

⁷Institute of Planetary Research, German Aerospace Center DLR, Berlin, Germany

⁸Royal Observatory of Belgium, Brussels, Belgium

natural subsurface structures hold immense value for exploration and scientific investigations, because they offer protection from radiation, micrometeorites, and harsh temperature fluctuations on the lunr surfac

e and as such, they have been proposed for possible future human habitation. In addition, the extent, nature and duration of lunar volcanism is poorly understood and the uniquely exposed stratigraphy along the pit walls might hold crucial information on the volcanic history if the Moon.

However, current orbital imaging lacks sufficient resolution to confirm these connections, making ground-truth exploration essential. LunarLeaper aims to address these knowledge gaps by deploying a lightweight (<15 kg) legged robot capable of autonomously traversing challenging terrains, including steep slopes and boulder fields, that hinder traditional wheeled rovers. The mission will investigate four primary objectives:

- (1) Subsurface Lava Tubes—confirming the presence and extent of lava tubes;
- (2) Suitability for Human Habitation—assessing the accessibility stability of pits;
- (3) Geological Processes—analyzing the exposed stratigraphy along pit walls to study volcanic evolution, the number and timing of lava flows, and the compositional evolution of the lunar interior;
- (4) Regolith Assessment—exploring the lateral and vertical extent of regolith, which holds vital information about the Moon's geological and impact history.

The legged robot will land close to a lunar pit, equipped with ground-penetrating radar (GPR) and a gravimeter to map subsurface structures and detect lava tubes. It will also capture high-resolution images and compositional data from the pit walls travelling a total of approximately 1 km within one lunar day (approximately 12 Earth days). LunarLeaper not only advances lunar exploration by providing access to previously unreachable terrains but also demonstrates the potential of legged robotic systems in space. It will serve as a key technology demonstration, contributing to the development of future robotic exploration systems and laying the groundwork for future human missions to the Moon.