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Abstract

Industrial energy systems are increasingly required to reduce operating costs and CO,
emissions while integrating variable renewable energy sources. Managing these objec-
tives under uncertainty requires advanced optimization strategies capable of delivering
reliable and real-time decisions. To address these challenges, this study focuses on the
short-term operational planning of an industrial energy supply system using the rolling
horizon approach (RHA). The RHA offers an effective framework to handle uncertainties
by repeatedly updating forecasts and re-optimizing over a moving time window, thereby
enabling adaptive and responsive energy management. To solve the resulting nonlinear
and constrained optimization problem at each RHA iteration, we propose a novel hybrid
algorithm that combines Bayesian optimization (BO) with the Interior Point OPTimizer
(IPOPT). While global deterministic and stochastic optimization methods are frequently
used in practice, they often suffer from high computational costs and slow convergence,
particularly when applied to large-scale, nonlinear problems with complex constraints.
To overcome these limitations, we employ the BO-IPOPT, integrating the global search
capabilities of BO with the efficient local convergence and constraint fulfillment of the
IPOPT. Applied to a large-scale real-world case study of a food and cosmetic industry in
Germany, the proposed BO-IPOPT method outperformed state-of-the-art solvers in both
solution quality and robustness, achieving up to 97.25%-better objective function values
at the same CPU time. Additionally, the influence of key parameters, such as forecast
uncertainty, optimization horizon length, and computational effort per RHA iteration, was
analyzed to assess their impact on system performance and decision quality.

Keywords: food and cosmetic industry; energy management; rolling horizon approach;
BO-IPOPT

1. Introduction

Energy supply systems play a crucial role in modern infrastructure, and their efficient
management is crucial in addressing today’s global energy challenges. As the world
moves toward cleaner and more sustainable energy sources, the structure and operation
of these systems have become increasingly complex [1,2]. Key goals include reducing
operating costs, improving overall efficiency, and reducing CO, emissions [2]. However,
integrating renewable energy technologies introduces new challenges, such as dealing
with fluctuating energy generation and changing demand patterns, while maintaining grid
stability and power quality [3]. The variability of renewable sources also makes accurate
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forecasting more difficult, which adds complexity to operational planning. As a result,
advanced energy management strategies that can effectively handle uncertainties have
become essential for ensuring reliable and sustainable system performance.

To address these uncertainties in the energy systems, various methodologies have
been developed, each with its own strengths and applications. Stochastic programming,
for instance, models uncertain parameters using known probability distributions, enabling
probabilistic decision-making under uncertainty [4]. In contrast, robust optimization avoids
reliance on probabilistic data and instead aims to find solutions that remain feasible and
effective across a defined set of scenarios, including worst-case conditions [5]. Fuzzy logic
provides another alternative, particularly useful when dealing with imprecise or vague
information, by incorporating degrees of truth into decision processes [6]. Monte Carlo
simulations offer yet another strategy by generating a wide range of possible outcomes
through repeated sampling of random variables, thus allowing for statistical analysis of
risk and uncertainty [7].

Although the aforementioned methods offer structured ways to handle uncertainties,
they often come with high computational demands. This becomes problematic in systems
that require adaptation to fast-changing conditions. To overcome this limitation, the RHA
has gained widespread use, particularly for applications requiring real-time response [8].
The RHA operates by repeatedly solving an optimization problem over a finite horizon
in the future. After implementing the first step of the resulting plan, the time window
shifts forward, and the process is repeated with newly updated data. This iterative and
forward-looking structure makes the RHA especially advantageous for managing renew-
able energy systems, where unpredictability in conditions requires regular updates of
energy management decisions based on new forecasts and operational data. For this reason,
the RHA was considered for addressing uncertainties in this work.

The effectiveness of the RHA in managing energy systems under uncertainty is closely
linked to the underlying optimization methods. These techniques enable optimal opera-
tional decisions in response to updated forecasts and system conditions. Within the RHA
framework, a wide range of optimization approaches has been applied to address both
linear and nonlinear problem types. For linear formulations, mixed-integer linear pro-
gramming (MILP) has mainly been employed, due to its ability to model both discrete and
continuous variables efficiently [8-12], while linear programming (LP), limited to modeling
only continuous variables, plays a minor role in the literature [13,14]. Although linear
and linearized models benefit from reduced computational time and scalability, they often
compromise model fidelity. Linearization, in particular, demands careful tuning to strike
an effective trade-off between accuracy and computational speed.

In contrast, nonlinear optimization has seen more limited use in RHA-based en-
ergy management, particularly when it comes to deterministic global solvers such as
BARON [15], which tend to be computationally expensive in high-dimensional, nonconvex
problems. Nevertheless, some studies have implemented global stochastic approaches
like genetic algorithms (GA) and particle swarm optimization (PSO) [16,17] to tackle non-
linear problems in microgrids and hybrid renewable systems. These techniques offer the
advantage of escaping local optima, but they typically demand a large number of function
evaluations, making them less practical for large-scale, constrained problems.

To address the computational and convergence limitations of conventional stochastic
solvers, this work integrates the recently developed BO-IPOPT algorithm into the RHA for
energy management of industrial energy systems. The BO-IPOPT is a hybrid optimiza-
tion technique—originally presented in [18] and further enhanced in [19]—that leverages
the strengths of BO for global search and the IPOPT for efficient local convergence and
constraint fulfillment. Prior studies have demonstrated its superior performance in solv-
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ing complex, high-dimensional, and nonlinear constrained optimization problems with
improved accuracy and robustness over existing methods, achieving up to 120%-better
objective function values at the same CPU time.

In this study, we applied the BO-IPOPT to a real-world industrial energy system
at a food and cosmetics facility consisting of a solar thermal, photovoltaics, heat pump,
and three stratified thermal storages. To support the system’s operational planning, which
depends on accurate solar forecasts, we also conducted a comparative analysis of several
data-driven forecasting techniques at two German locations, employing a recursive multi-
step-ahead approach. This comparison aimed to identify forecasting models that not only
achieve high prediction accuracy but also maintain low computational overhead, which is
essential for their integration into real-time optimization routines in practical applications.

Beyond evaluating the performance of the BO-IPOPT against other state-of-the-art
optimization methods, this paper investigates how variations in optimizer CPU running
time, forecast uncertainty, and planning horizons influence the operation of the investigated
industrial energy system. Through this analysis, we provide practical insights into the
real-world applicability of the BO-IPOPT framework within the RHA, contributing to the
development of more sustainable and responsive energy management strategies aimed at
minimizing operating costs and reducing CO; emissions in the underlying case study.

This paper is organized as follows: Section 2 describes the industrial use case on
which this study is based. Section 3 presents the hybrid optimization method “BO-IPOPT”
employed at each step of the RHA. Section 4 investigates the performance of several data-
based models for solar irradiance forecasting across two locations in Germany, analyzing
both one-step and multi-step prediction scenarios. Section 5 presents the outcomes of the
energy management strategy for the modeled energy system. Finally, Section 6 concludes
the paper with key findings and outlines directions for future research.

2. Use Case

In this section, we present the industrial energy system investigated in this work,
including a detailed description of its architecture, the modeling approach used for each of
its components, and the formulation of the resulting operational optimization problem.

2.1. Description of System

In this study, a company located in Herzberg in the German state of Brandenburg
was analyzed as a use case. The company operates in the food and cosmetics industrial
sector. In line with its goal to decarbonize its heat and electricity demand, the company
had recently undergone a comprehensive retrofit of its energy supply infrastructure, incor-
porating additional components to enable the use of renewable energy sources. The energy
management of the resulting system—displayed in Figure 1—is analyzed in this study,
with the objective of minimizing both operating costs and CO, emissions through optimal
system operation.

The energy system analyzed in this study represents a comprehensive integration
of renewable energy sources and thermal energy storage (TES) technologies designed to
decarbonize the facility’s energy supply. Central to this configuration is a solar thermal
collector (STC), which charges two stratified TES units. These TES units are hydraulically
linked to the STC, whereby low-temperature water from the lower layers of the TESs is
supplied to the STC inlet. After solar heating, the water is returned to the upper layers of
the TESs, maintaining thermal stratification and TES efficiency.

The energy stored in these two tanks is used in multiple ways. A portion of the heat is
directed to the heat source and sink of a heat pump (HP), which is powered by electricity
supplied from an on-site photovoltaic (PV) system and, when necessary, the electrical grid.
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The HP’s source side also draws thermal energy from a separate hot water tank, which
itself is partially charged using heat from the initial two TES units. If the PV generation
exceeds the site’s consumption, the excess electricity can be sold to the market, supporting
the grid integration of renewables.

STC

Grid

Process
/Ej\ TES3  Heat
demand
O oo
13 —
—
'y

| T
TES 1 TES 2

Retum flow
Forward flow
Electric

Flow into hot water tank

Flow out of hot water tank

Figure 1. Visualization of the industrial energy system.

The HP upgrades low-temperature thermal energy to higher temperatures (up to 90 °C)
suitable for industrial use. Its output is directed to a third stratified TES unit. This third
TES serves as the main thermal buffer for the industrial process, supplying the required
mass flow (3000-3500 L/h) and temperature (88-90 °C) of hot water. This corresponds to
a maximum thermal power output of approximately 260 kW. Additionally, it is designed
to receive excess heat from the first two TES units when the temperature in their upper
layers is sufficiently high. In contrast, during periods of low solar input or high demand
the lower layers of the third TES can supply heat back to the HP’s source side, enhancing
the operational flexibility. The stratified thermal storage units operate across a temperature
range of approximately 25 °C to 90 °C, allowing for efficient thermal layering and flexible
charging /discharging strategies.

Water is used throughout the entire process as the heat transfer and TES medium, due
to its compatibility with the system components.

2.2. Component Modeling

To evaluate the performance and optimize the operation of the renewable energy
system introduced in the previous subsection, detailed component modeling was nec-
essary. This included mathematical representations of the STC, PV, HP, and TES units.
These models formed the basis of the optimization problem and were designed to capture
physical behavior.

2.2.1. Solar Thermal Collector

The STC was modeled to estimate the thermal energy output as a function of the
incident solar irradiance, collector area, optical and thermal characteristics, and relevant
temperature differences. The thermal output of the collector is defined as follows [20]:
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titstc Cp,water (TsTC ins TsTC,0ut) (TSTC,0ut — TSTC in) =
4 } 1)
(1 —bypassgyc) Astc | KsteIstc,opt — Y, BSTCATSTC amb
i=0
where riigyc is the mass flow rate through the collector, ¢y water (TsTC,in, TsTC 0ut) T€presents
the temperature-dependent specific heat capacity of water, Tstc out and Tstc in denote the
outlet and inlet temperatures of the collector, and Agrc is the collector area. Moreover, I is
the solar irradiance incident on the collector and #stc,opt describes the optical efficiency.
Thermal losses are represented by the polynomial terms involving Bstc ;, which are loss
coefficients for different orders of the temperature difference. The factor bypassgy- accounts
for periods when the operation of the collector is restricted or deactivated.
The term Kgrc represents the incidence-correction factor, which accounts for the
angle of incidence of solar irradiance on the collector surface, and it is calculated by the

1-— XSTC 1
Kste =1-— -1 2
STC 0.55 <COS(9§Tc) ) ( )

following formula:

where 6g1c is the angle of incidence and agyc an empirical coefficient. The temperature
difference between the collector and ambient, ATstc amb, is calculated as

Tstc,out + Ts1C,i
ATSTC,amb = out2 = — amb (3)

where T, is the ambient temperature. All the parameters, summarized in Table 1, were
derived from the collector’s technical specifications and [21]. The installed solar thermal
collector system has a peak thermal capacity of approximately 100 kW.

Table 1. STC parameters.

Parameter Value Unit
QSTC,peak 100 kW
ASTC 135 mz
USTC,opt 0.715 1
XSTC 0.97 1
Bstc,0 1.1 1
Psrca 3.31 W/ (m?2K)
Bstc2 0.011 W/(m?K?)
QSTC 32 °©

2.2.2. Photovoltaic

The PV system was modeled to estimate the PV power output Ppy as a function of the
available solar irradiance, module area, and the efficiencies of both the inverter and the PV
module. The PV output is given by

Ppy = (1 —bypasspy) ApvIipymod//PVinv (4)

with

HPVmod = <77PV,nom + apv, ln( i >) (14 apy2(Tamb + apv3! — Tpynom))  (5)

PVnom

Here, Apy is the module area, #pyiny is the inverter efficiency, and #pynom denotes the
nominal module efficiency. The parameters apy 1, apy2, and apy3 are empirical coefficients
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used to capture the part-load behavior of the module under different irradiance and tem-
perature conditions. Moreover, Ipynom denotes the nominal solar irradiance, and Tpynom
the nominal temperature. The term bypasspy, accounts for the restriction or deactivation of
the PV operation. The remaining symbols are defined in the previous section. The param-
eters, summarized in Table 2, were derived from the design specifications applied in the
experimental setup and supported by data from [22-25]. The installed PV system had a
nominal peak power capacity of 55 kWp.

Table 2. PV parameters.

Variable Value Unit
Apy 500 m?2
PPV,peak 55 kWp
PVnom 0.212 1
77PV,inV 0.95 1
apvi 0.06408 1
apvy —0.0035 1/K
apy3 0.0275 Km?Z/W
TPV nom 42 °C
IPV,nom 1000 ‘/V/n’l2

2.2.3. Heat Pump

The HP model relied on surrogate models constructed for two critical performance
indicators: the outlet temperature on the sink side Tj, ,,,+ and the electrical power consump-
tion P,j. These surrogate models were based on technical specifications provided by the
manufacturer and were created using second-order polynomial regression.

The regression models performed well across the full operating range, including part-
load conditions, with coefficients of determination (R?) of 99.9% for the outlet temperature
and 99.6% for the electrical power consumption. Key input variables included the inlet
temperatures on both the source and sink sides (T¢in,Th in), as well as the mass flow
rate on the sink side 7, j,. These inputs significantly affected the thermal and electrical
performance of the HP. The surrogate model for the outlet temperature on the sink side
was expressed as

. ) . .
Th,out = f (Tc,in/ Th,in/ M ins M, ins Tein Th,in/ Tc,inmh,in/ Th,in’”h,in) (6)
Similarly, the electrical power consumption was modeled as
. 2 2 ) . .
Pe = f(Teins Toins hins Teins T ins 1t i Tein Thyins Tein?fthins Thin®hin) 7)

These surrogate models were integrated into the overall optimization framework,
ensuring both physical fidelity and computational efficiency.

2.2.4. Thermal Energy Storage

Each TES in this work was modeled using a detailed physics-based approach cate-
gorized as a multi-node one-dimensional (1-D) model [26]. In this formulation, the tank
is discretized into N vertical layers (or nodes), each assumed to have a uniform temper-
ature T;, representing vertical thermal gradients while neglecting horizontal variations.
The model employs volume and energy balance equations for each node, capturing both
mass flows and heat transfer dynamics. The general forms of the governing equations are
given by

%:ZV(Q:O (8)
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Equation (8) ensures volume conservation in each node, while Equation (9) represents
the energy conservation including enthalpy and external heat transfer between adjacent
nodes and ambient losses. The dynamic mass and energy balances for a generic node i are
expressed as

Vvert,out = p(Tlln) + Vvert,in - ﬁ (10)
aT; ) )
ml’cP(Ti) di’l = Zmincp(Tin)Ti - Zmoutcp(Tout)Tout

— Viertout?( Tvert,out)Cp ( Tvertout) Tvert out

+ Vyertin® (Tvertin ) p(Tvertin) Vyertin

+ k(Ti1, Ti)(Tima — Ti) — k(T;, Tiga )(Ti — Ti1)
— UA(T; — Tamb)

(11)

Here, m; is the mass of the fluid in node i; c,(T), o(T), and k(T) denote the
temperature-dependent specific heat capacity, density, and thermal conductivity, respec-
tively; and UA accounts for ambient heat losses, where U is the overall heat transfer
coefficient of the insulation and A is the heat transfer surface area. In this work, an overall
heat transfer U = 0.043 kW /(m? K) was assumed, and the surface area was taken as
A = 12.53 m?, based on the design of the storages. Each TES was discretized into four
layers (nodes) in this study, where the node index i started from the top of the storage
and increased downward. The choice of four layers represented a balance between captur-
ing sufficient thermal stratification and enabling flexible charging/discharging behavior,
while keeping the dimensions of the resulting optimization problem (see Section 2.3) com-
putationally manageable. This level of discretization ensured appropriate resolution for
modeling thermal gradients without introducing unnecessary computational complexity.
The terms involving k describe thermal exchange between neighboring nodes, referred to
as “pseudo-conduction” terms, which approximate convective mixing effects. The sign
and temperature assignments for vertical flows were handled as follows, depending on the
flow direction:

Tvertout = Ti  if  Vyertout >0 (12)
Tvertin = Ti—1  if  Viertin >0 (13)
Tvertout = Tix1 if  Viertout <0 (14)
Tyertin = T; if Vvert,in <0 (15)

This modeling approach allowed the TES behavior to be accurately predicted in terms
of stratification, charging/discharging dynamics, and thermal losses.

2.3. Optimization Problem

In this study, we consider an optimization problem for the optimal operation of
an energy system under both economic and environmental objectives. The problem is
formulated as a discrete-time, multi-period optimization over a finite planning horizon.
The continuous time interval [ty, f,] is discretized into n equidistant steps with a time step
At =ty —ty_q fork =1,...,n. All control variables and system outputs are assumed to be
piecewise constant over each interval and are evaluated at discrete time points f.

The objective is formulated as a weighted sum of the operating costs and the associated
CO; emissions. The operating costs result from electricity expenses due to grid power
imports and are partially offset by revenues from excess PV electricity fed into the grid. CO,
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emissions are proportional to the grid electricity consumption, based on a fixed emission

factor that reflects the carbon intensity of certified eco-electricity, including emissions

associated with its provision and infrastructure. The complete objective function is given as

n
min f(Pyrid, Ppysell) =Weost Y, (Pgridgpr,grid - Plﬁv,seugpv,sen)Aer
k=1
; (16)
Wem Z P gridg em,gridAt
k=1

Here, Pgri 4 denotes the imported grid power at time step k, PFV, <1 the power sold

from PV to the grid, and At the time step duration. The electricity price gpgrig is fixed at
0.17 €/kWh, the feed-in tariff gpy e at 0.16 €/kWh, and the emission factor gem grid is set
to 55.7 g/kWh. The scalar weights wost and wem are both set to 0.5, reflecting the industry’s

equal emphasis on cost-efficiency and environmental responsibility. The optimization is

subject to the following set of constraints:

Component models: At each k, the behavior of the STC, PV, HP, and TES units
must satisfy their respective mathematical models defined in Sections 2.2.1-2.2.4. It
should be mentioned that the component models account for temperature-dependent
material properties of water, which are essential for accurately modeling thermal
processes [27]. The specific heat capacity is represented as a third-degree polynomial
function of temperature, while the thermal conductivity and density are modeled
using second-degree polynomial expressions.
Flow and connectivity constraints: The mass and energy flows between the compo-
nents are modeled at each k, using equality constraints to ensure that the conservation
principles are satisfied at all connection points. The interconnections among the sys-
tem components, including bypasses, have been described in Section 2.1. The general
form of the mass and energy conservation equations at each connection point can be
expressed as

Zm{‘n = 2 m’gut (mass conservation) (17)

Z m{‘nhg = Z m’guth’gut + Q{‘OSS (energy conservation) (18)

Here, ¥ and 1k, represent the mass flow rates into and out of a control volume

k
out

at time step k, respectively, and 1t and /X, denote the specific enthalpies of the
incoming and outgoing streams at each k. Note that thermal losses to the ambient,
Q{‘OSS, are not considered at the interconnection level between components but are
included within the component models where relevant (e.g., for each TES).

Thermal stratification in TESs: A monotonicity condition is imposed on each TES
to ensure physically realistic temperature profiles. Specifically, the temperature in
each stratified layer must not exceed the temperature in the layer directly above it,
ie., Tl.k+1 < le . This condition enforces a top-down thermal gradient, ensuring that
the upper layers remain hotter than the lower ones.

Thermal integration of STC output: The thermal energy produced by the STC is
directed toward the TES units (TES 1 and TES 2) and is stored in the layer with a
temperature closest to the STC outlet temperature. This improves energy efficiency by
reducing mixing. To model this behavior, a penalty term is included in the objective
Function (16) that minimizes the squared temperature difference between the STC

output and the TES layers. The penalty formulation is given as

n N N
. k (7k k 2 . k 2
min ) <Z o7 1 (Tres 11 — Torcou)” + ) %21 (TrEs 2 — TSt 0ut) ) (19)
k=1 \i=1 =1
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Here, 042‘ ; € [0,1] are continuous weighting variables that represent the fraction of the
STC flow directed to layer ! of TES i at k, with the condition that

N
Yoaf, =1 forallk, i€ {1,2} (20)
=1

This smooth layer-allocation approach avoids integer variables while still guiding the
heat flow into the most suitable TES layer.

*  Heat demand constraint: The process demand is supplied from the top node of TES 3
and must satisfy both temperature and mass flow rate constraints:

k _ - k .
TTES,3,out - Tdemandr mTES,B,out = Mdemand (21)

with Tyemand € [88 °C, 90 °C] and #itgemand € [3000 L/h, 3500 L/h].

It should also be noted that the underlying optimization problem uses two different
time step sizes, reflecting the heterogeneous dynamics of the system components. The PV,
STC, and TESs are updated every 15 min to capture short-term fluctuations. In contrast,
the HP is resolved on an hourly basis to avoid frequent switching, due to its lower flexi-
bility. This is done considering the following equality constraints for the inlet and outlet
temperatures of the HP:

T =Ton T =Tt Thow = Thow VE#{159,...} (22)

The 15 min step size is aligned with common electricity trading intervals, such as
those in the intraday spot market [22]. The problem is formulated as a nonlinear problem,
with all constraints being continuous and differentiable. Integer or binary variables are
avoided through relaxation or continuous approximation.

The underlying optimization problem requires input data including solar irradiance
for the PV and STC systems, the electricity price, the CO, emission factor, and the heat
demand. The electricity price and emission factor were constant in this study and known
in advance for the upcoming hours. Similarly, the required temperature and mass flow for
the thermal energy supply process were also specified within fixed bounds and known
in advance. Consequently, the only input that had to be forecast as part of the energy
management process was the solar irradiance.

3. Hybrid Optimization Method

In this work, we address a constrained nonlinear nonconvex optimization problem,
which becomes challenging as the problem’s dimension and the number of constraints
grow. To solve this optimization problem at each iteration of the RHA, we explore the novel
hybrid BO-IPOPT recently proposed in the literature. We selected this approach in the
current study because it has demonstrated superior performance compared to other state-of-
the-art optimization algorithms in recent studies. The BO-IPOPT method is implemented
as proposed in [18,19], without modifications. The purpose of this section is to provide
a detailed summary of the algorithm to support the understanding of its integration in
the RHA.

The BO-IPOPT is a hybrid optimization framework, first introduced in [18] and further
enhanced in [19], that combines the global exploration of BO with the local refinement and
constraint-handling strengths of the IPOPT, significantly reducing the risk of convergence
to poor local minima. In this framework, BO is used to model the objective function and
constraints via a surrogate model (GP model) and to guide the search toward promising
regions in the solution space, without building a very detailed surrogate model. To handle
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the constraints, BO follows the augmented LAGRANGIAN framework [28], which uses slack
variables to transform inequalities into equality constraints and iteratively solve a sequence
of simpler (unconstrained) problems. The AL framework is defined as follows:

q p
u(x,s) = f(x) + Ag (g(x) +5) + Ay h(x) + le Z_;l(gw(X) +5w)? + ; he(x)?] (23)

where p > 0 represents a penalty parameter controlling constraint violations and initialized
based on an equation provided in [19], while A¢ € R{i and Ay € ]Ri are the LAGRANGE mul-
tiplier vectors corresponding to inequality and equality constraints, respectively. The slack
variable vector s is defined as

s = max{0, —Agp — g(x)} (24)

At each outer iteration K, the LAGRANGE multipliers, penalty parameter, and slack
variables are iteratively updated, forming a dynamic process. The IPOPT then refines
these regions identified through BO by performing local optimization, while efficiently
handling complex constraints using an interior-point method. BO provides global search by
suggesting new points to explore based on uncertainty and potential improvement, using
the well-known and effective expected improvement (EI) acquisition function, while the
IPOPT ensures that these points can be locally optimized with respect to defined constraints.

The BO-IPOPT algorithm operates through two key stages: an initialization phase
followed by a loop that iterates up to a predefined number of outer iterations K.

In the initialization phase of Algorithm 1 (lines 1-4), an initial set of points is generated
and evaluated using the augmented objective function. These evaluations are used to train
a GP surrogate model using GPR. Unlike the traditional BO, which models the objective and
constraints separately, this hybrid BO-IPOPT framework couples BO’s global exploration
capability with the IPOPT’s local refinement and effective constraint handling. In this
setup, the GP incorporates the parameters / and a, while the EI acquisition function uses
the exploration factor ¢. Inputs such as A¢g and A, are required to compute the augmented
objective function. For improved numerical stability and surrogate accuracy, all inputs and
outputs to the GP are normalized to the [0, 1] range.

The core loop of Algorithm 1 (lines 6-13) alternates between BO and the IPOPT. At each
outer iteration, the acquisition function (EI) is evaluated to identify candidate points from
a discrete set of points. Multiple candidates are selected at each iteration and passed to the
IPOPT as starting points. The IPOPT then performs local optimization on the true objective
function and constraints.

After completing all iterations, the algorithm returns the best solution found (line 14),
which is the lowest objective function value in the evaluated dataset D—excluding the
initial points Dy. This ensures that the result, ymin, corresponds to a locally (and potentially
globally) optimal solution of the investigated problem, while meeting all constraints.

By alternating between global exploration and local refinement at each iteration of
the algorithm, the BO-IPOPT can efficiently solve high-dimensional optimization prob-
lems with numerous constraints, overcoming the challenges typically faced by traditional
optimization methods in such settings. It should be mentioned that the hybrid method is
parameter-free, since its parameters have been optimally set based on test cases considered
in the previous work, and learning hyperparameters (common in BO approaches) during
the optimization process has, thus, been avoided in our method. For further details about
BO-IPOPT, the reader is referred to [18,19].
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Algorithm 1 Hybrid Method BO-IPOPT

Input: Length scale [; regularization term «; exploration ¢; number of initialization
points Ny; number of candidates N, considered in EI; number of best candidates Nj,;
Lagrange multiplier vectors A¢, Aj,; number of outer iterations K

: Generate an initial set of points {x1,...,xy,} in Q)

: Evaluate y;, = u(x;,, s;,) for ip = 1:Np

 Let Do = {(xiy, Yig) 11y

: Construct a GP model il from Dy

z= NO/j =0

: while j < K do

Generate a new group of points {#1,..., %y, } in O

{x201,. .. x24n, } € arg max EI(%;[1;) for i = 1:N,

xeD;

9:  Solve [y, x;] = IPOPT(xy) for k = z + 1:z + N,

10: Djt1=DjU{(*},1,Y541)r-- - (x§+NbC/y;+Nbc)}

11: Update GP model 4,1 from D4

12: z2: =2+ Ny, ji=j+1,

13: end while

14: return ymin = min{y;}

® N U AW N

KNy
=1

4. Solar Irradiance Forecasting

Several forecasting techniques for solar irradiance have been proposed in the litera-
ture, generally falling into two broad categories: physics-based models and data-driven
approaches. The former rely on atmospheric physics and numerical weather prediction
tools, incorporating satellite data, cloud cover, and geographic information. While these
models can provide relatively accurate forecasts, they require substantial computational
resources and are not practical for real-time applications.

On the other hand, data-driven models—which include statistical and machine learn-
ing (ML) techniques—leverage historical solar irradiance measurements to identify patterns
and trends in the data. These models are particularly advantageous, due to their lower
computational complexity and adaptability. Previous studies have shown that while
physics-based methods are more suited for long-term horizons, data-driven techniques
offer superior performance for forecasts up to six hours ahead [29].

Given the need for fast and reliable solar irradiance predictions in the optimization
framework used in this work, we adopted a data-driven approach. These models strike a
balance between computational speed and forecasting accuracy, making them a practical
choice for operational applications. The historical solar irradiance data used for training
and validating the forecasting models were obtained from the GwWs platform [30].

4.1. Data-Based Models

A wide range of data-driven modeling techniques have been explored in the litera-
ture for predicting solar irradiance, each offering distinct advantages depending on the
complexity of the task and the available data [29,31-33]. Simple approaches such as the
persistence model [29,31], which assumes that future solar irradiance will remain the same
as the current value, are easy to implement and computationally efficient. However, their
inability to account for rapid changes often results in limited predictive accuracy, especially
under variable weather conditions.

Traditional statistical methods, including multiple linear regression (MLR) [29,32] and
the autoregressive integrated moving average (ARIMA) [31,33], are frequently used to
capture linear dependencies and temporal correlations within solar irradiance time series.
In addition, multiple polynomial regression (MPR) [33] extends MLR by fitting higher-order
polynomial terms, enabling the model to represent nonlinear trends in the data. While
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these statistical models are effective for identifying basic patterns and seasonality, they
often struggle with more complex dynamics.

To address these challenges, a variety of ML and deep learning (DL) algorithms have
been adopted. Techniques such as random forest regression [29,31,32] and histogram-based
gradient boosting regression (HGBR) [32] are particularly capable of modeling complex,
nonlinear relationships by aggregating the predictions of multiple decision trees. The k-
nearest neighbors (KNNs) algorithm [29], which bases predictions on the similarity to
historical data points, is well-suited for capturing local patterns. Support vector regression
(SVR) [29,31,32] is valued for its robustness in high-dimensional feature spaces and its
ability to model nonlinear trends using kernel functions.

DL models have further advanced the field of solar irradiance forecasting. Artificial
neural networks (ANNSs) [29,32] are capable of learning nonlinear relationships from large
datasets. More precisely, convolutional neural networks (CNNs) [31] efficiently extract spa-
tial features from input data, while long short-term memory (LSTM) networks [31], a type
of recurrent neural network, are designed to capture long-range temporal dependencies,
making them highly effective for sequential prediction tasks.

Hybrid models, particularly those combining CNN and LSTM architectures, have
demonstrated strong performance by leveraging both spatial and temporal information [31].
This combination has generally shown good results in weather forecasting applications,
effectively capturing complex dependencies in meteorological data.

In this work, the focus was on the following models that balance accuracy with
efficiency: MLR, MPR, ARIMA, KNN, SVR, HGBR, and a hybrid CNN-LSTM model.

4.2. Historical Data

This study utilized solar irradiance data obtained from the Gws platform, covering
a 15-year period from 2010 to 2024, with a temporal resolution of 10 min. The dataset
includes historical solar irradiance, sunshine duration, time without sun, precipitation,
precipitation duration, precipitation height, air temperature at two meters, air pressure at
station level, air pressure gradients between two locations at station level, and wind speed
and wind direction at ten meters, as well as the relative humidity at two meters above
ground level. In addition, a pseudo-parameter was derived from the GWs, taking the value
of 1 for January, 2 for February, and increasing incrementally for the following months.

The analysis focused on two representative locations in Germany: Hamburg (north)
and Augsburg (south). The forecasting models were specifically evaluated during two
contrasting seasons—winter and summer of the year 2024.

As with many environmental datasets, the GWS data contain incorrect measurements
marked by the placeholder value -999, along with occasional gaps. These were preprocessed
and replaced, using one-dimensional monotonic cubic interpolation to ensure continuity
for the model training and evaluation. This interpolation was also used to resample the
solar data from a 10 min to a 15 min resolution, as required for the optimization problem
presented in Section 2.

Identifying relevant input features is essential for improving the predictive accuracy
of solar irradiance forecasts. In this study, the selection of predictive variables was based on
two well-established statistical methods: the p-value method and the AKAIKE information
criterion (AIC) [34].

The p-value method begins with a full model including all the possible features,
gradually eliminating variables with the highest p-values until only statistically significant
variables (i.e., those with p-values less than 0.05) remain. In addition, the AIC is used to
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compare different possible models and determine which one is the best fit for the data.
The formula for AIC is the following:

AIC = 2K — 2In(L) (25)

where K is the number of predictors and L is the maximum likelihood estimate. A lower
AIC value indicates a more optimal balance between model complexity and goodness of fit.

Based on these selection criteria and taking into account the seasonal variability of
the variables, the most relevant predictors identified are the solar irradiance from the
previous four time steps, as well as solar irradiance from one day and one year ago,
the sunshine duration from one day ago, and the temperature and pressure from one day
ago. The resulting solar irradiance is expressed by

It = f(It—ll It72r It73/ It—4/ It*daYI Itfyear/ Sthday/ thday/ Ptfday) (26)

where I denotes the solar irradiance, SD the sunshine duration, T the temperature, and p
the pressure.

These input features are considered across all the models discussed in Section 4.1,
except for the ARIMA model, which only incorporates the solar irradiance at previous time
steps. MPR also incorporates interaction terms between lagged irradiance values, so that
the resulting model for the second-degree MPR is given by

It = f(Ii—1,I—3, It—4, Iiday, It —year, SDi—days Tr—days Pr—day, 171, I—11s-3,
It—l It—4r It—l Itfdayr It—l Itfyearr 115273/ 1t731t—4r It731t7day/ It731t7yearr (27)

2 2
1t74lt7dayz 1t74 It—year/ Itfday’ Itfday It—year/ It—year)

In addition, the forecasting process checks whether it is day or night at each prediction.
When it is night, based on sunrise and sunset times, the solar irradiance is set to zero to
reflect the absence of solar input during these hours.

4.3. Feature Scaling

ML and DL models, like KNN, SVR, and ANN, often require feature scaling to perform
effectively. This preprocessing step transforms input features so they share a similar
numerical range, ensuring that no single feature disproportionately influences the model’s
behavior. By applying feature scaling, the training process becomes more stable and
efficient. The two most widely used techniques are standardization and normalization,
defined by the following equations [35]:

’ Xi— X

X = ;x (standardization) (28)

x:- S mm(y.cl-) (normalization) (29)
max(x;) — min(x;)

where X and s are the mean value and the standard deviation, respectively.

4.4. Performance Evaluation Criterion

As discussed in Section 4.1, both linear and non-linear forecasting models introduce
errors due to statistical approximations. To assess the accuracy of these models, one
commonly used performance metric is applied: mean absolute error (MAE). This metric is
defined as follows [36]:

1 N .
MAE = =) |yi — 7il (30)
N i=1
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where y; and §j; denote the measured and predicted values, respectively, and N is the
number of data points considered in the performance evaluation.

4.5. Cross-Validation (CV)

CV is a data resampling technique used to evaluate the generalization performance of
predictive models and to mitigate the risk of overfitting [37]. Given the frequent occurrence
of overfitting in ML and DL applications, this study applied CV to the models introduced
earlier to ensure more robust and reliable performance.

Among the various CV strategies, k-fold CV is one of the most widely used. In this
method, the dataset is divided into k equally sized folds. The model is then trained on k — 1
folds and tested on the remaining fold. This process is repeated k times, with each fold
serving as the testing set once. The overall model performance is reported as the average of
the evaluation metrics across all k iterations.

However, applying CV to time series data presents specific challenges. Unlike con-
ventional datasets, it is inappropriate to randomly reorder time series samples, as this
could result in future values being used to predict past observations—an unrealistic and
invalid approach. To address this, a blocked CV method was adopted, based on the TIME-
SERIESSPLIT functionality provided by the SCIKIT-LEARN library [38], and further refined
according to the approach described in [39].

As illustrated in Figure 2, two types of margins were introduced to improve the
validity of the evaluation. The first margin was inserted between the training and testing
sets to avoid data leakage and ensure that no samples were re-used. The second margin
was placed between the folds to prevent the model from learning temporal dependencies
between sequential iterations, thus reducing the risk of overfitting across splits.

i B Training set
1 | | mmm Testing set

CV iteration

. —
T T T T

0 20 40 60 80 100
Sample index

Figure 2. Schematic structure of blocked CV for time series split.

4.6. Multi-Step-Ahead Forecasting Strategy

Forecasting multiple steps ahead is significantly more challenging than single-step
forecasting, due to the accumulation of prediction errors, decreased accuracy, and increasing
uncertainty [40]. While several strategies for multi-step forecasting have been proposed—
five of which are outlined in [41]—this work focused exclusively on the recursive strategy,
a widely used and well-established method in the literature, defined by

jt = f(It—ll It72r It73/ It—4/ Itfday/ Itfyear/ Sthdayr thday/ Ptfday) (31)

Iryr = f(Iy L1, L2, I3, 111 - days Ie+1—year SDi41-day, Ti+1-days Pt+1-day)

To forecast H future steps, the model’s prediction at each step is fed back as an input for
the next step. This iterative process continues until the full forecasting horizon is reached.
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4.7. Results

This section analyzes the forecasting performance of the models introduced in
Section 4.1. The ARIMA model considered follows the (0,2,2) configuration, selected based
on insights from the autocorrelation and partial autocorrelation plots. For the ML and
DL approaches, hyperparameter optimization was carried out to ensure robust predictive
accuracy. To mitigate overfitting, we adopted the blocked CV. All the forecasting mod-
els were implemented using Python 3.8. Specifically, the CNN-LSTM model leveraged
the TENSORFLOW library, ARIMA was implemented through the STATSMODELS package,
and the remaining ML models were built using SCIKIT-LEARN. All computations were
performed with an Intel(R) Xeon(R) Gold 5220 CPU running at 2.20 GHz.

As expected, the forecasting error increased with the number of predicted time steps,
as illustrated in Figure 3. For one-step-ahead predictions, most of the models demonstrated
comparable accuracy, except for CNN-LSTM and ARIMA, which showed slightly higher
errors compared to the other models. As the prediction horizon extended, the performance
of ARIMA degraded notably, with the MAE increasing from 0.26 to 0.46 during the winter
week (=79% increase) and from 0.19 to 0.37 during the summer week (~91% increase),
indicating a significant drop in predictive accuracy over time. This was due to the model’s
reliance on past errors (the moving average component), which were not available for
future time steps and were assumed to be zero—an assumption that proved unreliable for
multi-step forecasting. Consequently, ARIMA is particularly well-suited for single-step
forecasts but performs poorly in longer horizons.

0.5 : : 0.5
0.45 | 0.45 |
0.4 1 0.4 1
0.35 | 0.35 |
= =
< 03 < 03
= =
0.25 0.25 |
0.2 ] 0.2
0.15 | 0.15
0.1 ‘ ‘ 0.1 ‘ ‘
1 4 8 12 1 4 8 12
Step-ahead forecast [15 min] Step-ahead forecast [15 min]
= MLR MPR -+ ARIMA -KNN = MLR MPR =+ ARIMA -KNN
+HGBR = SVR  —+CNN-LSTM +HGBR = SVR =+ CNN-LSTM

Figure 3. Results of solar irradiance forecast using MAE comparison for the tested methods with
respect to different multi-step-ahead horizons, for Hamburg in winter (left) and Augsburg in summer
2024 (right).

On the other hand, MLR, MPR, KNN, SVR, HGBR, and CNN-LSTM showed a more
stable error progression over multiple steps, with relatively moderate increases in MAE,
as well as a similar level of accuracy over the forecast horizon. On average, their MAE
increased from 0.25 to 0.30 during the winter week (~20% increase), and from 0.17 to
0.25 during the summer week (/247% increase). However, the models tended to produce
more accurate predictions in August (summer) than in January (winter), showing up to a
30.8% decrease in error, on average (first forecasting step). This seasonal difference can be
explained by the higher and more stable solar irradiance levels in summer, which provide a
clearer input signal and reduce the relative impact of forecast noise. In contrast, irradiance
during winter is lower and more variable, making it harder for the models to identify
reliable patterns.
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In terms of computational requirements, the training time of each model varied
significantly. ARIMA, SVR, and CNN-LSTM required more computational resources than
the other models. Specifically, CNN-LSTM needed around 711 s to train, while ARIMA
and SVR required approximately 60,321 and 613 s, respectively. In contrast, the simpler
models such as MLR, MPR, HGBR, and KNN completed the training process in under 6 s,
with MLR being the fastest (0.10 s).

Overall, MLR, HGBR, and KNN offer effective choices for solar irradiance forecasting,
balancing accuracy and computational efficiency. In future work, integrating filtering
techniques could help enhance the model performance further.

5. Energy Management

This section describes in detail the methodology applied for the energy management
of the considered power-to-heat system as well as the results of it, integrating the novel
method “BO-IPOPT”.

5.1. Methodology

The primary objective of this study was to operate the industrial energy system
described in Section 2 in a cost- and emission-efficient manner by minimizing electricity
costs from the grid and CO, emissions, while considering the uncertainties associated
with fluctuating solar energy. The role of the energy management within the broader
framework of real-time optimization is illustrated on the left of Figure 4. This framework
is typically structured into three hierarchical levels: system-level energy management,
component-level control, and physical process operation.

Energy Management
Tost Tunction, constraints,
optimizer
[Quasi-stationary ]
} Optimization Forecast i
Time step: minutes-hours
2} ’ Past Fixed Discarded ‘
5 <
Dynamic Control E S
S
Cost function, constraints, optimizer =] 2
Optimal = " Bl
setpoints Dynamic o0 U1 Past |Fixed Discarded g
Optimization =] <
B=i B
=1 — - g
Me_als“r.ed = Optimization horizon =
Model T = 50
a9 . . E
Time step: seconds-minutes to Fixed Discarded S
Control input ~
Optimization horizon
Control System Actuators )
= c.g. PID Controller Process — to ti ta vty tpgitngn

T Measured values ‘ Time

Figure 4. Detailed block structure of the different time levels for real-time optimization of a system
(left) and visualization of the RHA (right).

At the top level (system level), which was the focus of this work, predictive opti-
mization is carried out on a timescale ranging from minutes to hours. This level involves
solving a multi-period optimization problem to determine cost- and emission-minimizing
setpoint trajectories for system variables such as temperature, mass flow rate, and power.
These trajectories are subsequently passed to the second level (component level), where
dynamic controllers ensure stable system behavior by managing process dynamics at finer
time steps (seconds to minutes). The third level focuses on the real-time execution of
control signals by physical actuators, such as valves and pumps. In this study, only the
system-level optimization was considered; component-level dynamics were excluded. Ad-
ditionally, the system-level optimization was directly coupled with market operations—e.g.,
participating in electricity trading.
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As outlined in Section 1, this study employed the RHA, shown on the right of Figure 4,
which provides a structured and adaptive method for handling uncertainties in energy
management. The RHA repeatedly solves an optimization problem over a moving time
window. After each iteration, only the first control action is implemented, while the rest of
the computed trajectory is discarded. The horizon then moves forward to incorporate new
real data, enabling ongoing refinement of operational decisions.

For this purpose, the open-source CODEOPT tool can be used, which was first intro-
duced in [20] and further enhanced in the current work to support the energy management
of systems like the one presented in this study. As seen in Figure 5, CODEOPT connects
forecasting, system modeling, optimization, and data exchange with the real plant in a
modular architecture designed for industrial applications. It utilizes weather data from
the Gws platform via an API and processes day-ahead electricity price data from the
SMARD platform [42]. At each RHA iteration, CODEOPT computes optimal setpoints and
provides them to the real plant through the interface “SINNOGENES Middleware”, while
simultaneously receiving actual plant values, enabling the system to adapt its operation
based on actual process conditions and deviations from expected behavior. However, this
study did not consider real-time measurements. In addition, the first step of the workflow,
performed offline, is to determine an optimal system design and structure, which serves as
the foundation for the subsequent energy management and real-time operation phases.

Optimal setpoints | Optimal setpoints

SINNGEJTES

Middleware

Real Values Real Values

#7 Deutsches Zentrum
DLR fiir Luft- und Raumfahrt

German Aerospace Center

Sanddorn GmbH Herzberg

High-fidelity
modelling

Data sources:

4 SMARD

Forecasting
(Integrated meteodata models
and strategies)

Figure 5. Visualization of CODEOPT and the real plant interface “SINNOGENES Middleware”.

In this work, solar irradiance was considered as the fluctuating input variable,
with data selected for one representative week in January and another in August at a
single location in Germany—capturing periods of low and high solar activity, respectively
(see Figure 6). The solar data were obtained from the GWs platform. The electricity price
and the CO; emission factor associated with grid electricity were assumed to be fixed and
known in advance (see Section 2). Since the solar data were originally available at a 10 min
resolution, they were resampled using monotonic cubic interpolation to align with the
15 min resolution required by the energy management framework.
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Figure 6. Visualization of one-week-scenario input data: solar irradiance for Herzberg (Elster),
Germany in winter and summer 2024.

5.2. Results

The effectiveness of energy management in our system is influenced by several key
factors, including the choice of optimization algorithm, the allowed computation time
per iteration of the RHA, the forecasting model used for solar data, and the length of the
optimization horizon. These parameters are summarized in Table 3. For this section, we
systematically evaluated the impact of varying each of these parameters on the system
performance. First, we evaluated the performance of the new hybrid method BO-IPOPT,
in comparison with the widely used stochastic optimizers “GA” and “PSO”. GA is inspired
by the process of natural selection, where a population of candidate solutions evolves
over generations through operations such as selection, crossover, and mutation. PSO,
on the other hand, mimics the social behavior of swarms, where candidate solutions, called
particles, adjust their positions in the search space based on both individual and collec-
tive experience. Both methods are widely used in nonlinear and black-box optimization
problems and are commonly applied in nonlinear RHA-based energy management tasks.

Table 3. Energy management parameters.

Parameter Description
Optimizer GA, PSO, BO-IPOPT
CPU running time 20s,30s,405s,50s
Forecasting model MLR, HGBR, KNN, CNN-LSTM
Optimization horizon length 8 steps, 12 steps, 16 steps, 20 steps, 24 steps

All the methods were implemented in PYTHON 3.8. The IPOPT was accessed via the
PYOMO optimization modeling framework, using its default configuration. GA and PSO
adopted default parameter settings from [43,44]. The BO-IPOPT was configured according
to recommendations from [19], with the number of best-performing candidates per outer
iteration set to four—corresponding to the number of available CPU cores. The paral-
lelization of the IPOPT runs in the BO-IPOPT was achieved via the PYTHON's library
“MULTIPROCESSING” to enhance computational efficiency. However, to ensure fair compar-
ison with GA and PSO, the BO component in the hybrid method was not parallelized.

All the experiments were conducted on a machine equipped with an Intel(R) Core(TM)
i7-8665U CPU. For GA, PSO, and the BO-IPOPT, the optimizer was allowed to run for
a fixed time duration (running time) at each RHA step to search for the best possible
solution (i.e., the optimal control trajectories for the system). It is worth noting that
all the optimization methods considered in this study are based on a certain degree of
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randomness. For this reason, we repeated each numerical experiment 10 times to average
out the stochastic nature of the optimizers.

Moreover, we used a baseline optimization horizon of 8 time steps, equivalent to 2 h
at a 15 min resolution, resulting in an optimization problem of 1064 dimensions at each
RHA iteration. This choice balanced the problem complexity with the reliability of the solar
forecasting models. However, the impact of varying the optimization horizon is analyzed
later in this work.

When comparing optimization results across different settings, the global minimum
ideally serves as the reference solution. However, since the global minimum was unknown,
we used the best solution found by the BO-IPOPT, which ran with a 5 min time limit per
RHA iteration, as a benchmark for performance comparison.

First, we evaluated the impact of different optimizers integrated into the RHA frame-
work. To ensure a fair comparison, all the numerical experiments were performed under
ideal conditions, i.e., without uncertainties in the input data. Furthermore, the optimizer’s
running time was fixed to 50 s per RHA iteration, a value chosen to balance the need for real-
time control signal exchange and system response with the computational complexity and
high dimensionality of the underlying optimization problem. The optimization outcomes
are summarized in Figure 7, which presents the operating costs and CO; emissions for a
representative winter and summer week. The results are visualized as box plots, showing
the distribution of the accumulated objective values over the repeated experiments for
each optimizer.

T T
™ v ]
1
& 305 |- 8 % 9 —T1
2 sl 1 ® o10) .
g z
O 295 f---mmmmmmmm s -4 O 18r 3}
) )
g g
£ ° E oy e . 1
T os) 1 g osf a
2 ] 2 ‘I‘ ?E“
o o 1 O I )
=051 | | | B =051 Q | | B
GA PSO BO-IPOPT GA PSO BO-IPOPT
T T
= El |
3 =i |
2 2
S 99 .. I I o T/ 1 -
wn v
E E
= o295} 4 H o295 e e
I\ ~
15} R 15} .

1 1 1
GA PSO BO-IPOPT GA PSO BO-IPOPT

Figure 7. Comparison of operating costs (top) and CO, emissions (bottom) over 10 trials for different
optimizers in winter (left) and summer (right) with an optimizer running time of 50 s per RHA
iteration, an eight-step optimization horizon, and assuming that the input data are known. The circles
in the box plots represent outliers.

In all cases, the novel hybrid method the BO-IPOPT clearly outperformed the stochas-
tic solvers “GA” and “PSO”, in terms of both costs and emissions. In the winter week,
the BO-IPOPT achieved an average operating cost, measured in terms of the median, of
EUR 303.07, with a relative error of 2.75% compared to the best known solution (EUR 294.95).
In contrast, GA and PSO yielded significantly worse results—EUR 0.27 and EUR 0.06, cor-
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responding to relative errors of 99.9% and 100%, respectively. It is important to note that
the lower values observed in GA and PSO are misleading, as they resulted from violated
constraints—penalties embedded in the objective function—with constraint violation val-
ues in the order of 10'°. These solvers struggled to satisfy the constraints within the short
time limit. In contrast, the BO-IPOPT combines the global search capability of BO with
the fast local convergence of IPOPT, enabling both constraint satisfaction and superior
optimization performance.

This discrepancy can be attributed to the structural limitations of GA and PSO in
constrained, high-dimensional, nonlinear optimization problems like the one considered
here. These algorithms rely on population-based search strategies and stochastic operators,
which often require significantly more iterations to converge to feasible and optimal regions.
However, due to the tight CPU time limits imposed in the real-time framework, they are
unable to sufficiently explore and refine their solutions. In contrast, the BO-IPOPT leverages
the global exploration ability of BO to identify promising regions, followed by the rapid,
gradient-based convergence of the IPOPT for local refinement. This hybridization ensures
both constraint satisfaction and improved optimization performance, even within strict
time constraints.

In the summer week, where higher solar irradiance enabled greater use of PV and
STC systems, the BO-IPOPT achieved a lower operating cost of EUR 187.96, with a relative
error of 2.9% compared to the best solution (EUR 182.68). GA and PSO again performed
poorly, with objective values of EUR 0.08 and EUR 0.25, corresponding to relative errors of
100% and 99.9%, respectively.

The same pattern held for the CO, emissions. In winter, the BO-IPOPT reached
101.08 kg, with a relative error of 2.5% compared to the benchmark value of 98.61 kg.
GA and PSO showed much lower emissions—2.21 kg and 1.54 kg—translating to relative
errors of 97.8% and 98.4%, respectively. In summer, the BO-IPOPT led to 65.78 kg CO,
with a relative error of 2.9% compared to the best solution (63.95 kg), while GA and PSO
resulted in 2.22 kg and 1.58 kg CO», i.e., relative errors of 96.5% and 97.5%, respectively.
The performance of each optimizer is summarized in Table 4. Overall, the BO-IPOPT
outperformed the other two stochastic optimizers across all four scenarios, and it was, thus,
used exclusively in the following investigations of this study.

Table 4. Summary of optimizer performance over 10 trials with 50 s running time per RHA iter-
ation. Each cell contains the winter value followed by the summer value, separated by a slash
(winter/summer).

Optimizer Mean Cost [€]  Best Cost[€] Mean CO; [kg] Best CO; [kg]

GA 0.27/0.08 2.21/2.22
PSO 0.06/0.25 294.95/182.68 1.54/1.58 98.61/63.95
BO-IPOPT 303.07/187.96 101.08/65.78

In many real-time applications, it is crucial to keep the optimizer’s CPU running time
as short as possible to ensure that the optimized operational strategy is generated in time to
react effectively to rapidly changing system conditions. Figure 8 presents the optimization
results of the BO-IPOPT across different CPU running times—20's, 30 s, 40 s, and 50 s
per RHA iteration—for both operating costs and CO, emissions under winter (left) and
summer (right) conditions. As expected, extending the CPU time generally improved
the optimization quality. For the winter dataset, the average operating costs decreased
by approximately 0.7% from 20 s to 50 s, while the CO;, emissions reduced by around
1.0%. Similarly, under summer conditions, the operating costs dropped by about 1.8%, and
the emissions fell by 2.2% over the same interval. Although the average improvements
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in objective values were relatively modest, a more pronounced benefit of the increased
running time was the narrowing of the box plots—representing the spread of outcomes—
which became particularly clear at 50 s. This indicates a significant gain in the consistency
and reliability of the optimization results. Notably, even at shorter running times (20 s and
30 s), the optimizer was able to identify near-optimal solutions, although with higher vari-
ability. These findings confirm that longer running times enhance both solution quality and
robustness. While running times beyond 50 s can offer advantages, in terms of improved
optimization quality—such as greater robustness and reductions in operating costs and
emissions—they were less suitable for the current study, due to the practical limitations.
In this study, we fixed the CPU time per RHA iteration to 50 s, as it provided a good
trade-off between solution accuracy and computational speed. This choice enabled efficient
execution of the further investigations, where longer running times would significantly
increase the overall CPU time. Even with this 50 s limit, the optimizer demonstrated reli-
able performance, allowing us to draw meaningful conclusions about the impact of other
factors—uncertainties in the solar data and the length of the optimization horizon—on
the optimization outcomes. In future work, the optimization framework will run on a
LINUX server interfaced directly with the real plant. This setup is expected to support
either extended running times or, more effectively, a higher number of evaluations within
the same running time window, enabling faster and more reliable real-time optimization.
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Figure 8. Comparison of operating costs (top) and CO, emissions (bottom) over 10 trials for different
running times of the BO-IPOPT in winter (left) and summer (right) with an eight-step optimization
horizon and assuming that the input data are known.

As previously discussed, accounting for uncertainties in the input data is essential to
reflect more realistic operating conditions. In this context, we integrated the solar irradiance
forecasting models into the RHA and evaluated their impact on the system performance.
The models tested included MLR, HGBR, and KNN using a recursive forecasting strategy—
chosen for their good balance between predictive accuracy and computational efficiency,
with training times under 5 s (see Section 4.7). Additionally, we evaluated a CNN-LSTM
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model, which, due to its higher computational cost, was trained only once at the beginning
of the energy management process and not retrained at each RHA iteration like the other
models. This model was selected for this section since it demonstrated good forecasting
performance in Section 4.7.

Figure 9 presents the results for a fixed optimizer running time of 50 s and an eight-step
optimization horizon per RHA iteration. For both the winter (left) and the summer (right)
weeks, incorporating forecasted solar data using the MLR, HGBR, and KNN models led
to noticeable increases in operating costs and CO; emissions compared to the idealized
scenario with perfect (known) solar data. The maximum deviations reached, on average,
approximately 5.8% in costs and 4.4% in emissions. These increases were primarily due
to the systematic underestimation of solar irradiance by the forecasting models, which
reduced the utilization of the available solar energy and increased the dependency on
grid electricity.
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Figure 9. Comparison of operating costs (top) and CO, emissions (bottom) over 10 trials for different
forecasting models for the solar data using the BO-IPOPT with a running time of 50 s and an
eight-step optimization horizon in winter (left) and summer (right).

Among the tested models, MLR consistently delivered strong performance with
minimal deviation from the known data baseline—remaining within 1% across all cases—
while requiring very low training effort. In contrast, the CNN-LSTM model showed
higher variance and average values (up to 13.3% in costs and 8.8% in emissions), likely
due to its lack of retraining during the RHA iterations, reducing its ability to respond to
changing data trends. Overall, these findings underline the suitability of simple models
such as MLR for real-time energy management tasks, particularly in scenarios where
computational efficiency and high accuracy are required. For this reason, MLR was used in
the following analysis.

The final parameter investigated in this work was the length of the optimization
horizon, which plays a critical role in defining the operational strategy within the RHA-
based energy management framework. The horizon length affects the performance in
two key ways. First, longer horizons enable the optimizer to better account for future
system conditions—such as fluctuations in renewable energy availability and electricity
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prices—leading to more informed and strategic operation, especially in the management of
energy storage systems. Second, extending the horizon increases the dimensionality and
complexity of the optimization problem, making it more computationally demanding and
potentially more sensitive to forecast uncertainties. In practical applications, this trade-off
between planning depth and computational feasibility must be carefully managed. For the
numerical experiments presented in this study, we evaluated optimization horizons of §,
12,16, 20, and 24 steps, corresponding to 2, 3, 4, 5, and 6 h (based on a 15 min resolution),
with a fixed CPU running time of 50 s per RHA iteration.

Figure 10 shows that increasing the optimization horizon at each RHA iteration led
to reductions in both operating costs and CO; emissions, under both winter and summer
conditions. This was because the longer horizons allowed the optimizer to better predict
future system behaviors—especially the availability of renewable energy sources such as PV
and STC—and make more informed, forward-looking operational decisions. Additionally,
the best solution achieved improved (i.e., the objective value decreased) as the horizon
increased. However, as observed for the 24-step horizon, the spread in the results increased.
This suggests that the optimization problem becomes more complex with increasing horizon
length, and the fixed 50 s running time may no longer be sufficient to consistently find
high-quality solutions. Horizons longer than 24 steps were not tested, as the associated
increase in decision variables and constraints would have exceeded the computational
capacity within the 50 s limit.
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Figure 10. Comparison of operating costs (top) and CO; emissions (bottom) over 10 trials for different
optimization horizons (in steps) using the BO-IPOPT with a running time of 50 s and the MLR method
for the solar data forecast in winter (left) and summer (right).

Figure 11 compares the influence of forecast uncertainty by contrasting the optimiza-
tion results using forecasted solar data (MLR) with those using perfect, known data. Even
for the longest tested horizon of 24 steps, the increase in operating costs and emissions
due to forecast errors was limited to approximately 1.24% and 0.7%, respectively. These
differences are comparable to those observed for shorter horizons (see Figure 9), indicating
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that the BO-IPOPT maintains robust performance in the presence of solar prediction un-
certainties. This also suggests that the employed MLR forecast model delivers sufficiently

reliable input for effective real-time control.
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Figure 11. Comparison of operating costs (top) and CO, emissions (bottom) over 10 trials using the
BO-IPOPT with a running time of 50 s, a 24-step optimization horizon, and the MLR method for the
solar data forecast in winter (left) and summer (right). The results compare the case without forecast
uncertainties to the case with uncertainties.

6. Conclusions

This work presents a detailed modeling and analysis of a novel industrial energy
system, which integrates an HP, STC, multiple TESs, and PV generation to efficiently
meet the process heat demand. We evaluated the performance of the hybrid optimization
approach “BO-IPOPT” for the real-time energy management of this system—an approach
not previously used in this context. Specifically, we analyzed the method’s accuracy
and robustness in comparison with established state-of-the-art optimization techniques.
Furthermore, we examined how key factors—such as the optimizer’s CPU running time
per RHA iteration, uncertainties in solar irradiance forecasts from different prediction
models, and variations in the optimization horizon length—affect the system’s operational
decisions and overall efficiency.

The results show that the the BO-IPOPT significantly outperformed the popular
stochastic optimization methods “GA” and “PSO”, achieving up to 97.25%-better objective
function values at the same CPU time. While GA and PSO struggled to satisfy the numerous
constraints within the required CPU running time at each RHA iteration, the BO-IPOPT
effectively balanced global exploration and fast local convergence, enabling it to achieve
superior optimization performance and constraint satisfaction.

Regarding CPU time, the results indicate that increasing the optimizer’s running time
per RHA iteration not only improves the solution quality but also enhances the robustness,
as reflected by a narrower spread in the objective values. For instance, extending the CPU
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time from 20 s to 50 s led to reductions in average operating costs by up to 1.8% and CO,
emissions by up to 2.2%, depending on the season. Nevertheless, even at shorter running
times, the BO-IPOPT is able to deliver near-optimal solutions with reliable constraint
satisfaction. A fixed running time of 50 s was chosen for this study, as it provides a practical
balance between accuracy and computational efficiency, enabling consistent performance
while keeping the overall computation time manageable for further investigations.

We also studied uncertainties in the solar irradiance data by evaluating the perfor-
mance of different data-driven forecasting models. Among them, the simple MLR model
showed a favorable balance between prediction accuracy and computational efficiency—
particularly due to its very short training time—making it a practical and effective choice
for real-time energy management applications. Despite the presence of input uncertainties,
the optimization results with MLR remained within 1% of those obtained under ideal condi-
tions where all inputs are assumed to be known, highlighting its robustness. Although the
accuracy was already high, future work could explore filtering techniques applied to the
data to further enhance the forecasting model performance.

With respect to the optimization horizon, the results demonstrate that longer horizons
generally lead to improved performance by allowing better prediction of renewable energy
availability and system dynamics. This supports more strategic operation, especially in the
use of storages. However, increasing the horizon also enlarges the problem size, making it
more computationally intensive and potentially exceeding the available CPU time, leading
to greater variability in the results. In this study, horizons of 16 and 20 steps offered a
good trade-off between predictive planning and computational feasibility under a fixed
50 s running time. While these findings are specific to the energy system considered in this
work, the observed balance between horizon length, solution quality, and computational
effort is likely applicable to systems of similar scale and complexity. For larger or more
complex systems, maintaining real-time feasibility may require extending CPU time or
shortening the horizon—or, alternatively, leveraging more powerful server infrastructure
to enable a higher number of evaluations within the same running time.

While the results of this study demonstrate the strong technical performance of the
BO-IPOPT method within the energy management environment, several limitations must
be acknowledged. First, the findings are based on a case-specific model and have not yet
been validated in real plant operation. As a next step, we aim to implement the proposed
approach in a Hardware-in-the-Loop setup or directly within the actual plant infrastructure.
In such a setup, setpoints generated by the BO-IPOPT will be transmitted to system com-
ponents, which then attempt to reach the desired states at each control interval. Real-time
feedback from sensors will allow dynamic model updating and assessment of closed-loop
behavior under realistic operating conditions. To support this, the optimization tool will
run on a LINUX-based server interfaced directly with the real plant, allowing smooth inte-
gration and online execution. This setup will enable us to validate the underlying models
used in this study, adapt them if needed, and further assess the practical applicability and
effectiveness of the overall methodology in a real-world operational environment.

Additionally, although the hybrid optimization approach scales well for the current
system size, its computational performance for significantly larger or more complex systems
remains to be tested. Moreover, the analysis focused primarily on uncertainties in solar
forecasts, while other critical sources of variability—such as demand profiles and electricity
price volatility—were not fully explored. Future research should, therefore, investigate
the method’s robustness under broader uncertainty scenarios and test its performance on
different industrial configurations to verify generalizability.

Finally, while the emphasis was placed on the algorithmic performance, the overall
goal remains to improve the economic and environmental sustainability of industrial energy
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systems. To enhance real-world applicability and sustainability, future work could incor-
porate time-varying electricity prices and flexible demand profiles into the optimization
framework. The current assumption of a constant, inflexible demand over a 24 h horizon
may not reflect operational flexibilities available in many industrial settings. Integrating
demand-side flexibility would enable dynamic adjustments to energy consumption based
on price signals and renewable generation forecasts, thereby reducing operating costs and
CO; emissions and advancing the decarbonization goals.
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Nomenclature
The following symbols and abbreviations are used in this manuscript:

Latin Symbols:

A collector area [m?]

specific heat capacity [J/ (kg K)]

set of points [various units]

energy [J]

objective function [various units]

set of inequality constraints [various units]
specific enthalpy [J/kg]

set of equality constraints [various units]
solar irradiance [W/m?2]

thermal conductivity [W/(m K)]

incidence correction factor, number of outer iterations [-]
length scale [various]

mass flow rate [kg/s]

number of vertical layers, number of points [-]

pressure [Pa]

power [W]

heat transfer rate [W]

slack variable vector [various units]

W OTT Z I TR T~ T T gD

9
g

sunshine duration [s]

time [s]

temperature [K]

augmented objective function [various units]
overall heat transfer coefficient [W/(m? K)]
volume [m3]

<< gss ST

volume flow [m?3/s]

S

weight [-]
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Greek Symbols:
n empirical coefficient [-], regularization term [various]
At time step [s]
AT  temperature difference [K]
efficiency [-]
angle of incidence [°]

Ul
0
A LAGRANGE multiplier vector [various]
¢ exploration term [various]

P

density [kg/m3], penalty term [various]

Abbreviations:

Al artificial intelligence

AIC AKAIKE information criterion
AL augmented LAGRANGIAN

ANN artificial neural networks
ARIMA  autoregressive integrated moving average

BO Bayesian optimization

CNN convolutional neural network
Cv cross-validation

DL deep learning

GA genetic algorithm

HGBR  histogram-based gradient boosting regressor
HP heat pump

IPOPT  Interior Point OPTimizer

KNN k-nearest neighbors

LSTM long short-term memory

MAE mean absolute error
ML machine learning
MLR multiple linear regression
MPR multiple polynomial regression
PSO particle swarm optimization
1% photovoltaic
Rec recursive
RFR random forest regression
RHA rolling horizon approach
STC solar thermal collector
SVR support vector regression
TES thermal energy storage
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