
Quantum Information Engineeringuantum
Transactions onIEEE

Received 15 January 2025; revised 18 July 2025; accepted 29 July 2025; date of publication 4 August 2025;
date of current version 2 September 2025.

Digital Object Identifier 10.1109/TQE.2025.3595778

Fault-Tolerant Noise Guessing Decoding
of Quantum Random Codes
DIOGO CRUZ1,2 , FRANCISCO A. MONTEIRO1,3 (Member, IEEE),
ANDRÉ ROQUE1,2, AND BRUNO C. COUTINHO1,4
1Instituto de Telecomunicações, 1049-001 Lisbon, Portugal
2Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
3ISCTE—Instituto Universitário de Lisboa, 1649-026 Lisbon, Portugal
4Institute of Communications and Navigation, German Aerospace Center (DLR), 82234 Weßling, Germany

Corresponding author: Diogo Cruz (e-mail: diogo.cruz@lx.it.pt).

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Program through the Project
Quantum Internet Alliance (QIA) under Grant 820445, in part by the FCT/MECI through National Funds and when applicable
co-funded EU funds under Grant UID/50008: Instituto de Telecomunicações, and in part by the FCT/MECI through project reference
QuNetMed under Grant 2022.05558.PTDC, with DOI identifier 10.54499/2022.05558.PTDC. The work of Diogo Cruz was supported
by FCT scholarship UI/BD/152301/2021.

ABSTRACT This work addresses the open question of implementing fault-tolerant quantum random linear
codes (QRLCs) with feasible computational overhead.We present a new decoder for QRLCs capable of deal-
ing with imperfect decoding operations. A first approach, introduced by Cruz et al. (2023), only considered
channel errors and perfect gates at the decoder. Here, we analyze the fault-tolerant characteristics of QRLCs
with a new noise guessing decoding technique, when considering preparation, measurement, and gate errors
in the syndrome extraction procedure, while also accounting for error degeneracy. Our findings indicate a
threshold error rate (pthreshold) of approximately 2× 10−5 in the asymptotic limit, while considering realistic
noise levels in the mentioned physical procedures.

INDEX TERMS Fault-tolerance, noise guessing decoding, quantum error correction, quantum random
linear codes (QRLCs), syndrome extraction (SE).

I. INTRODUCTION
It is known that classical random linear codes (RLCs) are
capacity-achieving [1]. However, until the advent of guess-
ing random additive noise decoding (GRAND), their de-
coding was not practical, except for some decoders based
on trellises (as pointed out in [2]). GRAND has been
proposed with the aim of reducing end-to-end latency in
coded wireless systems, which has been a drawback for
a long time. The rationale in the original proposal of
GRAND was that by using short codewords, the so-called
interleavers, which are used to make the errors indepen-
dent and identically distributed, would no longer be re-
quired [3]. Using short blocks in wireless systems also
helps to better adapt to the channel variations when ap-
plying precoding techniques [4], [5], [6]. In the quantum
realm, due to technical limitations in manipulating qubits,
short block codes appear as natural candidates for quan-
tum error correction codes (QECCs) [7], [8], [9], [10], [11].
These limitations also necessitate the development of fault-
tolerant techniques to handle noise and errors in quantum
operations [12].

Like classical RLCs, quantum RLCs (QRLCs)
attain the capacity of the quantum channels, but no
practical decoder existed for them until the advent of
quantum GRAND (QGRAND), which allowed to
numerically assess their performance for the first time [2].
A recent work also used a GRAND-like approach to decode
several families of structured quantum codes that are based
on stabilizer codes [13]. QGRAND has also been applied to
the purification of quantum links, taking advantage of the
connection between purification and error correction [14],
which will have great implications on the way routing is
implemented in quantum networks [15], [16], [17], [18].
QRLCs are a much more flexible solution than other struc-

tured quantum codes for QECCs, with advantages in respect
to the state-of-the-art solutions designed to detect and correct
errors in quantum setups [19], [20]. In contrast to structured
codes, which may only exist for a very limited number of
code rates and codeword lengths [21], [22], QRLCs can ex-
ist for a wide range of coding rates and codeword lengths
that may better fit some particular applications. A method to
generate QRLCs efficiently was proposed in [23]. However,

© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 6, 2025 2100626

https://orcid.org/0000-0002-8678-5456
https://orcid.org/0000-0003-2381-6320
https://orcid.org/0000-0002-9980-1857
mailto:diogo.cruz@lx.it.pt

Engineeringuantum
Transactions onIEEE

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES

almost no practical method existed until recently to decode
them until the proposal in [2].
The channel model used in that work was a Shannon-

like channel, where errors occur only in the channel and
all the decoding process is perfect. However, in all current
technologies implementing qubits, the errors that take place
in the quantum gates of the decoding circuit cannot be ig-
nored. Hence, a practical challenge remained after [2]: can a
QRLC-QGRAND system be made practical in the presence
of the extra errors coming from the quantum gates, enabling
fault-tolerant QECCs based on QRLCs?
This article shows that, surprisingly, due to the particular

way that the syndrome extraction (SE) takes place in codes
based on stabilizers, some heavy reduction of the effects of
those errors takes place, making the whole system viable.
Building on previous work [2], [14], we present a com-
prehensive analysis of fault-tolerant QRLCs, incorporating
the effects of preparation, measurement, and gate errors.
Our results show that QRLCs, decoded with the proposed
method, exhibit robust error correction capabilities with a
threshold error rate pthreshold of approximately 2× 10−5.
This advancement paves the way for practical implemen-
tations of QRLCs in quantum error correction, contribut-
ing to the development of scalable and resilient quantum
systems.
While recent work by Nelson et al. [24] has addressed

fault-tolerant quantum error correction using low-depth ran-
dom circuit codes, our work focuses on QRLCs decoded
with the QGRAND technique. Both approaches work with
stabilizer codes generated through random constructions, but
differ in their specific code constructions, decoding meth-
ods, and target applications. Their work addresses fault-
tolerant state preparation and distillation protocols for quan-
tum memory applications, while our approach focuses on
fault-tolerant syndrome decoding for error correction.
Although our results suggest that QGRAND could in the-

ory enable a fault-tolerant implementation of QRLCs, some
challenges remain that limit its usefulness in that regime.
QGRAND is most suitable for situations where the noise en-
tropy is relatively low, in which case decoding becomes com-
putationally efficient. However, in the fault-tolerant regime
where n may be considered to be considerably large or it
is necessary to iteratively apply error correction to suppress
errors, the noise entropy can be considerably high. In this
regime, the optimal procedure described in this article be-
comes infeasible, and suboptimal heuristics would have to be
introduced. Nonetheless, this work paves theway for applica-
tions of QGRAND whenever the considered noise types all
have low entropy, which encompasses setups with realistic
noise conditions.
The rest of this article is organized as follows. In Sec-

tion II, we introduce the setup considered in the analysis, and
in particular its noise model. In Section III, we define some
useful error notation terms and set the notation used through-
out this article. Section IV presents the decoding method,

extended form [2] to account for degenerate errors. In Sec-
tion V, we present an analysis of the codes’ performance
for various qubit counts. Finally, Section VI concludes this
article. To help the reader, a notation summary is listed in
Table 1.

II. SETUP AND NOISE MODEL
Weuse the same setup as in [2], but consider the fault-tolerant
regime, where the constituent quantum gates in the circuit
may be affected by error. We consider an initial k-qubit |ψ〉
quantum state, to be encoded into n > k qubits. Brown and
Fawzi [23] presented a method of generating a random qubit
encoding, which we use in this work. One starts by randomly
selecting Clifford unitaries from the C2 group (i.e., Clifford
unitaries for 2 qubits). There are |C2| = 11 520 such uni-
taries, and all of them can be built by simple combinations of
the Hadamard (H), phase (

√
Z), and cnot gates, which have

efficient physical implementations in virtually any quantum
setting [25]. In matrix form, these are defined as

H = 1√
2

(
1 1
1 −1

) √
Z =

(
1 0
0 i

)
CNOT =

(
I 0
0 X

)
(1)

with X,Y, and Z the Pauli matrices, and I the 2× 2 identity
matrix.
After selecting these random unitaries from C2, one suc-

cessively applies each of them to a random pair of qubits,
taken from the set of n qubits.
This process leads to an encoding unitary for our stabilizer

code which, when applied to the initial k qubits and (n− k)
extra |0〉 qubits added, returns a n-qubit encoded quantum
state. As shown in [23], as long asO(n log2 n) gates are used,
with a circuit depth of O(log3 n), the construction leads to
a highly performant (n, k) code, and from [26] it is already
known that these complexity orders can be further lowered.
We use these QRLCs to construct stabilizer codes. Com-

pared to the approach in [2], in this work, we consider a
noise model that is more realistic by also including prepa-
ration, measurement, and gate errors. Given that, in practical
applications, the error of 2-qubit entangling gates generally
dominates over single-qubit gate errors [10], we focus on the
former type of error. We further analyze the appropriateness
of our model in Appendix L. We assume that every gate
in both the encoding and SE steps is decomposed into the
Clifford gates {CNOT,H,√Z}.
For the noise statistics, we consider the model similar

to the one in [10], but without single-qubit gate errors
(see Fig. 1).

1) cnot gate errors: After the ideal implementation of
the cnot(a, b) gate, with qubit a controlling b, it is
assumed that one of the 15 errors of the form

OaOb (2)

2100626 VOLUME 6, 2025

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES Engineeringuantum
Transactions onIEEE

TABLE 1. Notation Summary

FIGURE 1. Noise model considered.

withOa,Ob ∈ {I,X,Y,Z} and excludingOaOb �= IaIb,
occurs with probability p/15. Here, I is the identity
gate, and X,Y, and Z are the Pauli matrices.

2) Preparation errors: While setting the (n− k) ancilla
qubits (for each SE) to |0〉, each qubit has (indepen-
dently) a probability p of being prepared in the state
|1〉 instead.

3) Measurement errors: While measuring each ancilla
qubit to extract the syndrome, each measurement bit
has a probability p of being misread, so that a zero bit
is read as a 1, and vice-versa.

Unlike the model in [2], to demonstrate the fault-tolerant
properties of this model, we exclude a source of error be-
tween the encoding and SE sections (i.e., the “transmis-
sion error” in Fig. 1), and instead focus on the case where
the cnot gate error stemming from the SE dominates the
noise statistics of the circuit. This simpler model facilitates
the study of the QGRAND decoding approach in the fault-
tolerant regime, which is the focus of this work. While pos-
sible (see Appendix A), we make no further modifications to
the circuit implementation.

III. ERROR CORRECTION OVERVIEW
In the fault-tolerant regime with a noisy gate model, de-
generate errors play a significant role in the error cor-
rection capabilities of the code [27]. As a result, the
approximation made in [2], where codes were approximated

VOLUME 6, 2025 2100626

Engineeringuantum
Transactions onIEEE

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES

to be nondegenerate, is no longer accurate, as it would sig-
nificantly underestimate the code’s capabilities.
In addition, in the fault-tolerant regime, we must consider

an iterated application of the SE procedure, instead of a
single application, in order to capably detect the errors being
introduced by the SE procedure itself. This is a common
approach [19], [28] to quantum error correction when gate
and measurement errors are nonnegligible, and the decod-
ing procedure has into account not just the syndrome from
one extraction process, but the whole history of syndrome
measurements.
As a result of this added complexity, in this section we

clarify the notation we use in this work. We use X̄ j, Z̄ j to
represent the logical operators corresponding to the unen-
coded operators Xj,Zj, respectively. Given an encoding U
(see Fig. 1), the choice of minimal stabilizers Si and logical
operators is not unique. Without loss of generality (W.l.o.g.),
we consider the minimal stabilizer Si (for 1 ≤ i ≤ n− k) and
logical operators X̄ j, Z̄ j (for 1 ≤ j ≤ k) to be given by

Si = UZi+kU† (3)

X̄ j = UXjU† (4)

Z̄ j = UZjU†. (5)

Following Section II, the noise model enables us to cre-
ate a list N = {(p0,E0), (p1,E1), . . .} of all the errors Ei
that the encoded quantum state may be subjected to, along
with its, respectively, probability pi of occurring. An error Ei
refers to the qualitative process that occurred physically, such
as “a X2Z3 error occurred in the cnot(2,3) gate, and no other
errors,” for example.
An error Ei that corresponds to either only one wrongly

prepared qubit, or one wrongly measured qubit, or one noisy
cnot gate, is called a base error, and may be explicitly
labeled as EBi . Every other error in the noise model of
Section II can be described as a combination of base errors.
We consider the errors Ei to be disjunctive, so only one

error inN may occur, and their probability sums to 1. When
using the base error notation EBi , we implicitly refer only to
the specific base error that occurred, without making claims
about the occurrence of other base errors. For example, using
the noise model in Section II, the base error EB =“X2Z3 error
in the cnot(2,3) gate” would have a probability of occurring
of p/15, while the corresponding error E =“X2Z3 error in the
cnot(2,3) gate, and no other errors” would have a probabil-
ity of (p/15)× P(no other base error occurs), which would
possibly be much lower. We may use the shorthand notation
ÊB := E for errors where only one base error occurs.
Compound errors may be represented by their own sym-

bol or as the product of errors that compose it. That is, for
simplicity, given base errors EBi and EBj , we also have the
compound error notation

Er = EBi ∩ EBj ∩
⎛
⎝ ⋂
m�=i, j

EBm

⎞
⎠ =: EBi EBj . (6)

An error Ej is said to be of order ω if ω base errors suffice to
describe it, so thatEj = EBi1 · · ·EBiω . Note that the constituting
base errors may stem from different SE.
Given a base error, let el be the local error pattern corre-

sponding to the error that occurred locally. In the example
above, we would have eli = X2Z3. In general, for gate er-
rors affecting only one cnot gate, we would have an error
pattern from (2). For preparation and measurement errors,
el would be represented by X operators in the appropriate
ancilla qubits.
Unless the error EBi occurs at the end of a SE process,

it will propagate through the rest of the quantum circuit,
possibly impacting other qubits. Let V be the unitary corre-
sponding to one noiseless SE process, minus the final mea-
surement step of the ancilla qubits. We may partition V into
the unitaries B andC, corresponding to the portion of the SE
circuit that occurs before and after the error EBi , respectively.
If the SE affected by EBi is given by the unitary VE , we have

V = CB (7)

VE = CeliB = (esi ⊗ ei)V. (8)

The resulting (propagated) error pattern may affect nontriv-
ially both the main n qubits (main error pattern ei) and the
(n− k) ancilla qubits (ancilla error pattern esi).
A Pauli string of n qubits is an operator that is the product

of the Pauli operators X,Y , and Z on those qubits. It has the
form

ei
π
2 φO1O2 · · ·On

with Oj ∈ {X,Y,Z, I} and φ ∈ {0, 1, 2, 3}. (9)

As eli is a Pauli string, and C is a Clifford unitary, then both
ei and esi are Pauli strings. Similarly, following (3) to (5),
the minimal stabilizers and logical operators are also Pauli
strings, sinceU is a Clifford unitary as well. A Pauli string is
said to have weight t if it acts on t qubits, that is, if its Pauli
string contains t Pauli operators (excluding the identity).
For the previous example with EBi , we would have esi ⊗

ei = C(X2Z3)C†. While the effect of esi is removed by the
syndrome measurement, the same cannot be said of ei. As
EBi propagates through the circuit, the pattern ei is picked up
by subsequent SE, and is ultimately the error pattern that our
correction process needs to consider to undo the effect of EBi
on the main n qubits. See Fig. 2 for an example.
In Fig. 2, we showcase a simple example, with two SE,

where there is only one minimal stabilizer S1 = X1X2. An
error occurs in the first cnot gate, so E = “Z1I2 error in first
cnot gate, and no other errors.” The error is not detected
by the first SE process, so s = s̃ = 0. By the end of the
first SE, the evolved uncorrected error is e = Z1I2. It is now
detected by the second extraction, so s = ŝ = 1. If it is not
corrected, subsequent extractions will behave similarly to the
second one, returning the syndrome 1.

2100626 VOLUME 6, 2025

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES Engineeringuantum
Transactions onIEEE

FIGURE 2. Simple example, with two SE. The error is not detected by the
first SE process, but it is detected by the second extraction.

Since Y = iXZ, any Pauli string of n qubits can also be
written in the form

ei
π
2 ϕ
(
OX1 · · ·OXn

) (
OZ1 · · ·OZn

)
(10)

with OXj ∈ {X, I}, OZj ∈ {Z, I} and ϕ ∈ {0, 1, 2, 3}.
The Pauli string may then be encoded as a binary row

vector. In [X |Z] format, it takes the form[
bX1 b

X
2 · · · bXn bZ1 bZ2 · · · bZn

]
(11)

with bPj =
{
1, if Oj = P

0, if Oj = I
and P ∈ {X,Z}. (12)

In [Z|X] format, the bXj entries are swapped with bZj . By
default, binary vectors and matrices are represented in bold.
We may use the functions

bin(e) := e, op(e) := e (13)

compP(e) :=
[
bP1 · · · bPc

]
(14)

with P ∈ {X,Z} and c = |e|/2, to indicate the conversion to
and from binary representation, and to refer to a particular
component of e, respectively. Calculations using binary are
performed inF2, that is, usingmodular arithmeticmod 2. The
functions bin and op stand for the transformations of Pauli
operators from and to, respectively, binary arrays.
Let A be the quantum check matrix [29], a (n− k)× 2n

binary matrix (in [X |Z] format) where each row j encodes
the minimal stabilizer S j of the code. This is a compact
way of representing the encoding used. Let ei be the binary
representation of the error pattern ei as a 2n-sized row vector,
in [Z|X] format. Any evolved error pattern ei can be written
as

ei = EiSiLi (15)

where Li is one of the 22 k logical error patterns in the logical
error group L generated by the logical operators X̄ j, Z̄ j, 1 ≤
j ≤ k; Si is one of the 2n−k stabilizers in the stabilizer group
S generated by the minimal stabilizers S j, 1 ≤ j ≤ n− k;
and Ei is some error pattern with the same syndrome ŝ =
eiAT as ei [29]. We use 0 to represent the syndrome with all

entries equal to zero. W.l.o.g., for the decomposition, we as-
sume the phase factor ϕ [see (10)] to be zero, since neglecting
it adds at most a global phase to the encoded quantum state,
which can be disregarded. As a result, we consider each error
pattern to equal its inverse.
The decomposition in (15) is not unique, and is depen-

dant on the choice made for the particular logical operators,
minimal stabilizers, and Ei patterns to use. For the sake of
simplicity in the notation, in this work, it is assumed that such
a decomposition is the unique one obtained deterministically
by following the procedure described in Section IV. Conse-
quently, we assume that, associatedwith each error pattern ei,
there is a unique set of operators Ei,Si, and Li. In particular,
for patterns with ŝ = 0, the operator Ei is the identity. Since
all error patterns with the same syndrome will have the same
error component E, we useEŝ to indicate the error component
of the error patterns with syndrome ŝ.

Compound error patterns, such as er = eie j, may be eas-
ily encoded in binary form by using the modular sum (i.e.,
xor), so that er = ei ⊕ e j and ŝr = ŝi ⊕ ŝ j. Given two er-
ror patterns ei, e j with the same syndrome ŝ, their product
er has syndrome ŝk = ŝ⊕ ŝ = 0, so Er is the identity op-
erator. Therefore, there is a unique S ∈ S,L ∈ L such that
ei = e jSL, with S = SiS j and L = LiL j.
A degenerate set D is a set of evolved error patterns that

can be treated similarly, for correction purposes. This set
depends on ŝ and L. Although all error patterns with the same
syndrome ŝ have the same representative error pattern Eŝ, not
all can be corrected similarly. For that to be the case, their
logical error component Lmust be the same. Since we know
that two error patterns are degenerate if eie j ∈ S , we may
verify this by computing er = eie j = (EiSiLi)(E jS jL j) =
(EiE j)(SiS j)(LiL j) = ErSrLr. For er to be in S , we must
have Er = Lr = I, which is only the case if Ei = E j and
Li = L j. The former is true if ei and e j have the same syn-
drome ŝ, while the latter is more complicated to verify, but
we know that there are only 22 k possibilities inL to consider.
Ultimately, we may index the degenerate sets based on their
syndrome and logical error component, both represented by
the tuple (ŝ,L). We use edi = EiLi to refer to the actual rep-
resentative of ei (and its degenerate equivalents) during the
correction process, since we know that if we can correct edi by
applying the unitary (edi)

† to the circuit, so can we indirectly
also correct ei, since (edi)

†ei = Si, and stabilizers act as the
identity on the encoded quantum state.
For an error Ei arising from SE g, there are two associated

syndromes of interest, instead of one. The syndrome

ŝi = eiAT (16)

corresponds to the syndrome obtained from a subsequent
noiseless SE after extraction g, that is, after the error has
occurred. In this case, we can consider the error model to be
similar to the one used in [2], where the (propagated) error
pattern ei is present before any stabilizer is applied for the SE
process. Instead of using (16), we may alternatively compute

VOLUME 6, 2025 2100626

Engineeringuantum
Transactions onIEEE

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES

ŝi by first computing the ancilla error pattern. If we think of
ei as a different local error pattern elj, then, following (8), we
must have

VeiV
† = VeljV † = esj ⊗ ei (17)

and ŝi is given by the X component [i.e., second half in [Z|X]
format; see (11)] of esj. This type of syndrome is always zero
for preparation and measurement errors, since measurement
errors do not affect subsequent extractions. Under this latter
formalism, we may observe this by noting that if ei = I, then
necessarily esj = I and ŝi = 0.

Beyond this typical syndrome, we also have the syndrome
s̃i obtained from the same extraction g where the error EBi
occurred. For instance, if the error occurs at the last imple-
mented cnot gate, it is likely that s̃i = 0. Unlike ŝi, this syn-
drome is nonzero for simple measurement errors. In general,
this syndrome contains less information than ŝi, since, for
errors later in the extraction, many of the syndrome bits will
be zero, as the stabilizers were applied before the error oc-
curred. Following the second approach previously presented
to compute ŝi [see (17)], we have that s̃i is given by the X
component of the original ancilla qubit pattern esi (in binary
form).
Both s̃ and ŝ refer to a (n− k) bit string, corresponding

to the syndrome that could be obtained from a single SE.
As both these syndromes can be deterministically obtained
from the error E of interest, we use the simple notation s
to specifically refer to the syndrome that is measured dur-
ing the SE. As previously stated, for errors stemming from
only one extraction (labeled g), we have either s = s̃ (if the
measured syndrome comes from the noisy extraction), s = 0
(if it comes from a previous extraction) or s = ŝ (if from a
subsequent extraction).
In general, compound errors may stem from multiple SE.

We use superscript notation to indicate the extraction index,
in order to distinguish it from the error index (which is a
subscript). When there are q SE, we refer to the total list
of measured syndromes by s := {s1, . . . , sq}. If some base
error EB,gi occurs at extraction g, we expect to measure the
syndrome sequence given by

si =
{
. . . , 0g−1, s̃gi , ŝ

g+1
i , . . . , ŝqi

}
. (18)

Note that, for compound errors, the syndrome sequences of
the constituting errors may be combined. If Er = EiE j, then
sr = si ⊕ s j, where the modular sum operation is applied
element-wise, to all q syndromes. Then, for Ej = EBi1 · · ·EBiω ,
we have

Q(Ej) := s j = si1 ⊕ · · · ⊕ siω . (19)

In particular, if errors Ei and Ej occur at extractions g and
h (h > g), respectively, and no other errors occur, then we
would expect to measure the syndrome sequence

s =
{
. . . , 0g−1, s̃gi , ŝ

g+1
i , . . . ,

FIGURE 3. Relations between the different quantities of interest. For
simplicity, every error represented is assumed to be a base error. The
notation is explained in the last paragraph of Section III.

ŝh−1i , ŝhi ⊕ s̃hj , ŝ
h+1
i ⊕ ŝh+1j , . . .

}
. (20)

As a result, we observe that s̃i, s̃ j, ŝi, and ŝ j do not directly
provide the full information necessary to identify the com-
pound error Egi E

h
j that occurred. In the general case where

there are q SE, we may require all q measured syndromes to
optimally correct errors.
For compound errors Er stemming from multiple SE, the

syndrome s̃r is undefined, but ŝr may still be defined as

ŝr =
ω⊕
j=1

ŝi j (21)

where ŝi j are the syndromes of the constituting base errors.
Similarly, er = ei1 · · · eiω . The decomposition in (15) and
subsequent analysis is also applicable.
The notation is summarized in Fig. 3, with an exam-

ple given in Fig. 2. The mappings Vs, V , Ĥ, H̃, FE ,
and FL are mostly independent, and generally noninjec-
tive. V and Vs stem from (8), and provide the main
and ancilla error patterns ei and esi . Concretely, we have
ei = V (eli) = (CeliC

†)m and esi = Vs(eli) = (CeliC
†)a, where

m and a stand for the main and ancilla subspaces,
respectively. Using (17) yields H̃ and Ĥ. The latter can
also be implemented by using (16). Concretely, we have
ŝi = Ĥ(ei) = bin(ei)AT = compX (bin((VeiV

†)a)) and s̃i =
H̃(esi) = compX (bin(e

s
i)) [see (13) and (14)]. The ŝi and si

obtained by the SE process can then be used to try and de-
termine edi , the representative pattern of the degenerate set
to which ei belongs. By applying edi to the noisy quantum
state, we correct the effect of the error Ei. The mappings FE

and FL are quite involved, so their description is delegated
to Section IV.

2100626 VOLUME 6, 2025

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES Engineeringuantum
Transactions onIEEE

Algorithm 1: Optimal decoding.
Require: N
Ensure: A decoding table T
1: Initialize empty decoding table T
2: D← Data(N)
3: for all entry s in D do
4: Set T [s] as the pattern ed with highest p in D[s]
5: end for

Algorithm 2: Error processing.
Require: N
Ensure: A data table D
1: Initialize empty data table D
2: for all (pi,Ei) ∈ N do
3: Compute ei, ŝi, and si
4: Compute Li associated with ei
5: Compute edi
6: if edi not in any entry in D[si] then
7: Store (edi , pi) in D[si]
8: else
9: Add pi to p in entry (edi , p)
10: end if
11: end for

IV. DECODING
The error pattern statistics given by the noise model of Sec-
tion II lead to a very high number of degenerate error patterns
(see Section B for examples). As a result, the approximation
made in [2], where codes were approximated to be non-
degenerate, is no longer accurate, as it would significantly
underestimate the code’s capabilities. In this section, we
modify the decoding procedure in [2] to account for error
degeneracy. The modified procedure is optimal in principle.
It has previously been shown that such optimal procedures
must be #P-complete in general [30], [31], [32]. Since we
are applying the decoding procedure to random codes with
no exploitable structure, our decoding procedure has poor
scaling capabilities for high entropy noise and large code
sizes. Nonetheless, following [2], we hope to show it to be of
interest in regimes of small code size or low entropy, so it is
still worth exploring the decoding properties of this optimal
procedure. It is also possible (though not covered in this
work) for the decoding complexity to be greatly improved
with simpler approximations and heuristics to the optimal
approach. The optimal decoding procedure is summarily
presented in Algorithm 1.

When considering this optimal decoding procedure, we
note that, while we focus on the noise model in Fig. 1,
the decoding procedure is naturally applicable to models
where there are additional sources of error independent of
the SE themselves. For that case, the noise statistics would
simply include those additional errors.
Moreover, the decoding procedure presented in this sec-

tion does incorporate any assumptions about the underlying

nature of the noise, as it meant to be a fully general procedure.
In particular, we do not wish to assume that higher order
errors are less likely than lower order ones, as there may be
practical regimeswhere particular high order errors dominate
the noise statistics (such as burst errors). In Appendix H,
we adapt the general decoding procedure to the particular
noise model described in Section II.
For the decoding, we require a procedure that, given a

syndrome sequence s, outputs the error pattern ed that needs
to be applied to the circuit to correct the most likely source
of error. Since we are interested in the analysis of the de-
coding procedure in the optimal case, and less concerned
about practical limitations, we assume that such a procedure
corresponds to a decoding table T , storing the s, ed pairs.

The decoding table T may be obtained as follows (see
Algorithms 1 and 2 for pseudocode, and Fig. 8 in Appendix
E for an example).

1) For each error Ei (with corresponding probability pi),
we compute its syndrome sequence si, and also ei and
ŝi (corresponding to the mapping Q in (19), and the
mappings V and Ĥ ◦ V , respectively, in Fig. 3, for
base errors). Since the circuit is a stabilizer circuit, it
can be efficiently simulated [33], and these quantities
efficiently computed.

2) We compute Ei = FE (ŝi) and Li = FL(ei). As we al-
ready know ŝi, we end up with the degenerate set
(ŝi,Li) (and its representative edi = EiLi), to which ei
belongs.

3) We repeat steps 1 and 2 for all errors in N . Starting
with an empty data table D, for each error Ei, we
add (edi , pi) to the entry D(si). If an entry with edi
already exists, we add pi to the entry’s probability. This
procedure results in the data table D.

4) For each syndrome sequence s = {s1, . . . , sq} inD, we
choose the degenerate set with the highest associated
probability as the actual coset leader, that is, the one
that is corrected if s is measured.

5) The resulting syndrome table T then acts as our
decoding method.

This decoding is optimal because, for any given syndrome,
there is no other way for the decoding to be more successful
than as described here, since this method already picks the
most probable degenerate set (ŝ,L), given the only informa-
tion available a priori, which isN and the observed syndrome
s. It is optimal under the reasoning that we consider any
unsuccessful correction to be a complete failure, with no
possible partial success.
While the procedure as described is done in series, itera-

tively traversing the Ei errors, it can be trivially parallel, by
splitting the error list across multiple parallel workers. (See
Appendix E for a full description, including the pseudocode
for the parallel implementation, in Algorithm 4.)

To implement the decoding procedure (in particular step
2), a priori, we require the efficient implementation of two
functions as follows.

VOLUME 6, 2025 2100626

Engineeringuantum
Transactions onIEEE

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES

1) A function FE : ŝ �→ Eŝ that, for a given code, and
taking a syndrome ŝ as input, outputs a deterministic
error pattern Eŝ that can act as a coset leader for the
syndrome ŝ. That is, any error pattern ei with syndrome
ŝ can be decomposed [following (15)] using the error
component Eŝ. Having access to this function consid-
erably reduces the required serialized processing for
the decoding, and the required memory, as we do not
need to keep track of tentative coset leaders as we
iterate through the errors Ei, and we can be sure that
different parallel workers have the coset leader in the
same degenerate set (in fact, we can be sure that they
are equal).

2) A function FL : ei �→ Li that, for a given code, and
taking an error pattern ei as input, deterministically
outputs the logical component Li of the degenerate set
to which this error pattern belongs to.

These functions are described in detail in Sections IV-A
and IV-B.

A. FUNCTION FE

When analyzing the code, instead of working with the (n−
k) minimal stabilizers {Si}we extracted from the encodingU
[see (3)], we work with a different set {Si,rre}. Each stabilizer
in this new set can be thought of as some combination of the
stabilizers in {Si}. To be more specific, considering that Si
corresponds to row i of the quantum check matrix A (with
size (n− k)× 2n), {Si,rre} corresponds to row i of A in re-
duced row echelon form (also known as canonical form). We
can convertA to reduced row echelon form because products
of stabilizers are still stabilizers. Sincewe are inF2, adding or
subtracting rows ofA is equivalent to multiplying stabilizers.
As long as the resulting matrix is full rank (which is always
the case, since the procedure for converting to reduced row
echelon form preserves rank), the resulting new matrix Arre

encodes a new set of minimal stabilizers, {Si,rre}, in its rows.
In practice, we can imagine that the measured syndrome

s gets converted to the “reduced row echelon” syndrome
srre, which can be done with a (n− k)× (n− k) matrix that
encodes the steps needed to convertA to reduced row echelon
form. Let this matrix be J. We have Arre = JA and srre = Js.
Working with Arre, let hi be the index of the pivot of row i

(it is not guaranteed that hi = i, since the pivots may not all
be along the main diagonal ofArre). Since {Si,rre} comes from
reduced row echelon form, the stabilizer Si,rre will be the only
minimal stabilizer with a nonzero entry at index hi. Then,
if 1 ≤ hi ≤ n, the error Zhi necessarily yields the syndrome
bit 1 for Si,rre and zero for all other minimal stabilizers in
{Si,rre}. If n+ 1 ≤ hi ≤ 2n, the error Xhi−n necessarily yields
the syndrome bit 1 for Si,rre and zero for all other minimal
stabilizers. Consequently, we can use these (n− k) errors
as a basis to construct a deterministic error pattern Eŝ for
every syndrome ŝ. Let Ei be the error associated with Si,rre (Ei
equals Zhi or Xhi−n, as described). Since the code is linear, for

any syndrome srre, if i1, . . . , ik are the indices where the syn-
drome srre is 1, then the compound error e = Ei1 . . .Eik must
necessarily have syndrome srre. In other words, srre = eArre

T .
Since e = Esrre when using the minimal stabilizers {Si,rre},

and J is a linear transformation, then we must have e = Eŝ
when using the minimal stabilizers {Si}. Therefore, if the
code has stabilizers {Si}, then FE implements the procedure

ŝ⇒ srre ⇒ e = Eŝ. (22)

Because of the construction of e, for all error patterns with
the same syndrome, the same error component is computed.
The error Eŝ then acts as the error component for all error
patterns with syndrome ŝ, for the decoding.

B. FUNCTION FL

For the functionFL, we need to consider the different degen-
erate sets. We know that each error ei can be decomposed in
terms of the coset leader Ei, some stabilizer Si, and some
logical operator Li [see (15)]. There are 4k logical operators
(including the identity) and each identifies one of the 4k

degenerate sets associated with each syndrome ŝ.
Consequently, we can create a one-to-one mapping be-

tween the logical operators and the degenerate sets. Since we
can determine the tentative coset leader Ei with FE , we only
need to determine the logical component Li that composes
our input error pattern.
With this in mind, we continue the approach from

Section IV-A. We use the row echelon form of A, that is,
Arre, so we work with {Si,rre} instead. We perform the same
procedure to the logical operators. Let X̄i and Z̄i be the binary
row vector representations of X̄i and Z̄i, respectively [see (4)
and (5)], in [X |Z] format. Let L be the 2k × 2n binary matrix
that encodes the original 2k minimal logical operators (see
(4) and (5)), that act as generators to the 4k total logical
operators. Row i of L is given either by X̄i, if 1 ≤ i ≤ k, or
by Z̄i−k, if k + 1 ≤ i ≤ 2k.

Just as with the stabilizers, we know that products of
logical operators are also logical operators. Moreover, prod-
ucts of a logical operator with stabilizers correspond to the
same logical operator. Since we are working in F2, adding
or subtracting rows of Arre or L is equivalent to multiplying
stabilizers and operators in Pauli string form. Considering

the augmented (n+ k)× 2n matrix
[
Arre
L

]
, by using the rows

of Arre and L, we may put the L component in its row ech-
elon form, Lre. We can then put Lre in reduced row echelon
form using only the rows of Lre, yielding Lrre. Note that we
cannot use the rows in Lre to further simplify Arre, as the
resulting rows would no longer correspond to stabilizers. The
procedure may be represented as[

Arre

Lrre

]
=
[
In−k 0
0 JL

] [
Arre

Lre

]
(23)

=
[
In−k 0
0 JL

] [
In−k 0
JA I2k

] [
Arre

L

]
(24)

2100626 VOLUME 6, 2025

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES Engineeringuantum
Transactions onIEEE

with Ip a p× p identity matrix. The matrices JA and JL are
of size 2k × (n− k) and 2k × 2k, respectively, and just like
J in Section IV-A, they represent the linear transformation
required to put the matrix in reduced row echelon form.
The resulting rows of Lrre correspond to 2k (possibly dif-

ferent) generators for the logical operators. These genera-
tors may no longer satisfy the anti-commutation relations
expected of X̄ and Z̄, but they are not required to. The final
Lrre matrix is such that the columns with the same index as
the pivots of Arre are zero, and the columns with the pivots
of Lrre have only one nonzero element, its pivot.

For every error pattern ei with syndrome si, we know that
its error component Ei (given by FE) is such that eiEi =
SiLi =: e′i, for some unknown Si and Li. Consequently, to
determine the degenerate set to which ei belongs, we only
need to decompose e′i into its Si and Li components. Con-
cretely, we are looking for the unique row vectors uA (of size
n− k) and uL (of size 2k) such that

e′i,[X |Z] =
[
uA uL

] [Arre

Lrre

]
(25)

where e′i is exceptionally in [X |Z] format. Since Arre and
Lrre are already in reduced row echelon form, finding the
two vectors is straightforward. The procedure is described in
Algorithm 3. Once the uA and uL row vectors are determined,
the Si and Li components are simply given by [see (13)]

Si = op(uAArre) (26)

Li = op(uLLrre). (27)

Alternatively, we may simply skip the computation of uL in
Algorithm 3. Let v′ equal the computed row vector v just after
uA is computed, but before the iteration through the pivots of
Lrre. Then, we equivalently have Li = op(v′).

The full procedure

ei ⇒ eiEi ⇒ uL (or v′)⇒ Li (28)

corresponds to the function FL.

V. ASYMPTOTIC REGIME
We can estimate the optimal performance we can obtain from
the decoding procedure by looking at how it performs as
the number of extractions considered is increased. We are
interested in computing the limit where we have infinite ex-
tractions, where the decoding would be optimal. Although
this regime is impossible to attain in practice, we expect
that, as we increase the number of extractions, the decod-
ing dynamics should converge to the asymptotic correspond-
ing to that optimal case, allowing us to estimate the code’s
performance in that regime.
We consider the total probability of correction failure Ptotal

to correspond to the probability that an error is not com-
pletely corrected. That is, the correction chosen does not cor-
respond to the right degenerate set. Note that this definition
provides a lower bound on the fidelity F of the resulting

Algorithm 3: Finding logical component.

Require: e′i,Arre,Lrre
Ensure: Vectors uA,uL, v′
1: Initialize uA,uL to zero vectors
2: Let v← e′i
3: Let HA (respectively, HL) be an ordered list of pivot

positions of Arre (respectively, Lrre)
4: for all hi in HA do
5: if entry hi of v is 1 then
6: Subtract row i of Arre from v (mod 2)
7: [uA]i← 1
8: end if
9: end for
10: Let v′ ← v

11: for all li in HL do
12: if entry li of v is 1 then
13: Subtract row i of Lrre from v (mod 2)
14: [uL]i← 1
15: end if
16: end for
17: return uA,uL
18: (if the computation was correct, then v should

equal 0)

FIGURE 4. Model considered to compute the asymptotic regime, where
q → ∞.

quantum state, given by

F ≥ 1− Ptotal (29)

since it effective treats any unsuccessful correction as pro-
ducing a state with zero fidelity, whereas in practice the
uncorrected error may not produce an orthogonal quantum
state. Nonetheless, it is a useful lower bound often used in
the literature [2], [10], and that we choose to use here as well.

LetP∞ be the asymptotic limit ofPtotal when the number of
SE q goes to infinity (see Fig. 4). Since there are L = 22 k de-
generate sets associated to each syndrome sequence s, then,
regardless of the encoding used, for a given s, the probabil-
ity p of an error having occurred that is in the most likely
degenerate set satisfies p ≥ 1/L. If eci is the error pattern
representative of the most likely degenerate set for si, then
we must have

P∞ = 1−
∑
i

p(eci ei ∈ S|Ei)p(Ei) (30)

VOLUME 6, 2025 2100626

Engineeringuantum
Transactions onIEEE

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES

≤ 1−
∑
i

(1/L)p(Ei) (31)

= 1− 1/L (32)

= 1− 2−2k (33)

with equality achieved for the case of maximum noise
entropy.
When comparing two setups, A and B, with qA and

qB = qA + h (h > 0) SE, respectively, we necessarily have

Ptotal(A) ≤ Ptotal(B) (34)

since introducing h additional noisy syndromes extractions
introduces additional errors in the model, which may or may
not be correctable.
We are interested in determining the failure probability

Pfailure induced by a single additional SE, preceded and suc-
ceeded by an arbitrarily high number of extractions. In the
context of fault-tolerance, we wish to determine if, for a
given p, Pfailure increases or decreases with increasing qubit
count n. We expect, for low (respectively, high) values of
p, Pfailure decreases (respectively, increases) with n, with a
phase transition at some pthreshold, to be determined.
Since we do not have direct access to Pfailure, it must be

computed from the measured value of Ptotal. We develop an
effective model to quantitatively relate the two quantities.
Consider a variant of the B setup above, labeled B′, where

the first qA extractions are solely used to identify and cor-
rect errors stemming from implementing those extractions,
and similarly, the last h extractions are solely used to deal
with errors resulting from the h extractions, for a total of
qB = qA + h, as before. In other words, in the B′ setup, the
procedure is partitioned into to separate and independent
decoding processes.
We expect

Ptotal(B) ≤ Ptotal(B′). (35)

Since, in the B setup, the last h extractions also provide
information about errors in the previous extractions, which
can lead to a more successful decoding. The B′ setup does
not use this information.
In fact, if an error occurs at extraction qA, we expect that

a lower number h of subsequent extractions will result in
higher failure rates (per extraction), since the decoding pro-
cess has less information to correctly identify the error. Since
we are interested in the limiting case where the number of
subsequent extractions is infinite (for any given extraction
where an error can occur), we wish to discount the effect of
limited syndrome information from the calculated probabil-
ity of failure Pfailure. We label the errors that could have been
successfully corrected with h→∞ but were not with low h
escaped errors.
For low q, we expect (see [28]) that escaped errors (in

particular errors with s̃ = 0 but ŝ �= 0) can be identified with
additional syndromes from more subsequent extractions, so

that each new extraction reduces the number of escaped er-
rors by a factor δ. Of course, new extractions also introduce
new escaped errors, and errors at the end extractions are more
likely to escape correction.
Consider a setup with q extractions as a setup with q− 1

extractions preceded by one additional extraction. The errors
of this additional extraction will be detected by the q− 1
subsequent extractions, so that only a factor δq−1 escape
through the whole setup incorrectly identified. Therefore, ap-
plying the reasoning recursively for q extractions, we expect
the probability of an error passing through the extractions
undetected to be given by

Pu(p, q) � Pu(p, q− 1)+ δq−1Pu(p, 1) (36)

� Pu(p, 1)
1− δq
1− δ . (37)

For q� 1, we expect that the probability of success-
ful correction with q extractions Psucc(p, q) will be ap-
proximately the probability of success with q− 1 extrac-
tions times the per-extraction probability of success (which
accounts for the additional extraction). We have

Psucc(p, q) � Psucc(p, q− 1)(1− Pfailure(p)) (38)

= (1− Pfailure(p))q (39)

with Psucc(p, 0) = 1. (40)

However, since Pfailure does not incorporate escaped errors,
the true probability of success P′succ is given by

P′succ(p, q) = Psucc(p, q)(1− Pu(p, q)) (41)

yielding

Ptotal(p, q) � 1− (1− Pfailure(p))q(1− Pu(p, q)). (42)

If δ � 1, which is expected, then, when using q� 1 to-
tal extractions, we may approximate Pu(p, q) � Pu(p,∞),
leading to

Ptotal(p, q) � 1−C(p)(1− Pfailure(p))q (43)

withC(p) := 1− Pu(p,∞) (44)

where C incorporates the escaped errors. See Fig. 5 for a
numerical verification of this model. Once more, note that
we discount these errors, and their probability Pu, from the
failure probability Pfailure, since we are interested in the per-
extraction failure probability, and Pu constitutes a global ef-
fect. As previously indicated, if a SE is followed by h→
∞ extractions, then the probability that an error stemming
from that extraction goes completely undetected is δhPu(p, 1)
→ 0.
Pfailure is the asymptotic contribution of each SE to the

probability of failure. We have that, by fitting, for each p

Y = mX + b (45)

with Y := log(1− Ptotal(p, q)), X := q. (46)

2100626 VOLUME 6, 2025

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES Engineeringuantum
Transactions onIEEE

FIGURE 5. Experimental Ptotal, and resulting fit by (43). We observe the
experimental data matching the qualitative description of the theoretical
analysis, with R2 > 0.999 for all cases.

FIGURE 6. Performance of QRLCs with k = 1, using fault-tolerant
QGRAND. We observe that the asymptotic version presents a threshold
around p � 2 × 10−5. The shaded regions denote a 60% confidence
interval (from 50 samples), and the dots are the median performance
observed. The vertical line indicates the pthreshold value. The dashed lines
at the top correspond to the uncoded case, which is plotted for
reference.

Then, from (43)

Pfailure(p) = 1− em (47)

C(p) = eb (48)

for each p considered.
The results are are presented in Fig. 6. We observe

pthreshold � 2× 10−5, suggesting the QGRAND technique
can be used in the fault-tolerant regime. Nonetheless,
we note that this optimal decoding procedure is not scalable
for high entropy noise models, such as those given by p �
pthreshold. Therefore, to use these techniques, we are forced
to either simplify our model, turning the decoding procedure
suboptimal, or to focus on a regime where it can be applied
in practice.
For reference, we also estimate the performance of the

uncoded case. Considering the number of noisy cnot gates

present in a circuit with q iterations to be NCNOT(q), we get

Pfailure, uncoded(p) � 1− (1− p)NCNOT(1) (49)

where NCNOT does not include preparation and measurement
errors, as these do not propagate throughout the circuit.
The simulation is performed for ω < ωmax, and approxi-

mated for the higher ω values. For high ω, we use the reason-
ably accurate assumption that error patterns are uniformly
assigned to the syndrome sequences. Therefore, before
computing Pfailure, we modify Ptotal with the correction

P′total = Ptotal − P(ω > ωmax)

2n+k
(50)

where 2n+k is the number of degenerate sets associated with
each syndrome sequence. The correction is negligible for
high n, but may play a noticeable role for p � 1. Based on our
analysis in Appendix K, we find that for the n values consid-
ered, the minimum error order that nontrivially contributes
to the failure probability never exceeds 2. This justifies using
ωmax = 2 for exact simulation in the parameter regimes stud-
ied. The effect of higher orders can be reasonably accounted
for using (50).

VI. DISCUSSION AND CONCLUSION
In this work, we extend the decoding procedure for QRLCs
introduced in [2] to explicitly account for error degeneracy.
Consequently, our technique constitutes a maximum likeli-
hood decoding procedure, which is guaranteed to be optimal.
We analyze the fault-tolerant characteristics of QRLCs with
the presented decoding technique, by accounting for prepa-
ration, measurement, and gate errors in the SE procedure
itself, and observe a pthreshold � 2× 10−5 in the asymptotic
limit. To the best of our knowledge, this work presents the
first fault-tolerant decoding technique specifically applying
QGRAND to QRLCs in the presence of preparation, mea-
surement, and gate errors during SE.
We note that this decoding procedure is not equivalent to

finding the lowest weight error pattern associated with each
syndrome, as might be done by more standard algorithms,
since a faulty cnot gate error effect can propagate consider-
ably through the circuit before being possible to detect it, so
that, by the time it is detected, its error pattern is no longer
low weight.
In this work, we have removed the channel errors present

in [2] and considered only the main error sources associated
with the SE process. In particular, we considered preparation
and measurement errors in the ancilla qubits, and two-qubit
gate errors. Although this is a common approach to take
when studying the fault-tolerance capabilities of different
codes [10], it leads to unrealistic results for high code rates.
In the limit when R→ 1, the SE process has a negligible
number of minimal stabilizers, and as a result negligible
error sources, under this noise model. Consequently, in this
regime, higher code rates lead to lower Pfailure, not because
of better correction capabilities, but because error sources

VOLUME 6, 2025 2100626

Engineeringuantum
Transactions onIEEE

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES

decrease faster than the correction capabilities do, as the code
rate increases.
Moreover, we have analyzed the asymptotic regime of

infinite SE. Although impractical, these asymptotic results
enable us to study the behavior of the optimal decoding
procedure, as previously described. Nonetheless, practical
limitations might impose suboptimal steps in the decoding
process, and obviously a finite number of SE.
To account for these limitations, we must consider that,

in practice, there are nontrivial computing steps performed
between SE (such as logical gates for quantum computing,
and Bell-pair creation for quantum communication) that in-
troduce their own errors independently from the SE steps.
When accounting for this additional error source, we expect
the pathological behavior for high code rates to disappear. In
future work, we intend to study these more practical regimes.
Furthermore, we assumed that all-to-all connectivity (be-
tween any of the n qubits) is possible in practice. This as-
sumption is required for the scaling results in [23], and is
used in this work. Nonetheless, it may be dropped for prac-
tical reasons, as the more recent results in [26] suggest.

As previously mentioned, the noise guessing decoding
procedure is expected to be viable only in situations of low
noise entropy and low n. Even disregarding the limitations
imposed by the asymptotically large number of SE, it is also
the case that the noise entropy increases rapidly as n→∞
and k = 1, as considered for the fault-tolerance analysis.
This is a known limitation of the decoding procedure. For
this reason, and for the fact that better known codes, such
as surface codes, have higher pthreshold values, we do not
expect the decoding procedure described in this work to be
competitive in those regimes. Although it remains to be con-
firmed in future work, we conjecture that, given the optimal
decoding properties of the described procedure, it may be
worthwhile to employ in scenarios where code versatility
is needed, the noise statistics are not approximately fixed,
and the code rate is desired to be very high. In those cases,
we expect the method to have similar use cases to those
previously described in [2], as the additional gates used by
the SE process would not have a strong impact on decoding
performance.
Beyond the straightforward approach described in Algo-

rithm 1, we may also wish to sacrifice the decoding optimal-
ity for the sake of decoding throughput, or lower hardware
requirements, rendering the decoding process more easily
scalable. This can be achieved with either known techniques,
such as compressive sensing or deep learning, or with more
straightforward approaches, such as greedy variants of the
method. For instance, for the Bernoulli noise model in this
work, if we take the coset leader to be the first error pattern
associated with a syndrome, we will end up with a subopti-
mal version of Algorithm 1, equivalent to [2], but one which
reduces the memory requirements by as much as a factor of
4k. There are also specific simplifications that can be used
to implement the decoding procedure faster when the noise
model has some exploitable structure, as is the case with

FIGURE 7. For the example code in Fig. 2, we may observe the three
forms of degenerate errors. Considering Ei as the error showcased in the
top left circuit, the identical, pseudoidentical, and nonidentical errors
can be seen in (a), (b), and (c), respectively.

the noise model considered here. We plan to cover some of
these approaches in future work.

APPENDIX A
REDUCING STABILIZER WEIGHT
Although we are working with QRLCs, which have little
exploitable structure a priori, we note that the minimal stabi-
lizers can be efficiently chosen to have weight lower than the
average of 3n/4. To do so, we may take the original minimal
stabilizer arising from the technique described in [2], repre-
sent them with the parity check matrix, and put the matrix in
canonical form, which is equivalent to reduced row echelon
form. The new simpler minimal stabilizers correspond to the
rows of the resulting matrix.
If the pivots of the matrix in reduced row echelon form

are all in the first n columns, then this technique reduces the
weight of the non-Z components of each minimal stabilizer
to at most 1+ k, and 1+ k/2 on average. If k is low and n is
large, this technique can result in a considerable reduction in
the weight of the minimal stabilizers, as their average weight
goes from 3n/4 to 3k/4+ (n− k − 1)/2+ 1 = (2n+ k +
2)/4. Instead of each term being equally distributed between
I,X,Y, and Z as before, here only the indices greater than
n− k maintain that distribution, and we have, for Si, index
i equally distributed between X and Y , and index j ≤ n−
k, j �= i equally distributed between I and Z.

This structure simplifies the application of the SE process,
as it reduces the number of cnot gates from ∼ 3n(n− k)/4
to (2n+ k + 2)(n− k)/4, and similarly reduces the number
of 1-qubit gates. Despite these benefits, in our numerical
analysis we have not assumed such an approach was taken in
the circuit implementation, in order not to introduce unwar-
ranted structure in the noise statistics, as we are interested in
analyzing the more general scenario.

2100626 VOLUME 6, 2025

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES Engineeringuantum
Transactions onIEEE

Nonetheless, as explained in Sections IV-A and IV-B, we
have used this simplification in our decoding implementa-
tion, when given the noise statistics associated with the un-
simplified stabilizers. As they generate the same stabilizer
group, they are mathematically equivalent for the same given
noise statistics, and we expect either approach to lead to
similar numerical results.

APPENDIX B
DEGENERACY ANALYSIS
Regarding degeneracy, following the notation introduced in
Section III, we consider errors Ei and Ej to be degenerate
if and only if eie j ∈ S . Nonetheless, we may describe three
types of degenerate errors, all prevalent in the noise model
considered in this work.
a) Identical errors: These are errors such that ei = e j

and esi = esj. For example, since we are considering the
model implementation where the cnot gates of the con-
ditional stabilizer are implemented in succession, with the
control always being the ancilla qubit (see Fig. 1), then any
error of the form ZcIt (with c and t the control and target qubit
indices, respectively) will commute with subsequent cnot
gates controlled by the qubit c. Therefore, this component
does not add any error terms to the main n qubits, and instead
simply negates the measured ancilla qubit. As a result, for
any error term without this component, there is an error term
with this component where the error pattern in the main n
qubits is the same, and the ancilla qubit is simplify negated.
Given this degeneracy, the problem reduces to two scenarios:
one where there is an even number of such errors, where the
syndrome is unaffected, and one with an odd number of such
errors, where the ancilla bit is negated. Among these two
classes, all errors are not only degenerate, but identical.
b) Pseudoidentical errors: Besides the identical errors,

we also observe cases where ei = e j but esi �= esj (with
compX (e

s
i e
s
j) = 0, otherwise the errors would have different

syndromes).
c) Nonidentical errors:We also have themore general case

where ei �= e j (with either esi = esj or e
s
i �= esj), while still

retaining eie j ∈ S .
See Fig. 7 for an example. There, the code’s sole nontrivial

stabilizer is X1X2. We have esi = esa = asc = X , esb = Y (ig-
noring the phase), ei = ea = ab = I1I2, and ec = X1X2.

APPENDIX C
ANALYTICAL THRESHOLD WITHOUT DEGENERACY
For this analysis, we disregard preparation and measurement
errors, as the derivation can be readily extended to the com-
plete model.
Keeping k constant, the value of n will determine the

number of cnot gates (NCNOT) in the circuit, and the code’s
correction capabilities. We may estimate its performance by
considering the approximation given by random ideal codes,
as in [2].

For S =: 2n−k � 1 and N the number of distinct errors,
the equation

f = S

N + 1

[
1−

(
1− 1

S

)N+1]
(51)

may be approximated by

f � 1− e−r
r

r := N + 1

S
(52)

⇒ f � 1− (1− r + r2/2)
r

= 1− r

2
for r � 1. (53)

Since, from (51), we have

f = 1

r

[
1−

[(
1− 1

S

)S]r]
(54)

� 1

r

[
1−

(
e−1
)r]

. (55)

Since S = 2n−k, this indicates that

f ≥ 1− ε (56)

⇐⇒ N � 2n−k+1ε. (57)

W.l.o.g., consider that each cnot gate can only suffer from
a specific error, instead of 15. For the Bernoulli noise model
we are considering, the error orderω is given by the binomial
distribution

ω ∼ B(NCNOT, p). (58)

For p fixed, and as NCNOT→∞, this distribution can be
approximated by

N (NCNOTp,NCNOTp(1− p)) (59)

using the De Moivre–Laplace theorem.
Suppose we start by correcting the lowest order errors

(which are more likely to occur), and we wish to correct
the errors up to order ωmax such that we have the probabil-
ity (1− ε) of correcting an error we observe. For a normal
distribution, this is given by the quantile function

Q(p) = μ+ σ
√
2erf−1(2p− 1). (60)

The error function erf cannot be easily approximately.
Nonetheless, we may observe that it can approximated by

erf(x) � 1− α exp(−(x− β)2), for x� 1 (61)

leading to

erf−1(x) � β +
√
log

(
α

1− x
)
for 1− x� 1. (62)

For simplicity, we consider α = 1, β = 0, which does not
meaningfully affect our conclusions here. The quantile
function then becomes

Q(1− ε) � μ+ σ
√
2

(
β +

√
log
(α
2ε

))
(63)

VOLUME 6, 2025 2100626

Engineeringuantum
Transactions onIEEE

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES

� μ+ σ
√
2 log

(
1

2ε

)
(64)

with

μ = NCNOTp (65)

σ =
√
NCNOTp(1− p) (66)

�
√
NCNOTp. (67)

Now that we have ωmax = Q(1− ε), we need to estimate the
number of errors Ñ up to order ωmax, given by

Ñ =
ωmax∑
j=0

(
NCNOT

j

)
. (68)

Unfortunately, there is no closed form expression for this
value. However, for ωmax � NCNOT, this is roughly equal to

Ñ �
(
NCNOT
ωmax

)
(69)

� NCNOT
NCNOT

ωmax
ωmax (NCNOT − ωmax)NCNOT−ωmax

×
√

NCNOT

2πωmax(NCNOT − ωmax)
. (70)

This may be simplified down to

Ñ = 2NCNOTh2(ωmax/NCNOT)

√
1

2πωmax
(71)

where h2 is the Shannon entropy.
From (57) and (71), we therefore conclude that

logN ∼ Õ(n) (72)

log Ñ ∼ Õ(NCNOT) (73)

where Õ denotes big-O notation up to log factors. Since N
indicates the code’s correction capabilities, while Ñ indicates
the necessary number of errors that the code needs to correct
to preserve Pfailure, then we must have N � Ñ and conse-
quently NCNOT ∼ O(n). This is verified for some common
codes, such as surface codes, but for our implementation we
have

NCNOT = 3

4
n(n− k) ∼ O

(
n2
)

(74)

so we conclude that, if all errors are nondegenerate, the code
does not have a visible pthreshold, since an increase in n in-
creases Pfailure, regardless of p.
However, we actually observe a threshold for QRLCs. This

is thanks to the fact that the noise statistics given by the
noise model of Section II actually lead to a very high number
of degenerate errors. Therefore, in practice, the number of
distinct errors growswithO(n) and notO(n2) as indicated by
the analysis above. We later confirm this scaling for escaped
errors, in Appendix K.

Algorithm 4: Parallel decoding.
Require: N ,W
Ensure: A decoding table T
1: Initialize empty data table D and decoding table T
2: Split N intoW sets (almost) equal in size, labeled

Nw (1 ≤ w ≤W)
3: for all w parallel workers do
4: Initialize empty data table Dw

5: Dw ← Data(Nw)
6: end for
7: D←⋃

w Dw

8: for all entry s in D do
9: Set T [s] as the pattern ed with highest p in D[s]
10: end for
11: return T

With this insight in mind, we modify the QGRAND algo-
rithm in [2] to account for the possibility of degenerate errors.
The modified algorithm is presented in Section IV.

APPENDIX D
APPLYING ERROR CORRECTION
Certain QECCs, such as surface codes, are designed so that
a physical error correction is actually unnecessary to im-
plement, as all changes can be made in software, classi-
cally [10]. If the whole quantum circuit is unitary, then this
procedure can actually be implemented in general: instead
of correcting the error, we leave the affected state as is and
simply xor any subsequent syndrome s with the identified
error syndrome e, that is, s �→ s⊕ e. As a result of this, we
only need to keep track of these detected errors classically,
in order to correct the subsequent syndromes.
In any case, since the correction portion is always single-

qubit gates, we assume that their contribution to the total
error is negligible, so we can disregard this trick for now,
for the sake of simplicity. As a result, the procedure to apply
the error correction is the same as in [2].

APPENDIX E
PARALLEL DECODING
The decoding procedure described in Section IV can be per-
formed in parallel. If there areW parallel workers available,
we start by splitting the entries in N into W parts of equal
size, labeling eachNw, 1 ≤ w ≤W . Each setNw is then pro-
cessed independently by an individual procedure according
to the procedure described in the Section IV, thereby yielding
the data table Dw.

All theW data tables Dw may then be merged to generate
the full data tableD, from which the decoding table T can be
straightforwardly computed. See Algorithm 4 for a descrip-
tion of the parallel decoding procedure.

2100626 VOLUME 6, 2025

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES Engineeringuantum
Transactions onIEEE

FIGURE 8. Optimal decoding of the code in Fig. 2 (but with only one SE),
as described in Algorithm 1.

APPENDIX F
FULL DECODING EXAMPLE
For the example in Fig. 8, we consider the encoding gate to be
U = CNOT(2, 1)H2, with the starting qubit at index 1. P and
M stand for preparation and measurement error in the only
ancilla qubit a, respectively, ABj) is the error corresponding
to “error AaBj occurred at cnot gate j.” Following Algo-
rithm 1, we iterate through the errors in N and, using the
functions FE and FL, determine where to put them in the
table D. Once we have iterated through all errors, we com-
pute the optimal (ŝ,L) entry, or alternatively, ed representa-
tive, and delete the remaining entries, yielding the decoding
table T .

GivenU , and following (3) to (5), the minimal stabilizer is
S1 = X1X2, and the logical operators are X̄ = I1X2 and Z̄ =
Z1Z2. This choice of encoding leads to minimal stabilizers
and logical operators such that the augmented matrix is

[
A
L

]
=
⎡
⎣AX̄
Z̄

⎤
⎦ =

⎡
⎣1 1 0 0
0 1 0 0
0 0 1 1

⎤
⎦ = [Arre

Lrre

]
. (75)

Since, in this simple example, we already have A = Arre and
L = Lrre, so J = I. Here, A, X̄, and Z̄ are the binary repre-
sentations of the minimal stabilizers and logical operators, in
[X |Z] format.
Following the procedure in Section IV-A, we have

E0 = I1I2 E1 = Z1I2. (76)

Let us consider the full procedure in Section IV applied to
the specific error in Fig. 2, such as

E = “Error IaZ1 in CNOT gate 1.” (77)

Associated to this error, we have the quantities

s̃ = 0 (78)

TABLE 2. Decoding for the Code in Fig. 2

TABLE 3. Final Decoding Table for Fig. 2

e = Z1I2 (79)

e = [
0 0 1 0

]
(80)

ŝ = eAT = 1 (81)

ŝrre = ŝ = 1 (82)

eEŝ = I1I2 = SL (83)

⇒ L = I1I2 = I. (84)

Applying the procedure in Section IV and Algorithm 1,
we obtain the tentative decoding table in Table 2. In the
table, for the sake of simplicity, we represent preparation and
measurement errors by P andM, respectively. ABi represents
the cnot gate error where error AaBi occurs just after the
noiseless cnot gate. For simplicity, compound error are not
shown.
The preparation and measurement errors have probability

p of occurring, and the gate errors have probability p/15.
If we assume that it is very unlikely that no error has oc-
curred (i.e., p is high), then the final decoding table (when
only considering errors of order 1) is given by Table 3. In
the table, if s = 0 is measured, the most likely degenerate
set to have occurred is (0, X̄), with probability 4p/15 (see
Table II). We assume that p is such that the no-error case is
unlikely, otherwise (0, Ī) would be themost likely degenerate
set. If s = 1 is measured, the most likely degenerate set to
have occurred is (0, Ī), with probability 34p/15. For each
case, the error pattern that should be applied to the quantum
state to correct the error is given by ed = EŝL.

APPENDIX G
SIMPLIFIED NOISE STATISTICS
When considering a Bernoulli noise model, such as in Ap-
pendix H, including preparation andmeasurement errors into
the noise model breaks some of the structure of the noise
statistics, since not all base errors will be equally likely. It
also makes the decoding process harder to simulate. In the
simpler setup where only gate errors occur, if we have g

VOLUME 6, 2025 2100626

Engineeringuantum
Transactions onIEEE

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES

cnot gates affected with an error, with each error having
probability pCNOT/15 of occurring, then the number of errors
and their individual probability would be given by

NE (g) = 15g
(
NCNOT
g

)
(85)

P(g) =
(pCNOT

15

)g
(1− pCNOT)

NCNOT−g. (86)

These formulas stem from the fact that each cnot gate has 15
associated errors, and only one of these may occur at a time.
For preparation and measurement errors, there is only one
error pattern per ancilla qubit: either there is a bit flip, or there
is not. If there areA ancilla qubits (generally,A = n− k), and
a preparation or measurement error occurs with probability
pM , these same quantities are given by

NE (ω) =
ω∑
g=0

15g
(
NCNOT
g

)(
2A
ω − g

)
(87)

P(ω, g) =
(pCNOT

15

)g
(1− pCNOT)

NCNOT−g (88)

× pω−gM (1− pM)2A−ω+g (89)

where ω indicates the total error order and g indicates the
error order when ignoring preparation and measurement er-
rors. Note that these expressions are somewhat more com-
plicated. In particular, for errors of order ω, we now need to
keep track of the distinct number of cnot (g) and prepara-
tion/measurement (ω − g) base errors that occurred, instead
of just one parameter.
Fortunately, if we are using optimal decoding (that prop-

erly accounts for degenerate errors), there is a quick-and-
dirty way to mimic the simpler noise statistics associated
with only having gate errors. If we use pM = pCNOT =:
p (which is a relatively common choice in the literature,
see [10], and the one used in Section II), then we can consider
that each preparation and measurement error is a cnot gate
error. Instead of there being only one error per qubit (corre-
sponding to the possible bit flip), we consider that there are
15, all equal in nature, and each occurring with probability
pM/15. These cloned errors will be degenerate among them-
selves, so the optimal decoding procedure will analyze this
setup correctly. The total number of error patternsNE (ω) will
be overcounted, but we never actually use it directly for the
decoding procedure, so the overcounting does not constitute
an issue. In this formulation, we may pretend that we have
no preparation and measurement errors, and that we have
instead

ÑCNOT := NCNOT + 2A (90)

cnot gates in the SE circuit. The probability associated with
each error will be correct, yielding

P(ω) =
(p

15

)ω
(1− p)ÑCNOT−ω. (91)

APPENDIX H
BERNOULLI NOISE MODEL IMPROVEMENTS
For the special case where each cnot gate has the same
probability p of suffering an error, as described in Section II,
the decoding procedure can be made much more efficient.
This procedure may be adapted to other Bernoulli-like noise
statistics, but here we focus on this error model. We can opti-
mize this decoding process in order to avoid having to iterate
through all compound errors. Since the technique relies on
the inherent structure of errors with the same probability,
here we employ the reformulation detailed in Appendix G to
treat preparation and measurement errors as additional gate
errors.
The procedure for the list of base errors (with ω = 1)

is similar to the one described in the beginning of Sec-
tion IV. Instead of using the full noise statisticsN , insteadwe
consider a list of base errors

B := {EB1 ,EB2 , . . .}. (92)

Given the Bernoulli noise model, all base errors have the
same associated probability of occurring, given by p/15, so
it does not need to be stored in B (we exclude the no error
case). Once we have the data table D1 for ω = 1, we can
start to optimize the analysis for compound errors. Instead
of iterating through compound errors individually, we iterate
through the degenerate sets obtained in the ω = 1 step. We
also preserve the probability associated with observing an
error pattern from each degenerate set in the table. Forω = 1,
and given the reformulation of Appendix G, all errors ÊBi
may be considered to have a probability P(1) of occurring
[see (91)], so the probability associated with each degenerate
set in the data table is given by

pi := NiP(1) (93)

where Ni is the number of errors Ei that can be corrected by
applying the coset leader edi associated with the degenerate
set of ÊBi . In summary, we may restructure the data table D1
obtained with Algorithm 1 (before the final degenerate set
selection)

D1 = {s1 : {(ed11, p11), (ed12, p12), . . .},
s2 : {(ed21, p21), (ed22, p22), . . .}, . . .} (94)

to encode the countNi instead of pi, and to store a list of error
counts for different orders, yielding

D̃1 = {s1 : {ed11 : n11, ed12 : n12, . . .},
s2 : {ed21 : n21, . . .}, . . .} (95)

with

ni := (0,Ni, 0, . . .) (96)

a list of size (ω + 1), where only the second entry of the
list (corresponding to ω = 1) starts with nonzero entries.
The first entry is only nonzero for the E0 = I case, when
s = ŝ = 0 and L = I, corresponding to the case where no
error occurs. We represent the entry of order g by ni(g).

2100626 VOLUME 6, 2025

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES Engineeringuantum
Transactions onIEEE

Under the formulation of (95), instead of iterating
through the combinations {EB1 EB2 ,EB1 EB3 , . . . ,EB2 EB3 , . . .} as
we could do with the naive implementation of Algorithm 1,
we iterate through the degenerate sets in D̃1 as a whole.
Consider the data table D̃ω−1 that includes the errors up

to order ω − 1. To obtain the table for errors up to order ω,
we iterate through the combination of the degenerate sets in
D̃ω−1 and D̃1. If the noise statistics are highly degenerate
(which is generally the case following the noise model in
Section II), we can have considerable computational savings,
since we only need to perform |D̃ω−1||D̃1| computations in-

stead of 15ω(
NCNOT + 2(n− k)

ω
) (see Appendix G). While

we expect the latter to grow quickly withO(n2ω), the former
approach should grow, at worst, withO(nω), and it may grow
more slowly in practice.
With this approach we generally overcount the number of

errors Ni associated with each degenerate set. There are the
following three types of overcounting.

1) Counting permuted copies: Consider an order-(ω − 1)
error EBi1E

B
i2
. . .EBiω−1 (with i1 < i2 < i3 < . . .), com-

ing from D̃ω−1, and the error ÊBj , coming from D̃1.

W.l.o.g., suppose j < i1. Then, for D̃ω, we will not
only count the error EBj E

B
i1
EBi2 . . .E

B
iω−1 , but also that

same error coming from the combination of the errors
EBj E

B
i1
EBi2 . . .E

B
iω−1\EBik and EBik . In total, we overcount

each order-ω error ω times.
2) Recounting lower order errors: for the error

EBi1E
B
i2
. . .EBiω−1 , composing with any EBik (1 ≤ k ≤

ω − 1) reduces the error to one of order ω − 2, which
was previously counted. Each order-(ω − 2) error we
counted before will be recounted ζω−1,1 times, where
ζ is given in (100).

3) Counting two errors occurring in the same cnot gate:
An error of order ω stems from base errors that oc-
curred on ω cnot gates. When composing this error
with another, the resulting compound error may have
more than one base error occurring at one or more
cnot gates. As this compound error is impossible, it
should be discounted.

We can extend this approach further. Instead of construct-
ing the data table in one order increments, if we already have
D̃ω, we may combine it with itself to obtain D̃2ω, thereby re-
quiring exponentially fewer iterations, asω increases, as long
as ω is such that the codes capabilities are not yet saturated,
i.e., not all syndromes are assigned to a degenerate set.
In general, if we compute the noise statistics of errors

of order a and b to compute those of order ω = a+ b, we
have

ni(ω) = 1

Ra,b

⎡
⎢⎢⎣ñi(ω)− ∑

0<k+r≤b
k,r≥0

ζa,b(k, r)ni(c)

⎤
⎥⎥⎦ (97)

Algorithm 5: Data table D̃1 for Bernoulli noise.
Require: B
Ensure: A data table D̃1
1: Initialize empty data table D̃1
2: n0← (1, 0)
3: Store {I : n0} in D̃1[{0, . . . , 0}]
4: for all EBi in B do
5: Compute ei, ŝi, and si
6: Compute Li associated with ei
7: Compute edi
8: if edi not in D̃1[si] then
9: ni← (0, 0)
10: ni(1)← 1
11: Store {edi : ni} in D̃1[si]
12: else
13: ni(1)← ni(1)+ 1
14: Update {edi : ni} in D̃1[si]
15: end if
16: end for
17: return D̃1

Algorithm 6: Data table D̃a+b.
Require: D̃a, D̃b
Ensure: A data table D̃a+b
1: Initialize empty data table D̃a+b
2: for all (si, edi ,ni) in D̃a do
3: for all (s j, edj ,nj) in D̃b do
4: ñi j ← ni ∗ nj (convolution)
5: ni j ← ñi j with overcounting correction
6: if edi e

d
j not in D̃a+b[si ⊕ s j] then

7: Store {edi edj : ñi j} in D̃a+b[si ⊕ s j]
8: else
9: Add ñi j to vector in edi e

d
j entry in

D̃a+b[si ⊕ s j]
10: end if
11: end for
12: end for
13: for all (sr, edr ,nr) in D̃a+b do
14: nr← ñr with overcounting correction
15: Store {edr : nr} in D̃a+b[sr]
16: end for
17: return D̃a+b

with c := a+ b− 2k − r (98)

where ñi(ω) is the count obtained for order ω before the
overcounting correction. The auxiliary functions are given
by

Ra,b :=
(
a+ b
a

)
(99)

ζa,b(k, r) := Kk(K − 1)rξa,b(k, r) (100)

VOLUME 6, 2025 2100626

Engineeringuantum
Transactions onIEEE

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES

Algorithm 7: Decoding table Ta+b.
Require: D̃ω
Ensure: A decoding table Tω
1: Initialize empty decoding table Tω
2: for all s in D̃ω do
3: (j, p)← (−1, 0)
4: for all (edi ,ni) in D̃ω[s] do
5: Using ni, compute pi ((102))
6: (j, p)← (i, pi) if pi > p
7: end for
8: Set T [s] as the pattern edj , which has the highest p

in D[s]
9: end for
10: return Tω

ξa,b(k, r) :=
(
ÑCNOT − c

k

)(
c

r, a− k − r, b− k − r
)
(101)

where K is the number of distinct errors per cnot gate (in
our case, always 15). Note the use of binomial and multi-
nomial coefficients. To incorporate the effect of preparation
and measurement errors, we use ÑCNOT = NCNOT + 2(n−
k) and not NCNOT, as explained in Appendix G. See Ap-
pendix I for a derivation of these expressions.

The probability associated with the degenerate set with list
ni is given by

pi =
ω∑
j=0

ni(j)P(j). (102)

Given this procedure to obtain D̃ω, we may obtain the
decoding table Tω by following Algorithm 5 and 7.

APPENDIX I
DERIVATION OF DECODING FORMULAS FOR
BERNOULLI NOISE
As stated in Appendix H, a straightforward implementation
of the procedure described will overcount the number of
errors associated to any given syndrome sequence. There
are three types of overcounting, which we may analyze
separately.

A. RECOUNTING LOWER ORDER ERRORS
Suppose we have already computed the correct error count
ni(j) for 0 ≤ j ≤ ω − 1 (for all degenerate sets), and we are
currently trying the determine ni(ω).
For the error EBi1E

B
i2
. . .EBiω−1 , composing with any EBik (1 ≤

k ≤ ω − 1) reduces the error to one of order ω − 2, which
was previously counted. To determine how many errors stem
from this dynamic, we may note that any fake compound
error of order ω has a corresponding error of order ω − 2,
which has already been counted in ni(ω − 2). Similarly, any
error Ei counted in ni(ω − 2) has a corresponding set of
fake compound errors that appear in ni(ω). As Ei stems from
ω − 2 base errors, each affecting a different cnot gate, these

fake compound errors must correspond to an error of the
form EiEBj E

B
j , where E

B
j is a base error from a cnot gate not

present inEi. For each cnot gate there areK = 15 associated
base errors, so there are a total of

ζω−1,1(1, 0) = K(ÑCNOT − (ω − 2)) (103)

fake error compounds that associated with the error Ei. Alter-
natively, defining ω = a+ k, with k = 1, we may also write
the total as

ζa,1(1, 0) = K(ÑCNOT − (a− k)). (104)

The same principle applies to higher order combinations. If a
order-a error Ei is composed with a order-k error Ej (a ≥ k),
and the base errors composing Ej all stem from cnot gates
whose same base errors already compose Ei, then the result-
ing compound error will have order a− k, instead of a+ k.
The total number of errors is now given by

ζa,k(k, 0) = 1

k!

k−1∏
j=0

K(ÑCNOT − (a− k)− j) (105)

= Kk
(
ÑCNOT − (a− k)

k

)
. (106)

Note, however, that, when composing a order-a error Ei
with a order-b error Ej (a ≥ b ≥ k), it may be the case that
only some, and not all, of the base errors composing Ej
appear in Ei. In general, there will only be k base errors in
common, for all 1 ≤ k ≤ b.

In this case, to cover all possible fake errors, we must
choose not k cnot gates out of the ÑCNOT − (a− k) gates
not related to the order-(a− k) error (as in (106)), but instead
choose k cnot gates out of the gates not related to both the
order-(a− k) error, but also the (b− k) base errors in Ej that
are valid. Therefore, there are a total of ÑCNOT − (a− k)−
(b− k) cnot gates from which we must consider k invalid
base errors.
Moreover, associated with the order-(a− k) error from Ei,

there are several possible valid (b− k) base errors stemming
from Ej. The total number of fake errors is then given by

ζa,b(k, 0) = Kk
(
ÑCNOT − (a− k)− (b− k)

k

)
(107)

×
(
(a− k)+ (b− k)

b− k
)

(108)

= Kk
(
ÑCNOT − c

k

)(
c

b− k
)

(109)

with c := a+ b− 2k. (110)

Note that, for b = k, we have c = a− k, so that (109) trivially
reduces to (106). The resulting lower order error will have
order c. We would need to discount its affect on ni(ω) to ob-
tain the correct count. Unfortunately, it would be difficult to
determine the original syndromes of the errors that combined
to result in the impossible error, as they may have different

2100626 VOLUME 6, 2025

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES Engineeringuantum
Transactions onIEEE

origins. As an approximation, we use ni(c) to estimate the er-
ror count. The resulting correction is achieved by subtracting
ni(c) times ζ from ni(ω).

B. COUNTING IMPOSSIBLE ERRORS
If a order-a error Ei is composed with a order-r error Ej
(a ≥ r), and the base errors composingEj all stem from cnot
gates already associated with the base errors that composeEi,
then the resulting compound error will be impossible, since it
will contain at least two different base errors associated with
the same cnot gate (one from Ei and one from Ej).
For r = 1, each error in ni(a) will have

ζa,1(0, 1) = (K − 1)a (111)

associated impossible order-(a+ 1) errors, since Ei is com-
posed of a base errors, and for each base error, there are
(K − 1) different base errors associated to the same cnot
gate.
For a general r, we have, for each order-a error

ζa,r(0, r) = (K − 1)r
(
a
r

)
(112)

associated impossible errors.
When composing a order-a error Ei with a order-b error

Ej (a ≥ b), it may be the case that only r < b base errors
composing Ej are impossible, with the remaining (b− r)
base errors stemming from cnot gates not related to Ei.

To estimate the number of impossible errors, we may look
at ni(a+ b− r). As before, we must choose r cnot gates out
of the a gates related to Ei to count the number of impossible
errors. But, as seen in the previous section, to must also count
the possible (b− r) base errors in Ej that are valid. These
factors result in

ζa,b(0, r) = (K − 1)r
(
a
r

)(
a+ b− r
b− r

)
(113)

= (K − 1)r
(

c
r, a− r, b− r

)
(114)

with c := a+ b− r (115)

and

(
x+ y+ z
x, y, z

)
:= (x+ y+ z)!

x!y!z!
. (116)

The multinomial coefficient. Again, note that (114) trivially
reduces to (112) when b = r. The resulting lower order error
will have order c, so, for this case, we would also need to
discount its affect on ni(ω) by subtracting ni(c) times ζ .

C. COUNTING PERMUTED COPIES
Consider an order-(ω − 1) error EBi1E

B
i2
. . .EBiω−1 (with i1 <

i2 < i3 < . . .), coming from D̃ω−1, and the error ÊBj , com-

ing from D̃1. W.l.o.g., suppose j < i1. Then, for D̃ω, we
will not only count the error EBj E

B
i1
EBi2 . . .E

B
iω−1 , but also

that same error coming from the combination of the errors
EBj E

B
i1
EBi2 . . .E

B
iω−1\EBik and EBik . In total, we overcount each

order-ω error ω times.

In general, for every order-ω error, any possible combina-
tion of order-a errors and order-b errors that can generate it
(with ω = a+ b) will appear in the counting. Since there are

Ra,b :=
(
ω

a

)
=
(
ω

b

)
(117)

ways for order-a and order-b errors to generate an order-ω
error, the final counting (after discounting the previous over-
counting cases) should be reduced by a factor of Ra,b.

D. FULL EXPRESSION
In general, the erroneous errors that the decoding procedure
may containing not only repeated base errors (k > 0), but
also base errors stemming from the same cnot gate (r > 0).
Therefore, these two factors need to be considered together.
Combining the analyses of the previous sections, we con-

clude that, when composing a order-a error Ei with a order-b
error Ej (a ≥ b), we can have k base errors Ej already ap-
pearing in Ei, and r base errors in Ej sharing the same origin
cnot gate as a base error in Ei, with k + r ≤ b.

To count all these errors, we may look that the errors with
order c = (a+ b− 2k − r), from which we can generate all
the invalid order-ω errors. As before, the k repeated base
errors are chosen from those associated with cnot gates
that are not related to a valid base error in the compound
error. There are ÑCNOT − c such gates, and each one has K
associated base errors.
Moreover, the from the c base errors, we may consider

that a− k − r (respectively, b− k − r) correspond to the
base errors in Ei (respectively, Ej) that raise no issue, with
the remaining r errors corresponding to base errors stem-
ming from cnot gates that also originated invalid base errors
in Ej.
Grouping all three overcounting issues, we end up with

ζa,b(k, r) = Kk(K − 1)rξa,b(k, r) (118)

with

ξa,b(k, r) :=
(
ÑCNOT − c

k

)(
c

r, a− k − r, b− k − r
)
(119)

and c := a+ b− 2k − r (120)

which generalizes (109) and (114).
The corrected count is consequently given by

ni(ω) = 1

Ra,b

⎡
⎢⎢⎣ñi(ω)− ∑

0<k+r≤b
k,r≥0

ζa,b(k, r)ni(c)

⎤
⎥⎥⎦ (121)

with c := a+ b− 2k − r (122)

as indicated in (97), with ñi(ω) being the original count from
the optimized decoding process. As previously indicated,
since the estimate of the impossible errors is not exact, this
formula is approximate.

VOLUME 6, 2025 2100626

Engineeringuantum
Transactions onIEEE

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES

APPENDIX J
ALTERNATIVE DEFINITIONS OF FE AND FL

Instead of using the formulation described in Sections IV-A
and IV-B, we may consider an alternative formulation that,
while less computationally efficient, is conceptually more
straightforward. Under this formalism, the components Ei
and Li can be computed at once from ei, so there is less of an
need to separate the two processes.
For a given error Ei, we compute ei. Taking the encoding

U , we compute

eui := U†eiU. (123)

The unencoded error pattern eui corresponds to the effect of ei
on the quantum state if it were decoded. We may decompose
it into

eui := Eui S
u
i L

u
i (124)

with

Eui = U†EiU (125)

Sui = U†SiU (126)

Lui = U†LiU. (127)

We may also decompose it into the Pauli string for the first k
data qubits (eDi) and the additional (n− k) redundancy qubits
(eRi)

eui =: eDi ⊗ eRi . (128)

From (3) to (5), we have that

Zi+k = U†SiU (129)

Xj = U†X̄ jU (130)

Zj = U†Z̄ jU. (131)

Therefore, decoding ei into eui cleanly separates the different
components. Lui corresponds to the components of eui in the
first k qubits. We have

Lui := eDi ⊗ In−k (132)

=
⎛
⎝ k∏
j=1

X
bXj
j

⎞
⎠
⎛
⎝ k∏
j=1

Z
bZj
j

⎞
⎠ (133)

⇒ Li = U (eDi ⊗ In−k)U† (134)

=
⎛
⎝ k∏
j=1

X̄
bXj
j

⎞
⎠
⎛
⎝} k∏

j=1
Z̄
bZj
j

⎞
⎠ (135)

where bXj and bZj are the X and Z components of eDi ,
respectively.
Let eR,Xi and eR,Zi be the X and Z components of eRi , re-

spectively [where the Y components have been decomposed
into X and Z, as in (10)], so that eRi = eR,Xi eR,Zi (disregarding
the phase factor). We have

Eui := Ik ⊗ eR,Xi (136)

=
n∏

i=k+1
X
bXi−k
i (137)

⇒ Ei = U (Ik ⊗ eR,Xi)U† (138)

=
n∏

i=k+1
(UXiU

†)b
X
i−k (139)

and

Sui := Ik ⊗ eR,Zi (140)

=
n∏

i=k+1
Z
bZi−k
i (141)

⇒ Si = U (Ik ⊗ eR,Zi)U† (142)

=
n∏

i=k+1
(UZiU

†)b
Z
i−k (143)

where bXi−k and bZi−k are the X and Z components of eR,Xi

and eR,Zi , respectively. As this procedure is deterministic, we
obtain unique components Ei,Si, and Li associated with the
error pattern ei.
Regarding runtime complexity, the method presented in

Section IV-A requires justO(n− k) steps per error Ei, in or-
der to assembleEi from the precomputed Zhi andXhi−n terms.
The method presented in Section IV-B is more involved.
Computing e′i requires 2n steps. Determining its stabilizer
component Si requires identifying the pivots in e′i (O(n)
steps) and then multiplying the constituting stabilizers by e′i.
As it is constituted by O(n− k) stabilizers, and accounting
for each takes at most (2n− (n− k − 1)) = n+ k + 1 steps,
the whole stabilizer part takes O((n− k)(n+ k + 1)) steps.
For the logical component, there are O(2k) components in
e′i, and the whole each operator takes (2n− (n− k)− 2k +
1) = n− k + 1 steps, for a total ofO((2k)(n+ k − 1)) steps.
The full procedure requires

O (n+ (n− k)(n+ k + 1)+ (n− k + 1)(2k)) (144)

∼ O
(
n2, k2

)
∼ O

(
n2
)

(145)

steps per error Ei to compute Li. The computation for NE
errors requires

O
(
NEn

2
)

(146)

steps.
For this simpler technique, the greatest computational ex-

pense comes from computing eui for each error Ei, as the re-
maining steps can be precomputed and subsequently applied
to all errors.
To facilitate the calculation, we may precompute the eu

patterns associated with all base errors, and use those to
compute the pattern eui for each error Ei.

From [33], simulating a stabilizer circuit (i.e. U) with N
gates takes O(n2 N) steps. SinceU is built from O(n log2 n)

2100626 VOLUME 6, 2025

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES Engineeringuantum
Transactions onIEEE

Clifford gates, we have that the full precomputation
associated with the base errors scales as

O
(
NCNOTn

3 log2 n
)
. (147)

The cost of computing eui for each Ei then scales as

O (nω) (148)

where ω is the order of the error. The full computation for
NE errors requires

O
(
NEnω + NCNOTn

3 log2 n
)

(149)

steps. For cases where NE � NCNOT, the simpler approach
may lead to a faster implementation, while, for smaller
cases, the main approach is faster, as it does not require
precomputation.

APPENDIX K
ANALYSIS OF NUMERICAL RESULTS
To get a good understanding of the performance of the de-
coding method, we consider an equidistant range for h, and
we sample p using the expression

p = 10h. (150)

For that reason, most of the fits in this section are performed
after applying a logarithmic transformation to both the de-
pendent and independent variables. That is, we prefer to work
with log(p) than p directly, as it is more numerically stable.

In this section, we verify that C(p) and Pfailure scale as

C(p) � e−γNCNOTp (151)

� 1− γNCNOTp (152)

Pfailure(p) � 1− e−μpη , for η ∈ N (153)

� μpη (154)

for p� 1. μ and γ are positive real parameters, and η is the
lowest order that the code cannot fully correct. We analyze
these expressions separately in the next sections.

A. ESCAPED ERRORS
We start by considering Pu(p, 1). For the noise model in
Section II, we expect that the probability of finding escaped
errors will be given by

Pu(p, 1) �
NCNOT∑
i=1

(
NCNOT
i

)
(γ p)i(1− γ p)NCNOT−i (155)

=
NCNOT∑
i=1

(−1)i+1
(
NCNOT
i

)
(γ p)i (156)

= 1−
NCNOT∑
i=0

(
NCNOT
i

)
(−γ p)i (157)

where γ reflects the fraction of errors that can escape. For
p� 1, the lower order terms dominate, so we may use the

TABLE 4. Fitted Parameters for β

approximation(
NCNOT
i

)
� NCNOT

i

i!
, for NCNOT � i (158)

and we have

Pu(p, 1) � 1−
NCNOT∑
i=0

(−NCNOTγ p)i

i!
(159)

� 1−
∞∑
i=0

(−NCNOTγ p)i

i!
(160)

= 1− e−γNCNOTp. (161)

Given (37) and (44), we end up with (151)

C(p) � e−γNCNOTp (162)

where γ is an unknown parameter. Since we are considering
p� 1, this expression may be further simplified into

C(p) � 1− γNCNOTp. (163)

In order to perform a fit, we consider a more general ver-
sion of this expression, given by

C(p) � exp(−γNCNOTp
ηC) (164)

and we fit the function

log10(− log(C(p))) = ηC log10(p)+ log10(γNCNOT)
(165)

⇒ log10(−b) = ηC log10(p)+ β (166)

where β = log10(γNCNOT) and b stems from (48). We use
log10 to keep the figures more legible.
We may now study the behavior of ηC and β for different

n. See Fig. 9 for the results. As expected, we observe that
ηC � 1, regardless of n.

From Appendix C, we have that NCNOT ∼ O(n2). If we
assume that γ ∼ O(poly(n)), then β should scale as

β = b1 log(n− nβ)+ b2. (167)

with η0 = 1. We assume this expression for its fit. The fitted
parameters are given in Table 4.

We may alternatively write β as

β � log10(5.630 · (n− 3.6453)1.035). (168)

Given the dependence between β and NCNOT, we may con-
clude that

γNCNOT ∼ O
(
n1.035

)
� O(n) (169)

VOLUME 6, 2025 2100626

Engineeringuantum
Transactions onIEEE

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES

FIGURE 9. Fit of the various parameters, averaged over 50 random codes
for each n.

despite the actual NCNOT count scaling with O(n2). These
results are in line with the expectations from the theoretical
analysis of Appendix C, indicating that we may observe a
visible pthreshold.

B. DIRECT PFAILURE EXTRAPOLATION
We may apply a similar procedure to Pfailure. We empiri-
cally observe that (153) holds. However, unlike the previous
section, it is no longer the case that ηC � 1.

If a code is able to correct all errors of order ω < η, then
we expect Pfailure to be given by

Pfailure =
NCNOT∑
i=1

fi(p,NCNOT)

(
NCNOT
i

)
pi(1− p)NCNOT−i

(170)

�
NCNOT∑
i=η

f̃i

(
NCNOT
i

)
pi(1− p)NCNOT−i, for p� 1

(171)

� f̃η

(
NCNOT
η

)
pη(1− p)NCNOT−η, for p� 1

(172)

= μpη, for p� 1 (173)

FIGURE 10. Fit of (166), for a random example with n = 20. We fit only
using values below 10−6, where it is safe to assume p � 1. As expected,
the fit worsens for higher p.

TABLE 5. Fitted Parameters for α

for some unknown μ, where f̃i is an approximation of
fi(p,NCNOT), which is the unknown function. In the approx-
imation in (171), we consider f̃i as a scalar.

In order to perform a fit, we consider an equivalent version
of this expression for p� 1, given by

Pfailure(p) � 1− exp(−μpη) (174)

and we fit the function

log10(− log(1− Pfailure)) = η log10(p)+ log10(μ) (175)

= η log10(p)+ α (176)

where α = log10(μ). As before, we use log10 to keep the
figures more legible. See Fig. 10 for an example.

We may now study the behavior of η and α for different
n. See Fig. 11 for the results. In this case, we have different
η values, and the values cluster around integers. Since the
n values we tested are relatively low, we only observe η
equal to either 1 or 2. As these cases display notably different
behavior, we separate their data before fitting.
As before, we fit η to an expression of the form

η = η0 + d1 log(1+ exp(d2 · (n− nP))). (177)

We empirically observe that the α variable is better fitted by
a simple linear expression

α = a1n+ a2. (178)

The fitted parameters are given in Table 5.
We may also have a look at the probability of having dif-

ferent η values. The empirical results can be seen in Fig. 12
and Table 6. We observe that, for low n values, the fraction
of random codes with η = 1 and η = 2 is roughly constant,
since the code’s capabilities are not large enough to generally

2100626 VOLUME 6, 2025

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES Engineeringuantum
Transactions onIEEE

FIGURE 11. Plot of η and α. We fit a linear function to α for the higher n
values.

FIGURE 12. Fraction of the simulations with different η0 values.

TABLE 6. Fitted Parameters

correct all ω = 1 errors. As n increases, the probability that
the code corrects all order-1 errors also increases, and we so
the fraction of η = 2 cases increases. Its behavior follows a
sigmoid-like function, of the form:

s1

(
1

1+ e−s2(n−n f) −
1

2

)
+ s3. (179)

The errorbars indicate the standard deviation, which stems
from the finite number (48) of samples taken for each n
value. Also, note the symmetry in the parameters in Table 6,
reflecting the fact that the fractions must add up to one.
For very low n ≤ 12, we observe that about 20% of the

codes have η = 2. On further inspection, their seemingly
high performance does not stem from strong correction ca-
pabilities, but from the fact that, due to random chance, the
stabilizers of these codes have relatively low weight, lead-
ing to a very low number of cnot gates in the SE circuit,
and consequently fewer errors needed to consider. In a more
complex setting where there are additional sources of error,
we would expect these codes in particular to perform poorly.

C. EXTRAPOLATING BEHAVIOR FOR LARGER n
We may take the results above and use them to extrapolate
the performance for larger n values. We also incorporate
the uncertainty observed in the numerical data by using the
standard deviation observed for the sampled n to estimate the
deviation for larger n.

APPENDIX L
SINGLE-QUBIT GATE ERROR MODEL CONSIDERATIONS
Standard circuit-level noise models typically include single-
qubit gate errors, particularly identity gate errors from qubit
idling [34]. The exclusion of these errors in the present work
represents a limitation of the current theoretical analysis. In-
cluding comprehensive single-qubit gate errors would likely
reduce our reported threshold values, and we consider it as
important future work.
We deliberately use a simple, unoptimized stabilizer

implementation to avoid confounding our theoretical re-
sults with circuit-specific optimizations, as indicated in Ap-
pendix A. While gate count and idling could be reduced
through circuit optimization techniques, we chose not to in-
corporate such optimizations to maintain the generality of
our theoretical analysis.
Ourmodel would bemore realistic for trapped-ion systems

where idling errors (due to relaxation or decoherence) are
significantly lower (∼ 10−6) compared to superconducting
qubits (∼ 10−4). In trapped-ion platforms, coherence times
are typically much longer, making idling errors less sig-
nificant compared to active gate operations. This platform-
dependent behavior suggests that our simplified model
captures the dominant error sources for certain quantum
computing architectures.
Nonetheless, in the rest of this section we show that many

of the single-qubit gate errors can be absorbed into our model
through mathematical equivalences.

A. HADAMARD GATE ERRORS
The circuit contains, for each ancilla qubit, a Hadamard gate
after preparation and before measurement. If we model this
gate as suffering an error corresponding to an additional Pauli
gate, then it can be shown that the error can be absorbed into
preparation and measurement errors, respectively.

VOLUME 6, 2025 2100626

Engineeringuantum
Transactions onIEEE

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES

For the Hadamard gate after preparation, a Z-type error
is equivalent to an X error before the Hadamard gate (since
HX = ZH), which is equivalent to a flip preparation bit. A
X-type error similarly corresponds to a Z-type error before
the Hadamard gate, i.e., right after preparation. Since the
prepared qubit is initially either in the state |0〉 or |1〉, a Z-type
error does not introduce additional errors, since it acts as the
identity.
For the Hadamard gate beforemeasurement, a Z-type error

is similarly irrelevant, since the measurement is done in the
computational basis. A X-type error is equivalent to a mea-
surement error, where the measurement bit flips.
For both cases, a Y -type error is a combination of

both error types. Therefore, if the probability of a
preparation/measurement error is pM , and the probabil-
ity of a specific Hadamard gate error is pH/3, then
we can model Hadamard gate errors by simply using
the equivalent probability p′M = pM (1− 2pH

3)+ 2pH
3 (1−

pM) � pM + 2pH
3 . Since, in practice, pM � pH , disregard-

ing the Hadamard gate errors does not significantly affect the
analysis.

B. 1-QUBIT GATE ERRORS
For the 1-qubit gates we consider in our model, possibly
appearing before and after the target of a cnot gate, we can
similarly map them so that the errors actually arise from the
associated cnot gate, while assuming that the 1-qubit gates
are perfect. If their error rate is pG, then the equivalent error
rate for the cnot gates incorporating the 1-qubit Pauli gate
errors is p′ � p+ pG. Similarly to before, p� pG, so their
exclusion from our model does not significantly affect the
analysis.

C. IDLING ERRORS
For comprehensive circuit-based error models, it is standard
to also include errors coming from idle qubits changing over
time, either due to relaxation, decoherence, or more complex
dynamics (e.g., crosstalk). This scenario can be modeled by
assuming that identity gates are applied to the circuit, and
that these gates get converted to a Pauli gate when an error
occurs.
Unlike the previous scenarios, it is harder to map these

errors to equivalent errors in the cnot gates. We can evolve
the idling errors forward in the circuit up to the first cnot
error they encounter, where they can potentially increase in
weight. In our formulation, if we assume that each identity
gate with error pI takes as long as a cnot gate application,
then the errors can compound quickly. Since the stabilizer
application is not optimized, if we apply the n− k stabilizers
in series, and each stabilizer affects w := λn qubits (where
λ = 3/4 in our implementation, and � 1/2 in the optimized
version in Appendix A), then for each main qubit there are
on average

� λn
[
1+ 2(1− λ)+ 3(1− λ)2 + · · ·

]
(180)

= n

λ
=: m (181)

identity gates between cnot gates.
During every idle slot the qubit is acted on by a

singlequbit depolarizing channel DpI

(
ρ
) = (1− 3pI

4

)
ρ +

pI
4

∑
α∈{X,Y,Z}αρα.

In the Pauli frame each gate independently applies

Ej =
{
I, with probability 1− q
X,Y or Z, each with probability q/3

(182)

q := 3pI
4 . (183)

Because the nontrivial Pauli operators modulo a phase
form the abelian group V4 = {I,X,Y,Z}, the net error after
the m idle slots is the group product E := Em· · ·E1. A stan-
dard character argument for random walks on V4 gives

Pr[E = I] = 1
4

[
1+ 3(1− q)m]. (184)

Hence, the equivalent identity error is

p′I = 1− Pr[E = I] (185)

= 3

4

[
1− (1− q)m] (186)

= 3

4

(
1−

(
1− 3pI

4

)n/λ)
(187)

� 9

16
npI/λ, for npI/λ� 1. (188)

Since we expect pI to be about one order of magnitude lower
than p (except for trapped-ion platforms, where pI is much
lower), even relatively low values of n make idling nonneg-
ligible. Nonetheless, we can show that, in a more realistic
setting, where the gate implementation is optimized, idling
can be largely removed, thereby making this error source
negligible.
In an optimized setting, besides implementing the stabi-

lizer optimizations in Appendix A, we would also parallelize
the cnot gates associated with the different stabilizers as
much as possible. In general, it would be possible to paral-
lelize cnot gates associated with different stabilizers when-
ever their target qubits are different.
To quantify how much circuit parallelization is possible

we model the scheduling of the cnot gates associated with
the t := (n− k) � n stabilizers. Write A = {a1, . . . , at} for
the ancilla (control) qubits and B = {b1, . . . , bn} for the data
(target) qubits. Every cnot is an edgee = (ai, b j) in the bi-
partite graph G = (A ∪ B,E). For the code families consid-
ered here the following:

1) each ancilla participates in w = λ n edges (λ = 1
2 or

3
4);

2) for a fixed data qubit b j the number of incident
edges Xj is a random variable Xj ∼ Binomial

(
t, w

n

) =
Binomial (n, λ) with mean μ = E[Xj] = λ n = w.

2100626 VOLUME 6, 2025

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES Engineeringuantum
Transactions onIEEE

A single time step (“layer”) of the circuit is a matching
of G: a set of edges with no common end–points, so that no
qubit is touched twice in the same layer. Partitioning E into
theminimum number of suchmatchings is the edge–coloring
problem; for every bipartite graph, Kőnig’s theorem gives

χ ′(G) = �(G) (189)

where �(G) is the maximum vertex degree. Consequently

D = �(G) = max
{

w, max
1≤ j≤n

Xj
}

(190)

is the optimal cnot depth.
LetMn := max j Xj. A standard Chernoff bound gives, for

any a > 0

Pr[Xj ≥ μ+ a] ≤ exp
(
− a2

2(μ+a/3)
)
. (191)

Choosing a = √2μ ln n and unionbounding over the n data
qubits

Pr
[
Mn ≥ μ+

√
2μ ln n

]
−−−→
n→∞ 0 (192)

so that, with high probability

Mn ≤ w +
√
2w ln n.

Because Mn ≥ w always, we may replace the order symbol
in (190) by its leading constant and write

E[D] = w +
√
2w ln n + o

(√
w ln n

)
(193)

� w +
√
2w ln n (194)

= λ n+
√
2 λ n ln n. (195)

Along any ancilla line exactly w cnots are executed in D
layers, so the number of idle layers on that qubit is D− w.
Averaging the gap between successive cnots over the w − 1
internal intervals gives

NI = D− w

w − 1
(196)

�
√
2w ln n

w
(197)

=
√
2 ln n

w
=
√
2

λ

ln n

n
. (198)

Hence, keeping only the firstorder term,

NI �
√
2

λ

ln n

n
. (199)

This value is lower than 1 and quickly converges to 0 for
high n. Therefore, similarly to before, we could consider an
equivalent p′ � p+ NI pI to model idling errors.

D. EQUIVALENT THRESHOLD
Accounting for these errors, and considering that they are
at least one order of magnitude lower than cnot, prepara-
tion and measurements, leads to an equivalent error rate that

is around 10% higher. Consequently, in this more complex
model, with the necessary circuit optimizations, we would
get a pthreshold that is 10% lower. We note, however, that this
setup would not be sensible, since our empirical threshold
stems from an purposefully unoptimized stabilizer imple-
mentation. It is possible that an implementation with opti-
mized stabilizers (which is outside the scope of this work)
would lead to a naturally higher threshold, regardless of the
1-qubit gate and idling errors.

ACKNOWLEDGMENT
The authors thank Dr. Bill Munro (NTT Basic Research
Labs, Japan) and Prof. Kae Nemoto (National Institute of In-
formatics, Japan) for insightful discussions about QGRAND.
The author Francisco Monteiro thanks Prof. Frank Kschis-
chang (University of Toronto) for discussions on noise guess-
ing decoding, and Dr. Ioannis Chatzigeorgiou (Lancaster
University) for discussions on RLCs and noise guessing de-
coding.

REFERENCES
[1] K. R. Duffy, J. Li, and M. Médard, “Capacity-achieving guessing ran-

dom additive noise decoding,” IEEE Trans. Inf. Theory, vol. 65, no. 7,
pp. 4023–4040, Jul. 2019, doi: 10.1109/TIT.2019.2896110.

[2] D. Cruz, F. A. Monteiro, and B. C. Coutinho, “Quantum error correction
via noise guessing decoding,” IEEE Access, vol. 11, pp. 19446–119461,
2023, doi: 10.1109/ACCESS.2023.3327214.

[3] W. An, M. Médard, and K. R. Duffy, “Keep the bursts and ditch the inter-
leavers,” IEEE Trans. Commun., vol. 70, no. 6, pp. 3655–3667, Jun. 2022,
doi: 10.1109/TCOMM.2022.3171798.

[4] M. Shirvanimoghaddam et al., “Short block-length codes for ultra-reliable
low latency communications,” IEEE Commun. Mag., vol. 57, no. 2,
pp. 130–137, Feb. 2019, doi: 10.1109/MCOM.2018.1800181.

[5] R. Alberto and F. A. Monteiro, “Downlink MIMO-NOMA with and
without CSI: A short survey and comparison,” in Proc. 12th Int. Symp.
Commun. Syst., Netw. Digit. Signal Process., Porto, Portugal, Jun. 2020,
pp. 1–6, doi: 10.1109/CSNDSP49049.2020.9249527.

[6] F. A. Monteiro and I. J. Wassell, “Recovery of a lattice generator matrix
from its gram matrix for feedback and precoding in MIMO,” in Proc. 4th
Int. Symp. Commun., Control Signal Process., Limassol, Cyprus, 2010,
pp. 1–6, doi: 10.1109/ISCCSP.2010.5463408.

[7] M. Chiani and L. Valentini, “Short codes for quantum channels with one
prevalent pauli error type,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 2,
pp. 480–486, Aug. 2020, doi: 10.1109/JSAIT.2020.3012827.

[8] P. W. Shor, “Scheme for reducing decoherence in quantum com-
puter memory,” Phys. Rev. A, vol. 52, pp. R2493–R2496, 1995,
doi: 10.1103/PhysRevA.52.R2493.

[9] A.M. Steane, “Error correcting codes in quantum theory,”Phys. Rev. Lett.,
vol. 77, pp. 793–797, 1996, doi: 10.1103/PhysRevLett.77.793.

[10] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Sur-
face codes: Towards practical large-scale quantum computation,” Phys.
Rev. A, vol. 86, no. 3, Sep. 2012, Art. no. 032324, doi: 10.1103/Phys-
RevA.86.032324.

[11] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting
codes exist,” Phys. Rev. A, vol. 54, no. 2, pp. 1098–1105, Aug. 1996,
doi: 10.1103/PhysRevA.54.1098.

[12] D. Gottesman, “Stabilizer codes and quantum error correction,” Ph.D.
dissertation, California Inst. of Technol., Pasadena, CA, USA, May 1997,
doi: 10.48550/arXiv.quant-ph/9705052

[13] D. Chandra, Z. B. K. Egilmez, Y. Xiong, S. X. Ng, R. G. Maunder,
and L. Hanzo, “Universal decoding of quantum stabilizer codes via
classical guesswork,” IEEE Access, vol. 11, pp. 19059–19072, 2023,
doi: 10.1109/ACCESS.2023.3247966.

[14] A. Roque, D. Cruz, F. A. Monteiro, and B. C. Coutinho, “Efficient entan-
glement purification based on noise guessing decoding,” Quantum, vol. 8,
Sep. 2024, Art. no. 1476, doi: 10.22331/q-2024-09-19-1476.

VOLUME 6, 2025 2100626

https://dx.doi.org/10.1109/TIT.2019.2896110
https://dx.doi.org/10.1109/ACCESS.2023.3327214
https://dx.doi.org/10.1109/TCOMM.2022.3171798
https://dx.doi.org/10.1109/MCOM.2018.1800181
https://dx.doi.org/10.1109/CSNDSP49049.2020.9249527
https://dx.doi.org/10.1109/ISCCSP.2010.5463408
https://dx.doi.org/10.1109/JSAIT.2020.3012827
https://dx.doi.org/10.1103/PhysRevA.52.R2493
https://dx.doi.org/10.1103/PhysRevLett.77.793
https://dx.doi.org/10.1103/PhysRevA.86.032324
https://dx.doi.org/10.1103/PhysRevA.86.032324
https://dx.doi.org/10.1103/PhysRevA.54.1098
https://dx.doi.org/10.48550/arXiv.quant-ph/9705052
https://dx.doi.org/10.1109/ACCESS.2023.3247966
https://dx.doi.org/10.22331/q-2024-09-19-1476

Engineeringuantum
Transactions onIEEE

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES

[15] S. Santos, F. A. Monteiro, B. C. Coutinho, and Y. Omar, “Shortest path
finding in quantum networks with quasi-linear complexity,” IEEE Access,
vol. 11, pp. 7180–7194, 2023, doi: 10.1109/ACCESS.2023.3237997.

[16] L. Bugalho, B. C. Coutinho, F. A. Monteiro, and Y. Omar, “Distribut-
ing multipartite entanglement over noisy quantum networks,” Quantum,
vol. 7, p. 920, Feb. 2023, doi: 10.22331/q-2023-02-09-920.

[17] B. C. Coutinho, W. J. Munro, K. Nemoto, and Y. Omar, “Robustness
of noisy quantum networks,” Commun. Phys., vol. 5, no. 1, pp. 1–9,
Apr. 2022, doi: 10.1038/s42005-022-00866-7.

[18] A.-K. Wu, L. Tian, B. C. Coutinho, Y. Omar, and Y.-Y. Liu, “Structural
vulnerability of quantum networks,” Phys. Rev. A, vol. 101, May 2020,
Art. no. 052315, doi: 10.1103/PhysRevA.101.052315.

[19] G. Q. AI, “Suppressing quantum errors by scaling a surface code
logical qubit,” Nature, vol. 614, no. 7949, pp. 676–681, Feb. 2023,
doi: 10.5281/zenodo.6804040.

[20] D. F. Locher, L. Cardarelli, and M. Müller, “Quantum error correc-
tion with quantum autoencoders,” Quantum, vol. 7, p. 942, Mar. 2023,
doi: 10.22331/q-2023-03-09-942.

[21] J. Roffe, “Quantum error correction: An introductory guide,”
Contemporary Phys., vol. 60, no. 3, pp. 226–245, Jul. 2019,
doi: 10.1080/00107514.2019.1667078.

[22] Z. Babar et al., “Duality of quantum and classical error correction codes:
Design principles and examples,” IEEE Commun. Surv. Tut., vol. 21, no. 1,
pp. 970–1010, Firstquarter 2019, doi: 10.1109/COMST.2018.2861361.

[23] W. Brown andO. Fawzi, “Short random circuits define good quantum error
correcting codes,” in Proc. IEEE Int. Symp. Inf. Theory, Istanbul, Turkey,
Jul. 2013, pp. 346–350, doi: 10.1109/ISIT.2013.6620245.

[24] J. Nelson, G. Bentsen, S. T. Flammia, and M. J. Gullans, “Fault-tolerant
quantum memory using low-depth random circuit codes,” Phys. Rev.
Res., vol. 7, Jan. 2025, Art. no. 013040, doi: 10.1103/PhysRevRe-
search.7.013040.

[25] A. K. Fedorov, N. Gisin, S. M. Beloussov, and A. I. Lvovsky, “Quantum
computing at the quantum advantage threshold: A down-to-business re-
view,” Mar. 2022, arXiv:2203.17181, doi: 10.48550/arXiv.2203.17181.

[26] M. J. Gullans, S. Krastanov, D. A. Huse, L. Jiang, and S. T. Flammia,
“Quantum coding with low-depth random circuits,” Phys. Rev. X, vol. 11,
no. 3, Sep. 2021, Art. no. 031066, doi: 10.1103/PhysRevX.11.031066.

[27] G. Smith and J. A. Smolin, “Degenerate quantum codes for pauli
channels,” Phys. Rev. Lett., vol. 98, Jan. 2007, Art. no. 030501,
doi: 10.1103/PhysRevLett.98.030501.

[28] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quan-
tum memory,” J. Math. Phys., vol. 43, no. 9, pp. 4452–4505, Sep. 2002,
doi: 10.1063/1.1499754.

[29] I. B. Djordjevic, Quantum Information Processing, Quantum Computing,
and Quantum Error Correction: An Engineering Approach, 2nd ed. Ox-
ford, U.K.: Academic Press, 2021, doi: 10.1016/C2019-0-04873-X.

[30] P. Iyer and D. Poulin, “Hardness of decoding quantum stabilizer codes,”
IEEE Trans. Inf. Theory, vol. 61, no. 9, pp. 5209–5223, Sep. 2015,
doi: 10.1109/TIT.2015.2422294.

[31] M.-H. Hsieh and F. Le Gall, “NP-hardness of decoding quantum error-
correction codes,” Phys. Rev. A, vol. 83, May 2011, Art. no. 052331,
doi: 10.1103/PhysRevA.83.052331.

[32] K.-Y. Kuo and C.-C. Lu, “On the hardness of decoding quantum stabilizer
codes under the depolarizing channel,” in Proc. Int. Symp. Inf. Theory
its Appl., Honolulu, HI, USA, 2012, pp. 208–211. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/6400919

[33] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer
circuits,” Phys. Rev. A, vol. 70, no. 5, Nov. 2004, Art. no. 052328,
doi: 10.1103/PhysRevA.70.052328.

[34] P. Das, S. Tannu, S. Dangwal, and M. Qureshi, “Adapt: Mitigating idling
errors in qubits via adaptive dynamical decoupling,” in Proc. 54th Annu.
IEEE/ACM Int. Symp. Microarchitecture, New York, NY, USA, 2021,
pp. 950–962, doi: 10.1145/3466752.3480059.

Diogo Cruz received the B.Sc. and M.Sc. de-
grees in physics engineering from Instituto Supe-
rior Técnico, University of Lisbon, Lisbon, Por-
tugal, in 2019, where he is currently working to-
ward the Ph.D. degree in physics.

He is a Researcher with Instituto de Telecomu-
nicações, Lisbon. He was a Calouste Gulbenkian
Scholar in 2018/2019.

Francisco A. Monteiro (Member, IEEE) re-
ceived the Licenciatura and M.Sc. degrees in
electrical and computer engineering from Insti-
tuto Superior Técnico (IST), University of Lis-
bon, Lisbon, Portugal, and the Ph.D. degree from
the University of Cambridge, Cambridge, U.K.

He is currently an Associate Professor with the
Department of Information Science and Technol-
ogy, ISCTE—University Institute of Lisbon, Lis-
bon, and a Researcher with Instituto de Teleco-
municações, Lisbon. Hewas a TeachingAssistant

with the IST, University of Lisbon. He held visiting research positions with
the University of Toronto, Toronto, ON, Canada, University of Lancaster,
Lancaster, U.K., University of Oulu, Oulu, Finland, and University of Pom-
peu Fabra, Barcelona, Spain.
Dr. Monteiro was the recipient of the two best paper prizes awards at

IEEE conferences (2004 and 2007), a Young Engineer Prize (3rd place)
from the Portuguese Engineers Institution (Ordem dos Engenheiros) in
2002, and for two years in a row Exemplary Reviewer Awards from
the IEEE Wireless Communications Letters (in 2014 and in 2015). He
co-edited the book “MIMO Processing for 4G and Beyond: Fundamen-
tals and Evolution,” published by CRC Press in 2014. In 2016 he was
the Lead Guest Editor of a special issue on Network Coding of the
EURASIP Journal on Advances in Signal Processing. He was a General
Chair of ISWCS 2018 - The 15th International Symposium on Wire-
less Communication Systems, an IEEE major conference in wireless
communications.

André Roque received the B.Sc. and M.Sc. de-
grees in applied mathematics and computation
from Instituto Superior Técnico, University of
Lisbon, Lisbon, Portugal, in 2023.

Since 2023, he has been a Research Assis-
tant with the Physics of Information and Quan-
tum Technologies Group, Instituto de Telecomu-
nicações, Lisbon.

Bruno C. Coutinho received the B.Sc. and
M.Sc. in physics, from the University of Aveiro,
Aveiro, Portugal, in 2009 and 2011, respectively,
and the Ph.D. degree in physics from Northeast-
ern University, Boston, MA, USA, in 2016.

Since 2017, he has been with the Physics of
Information and Quantum Technologies Group,
Instituto de Telecomunicações, Lisbon, Portugal,
initially as a Postdoctoral, and later as a Research
Fellow. In 2025, he joined the Institute of Com-
munications and Navigation, German Aerospace

Center, Weßling, Germany.

2100626 VOLUME 6, 2025

https://dx.doi.org/10.1109/ACCESS.2023.3237997
https://dx.doi.org/10.22331/q-2023-02-09-920
https://dx.doi.org/10.1038/s42005-022-00866-7
https://dx.doi.org/10.1103/PhysRevA.101.052315
https://dx.doi.org/10.5281/zenodo.6804040
https://dx.doi.org/10.22331/q-2023-03-09-942
https://dx.doi.org/10.1080/00107514.2019.1667078
https://dx.doi.org/10.1109/COMST.2018.2861361
https://dx.doi.org/10.1109/ISIT.2013.6620245
https://dx.doi.org/10.1103/PhysRevResearch.7.013040
https://dx.doi.org/10.1103/PhysRevResearch.7.013040
https://dx.doi.org/10.48550/arXiv.2203.17181
https://dx.doi.org/10.1103/PhysRevX.11.031066
https://dx.doi.org/10.1103/PhysRevLett.98.030501
https://dx.doi.org/10.1063/1.1499754
https://dx.doi.org/10.1016/C2019-0-04873-X
https://dx.doi.org/10.1109/TIT.2015.2422294
https://dx.doi.org/10.1103/PhysRevA.83.052331
https://ieeexplore.ieee.org/abstract/document/6400919
https://dx.doi.org/10.1103/PhysRevA.70.052328
https://dx.doi.org/10.1145/3466752.3480059

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

