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ABSTRACT ARTICLE HISTORY
Land Use Land Cover (LULC) maps play an important role in land Received 22 June 2025
cover change assessment. In this study existing LULC maps of 2006 Accepted 27 August 2025
and 2015 were used to develop a standardized LULC classification
procedure for continuous mapping and land management. The
same procedure was useq to produce 2'023 LULC map .for the savanna ecological zone;
study area. Landsat 8, Sentinel-1, and Sentinel-2 were used in com- multisensor; random forest;
bination with a Random Forest algorithm to assess the potential of Google earth engine
multi-sensor Earth observations in mapping savanna ecological

zones in the Google Earth Engine (GEE). The classification results

yielded an overall accuracy of 73.32% and kappa coefficient of

0.6342 when integrating Landsat 8 and Sentinel-2 data. In addition,

an overall accuracy of 80.21% and kappa coefficient of 0.7225 were

obtained for the combined Landsat 8, Sentinel-2, and Sentinel-1

data. The results demonstrated that using Sentinel-1 data in add-

ition to multispectral data improved the classification accuracy by

almost 7%.

KEYWORDS
Land use land cover;

1. Introduction

Land is an essential natural resource that supports the human population in the sav-
annas of sub-Saharan Africa (Mbow 2020). The impact of the utilization is evident in
rural areas where the population relies heavily on natural resources on the land to
meet their energy and nutrition needs (Antwi et al. 2014; Onyeaka et al. 2024). The
environment and thus the ecosystem, bears the full brunt of human activities by the
conversion of savanna or forest vegetation to human dominated landscapes (Osborne
et al. 2018). This is in the form of deforestation, pollution of fresh water bodies, and
drainage of wetlands, culminating in habitat loss, expansion of cropland, and opening
up spaces for settlements (Repetto and Holmes 1983).
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The anthropogenic disturbances on the savanna landscape are scattered and vary
depending on the season and the socioeconomic factors driving it, resulting in land-
scape degradation (Baade et al. 2021; Jorge et al. 2025). It is difficult to monitor these
variable disturbances for a comprehensive understanding of their impact on the
savanna landscape. Thus, it is challenging to understand the linkage of ever-changing
land cover at disturbed and undisturbed locations from a local perspective (Grégoire
et al. 2013; Biah et al. 2024). With increasing demands to keep abreast with changing
Land Use Land Cover (LULC) in savanna landscapes, there is, therefore the need to
model an approach to accurately take inventory of savanna landscapes as a whole for
easy and quick understanding of changing trends in vegetation cover.

Although, some LULC classifications have been produced or created for the five
savanna dominated northern regions in Ghana, there are still gaps or drawbacks in
the analysis conducted thus far. This has to do with the data used in producing
LULC maps, as many studies derived their land cover classes from the training data
they acquired and were not based on any previous work that has been done. Few
studies have attempted to produce LULC maps with sample data based on harmon-
ized historic LULC maps consistent with the Land Cover Classification System
(LCCS) defined by the Food and Agriculture Organization of the United Nations
(FAO) and the United Nations Environment Programme (UNEP) as the reference
classification system for data collection (Gregorio and Jansen 2000) and with refer-
ence to the translatability of land cover classes in the International Geosphere-
Biosphere Program (IGBP) (Gregorio et al. 2016) to improve or update previous
LULC maps for accurate land cover inventories.

The growing demand for LULC maps to replace or update existing maps has cre-
ated the opportunity for advances in classification approaches to be applied in several
landscapes to address issues of land cover changes at local, regional, and global scales.
These demands have led to advances in machine learning (ML) algorithms with vary-
ing degree of accuracy but Random Forest (RF) and Support Vector Machine (SVM)
have been highlighted as having outstanding performance compared to their counter-
parts in numerous literature (Mountrakis et al. 2011; Belgiu and Dragut 2016;
Sheykhmousa et al. 2020). RF is an ensemble learning model that builds decision
trees using random samples of observations and variables. The output is an assign-
ment of the class selected by the majority of the decision trees. The RF further pro-
vides a score called feature importance to depict the relevance of each predictor
within the model. By building multiple trees, the RF can correct the decision tree
problem of overfitting. (Chabi et al. 2016; Zoungrana and Dimobé 2023).

Support Vector Machine (SVM) is supervised machine learning algorithms applied
in remote sensing for classification tasks. The fundamental of SVM is to identify an
optimal decision boundary, refer to as a hyperplane, separating data points into dis-
tinct classes. During the training process, the algorithm assigns each data point to a
specific category, thereby functioning as a binary linear classifier. As a non-
parametric supervised model, SVM does not rely on assumptions about the underly-
ing data distribution, making it robust to variations in data characteristics
(Mountrakis et al. 2011). This property provides a significant advantage over para-
metric classification methods, which require such distributional assumptions.
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This study employed Earth observation techniques to monitor savanna landscapes
and harmonize existing land use/land cover (LULC) maps for the five northern regions
of Ghana. The analysis was conducted using Google Earth Engine (GEE), a planetary-
scale cloud platform for Earth science data processing and analysis. The information
gathered provides insight into the effect of increasing the number of multi-sensor data
in land cover classification and the associated accuracies. Conventionally, many studies
have relied on a single remote sensing data source, such as Landsat 8 or Sentinel-2.
However, the fusing of multiple data sources has the potential to improve the temporal
resolution of observations, due to different acquisition time from different sensors. For
instance, (Hosseini et al. 2024) employed multi-source and temporal approach in map-
ping Cropping Intensity Patterns (CIPs), demonstrating the effectiveness of combining
Sentinel-2 and Landsat 8/9 data. This synergy of multi-sensor enabled the generation
of detailed phenological time series, which improved classification accuracy by effect-
ively capturing the temporal dynamics of agricultural landscapes.

Likewise, stacking multi-sensor data from Synthetic Aperture Radar (SAR) and
optical imagery harnesses the complementary strengths of both datasets. Optical
images offer rich spectral information and clear visual details, but often diminished
in quality particularly by cloud cover. In contrast, SAR data are largely unaffected by
weather conditions, enabling consistent data. SAR imagery provides valuable texture
features and surface roughness information, capturing the scattering characteristics of
objects irrespective of environmental factors. By integrating SAR and optical data, it
becomes possible to exploit their combined spatial, spectral, and scattering attributes,
thereby enhancing target detection and improving the accuracy of LULC classification
(Irfan et al. 2025).

Most existing literature on LULC mapping for the study area does not rely on pre-
vious or legacy maps to guide the generation of thematic land cover classes for com-
parative analysis. As a result, the LULC maps produced over the years are not
directly comparable. Moreover, most studies focusing on this savanna landscape have
used a single source of remote sensing data. This approach poses challenges in cap-
turing certain patterns, as persistent cloud cover and the limited temporal resolution
of the data often fail to resolve these issues, thereby affecting classification accuracy.
Additionally, existing machine learning (ML) models struggle to effectively integrate
multi-source remote sensing data, which can result in some patterns being poorly
represented in the output. Finally, many of the gap-filling methods employed in cur-
rent literature either shrink or expand the edges of gaps in classified images without
adequately utilizing the spectral information from gap neighbouring pixels, thereby
reducing the reliability of the information provided.

The main contributions of this article are as follows:

e Provision of 2023 annual LULC map based on the harmonization of previous
LULC maps. The thematic land cover classes were aligned with legacy LULC
maps.

e Integration of multi-sensor remote sensing data. Composite of Synthetic Aperture
Radar (SAR) and multispectral data with different temporal resolutions. The
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approach capable of capturing land cover changes that otherwise would have been
overlooked by individual sensors.

e Application of the Random Forest (RF) model for LULC classification. RF’s ability
to handle high-dimensional datasets and avoid overfitting makes it ideal for map-
ping savanna landscape dynamics as compared to Support Vector Machine (SVM).

e Applied gap-filling by incorporating information from neighbouring pixels.

The article is organized as follows: Section 2 describes the study area and dataset
employed in the study, Section 3 outlines the classification methods employed,
Section 4 presents the results, Section 5 discusses the research findings, and Section 6
concludes the study.

2. Materials
2.1. Study area

Agriculture is the main economic activity in the study area, with some commercial
activities occurring in metropolitan cities and towns (Ferreira et al. 2022). It is situ-
ated in the northern part of Ghana and is comprised of five (5) regions (Figure 1).
The area has savanna vegetation which is characterized by a mixture of grass and
trees. The climatic condition is tropical with distinct wet and dry seasons, and it is

STUDY AREA
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Figure 1. (a) Study area comprises of the five Northern regions, namely: Northern, Northeast,
Savanna, Upper West and Upper East regions. (b) Digital elevation model (DEM) of the study area
(values indicate areas with varying elevations above mean sea level).
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slightly hotter and drier than the national average, with daily temperatures ranging
from 30 to 40 °C and rainfall from 900 mm to 1200 mm.

2.2. Dataset

Satellite imagery from Landsat 8, Sentinel-1, and Sentinel-2 products covering the
period from January 1, 2023 to December 31, 2023 were used in this study (Table 1).
Landsat 8 and Sentinel-2 provided multispectral data with spatial resolutions of 30 m
and 10m respectively. These multispectral datasets were complemented by Synthetic
Aperture Radar (SAR) data from Sentinel-1, as radar imagery can deliver information
on the land surface, even in situations of cloud cover. This is particularly relevant in
the study area because cloud cover is frequent, particularly during the rainy season.

Table 1. List of satellite images used.

Product name Spatial resolution Temporal resolution Period used Origin

Landsat 8 30m 16 days 01 to 12/2023 (Zhang et al., 2023)
Sentinel-1 10m 6 days 01 to 12/2023 (Gargiulo et al., 2020)
Sentinel-2 10m 5 days 01 to 12/2023 (Wang and Atkinson, 2018)
SRTM 30 m - - (Farr et al., 2007)

The Landsat 8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS)
Collection 2 atmospherically corrected imagery at the Surface Reflectance (SR) level
available in the Google Earth Engine (GEE) was used. A cloud cover filter of 30% per
scene was applied, and cloud and cloud shadow values from the QA_Pixel band of
the Landsat data were used to masked the remaining clouds.

Sentinel-2 level-2 orthorectified atmospherically corrected surface reflectance
images freely available in the Google Earth Engine (GEE) was used. A percentage of
cloudy pixels was applied to select images with less than 20% cloud cover. Additional
cloud pixel masking was applied by employing the quality assurance (QA) band of
Sentinel-2. In addition, Sentinel-1 Ground Range Detected (GRD) images are also
available in the Google Earth Engine (GEE), which has already been processed for
calibration, and ortho-corrected products were used.

3. Methods
3.1. Harmonization of classification legend

For defining the thematic classes of the presented map, previous LULC maps of the
study area from the year 2006 (Gessner et al. 2015) and 2015 (Forkuor et al. 2017)
were harmonised due to their comparable legends and their class descriptions based
on the Land Cover Classification System (LCCS) defined by FAO and UNEP as the
reference classification system (Gregorio and Jansen 2000).

Through ten harmonized thematic classes, reference data for training and valid-
ation were collected during an intensive field campaign for three months between
May and July 2023. For each field sample, coordinates in Geographic Coordinate
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DISTRIBUTION OF FIELD DATA
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Figure 2. Distribution of field data collection in the study area.

System WGS 1984 (GCS_WGS_1984) were recorded using a Global Positioning
System (GPS) device (Garmin GPSMAP 64s Handheld GPS Unit). Subsequently, the
code for such thematic land cover class was assigned on the device and as well
recorded in field notebook. These samples were collected along major roads, feeder
roads, farm roads and accessible areas, as shown in Figure 2. Overall, the five north-
ern regions of Ghana were covered, coincidentally covering the Sudan and Guinea
savanna ecological zones, which are ecological zones severely impacted by climate
change in Ghana.

3.2. Satellite data processing

The remotely sensed data covering the entire study area with less cloud cover were
processed to span the entire year in which the data were collected. All datasets that
showed a cloud cover of more than 30% for Landsat 8 and 20% for Sentinel-2 were
excluded from the complete archive of satellite imagery. The remaining cloud and
cloud shadows on the images were masked by applying a quality assurance (QA_
Pixel) band associated with Landsat 8. Similar masking was performed by employing
the quality assurance (QA60) band of Sentinel-2.

Landsat 8 and Sentinel —2 as well as Landsat 8, Sentinel —2 and Sentinel —1
images were stacked and used as the two primary input data as shown in Figure 3
Data stacking. This approach harnesses the capabilities of two multispectral images
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Figure 3. Workflow.

and then a combined optical and radar images to map the tropical savanna landscape.
Subsequently, several indices were computed for both the optical and radar satellite
imagery. This was done to enhance the spectral variability between bands and reduce
the topographic effect. The selected indices, have shown the potential to provide vital
information for the intended land cover classification assessment.

The Normalized Difference Vegetation Index (NDVI) is correlated with vegetation
greenness, density, and productivity (Sobrino et al. 2004).

Thus:

NIR — Red
NDVl = —— (1)
NIR + Red

where NIR is the reflectance in the near-infrared band, and Red is the reflectance in
the red band.
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To enhance separability of land from aquatic vegetation, the Normalized
Difference Aquatic Vegetation Index (NDAVI) was employed (Villa et al. 2014).

NIR — Bl
NDAVI = ——_>4€ )
NIR + Blue

where NIR is the reflectance in the near-infrared band, and Blue is the reflectance in
the blue band.

To enhance water features, extract water information of an area, and reduce noise
from anthropogenic features and vegetation, the Modified Normalized Difference
Water Index (MNDWI) was estimated (Xu 2006).

Green — SWIR1
MNDW[ = ——— (3)
Green + SWIR1

where Green is the reflectance in the green band and SWIRI is the reflectance in the
shortwave infrared 1 band.

To continue with spectral variability enhancement among bands, band ratios were
employed to enhance the appearance of features in the image (Ghrefat et al. 2023).
They distinguish the minor characteristics of features that are otherwise masked as a
result of spectral variations. Therefore, the band ratio is good at amplifying features
being analyzed by rescaling or stretching the result, which are then shown as new
images (Shahi et al. 2023). Three band ratios, Simple Ratio (RS), Band Ratio 6/5
(ratio65) and Band Ratio 4/6 (ratio46) were computed to enhance the spectral vari-
ability of the image used (Table 2).

Table 2. Band ratio indices.

Ratio Formula Comments

Simple ratio SR = % Where NIR is reflectance in the near infrared band and Red is
reflectance in the red band (Kior et al., 2021).

Band ratio 6/5 ratio65 = Wikl Where SWIR 1 reflectance in the shortwave infrared 1 band and

NIR

NIR is reflectance in the near infrared band (Olasunkanmi et al.,
2023)

Band ratio 4/6 ratio46 = fed Where Red is reflectance in the red band and SWIR is reflectance in

SWIRT
the shortwave infrared band 1 (Seleim et al., 2022)

To estimate chlorophyll content of the vegetation cover Green Chlorophyll
Vegetation Index (GCVI) was employed to compute the reflectance image (Wu et al.
2012).

NIR
GCVI = < ) -1 (4)
Green

where NIR is the reflectance in the near-infrared band, and Green is the reflectance
in the green band.

For soil adjusted vegetation index (SAVI) seeks to lessen the impact of soil inten-
sity by employing soil-brightness correction factor (Huete 1988).
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(NIR — Red) ) s -

SAVI =
((NIR + Red +0.5)

where NIR is the reflectance in the near-infrared band, and Red is the reflectance in
the red band.

For Synthetic Aperture Radar (SAR) imagery, the Radar Vegetation Index (RVI)
(Sahadevan et al. 2013) was estimated to provide a comprehensive level of vegetation
growth in areas hindered by dense cloud cover.

40’01_1\/
RVI=———— 6
oOug+avy ()

where dHH is the polarised backscattering coefticients and ¢HV is cross polarization
coefficients.
The Radar Forest Degradation Index (RFDI) (Joshi et al. 2015) estimate.

IIO'OHH - IlO'OHV

RFD[=———— 7
no'yy + neyy @)

where oHH is the polarised backscattering coefficients and ¢HV is cross polarization
coefficients.

These indices and masking were applied to images on a seasonal basis. Thus, proc-
essing was performed for all Landsat 8 images in the wet and dry seasons. Then, the
images were merged to correspond to the study year. This procedure was subse-
quently repeated for Sentinel-1 and Sentinel-2 respectively.

3.3. Random forest and support vector machine classification

The random forest ensemble model applies the bagging technique, where each tree is
built or grown independently by bootstrapping (generating) a dataset sample with
replacement from an existing dataset and output, which is the aggregation of each
tree (Breiman 2001; Belgiu and Draguf 2016; Umoh et al. 2022; Islam et al. 2023).
The dataset for the trees was randomly chosen. Randomness is introduced during the
training phase in two approaches, in sub-sampling the training data, each tree is
grown using a different subset, and in node test selection (Boateng et al. 2020). RF is
a nonparametric model, meaning it does not assume any fixed functional form and
that the shape of the data is learned from the data itself. This makes RF produce
more accurate results and therefore, has considerable advantages over other models.
(Lu et al. 2012; Sonawane and Dhawale 2016). Good performance of the model was
achieved with a sufficient number of defined trees and a relevant number of predic-
tors available. An ideal way to determine if the number of trees is sufficient is to
compare whether the prediction made by the subset of the forest works well with
that of full forest prediction (Boateng et al. 2020). The target of SVM is to detect an
optimal hyperplane that assigns a data into distinct classes. This is enabled by a ker-
nel function that takes input feature into a higher-dimensional space (Hosseini et al.
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2024). As a non-parametric model, SVM does not make assumptions about the
underlying data distribution, therefore being robust to variations in data characteris-
tics (Mountrakis et al. 2011).

RF and SVM were employed in this study, with approximately 75% of the sample
dataset used as the training set and 25% for testing the developed model. Two classi-
fication processes were setup, the first was the multispectral image stack of Landsat 8
and Sentinel-2. Preceding the stacking, the Sentinel-2 bands were renamed to corres-
pond to those of Landsat 8, and subsequently, its resolution was converted to that of
Landsat. The other image stack consisted of both optical images of Landsat 8 and
Sentinel-2 and radar image of Sentinel-1. The Sentinel-1 resolution was converted to
a 30m resolution of Landsat 8. Other pre-processing involved normalization of radar
backscatter using reference incident angle and reducing variability across acquisition
time by performing temporal normalization was carried out.

Based on the harmonization process, the ten thematic classes were deduced and
samples were taken from the field campaign to perform the classification process. It
was established that there were similarities in the classes, mainly in the vegetation
classes. This informed the merging of classes with similarities to improve the classifi-
cation accuracy. Finally, image classification was performed by employing six distinct-
ively land cover thematic classes namely: Cropland, Water, Town, Vegetation,
Bareland, and Grass as the training set samples to classify the image.

The classification was validated to determine the accuracy of the results (Figure 3).
This was performed using the remaining data that was split. The classification accur-
acy was assessed by comparing the predicted and actual variables. Accuracy assess-
ment was performed using overall accuracy (OA), kappa coefficient index, omission,
commission, producer accuracy, user accuracy, and Fl-score (F1), as this is the cur-
rent standard to evaluate classification accuracies in many Earth Observation (EO)
research studies (Stumberg et al. 2014; Tallon-Ballesteros and Riquelme 2014;
Shivakumar and Rajashekararadhya 2018; Shawky et al. 2019).

The overall accuracy of the confusion matrix (Shivakumar and Rajashekararadhya
2018).

N Z:":lDii
Overall Accuracy = —— (8)
f N

where Dii is the diagonal pixels of class i and N is the total number of pixels in the
confusion matrix.

Cohen’s kappa for the confusion matrix was based on (Tallén-Ballesteros and
Riquelme 2014).

N " DM -3"" ErxEc
N2 - 3" Er=Ec

Cohen's Kappa = 9)

where N is the total number of pixels. DM represent the diagonal pixels (elements) of
the confusion matrix, Er is the total number of pixels in row i, Ec is the total number
of pixels in column i, and m is the number of rows.
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The classification results had some gaps caused by excessive cloud cover, leading
to missing data and making interpretation in these gap spots severely restricted
(Wang et al. 2022). Existing spatial gap-filling methods often imply gap edge expan-
sion or shrinkage. This means that, spatial gap-filling approaches need to estimate the
missing pixel value from the surrounding pixels rather than further pixels
(Mohammed 2013; Yan and Roy 2018). Here, a majority filter was applied, which
made use of the information from the defined neighbourhood (moving window) to
fill the gaps by ensuring that the value given to the gaps was representative of the
nearby pixels (Habib et al. 2004). An interactive approach was adopted, and the ker-
nel size was defined in such a way that all gaps were identified and filled accordingly.
Furthermore, the area covered by each class and percentage of area coverage were
computed.

4, Results

Land Use Land Cover at disturbed and undisturbed locations in the Sudan and
Guinea ecological zones in Ghana with six land use classes were analyzed. The results
presented in Figure 4 provide a highly accurate land cover map of 2023 produced
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Figure 4. LULC map of 2023, (a) and (b) produced by RF, (c) produced by SVM.
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from the stacked images of Landsat 8, Sentinel 1 and Sentinel 2 at 30 m resolution.
The land use classes presented in the map are based on the harmonised legend
derived from the previous map of 2006 and 2015 which were consistent with the
Land Cover Classification System (LCCS) defined by the FAO and UNEP as the ref-
erence classification system (Gregorio and Jansen 2000). The Random forest classifi-
cation approach was very efficient as it was able to capture land uses in the savanna
landscape (study area) with an overall accuracy of 73.32% and a Kappa coefficient of
0.6342 for a stacked image from optical data of Landsat 8 and Sentinel-2 and for a
stacked image from both optical and radar images (Landsat 8, Sentinel 1, and
Sentinel 2) achieved an overall accuracy of 80.21% and a Kappa coefficient of 0.7225,
indicating an improve performance of 6.89%. However, when Support Vector
Machine (SVM) was used, the model achieved an overall accuracy of 77.38% and a
Kappa coefficient of 0.6651 for stacked composite of optical and SAR images. This
demonstrated a better performance of RF over SVM of 2.83% in the study area.

The matrix in Table 3 consists of rows and columns of classes (pixels) depicted in
the map as a result of the classification of the stacked image and classes represented
in the reference data. The resultant diagonal cells provide information about correctly
classified cells, whereas other cells represent errors of commission and omission
(Freitas et al. 2024). To extract the information captured in the confusion matrix, sev-
eral formulas were deduced and estimated, including overall accuracy (OA), kappa
coefficient index, error of omission, error of commission, producer accuracy, user
accuracy and Fl-score (F). OA gives the proportion of correctly classified pixels
(cells) from the total number of pixels (cells). This provides degree of general model
accuracy across all classes combined (Figure 5). The kappa coefficient on the other
hand, determines how well the classification results agree with the true labels. It pro-
vides a more robust metric than OA.

The gap filling measure adopted makes use of the spatial filling technique by
inspecting neighbouring pixels of a gap and replacing it with the most frequent value
among its neighbours. Because it is useful for categorical data, the results of the
majority filter applied to the classified image are shown in Figure 6, as all the gaps in
the image were effectively identified and filled with respect to their neighbouring
pixel values accordingly.

The extracted land use area of coverage was subsequently estimated using the per-
centage they occupied, as presented in Table 4. In addition, regional land use area
coverage as well as the percentage they constitute were analyzed as presented in
Figures 7 and 8 below. The findings showed that, the Northern region constitutes
39.15% of the cropland area in the study area. In addition, the Savanna region
accounts for 71% and 46.81% of the water and vegetation coverage respectively, in
the research area.

5. Discussion

The study employed the Random Forest (RF) and Support Vector Machine (SVM)
algorithms with stacked satellite images (Landsat 8, Sentinel-1 and Sentinel-2) to map
the spatial distribution of land cover classes for the year 2023. The high classification
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Accuracies of Stacked Images
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Figure 5. Comparison of accuracies of both optical stacked and combined radar and optical
images.

White gaps in (C) have been filled with town class in (D)

Figure 6. Gap filling in a classified image.
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Table 4. Area and percentage coverage of thematic classes.

Class name Area (Sq.Km) Area (%)
Cropland 22502.8023 23.3847
Water 2426.0096 2.5210
Town 1138.7204 1.1833
Vegetation 66975.2771 69.6002
Bareland 144.4678 0.1501
Grass 3041.1941 3.1603
Total 96228.4713 100

accuracy of 80.21% and 77.38% and kappa coefficient of 0.7225 and 0.665 for RF and
SVM respectively are an indication of RF efficiency in mapping heterogeneous land-
scapes using multi-sensor imagery (Figure 5). The results were in tune with (Adugna
et al. 2022), who found that Random Forest (RF) out performed Support Vector
Machine (SVM) in a classification process to create Land Cover map. It states that,
RF performed well in a mixed class classification and also able to handle efficiently
large dataset input where SVM founds it challenging. It therefore an indicative that
RF is robust for heterogeneous landscape mapping.

Also, the Random Forest classification results obtained were consistent with those
of studies conducted in the region such as (Gessner et al. 2015) who employed RF in
multi-sensor mapping of West African land cover using MODIS, ASAR, and
TanDEM-X/TerraSAR-X data with an accuracy of 80% at legend level 1 (9 classes)
and 73% at legend level 2 (14 classes). Kappa coefficients calculated were 0.77 at level
1 and 0.71 at level 2 respectively. The findings were as well consistent with
(Zoungrana and Dimobé 2023), who predicted the vegetation trend classes in the
Sudanian savanna with an overall accuracy and kappa value of 82% and 0.76, respect-
ively. Equally, the predictive performance of RF was observed by Yangouliba et al.
(2022) who used RF to model LULC for 1990, 2005, and 2020 and had an overall
accuracy of 81%, 91%, and 93% and kappa coefficients of 0.91, 0.82 and 0.76,
respectively.

The ability to distinguish other land use classes from the scene implies the capacity
of the fused imagery to be used as primary data for mapping heterogeneous savanna
landscapes. Other studies such as (Ibrahim 2023) have employed a Random Forest
(RF) based feature selection approach using Sentinel-1, Sentinel-2, and Shuttle Radar
Topographic Mission (SRTM) data. The results indicated that Sentinel-2 data only
achieved an overall accuracy of 84.2%, while Sentinel-1 and SRTM data achieved 83%
and 76.44%, respectively. The classification accuracy improved to 89.1% when
Sentinel-2, Sentinel-1, and SRTM data were combined. This represents a 4.9%
improvement in overall accuracy compared to Sentinel-2 alone and a 6.1% and
12.66% improvement compared to Sentinel-1 and SRTM data respectively. Again,
(Pastick et al. 2020) employed a harmonized Landsat 8 and sentinel-2 to mapping of
invasive annual grass with a high overall accuracy of above 81%. (Onacillovd et al.
2022) combined Landsat 8 and Sentinel-2 data from Google Earth Engine to derive
high resolution Land Surface Temperature maps in urban environments with an
accuracy within acceptable limits.
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Figure 7. Regional land use analysis in the study area (a-e).

The study also examined the results when optical and radar images were fused as
input data for LULC classification using the RF algorithm in GEE. The results
showed that adding radar image Sentinel-1 along with Landsat 8 and Sentinel-2
images in the GEE improved the image classification accuracy. This finding is
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Figure 7. Continued.
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consistent with other studies (Lee et al. 2024), which used a combination of Korean
Multi-purpose Satellite 3 (KOMPSAT-3), KOMPSAT-5 SAR, Compact Advanced
Satellite 500-1 (CAS500-1), Sentinel-1, and Sentinel-2 within GEE as well as NDVI
from CAS500-1 and KOMPSAT-3 and confirmed that a continued improvement in
classification accuracy occurred as the number of satellite images applied as input
data increased. Therefore, we emphasize the use of multi-sensor data to improve clas-
sification results. The accuracy of the LULC classification was also in line with a
study by Nhemaphuki et al. (2020). who produced LULC maps using optical and
radar data and a combination of both by employing the Random Forest algorithm.
The results indicated that the fusion of optical and radar data gave better land cover
discrimination with 96.98% overall accuracy in comparison to using radar and optical
data separately, with overall accuracies of 69.2% and 95.89% respectively.

The classification process in this study involved the use of a stacked image derived
from multi-sensor satellite data, specifically Landsat 8, Sentinel-1, and Sentinel-2.
While the integration of multiple sensors enhances the quality of information avail-
able for land cover classification, combining spectral, spatial, and backscatter data,
involves high computational cost associated with processing such stacked datasets.
This increased computational demand, which was one of the constraints of the study,
was as a result of the sheer volume of data involved and the complexity of harmoniz-
ing images with varying spectral characteristics and temporal acquisition periods
(Fang et al. 2023).

Although the classification accuracy achieved using a stacked multi-sensor image
comprising Landsat 8, Sentinel-1, and Sentinel-2 was relatively high, there remains
considerable potential for improvement if the spatial resolution of the composite had
been finer. In the present study, the image stack integrated data at the coarser 30 m
resolution of Landsat 8, rather than harmonizing to the finer 10m resolution of
Sentinel-2. This is because spatial resolution plays a crucial role in land cover classifi-
cation performance, especially in heterogeneous landscapes such as the savanna zones
of the study area, where small-scale land cover features could easily be aggregated
into dominant land cover at coarser resolutions (Tassi et al. 2021).

Stacked composites derived from SAR and optical data such as those from Landsat
8, Sentinel-1, and Sentinel-2 offer improved spectral and temporal diversity (Inglada
et al. 2016). Leveraging these multi-sensor datasets improved class discrimination by
combining spectral reflectance, backscatter, and texture information. However, in this
study, such stacking increases the dimensionality of the dataset, potentially introduc-
ing redundant or noisy features. While the Random Forest (RF) algorithm, particu-
larly through parameters used (Number of Trees: 300 and Variable Per Split: 6), can
hand high-dimensional data to some extent, its performance is influence by how
these parameters are set. (Rodriguez-Galiano et al. 2012).

The selection of an appropriate gap-filling method is largely determined by the
specific application and data characteristics. In the present study, one of the key chal-
lenges was filling gaps in the imagery caused by cloud cover. A majority filter was
employed to address this issue, achieving a reasonable degree of accuracy in recon-
structing the missing areas. However, more advanced approaches could improve the
accuracy achieved. For instance, (Aliabad et al. 2024) applied Multi-channel Singular
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Spectrum Analysis (MSSA) to reconstruct MODIS land surface temperature (LST)
imagery, achieving notably high accuracy in gap-filling. Their findings indicated that,
MSSA approach reconstructed MODIS-LST image with root mean square error
(RMSE) of 2.6°C for the entire study region and 1.4°C for a selected pixel. These
results demonstrate MSSA ability to produce gap-free LST time series datasets.
Similarly, (Malamiri et al. 2020) applied MSSA to also reconstruct Landsat derived
normalized difference vegetation index (NDVI) images and confirmed the method’s
effectiveness for tackling missing-data in vegetation time-series analysis.

He et al. (2023) introduced the learnable correlation sub-pixel mapping network
(LECOS), which employs a hierarchical self-attention mechanism to learn and visual-
ize both sub-pixel spatial structure and pixel-level contextual relationships. This
approach demonstrated the capability to substantially reconstruct very-fine urban
LULC at 2m resolution from Sentinel-2 imagery. Integrating LECOS into a multi-
sensor workflow that combines optical and SAR data within a RF classification like in
the present study could further enhance LULC mapping by resolving mixed pixels
into their constituent land cover classes. Such an approach would be valuable for het-
erogeneous savanna landscapes, where conventional pixel level methods often struggle
to capture fine-scale spatial heterogeneity. In a related advancement, (He et al. 2025)
proposed the visual-language reasoning segmentation (LARSE) framework for
function-level building footprint extraction. This hierarchical method combines visual
context embedding with semantic reasoning, leveraging high-resolution imagery in
conjunction with language-guided segmentation to identify and categorize building
footprints by function. By integrating visual language models with segmentation tech-
niques, LARSE offers robust capabilities for semantic LULC classification. The inte-
gration of LECOS with multi-sensor LULC data and LARSE within a unified
workflow could deliver both the high spatial precision required for accurate classifica-
tion and the semantic richness needed for functional interpretation, thereby surpass-
ing the capabilities of traditional LULC mapping approaches.

The decision to merge similar land cover thematic classes in this study was pri-
marily motivated by the need to reduce classification errors. This strategy has been
shown to improve performance metrics such as overall accuracy and the kappa coeffi-
cient (Foody 2002). However, while such aggregation can enhance classification out-
puts, it inevitably reduces the ecological and biophysical resolution of the dataset.
This loss of thematic detail can have significant implications for downstream applica-
tions, including biodiversity monitoring and carbon accounting. From a biodiversity
perspective, merging classes with similar spectral or structural characteristics such as
the consolidation of vegetation types undertaken in the present analysis diminishes
ecological resolution as many species exhibit fine-scale habitat preferences (Jansen
et al. 2005). Regarding carbon accounting, thematic aggregation can obscure substan-
tial differences in aboveground biomass and soil carbon stocks, as similar vegetation
types may vary prominently in carbon density due to differences in structural attrib-
utes, age, and distribution (Houghton and Hackler 2006). Therefore, merging themat-
ically similar classes can improve accuracy of classification outputs (Congalton and
Green 2008). However, the risk of reducing the utility of LULC products for applica-
tions that require high thematic specificity is real. The trade-off is that decisions on
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class merging should therefore be application-driven, and ideally, multi-scale products
should be maintained to serve both coarse and fine-resolution needs.

Based on the demonstrated robustness of the multi-sensor data and Random
Forest (RF) approach in classifying the savanna landscape in this study, the proposed
workflow could be applied to other years to assess its effectiveness in detecting land
cover changes, particularly interannual variations in vegetation phenology and cli-
mate. This framework also holds potential for application in other savanna or for-
ested regions worldwide for landscape analysis. For example, (Fang et al. 2023)
employed a similar multi-sensor approach integrating Sentinel-1, Sentinel-2, and
Landsat-8 data using Random Forest and XGBoost models to extract forest variables.
Likewise, (Lee et al. 2024) emphasized the importance of increasing the number of
satellite datasets in multi-sensor approaches to enhance classification performance.

6. Conclusions

In conclusion, this study focused on combining optical and radar data in land cover
mapping using Random Forest and Support Vector Machine in GEE and examined
the accuracies of LULC maps produced by combined optical sensors alone and both
Optical and Radar sensors. The results confirmed that, adding the Sentinel-1 image
to the already stacked optical images of Landsat 8 and Sentinel-2 significantly
improved the accuracy of LULC classification. The high overall accuracy of the classi-
fication confirmed the suitability of the Random Forest approach for savanna land-
scape analysis for both small-and large-scale monitoring of land use changes.

The gap-filling method employed confirmed the effectiveness of using a defined
neighbourhood window in searching for neighbouring pixel values to fill the gap. The
majority filter proved to be the ideal, as it did not cause the gap edges to either
shrink or expand. This approach is useful in study areas where there are gaps in data
caused by excessive cloud cover.

The study utilized six land-cover classes derived from the harmonization of previ-
ous LULC maps for 2006 and 2015. Further research is recommended to subdivide
the land cover classes to establish the dynamics of the classes at a higher class level
and employ other machine learning algorithms to ascertain their performance.
Therefore, a detailed classification can lead to the refinement in some of the classes,
thereby enhancing the subsequent LULC outputs and increasing their value for down-
stream applications that require fine-scale resolution for monitoring purposes. Also,
the thematic class estimations, have contributed to the understanding of their per-
centage coverage and will help in their future prediction in a comparative regional
analysis.
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