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ABSTRACT 
Land Use Land Cover (LULC) maps play an important role in land 
cover change assessment. In this study existing LULC maps of 2006 
and 2015 were used to develop a standardized LULC classification 
procedure for continuous mapping and land management. The 
same procedure was used to produce 2023 LULC map for the 
study area. Landsat 8, Sentinel-1, and Sentinel-2 were used in com
bination with a Random Forest algorithm to assess the potential of 
multi-sensor Earth observations in mapping savanna ecological 
zones in the Google Earth Engine (GEE). The classification results 
yielded an overall accuracy of 73.32% and kappa coefficient of 
0.6342 when integrating Landsat 8 and Sentinel-2 data. In addition, 
an overall accuracy of 80.21% and kappa coefficient of 0.7225 were 
obtained for the combined Landsat 8, Sentinel-2, and Sentinel-1 
data. The results demonstrated that using Sentinel-1 data in add
ition to multispectral data improved the classification accuracy by 
almost 7%.
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1. Introduction

Land is an essential natural resource that supports the human population in the sav
annas of sub-Saharan Africa (Mbow 2020). The impact of the utilization is evident in 
rural areas where the population relies heavily on natural resources on the land to 
meet their energy and nutrition needs (Antwi et al. 2014; Onyeaka et al. 2024). The 
environment and thus the ecosystem, bears the full brunt of human activities by the 
conversion of savanna or forest vegetation to human dominated landscapes (Osborne 
et al. 2018). This is in the form of deforestation, pollution of fresh water bodies, and 
drainage of wetlands, culminating in habitat loss, expansion of cropland, and opening 
up spaces for settlements (Repetto and Holmes 1983).
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The anthropogenic disturbances on the savanna landscape are scattered and vary 
depending on the season and the socioeconomic factors driving it, resulting in land
scape degradation (Baade et al. 2021; Jorge et al. 2025). It is difficult to monitor these 
variable disturbances for a comprehensive understanding of their impact on the 
savanna landscape. Thus, it is challenging to understand the linkage of ever-changing 
land cover at disturbed and undisturbed locations from a local perspective (Gr�egoire 
et al. 2013; Biah et al. 2024). With increasing demands to keep abreast with changing 
Land Use Land Cover (LULC) in savanna landscapes, there is, therefore the need to 
model an approach to accurately take inventory of savanna landscapes as a whole for 
easy and quick understanding of changing trends in vegetation cover.

Although, some LULC classifications have been produced or created for the five 
savanna dominated northern regions in Ghana, there are still gaps or drawbacks in 
the analysis conducted thus far. This has to do with the data used in producing 
LULC maps, as many studies derived their land cover classes from the training data 
they acquired and were not based on any previous work that has been done. Few 
studies have attempted to produce LULC maps with sample data based on harmon
ized historic LULC maps consistent with the Land Cover Classification System 
(LCCS) defined by the Food and Agriculture Organization of the United Nations 
(FAO) and the United Nations Environment Programme (UNEP) as the reference 
classification system for data collection (Gregorio and Jansen 2000) and with refer
ence to the translatability of land cover classes in the International Geosphere– 
Biosphere Program (IGBP) (Gregorio et al. 2016) to improve or update previous 
LULC maps for accurate land cover inventories.

The growing demand for LULC maps to replace or update existing maps has cre
ated the opportunity for advances in classification approaches to be applied in several 
landscapes to address issues of land cover changes at local, regional, and global scales. 
These demands have led to advances in machine learning (ML) algorithms with vary
ing degree of accuracy but Random Forest (RF) and Support Vector Machine (SVM) 
have been highlighted as having outstanding performance compared to their counter
parts in numerous literature (Mountrakis et al. 2011; Belgiu and Dr�aguţ 2016; 
Sheykhmousa et al. 2020). RF is an ensemble learning model that builds decision 
trees using random samples of observations and variables. The output is an assign
ment of the class selected by the majority of the decision trees. The RF further pro
vides a score called feature importance to depict the relevance of each predictor 
within the model. By building multiple trees, the RF can correct the decision tree 
problem of overfitting.  (Chabi et al. 2016; Zoungrana and Dimob�e 2023).

Support Vector Machine (SVM) is supervised machine learning algorithms applied 
in remote sensing for classification tasks. The fundamental of SVM is to identify an 
optimal decision boundary, refer to as a hyperplane, separating data points into dis
tinct classes. During the training process, the algorithm assigns each data point to a 
specific category, thereby functioning as a binary linear classifier. As a non- 
parametric supervised model, SVM does not rely on assumptions about the underly
ing data distribution, making it robust to variations in data characteristics 
(Mountrakis et al. 2011). This property provides a significant advantage over para
metric classification methods, which require such distributional assumptions.
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This study employed Earth observation techniques to monitor savanna landscapes 
and harmonize existing land use/land cover (LULC) maps for the five northern regions 
of Ghana. The analysis was conducted using Google Earth Engine (GEE), a planetary- 
scale cloud platform for Earth science data processing and analysis. The information 
gathered provides insight into the effect of increasing the number of multi-sensor data 
in land cover classification and the associated accuracies. Conventionally, many studies 
have relied on a single remote sensing data source, such as Landsat 8 or Sentinel-2. 
However, the fusing of multiple data sources has the potential to improve the temporal 
resolution of observations, due to different acquisition time from different sensors. For 
instance, (Hosseini et al. 2024) employed multi-source and temporal approach in map
ping Cropping Intensity Patterns (CIPs), demonstrating the effectiveness of combining 
Sentinel-2 and Landsat 8/9 data. This synergy of multi-sensor enabled the generation 
of detailed phenological time series, which improved classification accuracy by effect
ively capturing the temporal dynamics of agricultural landscapes.

Likewise, stacking multi-sensor data from Synthetic Aperture Radar (SAR) and 
optical imagery harnesses the complementary strengths of both datasets. Optical 
images offer rich spectral information and clear visual details, but often diminished 
in quality particularly by cloud cover. In contrast, SAR data are largely unaffected by 
weather conditions, enabling consistent data. SAR imagery provides valuable texture 
features and surface roughness information, capturing the scattering characteristics of 
objects irrespective of environmental factors. By integrating SAR and optical data, it 
becomes possible to exploit their combined spatial, spectral, and scattering attributes, 
thereby enhancing target detection and improving the accuracy of LULC classification 
(Irfan et al. 2025).

Most existing literature on LULC mapping for the study area does not rely on pre
vious or legacy maps to guide the generation of thematic land cover classes for com
parative analysis. As a result, the LULC maps produced over the years are not 
directly comparable. Moreover, most studies focusing on this savanna landscape have 
used a single source of remote sensing data. This approach poses challenges in cap
turing certain patterns, as persistent cloud cover and the limited temporal resolution 
of the data often fail to resolve these issues, thereby affecting classification accuracy. 
Additionally, existing machine learning (ML) models struggle to effectively integrate 
multi-source remote sensing data, which can result in some patterns being poorly 
represented in the output. Finally, many of the gap-filling methods employed in cur
rent literature either shrink or expand the edges of gaps in classified images without 
adequately utilizing the spectral information from gap neighbouring pixels, thereby 
reducing the reliability of the information provided.

The main contributions of this article are as follows:

� Provision of 2023 annual LULC map based on the harmonization of previous 
LULC maps. The thematic land cover classes were aligned with legacy LULC 
maps.

� Integration of multi-sensor remote sensing data. Composite of Synthetic Aperture 
Radar (SAR) and multispectral data with different temporal resolutions. The 
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approach capable of capturing land cover changes that otherwise would have been 
overlooked by individual sensors.

� Application of the Random Forest (RF) model for LULC classification. RF’s ability 
to handle high-dimensional datasets and avoid overfitting makes it ideal for map
ping savanna landscape dynamics as compared to Support Vector Machine (SVM).

� Applied gap-filling by incorporating information from neighbouring pixels.

The article is organized as follows: Section 2 describes the study area and dataset 
employed in the study, Section 3 outlines the classification methods employed, 
Section 4 presents the results, Section 5 discusses the research findings, and Section 6
concludes the study.

2. Materials

2.1. Study area

Agriculture is the main economic activity in the study area, with some commercial 
activities occurring in metropolitan cities and towns (Ferreira et al. 2022). It is situ
ated in the northern part of Ghana and is comprised of five (5) regions (Figure 1). 
The area has savanna vegetation which is characterized by a mixture of grass and 
trees. The climatic condition is tropical with distinct wet and dry seasons, and it is 

Figure 1. (a) Study area comprises of the five Northern regions, namely: Northern, Northeast, 
Savanna, Upper West and Upper East regions. (b) Digital elevation model (DEM) of the study area 
(values indicate areas with varying elevations above mean sea level).
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slightly hotter and drier than the national average, with daily temperatures ranging 
from 30 to 40 �C and rainfall from 900 mm to 1200 mm.

2.2. Dataset

Satellite imagery from Landsat 8, Sentinel-1, and Sentinel-2 products covering the 
period from January 1, 2023 to December 31, 2023 were used in this study (Table 1). 
Landsat 8 and Sentinel-2 provided multispectral data with spatial resolutions of 30 m 
and 10 m respectively. These multispectral datasets were complemented by Synthetic 
Aperture Radar (SAR) data from Sentinel-1, as radar imagery can deliver information 
on the land surface, even in situations of cloud cover. This is particularly relevant in 
the study area because cloud cover is frequent, particularly during the rainy season.

The Landsat 8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) 
Collection 2 atmospherically corrected imagery at the Surface Reflectance (SR) level 
available in the Google Earth Engine (GEE) was used. A cloud cover filter of 30% per 
scene was applied, and cloud and cloud shadow values from the QA_Pixel band of 
the Landsat data were used to masked the remaining clouds.

Sentinel-2 level-2 orthorectified atmospherically corrected surface reflectance 
images freely available in the Google Earth Engine (GEE) was used. A percentage of 
cloudy pixels was applied to select images with less than 20% cloud cover. Additional 
cloud pixel masking was applied by employing the quality assurance (QA) band of 
Sentinel-2. In addition, Sentinel-1 Ground Range Detected (GRD) images are also 
available in the Google Earth Engine (GEE), which has already been processed for 
calibration, and ortho-corrected products were used.

3. Methods

3.1. Harmonization of classification legend

For defining the thematic classes of the presented map, previous LULC maps of the 
study area from the year 2006 (Gessner et al. 2015) and 2015 (Forkuor et al. 2017) 
were harmonised due to their comparable legends and their class descriptions based 
on the Land Cover Classification System (LCCS) defined by FAO and UNEP as the 
reference classification system (Gregorio and Jansen 2000).

.
Through ten harmonized thematic classes, reference data for training and valid

ation were collected during an intensive field campaign for three months between 
May and July 2023. For each field sample, coordinates in Geographic Coordinate 

Table 1. List of satellite images used.
Product name Spatial resolution Temporal resolution Period used Origin

Landsat 8 30 m 16 days 01 to 12/2023 (Zhang et al., 2023)
Sentinel-1 10 m 6 days 01 to 12/2023 (Gargiulo et al., 2020)
Sentinel-2 10 m 5 days 01 to 12/2023 (Wang and Atkinson, 2018)
SRTM 30 m – – (Farr et al., 2007)
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System WGS 1984 (GCS_WGS_1984) were recorded using a Global Positioning 
System (GPS) device (Garmin GPSMAP 64s Handheld GPS Unit). Subsequently, the 
code for such thematic land cover class was assigned on the device and as well 
recorded in field notebook. These samples were collected along major roads, feeder 
roads, farm roads and accessible areas, as shown in Figure 2. Overall, the five north
ern regions of Ghana were covered, coincidentally covering the Sudan and Guinea 
savanna ecological zones, which are ecological zones severely impacted by climate 
change in Ghana.

3.2. Satellite data processing

The remotely sensed data covering the entire study area with less cloud cover were 
processed to span the entire year in which the data were collected. All datasets that 
showed a cloud cover of more than 30% for Landsat 8 and 20% for Sentinel-2 were 
excluded from the complete archive of satellite imagery. The remaining cloud and 
cloud shadows on the images were masked by applying a quality assurance (QA_ 
Pixel) band associated with Landsat 8. Similar masking was performed by employing 
the quality assurance (QA60) band of Sentinel-2.

Landsat 8 and Sentinel −2 as well as Landsat 8, Sentinel −2 and Sentinel −1 
images were stacked and used as the two primary input data as shown in Figure 3
Data stacking. This approach harnesses the capabilities of two multispectral images 

Figure 2. Distribution of field data collection in the study area.
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and then a combined optical and radar images to map the tropical savanna landscape. 
Subsequently, several indices were computed for both the optical and radar satellite 
imagery. This was done to enhance the spectral variability between bands and reduce 
the topographic effect. The selected indices, have shown the potential to provide vital 
information for the intended land cover classification assessment.

The Normalized Difference Vegetation Index (NDVI) is correlated with vegetation 
greenness, density, and productivity (Sobrino et al. 2004).

Thus:

NDVI ¼
NIR − Red
NIR þ Red

(1) 

where NIR is the reflectance in the near-infrared band, and Red is the reflectance in 
the red band.

Figure 3. Workflow.
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To enhance separability of land from aquatic vegetation, the Normalized 
Difference Aquatic Vegetation Index (NDAVI) was employed (Villa et al. 2014).

NDAVI ¼
NIR − Blue
NIR þ Blue

(2) 

where NIR is the reflectance in the near-infrared band, and Blue is the reflectance in 
the blue band.

To enhance water features, extract water information of an area, and reduce noise 
from anthropogenic features and vegetation, the Modified Normalized Difference 
Water Index (MNDWI) was estimated (Xu 2006).

MNDWI ¼
Green − SWIR1
Greenþ SWIR1

(3) 

where Green is the reflectance in the green band and SWIR1 is the reflectance in the 
shortwave infrared 1 band.

To continue with spectral variability enhancement among bands, band ratios were 
employed to enhance the appearance of features in the image (Ghrefat et al. 2023). 
They distinguish the minor characteristics of features that are otherwise masked as a 
result of spectral variations. Therefore, the band ratio is good at amplifying features 
being analyzed by rescaling or stretching the result, which are then shown as new 
images (Shahi et al. 2023). Three band ratios, Simple Ratio (RS), Band Ratio 6/5 
(ratio65) and Band Ratio 4/6 (ratio46) were computed to enhance the spectral vari
ability of the image used (Table 2).

To estimate chlorophyll content of the vegetation cover Green Chlorophyll 
Vegetation Index (GCVI) was employed to compute the reflectance image (Wu et al. 
2012).

GCVI ¼
NIR

Green

� �

− 1 (4) 

where NIR is the reflectance in the near-infrared band, and Green is the reflectance 
in the green band.

For soil adjusted vegetation index (SAVI) seeks to lessen the impact of soil inten
sity by employing soil-brightness correction factor (Huete 1988).

Table 2. Band ratio indices.
Ratio Formula Comments

Simple ratio SR ¼ NIR
Red Where NIR is reflectance in the near infrared band and Red is 

reflectance in the red band (Kior et al., 2021).
Band ratio 6/5 ratio65 ¼ SWIR1

NIR Where SWIR 1 reflectance in the shortwave infrared 1 band and 
NIR is reflectance in the near infrared band (Olasunkanmi et al., 
2023)

Band ratio 4/6 ratio46 ¼ Red
SWIR1 Where Red is reflectance in the red band and SWIR is reflectance in 

the shortwave infrared band 1 (Seleim et al., 2022)
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SAVI ¼
NIR − Redð Þ

NIR þ Redþ 0:5ð Þ

 !

� 1:5 (5) 

where NIR is the reflectance in the near-infrared band, and Red is the reflectance in 
the red band.

For Synthetic Aperture Radar (SAR) imagery, the Radar Vegetation Index (RVI) 
(Sahadevan et al. 2013) was estimated to provide a comprehensive level of vegetation 
growth in areas hindered by dense cloud cover.

RVI ¼
4r0

HV

r0HHþr0VH
(6) 

where rHH is the polarised backscattering coefficients and rHV is cross polarization 
coefficients.

The Radar Forest Degradation Index (RFDI) (Joshi et al. 2015) estimate.

RFDI ¼
nr0

HH − nr0
HV

nr0HH þ nr0HV
(7) 

where rHH is the polarised backscattering coefficients and rHV is cross polarization 
coefficients.

These indices and masking were applied to images on a seasonal basis. Thus, proc
essing was performed for all Landsat 8 images in the wet and dry seasons. Then, the 
images were merged to correspond to the study year. This procedure was subse
quently repeated for Sentinel-1 and Sentinel-2 respectively.

3.3. Random forest and support vector machine classification

The random forest ensemble model applies the bagging technique, where each tree is 
built or grown independently by bootstrapping (generating) a dataset sample with 
replacement from an existing dataset and output, which is the aggregation of each 
tree (Breiman 2001; Belgiu and Dr�aguţ 2016; Umoh et al. 2022; Islam et al. 2023). 
The dataset for the trees was randomly chosen. Randomness is introduced during the 
training phase in two approaches, in sub-sampling the training data, each tree is 
grown using a different subset, and in node test selection (Boateng et al. 2020). RF is 
a nonparametric model, meaning it does not assume any fixed functional form and 
that the shape of the data is learned from the data itself. This makes RF produce 
more accurate results and therefore, has considerable advantages over other models. 
(Lu et al. 2012; Sonawane and Dhawale 2016). Good performance of the model was 
achieved with a sufficient number of defined trees and a relevant number of predic
tors available. An ideal way to determine if the number of trees is sufficient is to 
compare whether the prediction made by the subset of the forest works well with 
that of full forest prediction (Boateng et al. 2020). The target of SVM is to detect an 
optimal hyperplane that assigns a data into distinct classes. This is enabled by a ker
nel function that takes input feature into a higher-dimensional space (Hosseini et al. 
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2024). As a non-parametric model, SVM does not make assumptions about the 
underlying data distribution, therefore being robust to variations in data characteris
tics (Mountrakis et al. 2011).

RF and SVM were employed in this study, with approximately 75% of the sample 
dataset used as the training set and 25% for testing the developed model. Two classi
fication processes were setup, the first was the multispectral image stack of Landsat 8 
and Sentinel-2. Preceding the stacking, the Sentinel-2 bands were renamed to corres
pond to those of Landsat 8, and subsequently, its resolution was converted to that of 
Landsat. The other image stack consisted of both optical images of Landsat 8 and 
Sentinel-2 and radar image of Sentinel-1. The Sentinel-1 resolution was converted to 
a 30 m resolution of Landsat 8. Other pre-processing involved normalization of radar 
backscatter using reference incident angle and reducing variability across acquisition 
time by performing temporal normalization was carried out.

Based on the harmonization process, the ten thematic classes were deduced and 
samples were taken from the field campaign to perform the classification process. It 
was established that there were similarities in the classes, mainly in the vegetation 
classes. This informed the merging of classes with similarities to improve the classifi
cation accuracy. Finally, image classification was performed by employing six distinct
ively land cover thematic classes namely: Cropland, Water, Town, Vegetation, 
Bareland, and Grass as the training set samples to classify the image.

The classification was validated to determine the accuracy of the results (Figure 3). 
This was performed using the remaining data that was split. The classification accur
acy was assessed by comparing the predicted and actual variables. Accuracy assess
ment was performed using overall accuracy (OA), kappa coefficient index, omission, 
commission, producer accuracy, user accuracy, and F1-score (F1), as this is the cur
rent standard to evaluate classification accuracies in many Earth Observation (EO) 
research studies (Stumberg et al. 2014; Tall�on-Ballesteros and Riquelme 2014; 
Shivakumar and Rajashekararadhya 2018; Shawky et al. 2019).

The overall accuracy of the confusion matrix (Shivakumar and Rajashekararadhya 
2018).

Overall Accuracy ¼
N
Pm

i¼1Dii

N
(8) 

where Dii is the diagonal pixels of class i and N is the total number of pixels in the 
confusion matrix.

Cohen’s kappa for the confusion matrix was based on (Tall�on-Ballesteros and 
Riquelme 2014).

Cohen
0

s Kappa ¼
N
Pm

i¼1DM −
Pm

i¼1 Er � Ec

N2 −
Pm

i¼1 Er � Ec
(9) 

where N is the total number of pixels. DM represent the diagonal pixels (elements) of 
the confusion matrix, Er is the total number of pixels in row i, Ec is the total number 
of pixels in column i, and m is the number of rows.

10 K. AIDOO ET AL.



The classification results had some gaps caused by excessive cloud cover, leading 
to missing data and making interpretation in these gap spots severely restricted 
(Wang et al. 2022). Existing spatial gap-filling methods often imply gap edge expan
sion or shrinkage. This means that, spatial gap-filling approaches need to estimate the 
missing pixel value from the surrounding pixels rather than further pixels 
(Mohammed 2013; Yan and Roy 2018). Here, a majority filter was applied, which 
made use of the information from the defined neighbourhood (moving window) to 
fill the gaps by ensuring that the value given to the gaps was representative of the 
nearby pixels (Habib et al. 2004). An interactive approach was adopted, and the ker
nel size was defined in such a way that all gaps were identified and filled accordingly. 
Furthermore, the area covered by each class and percentage of area coverage were 
computed.

4. Results

Land Use Land Cover at disturbed and undisturbed locations in the Sudan and 
Guinea ecological zones in Ghana with six land use classes were analyzed. The results 
presented in Figure 4 provide a highly accurate land cover map of 2023 produced 

Figure 4. LULC map of 2023, (a) and (b) produced by RF, (c) produced by SVM.
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from the stacked images of Landsat 8, Sentinel 1 and Sentinel 2 at 30 m resolution. 
The land use classes presented in the map are based on the harmonised legend 
derived from the previous map of 2006 and 2015 which were consistent with the 
Land Cover Classification System (LCCS) defined by the FAO and UNEP as the ref
erence classification system (Gregorio and Jansen 2000). The Random forest classifi
cation approach was very efficient as it was able to capture land uses in the savanna 
landscape (study area) with an overall accuracy of 73.32% and a Kappa coefficient of 
0.6342 for a stacked image from optical data of Landsat 8 and Sentinel-2 and for a 
stacked image from both optical and radar images (Landsat 8, Sentinel 1, and 
Sentinel 2) achieved an overall accuracy of 80.21% and a Kappa coefficient of 0.7225, 
indicating an improve performance of 6.89%. However, when Support Vector 
Machine (SVM) was used, the model achieved an overall accuracy of 77.38% and a 
Kappa coefficient of 0.6651 for stacked composite of optical and SAR images. This 
demonstrated a better performance of RF over SVM of 2.83% in the study area.

The matrix in Table 3 consists of rows and columns of classes (pixels) depicted in 
the map as a result of the classification of the stacked image and classes represented 
in the reference data. The resultant diagonal cells provide information about correctly 
classified cells, whereas other cells represent errors of commission and omission 
(Freitas et al. 2024). To extract the information captured in the confusion matrix, sev
eral formulas were deduced and estimated, including overall accuracy (OA), kappa 
coefficient index, error of omission, error of commission, producer accuracy, user 
accuracy and F1-score (F). OA gives the proportion of correctly classified pixels 
(cells) from the total number of pixels (cells). This provides degree of general model 
accuracy across all classes combined (Figure 5). The kappa coefficient on the other 
hand, determines how well the classification results agree with the true labels. It pro
vides a more robust metric than OA.

The gap filling measure adopted makes use of the spatial filling technique by 
inspecting neighbouring pixels of a gap and replacing it with the most frequent value 
among its neighbours. Because it is useful for categorical data, the results of the 
majority filter applied to the classified image are shown in Figure 6, as all the gaps in 
the image were effectively identified and filled with respect to their neighbouring 
pixel values accordingly.

The extracted land use area of coverage was subsequently estimated using the per
centage they occupied, as presented in Table 4. In addition, regional land use area 
coverage as well as the percentage they constitute were analyzed as presented in 
Figures 7 and 8 below. The findings showed that, the Northern region constitutes 
39.15% of the cropland area in the study area. In addition, the Savanna region 
accounts for 71% and 46.81% of the water and vegetation coverage respectively, in 
the research area.

5. Discussion

The study employed the Random Forest (RF) and Support Vector Machine (SVM) 
algorithms with stacked satellite images (Landsat 8, Sentinel-1 and Sentinel-2) to map 
the spatial distribution of land cover classes for the year 2023. The high classification 
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Figure 5. Comparison of accuracies of both optical stacked and combined radar and optical 
images.

Figure 6. Gap filling in a classified image.
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accuracy of 80.21% and 77.38% and kappa coefficient of 0.7225 and 0.665 for RF and 
SVM respectively are an indication of RF efficiency in mapping heterogeneous land
scapes using multi-sensor imagery (Figure 5). The results were in tune with (Adugna 
et al. 2022), who found that Random Forest (RF) out performed Support Vector 
Machine (SVM) in a classification process to create Land Cover map. It states that, 
RF performed well in a mixed class classification and also able to handle efficiently 
large dataset input where SVM founds it challenging. It therefore an indicative that 
RF is robust for heterogeneous landscape mapping.

Also, the Random Forest classification results obtained were consistent with those 
of studies conducted in the region such as (Gessner et al. 2015) who employed RF in 
multi-sensor mapping of West African land cover using MODIS, ASAR, and 
TanDEM-X/TerraSAR-X data with an accuracy of 80% at legend level 1 (9 classes) 
and 73% at legend level 2 (14 classes). Kappa coefficients calculated were 0.77 at level 
1 and 0.71 at level 2 respectively. The findings were as well consistent with 
(Zoungrana and Dimob�e 2023), who predicted the vegetation trend classes in the 
Sudanian savanna with an overall accuracy and kappa value of 82% and 0.76, respect
ively. Equally, the predictive performance of RF was observed by Yangouliba et al. 
(2022) who used RF to model LULC for 1990, 2005, and 2020 and had an overall 
accuracy of 81%, 91%, and 93% and kappa coefficients of 0.91, 0.82 and 0.76, 
respectively.

The ability to distinguish other land use classes from the scene implies the capacity 
of the fused imagery to be used as primary data for mapping heterogeneous savanna 
landscapes. Other studies such as (Ibrahim 2023) have employed a Random Forest 
(RF) based feature selection approach using Sentinel-1, Sentinel-2, and Shuttle Radar 
Topographic Mission (SRTM) data. The results indicated that Sentinel-2 data only 
achieved an overall accuracy of 84.2%, while Sentinel-1 and SRTM data achieved 83% 
and 76.44%, respectively. The classification accuracy improved to 89.1% when 
Sentinel-2, Sentinel-1, and SRTM data were combined. This represents a 4.9% 
improvement in overall accuracy compared to Sentinel-2 alone and a 6.1% and 
12.66% improvement compared to Sentinel-1 and SRTM data respectively. Again, 
(Pastick et al. 2020) employed a harmonized Landsat 8 and sentinel-2 to mapping of 
invasive annual grass with a high overall accuracy of above 81%. (Ona�cillov�a et al. 
2022) combined Landsat 8 and Sentinel-2 data from Google Earth Engine to derive 
high resolution Land Surface Temperature maps in urban environments with an 
accuracy within acceptable limits.

Table 4. Area and percentage coverage of thematic classes.
Class name Area (Sq.Km) Area (%)

Cropland 22502.8023 23.3847
Water 2426.0096 2.5210
Town 1138.7204 1.1833
Vegetation 66975.2771 69.6002
Bareland 144.4678 0.1501
Grass 3041.1941 3.1603
Total 96228.4713 100
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The study also examined the results when optical and radar images were fused as 
input data for LULC classification using the RF algorithm in GEE. The results 
showed that adding radar image Sentinel-1 along with Landsat 8 and Sentinel-2 
images in the GEE improved the image classification accuracy. This finding is 

Figure 7. Regional land use analysis in the study area (a–e).
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Figure 7. Continued. 

Figure 8. Regional area percentage coverage of thematic classes.
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consistent with other studies (Lee et al. 2024), which used a combination of Korean 
Multi-purpose Satellite 3 (KOMPSAT-3), KOMPSAT-5 SAR, Compact Advanced 
Satellite 500-1 (CAS500-1), Sentinel-1, and Sentinel-2 within GEE as well as NDVI 
from CAS500-1 and KOMPSAT-3 and confirmed that a continued improvement in 
classification accuracy occurred as the number of satellite images applied as input 
data increased. Therefore, we emphasize the use of multi-sensor data to improve clas
sification results. The accuracy of the LULC classification was also in line with a 
study by Nhemaphuki et al. (2020). who produced LULC maps using optical and 
radar data and a combination of both by employing the Random Forest algorithm. 
The results indicated that the fusion of optical and radar data gave better land cover 
discrimination with 96.98% overall accuracy in comparison to using radar and optical 
data separately, with overall accuracies of 69.2% and 95.89% respectively.

The classification process in this study involved the use of a stacked image derived 
from multi-sensor satellite data, specifically Landsat 8, Sentinel-1, and Sentinel-2. 
While the integration of multiple sensors enhances the quality of information avail
able for land cover classification, combining spectral, spatial, and backscatter data, 
involves high computational cost associated with processing such stacked datasets. 
This increased computational demand, which was one of the constraints of the study, 
was as a result of the sheer volume of data involved and the complexity of harmoniz
ing images with varying spectral characteristics and temporal acquisition periods 
(Fang et al. 2023).

Although the classification accuracy achieved using a stacked multi-sensor image 
comprising Landsat 8, Sentinel-1, and Sentinel-2 was relatively high, there remains 
considerable potential for improvement if the spatial resolution of the composite had 
been finer. In the present study, the image stack integrated data at the coarser 30 m 
resolution of Landsat 8, rather than harmonizing to the finer 10 m resolution of 
Sentinel-2. This is because spatial resolution plays a crucial role in land cover classifi
cation performance, especially in heterogeneous landscapes such as the savanna zones 
of the study area, where small-scale land cover features could easily be aggregated 
into dominant land cover at coarser resolutions (Tassi et al. 2021).

Stacked composites derived from SAR and optical data such as those from Landsat 
8, Sentinel-1, and Sentinel-2 offer improved spectral and temporal diversity (Inglada 
et al. 2016). Leveraging these multi-sensor datasets improved class discrimination by 
combining spectral reflectance, backscatter, and texture information. However, in this 
study, such stacking increases the dimensionality of the dataset, potentially introduc
ing redundant or noisy features. While the Random Forest (RF) algorithm, particu
larly through parameters used (Number of Trees: 300 and Variable Per Split: 6), can 
hand high-dimensional data to some extent, its performance is influence by how 
these parameters are set. (Rodriguez-Galiano et al. 2012).

The selection of an appropriate gap-filling method is largely determined by the 
specific application and data characteristics. In the present study, one of the key chal
lenges was filling gaps in the imagery caused by cloud cover. A majority filter was 
employed to address this issue, achieving a reasonable degree of accuracy in recon
structing the missing areas. However, more advanced approaches could improve the 
accuracy achieved. For instance, (Aliabad et al. 2024) applied Multi-channel Singular 
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Spectrum Analysis (MSSA) to reconstruct MODIS land surface temperature (LST) 
imagery, achieving notably high accuracy in gap-filling. Their findings indicated that, 
MSSA approach reconstructed MODIS–LST image with root mean square error 
(RMSE) of 2.6 �C for the entire study region and 1.4 �C for a selected pixel. These 
results demonstrate MSSA ability to produce gap-free LST time series datasets. 
Similarly, (Malamiri et al. 2020) applied MSSA to also reconstruct Landsat derived 
normalized difference vegetation index (NDVI) images and confirmed the method’s 
effectiveness for tackling missing-data in vegetation time-series analysis.

He et al. (2023) introduced the learnable correlation sub-pixel mapping network 
(LECOS), which employs a hierarchical self-attention mechanism to learn and visual
ize both sub-pixel spatial structure and pixel-level contextual relationships. This 
approach demonstrated the capability to substantially reconstruct very-fine urban 
LULC at 2 m resolution from Sentinel-2 imagery. Integrating LECOS into a multi- 
sensor workflow that combines optical and SAR data within a RF classification like in 
the present study could further enhance LULC mapping by resolving mixed pixels 
into their constituent land cover classes. Such an approach would be valuable for het
erogeneous savanna landscapes, where conventional pixel level methods often struggle 
to capture fine-scale spatial heterogeneity. In a related advancement, (He et al. 2025) 
proposed the visual–language reasoning segmentation (LARSE) framework for 
function-level building footprint extraction. This hierarchical method combines visual 
context embedding with semantic reasoning, leveraging high-resolution imagery in 
conjunction with language-guided segmentation to identify and categorize building 
footprints by function. By integrating visual language models with segmentation tech
niques, LARSE offers robust capabilities for semantic LULC classification. The inte
gration of LECOS with multi-sensor LULC data and LARSE within a unified 
workflow could deliver both the high spatial precision required for accurate classifica
tion and the semantic richness needed for functional interpretation, thereby surpass
ing the capabilities of traditional LULC mapping approaches.

The decision to merge similar land cover thematic classes in this study was pri
marily motivated by the need to reduce classification errors. This strategy has been 
shown to improve performance metrics such as overall accuracy and the kappa coeffi
cient (Foody 2002). However, while such aggregation can enhance classification out
puts, it inevitably reduces the ecological and biophysical resolution of the dataset. 
This loss of thematic detail can have significant implications for downstream applica
tions, including biodiversity monitoring and carbon accounting. From a biodiversity 
perspective, merging classes with similar spectral or structural characteristics such as 
the consolidation of vegetation types undertaken in the present analysis diminishes 
ecological resolution as many species exhibit fine-scale habitat preferences (Jansen 
et al. 2005). Regarding carbon accounting, thematic aggregation can obscure substan
tial differences in aboveground biomass and soil carbon stocks, as similar vegetation 
types may vary prominently in carbon density due to differences in structural attrib
utes, age, and distribution (Houghton and Hackler 2006). Therefore, merging themat
ically similar classes can improve accuracy of classification outputs (Congalton and 
Green 2008). However, the risk of reducing the utility of LULC products for applica
tions that require high thematic specificity is real. The trade-off is that decisions on 
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class merging should therefore be application-driven, and ideally, multi-scale products 
should be maintained to serve both coarse and fine-resolution needs.

Based on the demonstrated robustness of the multi-sensor data and Random 
Forest (RF) approach in classifying the savanna landscape in this study, the proposed 
workflow could be applied to other years to assess its effectiveness in detecting land 
cover changes, particularly interannual variations in vegetation phenology and cli
mate. This framework also holds potential for application in other savanna or for
ested regions worldwide for landscape analysis. For example, (Fang et al. 2023) 
employed a similar multi-sensor approach integrating Sentinel-1, Sentinel-2, and 
Landsat-8 data using Random Forest and XGBoost models to extract forest variables. 
Likewise, (Lee et al. 2024) emphasized the importance of increasing the number of 
satellite datasets in multi-sensor approaches to enhance classification performance.

6. Conclusions

In conclusion, this study focused on combining optical and radar data in land cover 
mapping using Random Forest and Support Vector Machine in GEE and examined 
the accuracies of LULC maps produced by combined optical sensors alone and both 
Optical and Radar sensors. The results confirmed that, adding the Sentinel-1 image 
to the already stacked optical images of Landsat 8 and Sentinel-2 significantly 
improved the accuracy of LULC classification. The high overall accuracy of the classi
fication confirmed the suitability of the Random Forest approach for savanna land
scape analysis for both small-and large-scale monitoring of land use changes.

The gap-filling method employed confirmed the effectiveness of using a defined 
neighbourhood window in searching for neighbouring pixel values to fill the gap. The 
majority filter proved to be the ideal, as it did not cause the gap edges to either 
shrink or expand. This approach is useful in study areas where there are gaps in data 
caused by excessive cloud cover.

The study utilized six land-cover classes derived from the harmonization of previ
ous LULC maps for 2006 and 2015. Further research is recommended to subdivide 
the land cover classes to establish the dynamics of the classes at a higher class level 
and employ other machine learning algorithms to ascertain their performance. 
Therefore, a detailed classification can lead to the refinement in some of the classes, 
thereby enhancing the subsequent LULC outputs and increasing their value for down
stream applications that require fine-scale resolution for monitoring purposes. Also, 
the thematic class estimations, have contributed to the understanding of their per
centage coverage and will help in their future prediction in a comparative regional 
analysis.
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