

Agenda

Herausforderung (Motivation)

- Gesundheitsrisiko Feinstaub
- EU-Luftreinheitsrichtlinie
- Euro 7

ZEDU1

- Ziele
- Fahrzeuge
- Bremsauswahl

Testverfahren

- Messkonzepte
- Messtechnik
- Prüfstände
- Fahrprofile

Messergebnisse

- Graugussbremse
- HM-Beschichtung
- Rekuperation
- Lamellenbremse

Allgemeines

Feinstaub

F. Philipps, L. Bondorf | DLR VDI-Fachtagung 22.05.2025

Feinstaub

WHO/EEA /UBA:

Aus Gesundheitsgründen Reduzierung des Feinstaubs in Städten erforderlich
 (♣ ~ 9 Mil. Menschen/a weltweit (WHO); EU ~ 300.000 Menschen/a (EEA); DE ~ 50.000 Menschen/a (UBA))

Gesundheitsorganisationen:

Lebensverkürzung durch Feinstaub (∅ ~ 1 Jahr Lebenszeit Welt); Indien/China ~ 2-3 Jahre (Quelle: IHME, 2020))

UBA:

- Straßenverkehr dominierende Quelle für Feinstaub: ~ 40% 60 %
- Nicht-Abgas-bedingte Feinstaub-Verkehrsemissionen: ~ 85 %
 - Bremsenabriebe: ~ 20 25 % des Feinstaubs in Deutschland (~90% UFP)
- Abrieb von Reifen: ~ 30 35 % des Feinstaubs in Deutschland
 Straßenabrieb: ~ 15 20 % des Feinstaubs in Deutschland
 Mikroplastik: ~ 25 30 % des Mikroplastiks in Deutschland

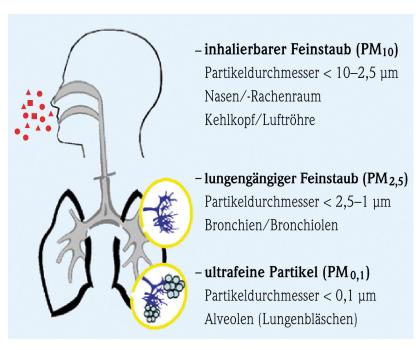
EURO7:

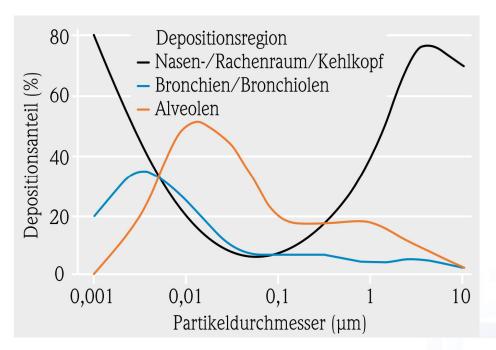
- regelt nicht abgasbedingte Partikel aus Bremsabrieben (GTR24) (und Reifenabrieben (UN WP.29))
- ab 29.11.2026 für PKW neu (7 mg/km (PEV: 3 mg/km), ab 2035 für alle: 3 mg/km)
- ab 28.05.2028 für NFZ (t.b.d.)

Neue EU Richtlinien für Luftqualität:

- Defacto Halbierung der Feinstaub-Grenzwerte bis 2030
 - ightharpoonup für PM_{2,5}: 10 μg/m3 (Bedeutet: Verringerung um den Faktor 2,5 in 5 Jahren)
 - Für PM₁₀: 20 μg/m3 (Bedeutet: Verringerung um den Faktor 2 in 5 Jahren)

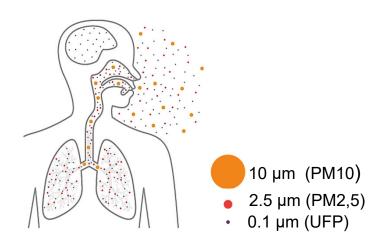
Fazit:

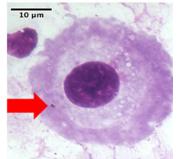

- Stakeholder:
 - Gesellschaft (Gesundheit)
 - Gesetzgeber (Verpflichtet der Gesellschaft)
 - Kommunen (Verpflichtet dem Gesetz/Gesellschaft)
 - Industrie (Verpflichtet dem Gesetz/Wirtschaftlichkeit)
- Regulierte Größe:
 - Masse (Gewicht)
 - Gesundheitsrelevant:
 - Partikelgröße, Anzahl und biologische Wirksamkeit (chem. Zusammensetzung, reaktive Oberfläche, ..)


Quellen:

- EURO7 EU-2024/1257-Verordnung
- Revision EU ambient air quality legislation (europa.eu)
- Commission proposes rules for cleaner air and water (europa.eu)
- Luftreinhaltung in der EU | Umweltbundesamt

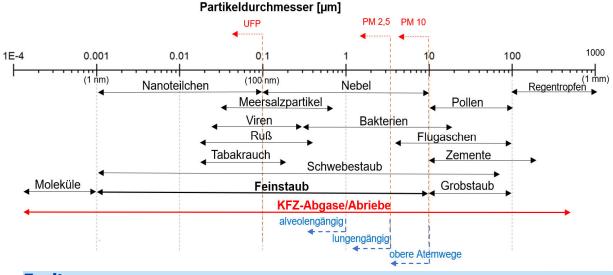
Partikeldeposition als Funktion des Partikeldurchmessers





- Noch äußerst unklar, welche UFP welche Wirkung auf Organismen haben -> Etablierung der Nanotoxikologie.
- Wirksamkeit ist abhängig von: **Größe** (Depositionsregion), Konzentration, Oberfläche, Struktur, physikalischen und chemischen Eigenschaft sowie der gesundheitlichen Konstitution des Betroffenen.

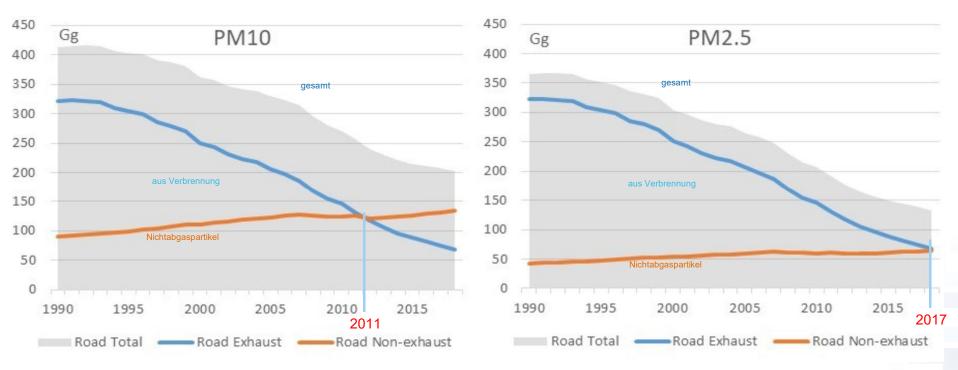
Feinstaub und ultrafeine Partikel (UFP)



Nanopartikel in einer Plazentazelle

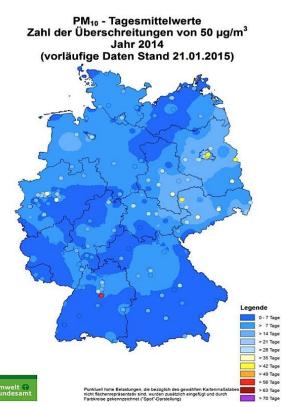
Quelle:

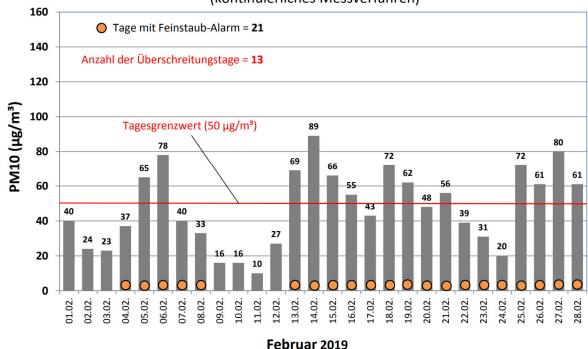
Liu et al. Evidence for the presence of air pollution nanoparticles in placental tissue cells. Science of The Total Environment **751**, (2021).


Fazit:

⇒ Insbesondere Ultrafeinpartikel (UFP):

- Dringen tief in die Lunge bis in die Alveolen, Lungengewebe und Blutkreislauf
- Betreffen alle Organe
- Haben eine große (aktive) Oberfläche
- Bleiben beliebig lange in der Luft (Aerosole)
- Unbegrenzte Verbreitung (in der Antarktis, auf Gletschern, ... zu finden) Quelle des oxidativen Potentials ⇒ **Hohes Gesundheitsrisiko**
- ⇒ KFZ-Abriebe Quelle für Partikel aller Größen
- ⇒ **Angaben PM**₁₀ **und PM**_{2.5}: unzureichender Bezug zu biologischen Wirksamkeit


Nicht-Abgasemissionen im Straßenverkehr


Quelle: Eionet Report - ETC/ATNI 2020/5

Feinstaub-Messstelle: Am Neckartor, Stuttgart

Feinstaub-Tagesmittelwerte (PM10) an der LUBW-Station "Am Neckartor" (kontinuierliches Messverfahren)

Quelle: LUBW, Grafik: AfU Stuttgart

Motivation

Vision

■ Emissionsfreie Mobilität

- Verbesserung der Luftqualität
- Reduktion der Belastungen durch den Fahrzeugverkehr
- Paradigmenwechsel: Autofahren verbessert die Luftqualität

ZEDU-1

Ziele

- Entwicklung einer Zero Emission Drive Unit (ZEDU-1)
 - Keine Emissionen aus Verbrennungsprozessen
 - Keine (nahezu) Feinstaubbelastungen im
 Fahrzeugverkehr durch Abriebe (Bremse, Reifen)
- Demonstration im Erprobungsträger
- Messtechnischer Nachweis der Emissionsfreiheit im realen Einsatz
- > Energetisch effizient
- Alltagstauglich

Fahrzeuge

Referenzfahrzeug

Methodenentwicklung und Bestimmung von (Status Quo) Partikelemissionen aus Brems- und Reifenabrieben

BMW i3

- Entwicklung von Messverfahren
- Separate Vermessung von Bremsen und Reifenabrieben in unterschiedlichen Szenarien
- Fahrprofile: normkonforme (Rolle) und reale Straßen Tests (RDE)

Demonstrator-FahrzeugDemonstration der
Technologien

ZEDU1 – Demonstrator

Vermessung der Emissionen zur Bestimmung der Feinstaub-Einsparung durch ZEDU-Technologie

ZEDU-1

Bewertung Bremskonzepte (Literatur)

Different solutions f	or the red	uction of p	articulate	matter pos		ECODUR°
Modification	Fine dust reduction	Weight reduction	Damping behavior	Initial design effort	Costs per vehicle	Running costs
Pad modification (NAO)	~	-	-		<u> </u>	-
Recuperation (e-drive)	11	-	-			×
Drum brakes	111	×	×	×	100	
Filter systems	11	××	-	×	×	×
Harder brake rotor alloys	11	✓	×	✓	××	✓
Nitro-Carburizing	1			1	×	1
Hard coated brake rotors	111	11	4	~	×	1
	(45)				Section 1	100000

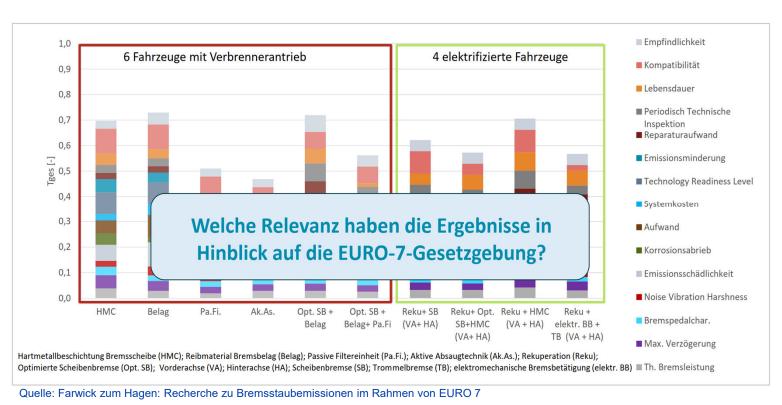
Fazit:

Laut Recherche sind zur Abriebsreduktion Vielversprechend:

- Technologien:
 - Rekuperation
 - Hartmetallbeschichtung
- Betriebsstrategien:
 - Fahrprofil
 - Geschwindigkeit

Temperatur als Emissionsreduktionspotential wurde nicht betrachtet

Technical options	Degree of emission reduction	Catch rates	Cost of component	Integration effort	Packaging requirements	Impact on other components/ performance	Serviceability	Operational robustness	Cycle relevant (4/20)	GENERAL EVALUATION
Coated Discs		n.a.	•	•	•	•	•	•	Υ	•
Friction materials (e.g. brake pads)	•	n.a.	•	•	•	•	•	•	Y	•
Recuperative braking		n.a.						•	Υ	•
Deceleration strategies (e.g. predictive driving)	•	n.a.	•	•	•	•	•	•	N	•
Lower speed average in future	•	n.a.	•	•	•	•	•	•	N	•
Reduced drag torque	•	n.a.	•	•	•	•	•	•	Y	1
Active filtering (s. Tallano)	•	•	•	0	0		•	•	Y	•
Passive filtering (s. M&H)	•	•	0	•	•	•	•	•	Y	•
O D A)// D M/	T									


C. Danner: AVL Brake Wear Techday

[■] F. Philipps, L. Bondorf | DLR VDI-Fachtagung 22.05.2025

ZEDI-1

Brems-Konzept Bewertungen (Literatur)

Recherche zu Bremsstaubemissionen im Rahmen von FURO 7 - Abschlussbericht bast_

Fazit

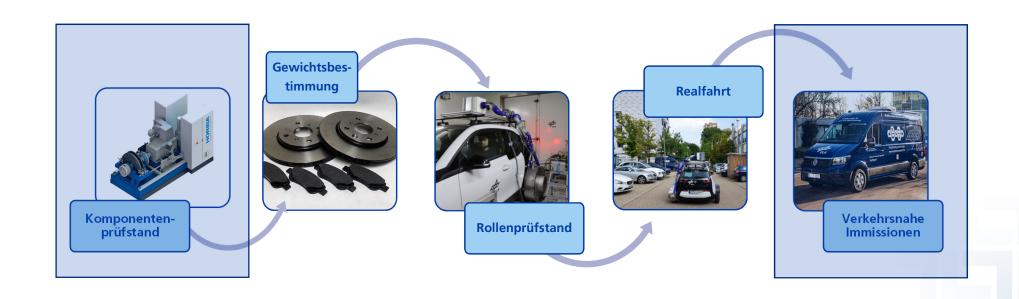
Bremstechnologien mit Potential:

- Hartmetallbeschichtete Bremsscheibe
- Belagsmodifikation
- BEV's Rekuperation

Nicht betrachtet:

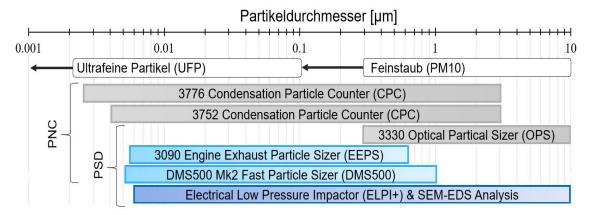
- Fahrprofil (Einfluss Verzögerung)
- Geschwindigkeitsreduktion
- Temperaturreduktion

ZEDU-1

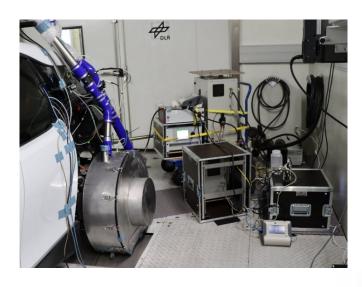

Konzepte Bremse - Auswahl

Kriterium	Konzept1	Konzept2	Konzept3	Konzept4	Konzept5
Darstellung					
Beschreibung	HM-Beschichtung	Filter zusätzlich	gekapselt	Lamellenbremse	Wird im Rahmen dieses
Grad der Emissionsvermeidung	teilweise	teilweise	vollständig +++	vollständig +++	Vortrags nicht betrachtet. Siehe dazu Beitrag von: Christoph Köhler
Entwicklungsaufwand	++	+	-	+	"Bremsen ohne
Entwicklungsrisiko	+	0		+	Feinstaubemissionen Die innovative
Gewicht	+++	+	-	0	Hybridbremse für Nutzfahrzeuge"
Kosten	++	+	-	+	Nutziamzeuge
Bewertung	+		0	+++	
Entwicklung bei	Frenoza			HWA	

[■] F. Philipps, L. Bondorf | DLR VDI-Fachtagung 22.05.2025



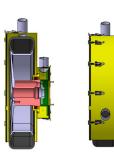
Messkonzept Bremse


Partikelmesstechnik

Fazit:

Charakterisierung der Emissionen:

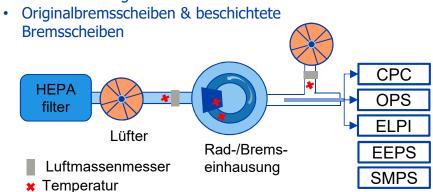
- Partikelanzahlkonzentration
- Größenverteilung
- Morphologie
- Elementare Zusammensetzung



Referenzfahrzeug - Messkonzept

Versuchsaufbau:

- Separate Einhausung von Bremse & Rad
- Durchströmen der Einhausungen mit definierter & **gefilterter Luft** (HEPA-Filter)
- Messung der Partikelkonzentration in der Abluft & Umgebung (Referenz)
- Temperaturmessung an Bremse/Reifen


Pista nz-platte Bremseinhausung Chassis Antriebs-einheit Bremseinhausung

Testprofile:

- Rollenprüfstand, Realfahrt & Komponenten
- Testzyklen (WLTC, RDE, ..) & Einzelbremsungen

Lüfter 1&2

Zuluftkanal

Einhausung

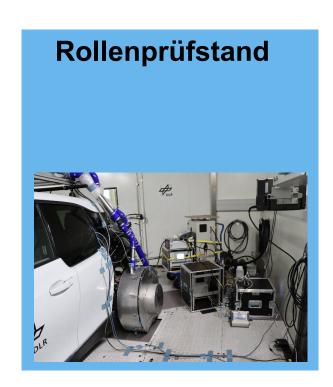
HEPA-Filter

<u>Abluftkanal</u>

Probenahme

Patent: Augsburg, K., D. Hesse, and F. Wenzel, DE 10 2017 006 349 B4

Messaufbau für mobile Messungen

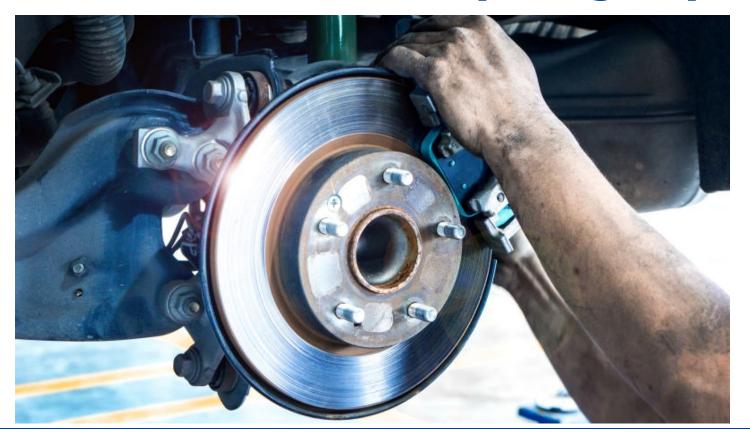


Stromversorgung, Datenlogger und Wandler

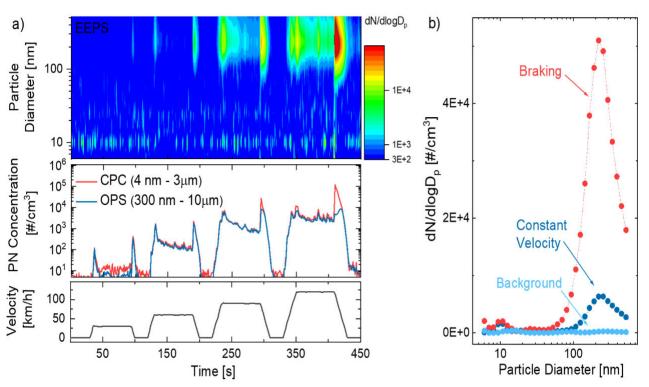
Messfahrten Referenzfahrzeug

Messszenarien Demonstrator-Fahrzeug

Messprogramm


Bremse	WLTC Class 3	WLTC Brake Part 10	RDE (Realer Fahrzyklus)	ZEDU- Acellerate	Rekuperation	Gewichts- bestimmung
Grauguss	✓	✓	✓	✓	✓	✓
HM-Beschichtet	✓	✓	✓	✓	✓	✓
Induktion (Hybrid)				✓		
Lamellenbremse	✓		✓	✓		

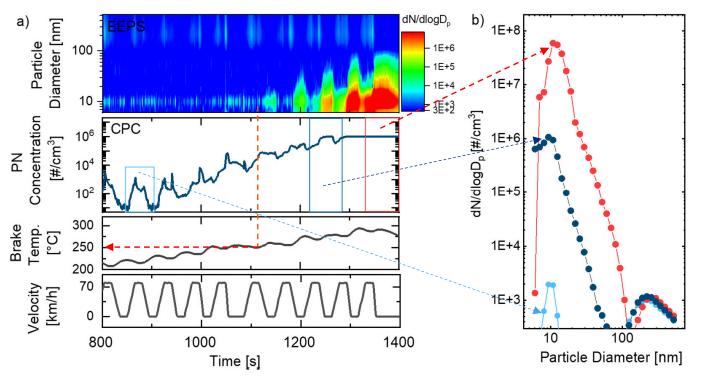
F. Philipps, L. Bondorf | DLR VDI-Fachtagung 22.05.2025


Messergebnisse

Konventionelle Bremse (Grauguss)

Messergebnisse: konventionelle Bremse

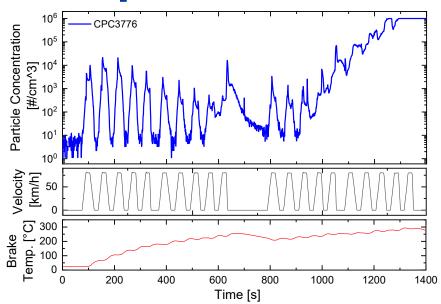
Bremspartikelemissionen (ZEDU Brake Zyklus)

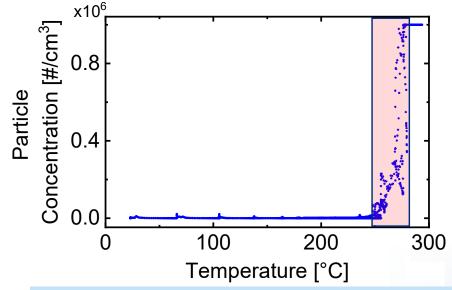


- Bremspartikelemissionen finden hauptsächlich in den Bereichen ~10 nm und ~200 nm bis 300 nm statt
- Emissionen auch bei konstanter Geschwindigkeit - überwiegend im Bereich ~200 nm bis 300 nm (Schleifen)
- Emissionspeaks bei Bremsvorgängen im Bereich ~200 nm bis 300 nm
- Emissionen der Modi im Bereich 200nm sind Bremskraft abhängig (mechanisch)
- **Reduktionspotential:** Unterbinden des "Schleifen" der Belege.

- a) Partikelgrößenverteilung (EEPS) sowie die Partikelanzahlkonzentration (CPC und OPS Messung)
- Größenverteilung der Partikelemission (EEPS) für verschiedene Fahrsituationen: konstante Geschwindigkeit von 120 km/h, Bremsvorgang und Hintergrund.

Bremspartikelemissionen (ZEDU Accelerate Zyklus)




- Bremspartikelemissionen bei höheren Temperaturen finden hauptsächlich in den Bereichen ~10 nm statt (thermisch induzierte Prozesse)
- Anzahl der Emissionspartikel bei einer Temperatut der Bremse im Bereich ~275°C bis ~300°C um Faktor **10**⁵ höher als durch die Bremskraft bedingte Emissionsanzahl.
- Emissionsreduktionspotential: Temperatur der Bremse unter der kritischen Grenze, ~250°C, halten.
- a) Partikelanzahlkonzentration und Partikelgrößenverteilung mit CPC bzw. EEPS gemessen.
- b) Größenverteilung der Partikel unterschiedliche für Bremstemperaturen (EEPS). Der gemittelte Zeitraum ist farblich gekennzeichnet.

Messergebnisse: konventionelle Bremse

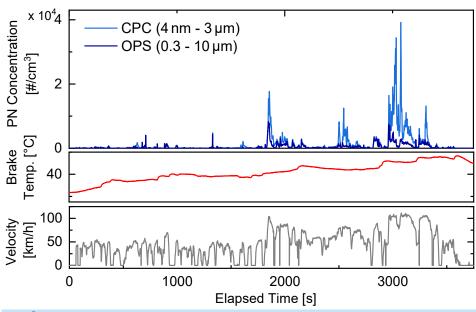
Bremspartikelemissionen & Bremstemperaturen

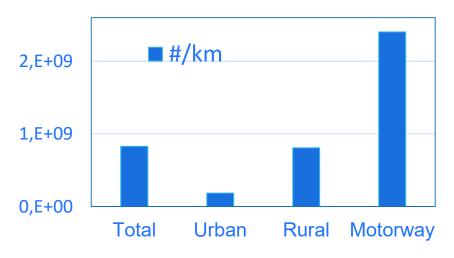
Anmerkung. Typische Bremstemperaturen:

- Stadtverkehr ca. 150 °C
- Moderates Bremsen bis ca. 250°C
- Scharfes Bremsen 300°C 500°C
- Sportliches Fahren/Notbremsung ca. 600°C bis 800°C

Materialversagen:

- Guss-Schieben ca. 600°C-700°C
- Carbon-Keramik über 1000°C


- Grenztemperatur liegt bei ~ 250°C
- Exponentieller Anstieg oberhalb der Grenztemperatur
- ➤ Emissionsreduktionspotential: Temperatur der Bremse unter der kritischen Grenze, ~250°C, halten.


F. Philipps, L. Bondorf | DLR VDI-Fachtagung 22.05.2025

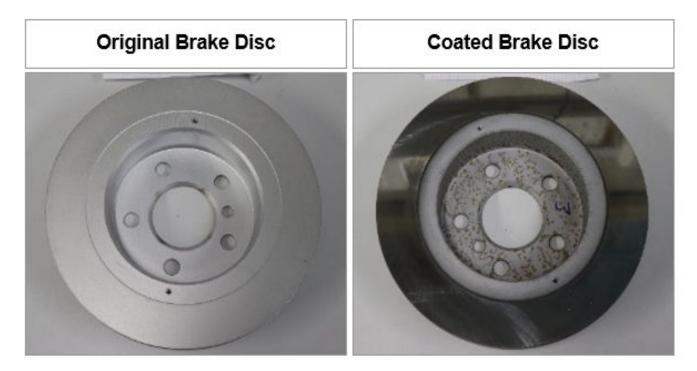
Messergebnisse: konventionelle Bremse

Bremspartikelemissionen: RDE-Stuttgart

- Emission der Bremspartikelanzahl bei höheren Geschwindigkeiten höher.
- **Emissionsreduktionspotential:** Reduktion der Fahrgeschwindigkeit.

Messergebnisse

HM-Beschichtete Bremse

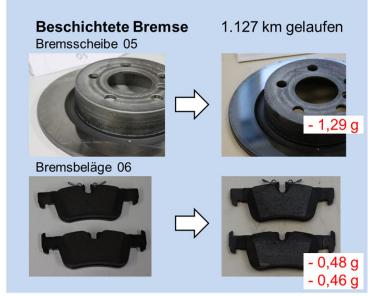


F. Philipps, L. Bondorf | DLR VDI-Fachtagung 22.05.2025

ZEDU-1

Original Guss-Bremsscheibe & HM-Beschichtet




Hartmetallschichtung: 20 % Wolframcarbid und 30 % Titancarbid in einer 50 % duktilen Matrix aus rostfreiem Stahl. ©FRENOZA GmbH

F. Philipps, L. Bondorf | DLR VDI-Fachtagung 22.05.2025

Massenverlust – Standardbremse vs. Beschichtete Bremse

- Abgeriebene Masse pro 100 km:
 - Standardbremse:

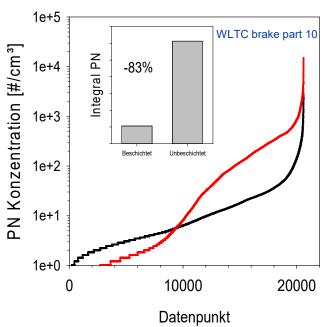
0,77 g

Beschichtete Bremse:

0,20 g

Abgeriebene Masse pro 100 km:

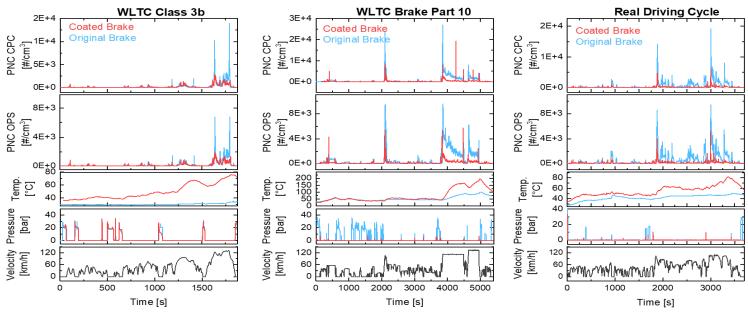
Anteil Scheibe: 63 %. Anteil Belege 37 %


Anteil Scheibe: 58 %. Anteil Belege 42 %

^{- 74} %

Bremsemissionen (PN) am Komponentenprüfstand: Einfluss der Beschichtung

Fazit:


Beschichtung sorgt für deutliche Reduktion der Partikelemissionen.

- Gewicht: ca. 74% (diverse Fahrprofile)
- Partikelanzahl: bis zu ca. 83% (WLTC brake part 10)

Messergebnisse: HM-Beschichtete Bremse

Bremsemissionen (PN): Standard ver. HM-Beschichtete Bremsscheibe

- a) Partikelzahlkonzentration von (Ultra-)fein Partikeln mit Durchmesser zwischen 4 nm und 3 µm mit CPC gemessen
- b) Konzentration gröberer Partikeln zwischen 300 nm und 10 µm mit OPSgemessen.
- c) Korrelierter Druck, Temperatur der Bremse und die Geschwindigkeit des Fahrzeugs

Messergebnisse: HM-Beschichtete Bremse

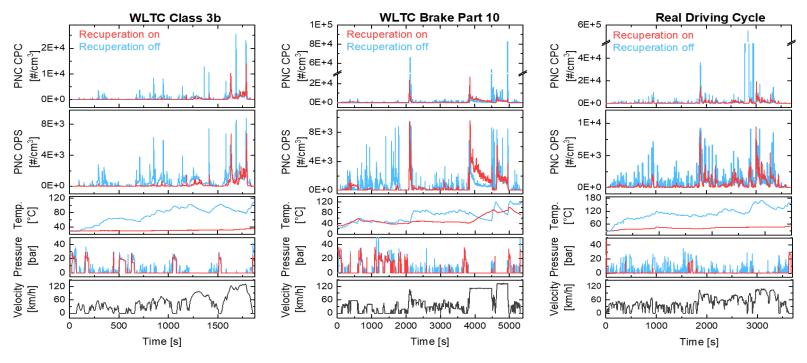
Bremsemissionen (PN) und Reduktion einer HM-Beschichteten zu einer Standardbremsscheibe


Fahrzyklus	PN-Emissione beschichteten [#/k	Bremsscheibe	Reduzierung der PN-Emissionen durch Beschichtung [%]		
	4 nm - 3 μm	300 nm - 10 μm	4 nm - 3 μm	300nm - 10 μm	
WLTC Class 3b	1.33×10^{8}	8.50×10^{7}	19	34	
WLTC Brake Part10	1.45×10^{8}	9.38×10^{7}	72	78	
Realer Fahrzyklus (RDE)	$8,64 \times 10^7$	5.85×10^{7}	79	83	

F. Philipps, L. Bondorf | DLR VDI-Fachtagung 22.05.2025

Messergebnisse

Rekuperation



F. Philipps, L. Bondorf | DLR VDI-Fachtagung 22.05.2025

Messergebnisse: Rekuperation

Bremsemissionen (PN) mit und ohne Rekuperation

- a) Partikelzahlkonzentration von (Ultra-)fein Partikeln mit Durchmesser zwischen 4 nm und 3 µm mit CPC gemessen
- b) Konzentration gröberer Partikeln zwischen 300 nm und 10 µm mit OPS gemessen.
- c) Korrelierter Druck, Temperatur der Bremse und die Geschwindigkeit des Fahrzeugs

[■] F. Philipps, L. Bondorf | DLR VDI-Fachtagung 22.05.2025

Messergebnisse: Rekuperation

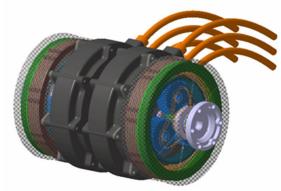
Bremsemissionen (PN) mit und ohne Rekuperation

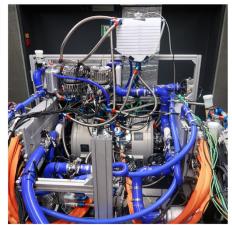
Fahrzyklus	Reduzierung der Bremsereignisse durch Rekuperation [%]	der Hinte	ssionen an rachsbremse /km]	Reduzierung der PN- Emissionen durch Rekuperation [%]		
		CPC	OPS	CPC	OPS	
		4 nm - 3 μm	300 nm - 10 μm	4 nm - 3 μm	300 nm - 10 μm	
WLTC Clas 3b	96	1.63×10^{8}	1,29 × 10 ⁸	65	68	
WLTC Brake Part 10	89	5,11 × 10 ⁸	4,27 × 10 ⁸	4		
Realer Fahrzyklus	88	4.10 × 10 ⁸	3.45 × 10 ⁸	90	35	

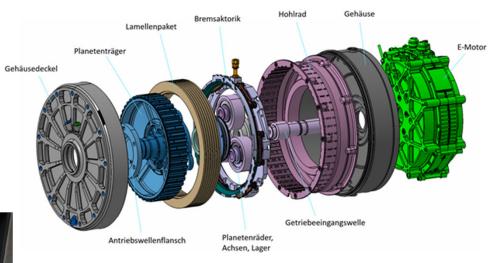
- a) Partikelzahlkonzentration von (Ultra-)fein Partikeln mit Durchmesser zwischen 4 nm und 3 µm mit CPC gemessen
- b) Konzentration gröberer Partikeln zwischen 300 nm und 10 μ m mit OPS gemessen.
- c) Korrelierter Druck, Temperatur der Bremse und die Geschwindigkeit des Fahrzeugs

F. Philipps, L. Bondorf | DLR VDI-Fachtagung 22.05.2025

Messergebnisse

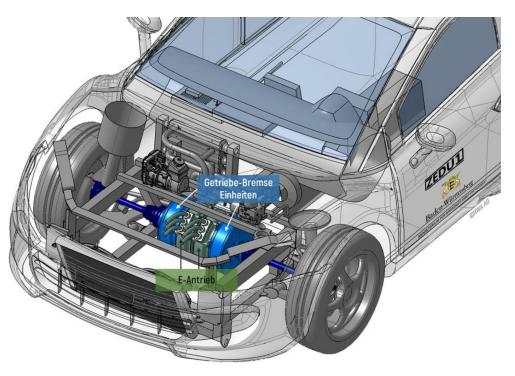

ZEDU-1 Demonstrator





ZEDU-1

Lamellenbremse

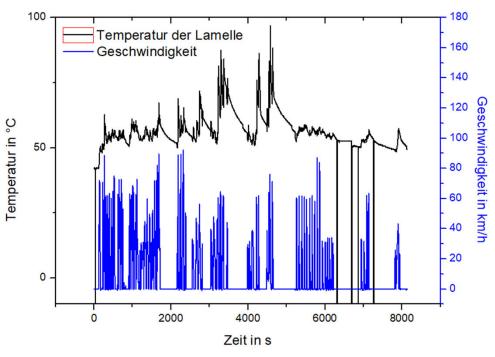


Lamellenbremse: Packaging, Explosionszeichnung und Prüfstandsaufbau

ZEDU-1

Integration der Motor Bremseinheit ins Fahrzeug

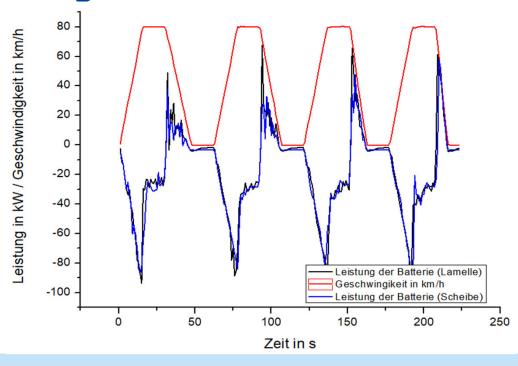
Packaging


Einbau

[■] F. Philipps, L. Bondorf | DLR VDI-Fachtagung 22.05.2025

Messergenbisse: Lamellenbremse

Lamellenbremse: Charakterisierung



- Keine Emissionen
- Bremstemperatur < 100 °C (Grenzwert 180 °C)
- Absolute Verzögerung überschreitet Haftungsgrenze der Reifen
- Ausreichende Verzögerung und Kühlung der neu entwickelten Lamellenbremse

Messergenbisse: Lamellenbremse

Technologie-Vergleich: Scheiben- und Lamellenbremse

- Lamellenbremse weist ein **vergleichbares Bremsverhalten** wie die Scheibenbremse auf
- Keine signifikante Unterschiede im energetischen **Verhalten/Eigenschaften** der Bremssysteme

Fazit

Zusammenfassung

- Die gesundheitliche Relevanz der Feinstaubpartikel ist u.a. im wesentlichen abhängig von der Größe, Anzahl, chemischen Zusammensetzung, aktiven Oberfläche (Morphologie), individuellen Dispositionen der betroffenen Person u.a.m.
- > Eine reine Massenbestimmung der Non Exhaust Emissions ist im Bezug auf gesundheitliche Relevanz nicht hinreichend.
- > Abriebsemissionsprozesse sind komplexe, dynamische Systeme
- Messung der Nicht-Abgaspartikeln im realen Betrieb, im Speziellen deren Anzahl, Größenverteilung, Morphologie und elementaren Zusammensetzung ist eine neue technologische Herausforderung
- Der gezeigte on-board-Messaufbau:
 - bietet **verlustfreie**, **isokinetische** Probeentnahme bis in den UFP Bereich (4 nm bis 10.000 nm (10 μm))
 - ist geeignet zur Bestimmung von Brems- (und Reifenabriebs-)emissionen aufm Prüfstand und im realen Betrieb
 - => geeignetes Konzept für **zukünftige Enzelfahrzeug- und RDE-Messungen** von Nicht-Abgasemissionen
- > Partikelverteilung und -konzentrationen hängt vom **Fahrprofil** (Geschwindigkeit, Beschleunigung, Kraft) und **Temperatur** ab.
- > Bremsabriebe sind nicht auf grobe mechanische Abriebe beschränkt, sondern auch Quelle für feine und ultrafeine Partikel.
- > Bremsabriebsemissionen auf dem Komponentenprüfstand unterscheiden sich stark von denen am Fahrzeug (vor allem im realen Betrieb) und spiegeln nicht die Komplexität des Systems wider.
- > "RDE-Messungen" am Fahrzeug eine Schlüsselmethode für die Validierung von Nicht-Abgasemissionen in realen Szenarien
- Rekuperation => Reduktion der Bremsemissionen um bis zu 90% (UFP)
- Hartmetall-Bremsbeschichtung => Reduktion der Bremsemissionen um bis zu 83% (RDE)
- ➤ Lamellenbremse technisches Funktionsprinzip im Fahrzeugeinsatz nachgewiesen. => Reduktion der Emissionen um 100%
- **Emissionsreduktionspotential:** Temperaturkontrollierte Bremse (T_{Bremse} unter der kritischen Emissionsgrenze (~250°C) halten) sowie Betriebsstrategien (geringere Geschwindigkeiten/Verzögerungen) und Geschwindigkeitsbegrenzungen.

Team:

Franz Philipps, Linda Bondorf, Manuel Löber, Tobias Grein, Sven Reiland, Steffen Wieser, Tobias Schripp

Sponsor: Ministerium für Wirtschaft, Arbeit und

Tourismus Baden-Württemberg

Partner: HWA AG, Frenoza GmbH, Continental AG,

Mann+Hummel GmbH, ZF

Franz Philipps E-Mail: franz.philipps@dlr.de Deutsches Zentrum für Luftund Raumfahrt (DLR) Institut für Fahrzeugkonzepte 70569 Stuttgart, Deutschland

