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ABSTRACT This work addresses the open question of implementing fault-tolerant quantum random linear
codes (QRLCs) with feasible computational overhead. We present a new decoder for QRLCs capable of deal-
ing with imperfect decoding operations. A first approach, introduced by Cruz et al. (2023), only considered
channel errors and perfect gates at the decoder. Here, we analyze the fault-tolerant characteristics of QRLCs
with a new noise guessing decoding technique, when considering preparation, measurement, and gate errors
in the syndrome extraction procedure, while also accounting for error degeneracy. Our findings indicate a
threshold error rate (preshola) Of approximately 2 x 1072 in the asymptotic limit, while considering realistic

noise levels in the mentioned physical procedures.

INDEX TERMS Fault-tolerance, noise guessing decoding, quantum error correction, quantum random

linear codes (QRLCs), syndrome extraction (SE).

I. INTRODUCTION

It is known that classical random linear codes (RLCs) are
capacity-achieving [1]. However, until the advent of guess-
ing random additive noise decoding (GRAND), their de-
coding was not practical, except for some decoders based
on trellises (as pointed out in [2]). GRAND has been
proposed with the aim of reducing end-to-end latency in
coded wireless systems, which has been a drawback for
a long time. The rationale in the original proposal of
GRAND was that by using short codewords, the so-called
interleavers, which are used to make the errors indepen-
dent and identically distributed, would no longer be re-
quired [3]. Using short blocks in wireless systems also
helps to better adapt to the channel variations when ap-
plying precoding techniques [4], [5], [6]. In the quantum
realm, due to technical limitations in manipulating qubits,
short block codes appear as natural candidates for quan-
tum error correction codes (QECCs) [7], [8], [9], [10], [11].
These limitations also necessitate the development of fault-
tolerant techniques to handle noise and errors in quantum
operations [12].
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Like classical RLCs, quantum RLCs (QRLCs)
attain the capacity of the quantum channels, but no
practical decoder existed for them until the advent of
quantum GRAND (QGRAND), which allowed to
numerically assess their performance for the first time [2].
A recent work also used a GRAND-like approach to decode
several families of structured quantum codes that are based
on stabilizer codes [13]. QGRAND has also been applied to
the purification of quantum links, taking advantage of the
connection between purification and error correction [14],
which will have great implications on the way routing is
implemented in quantum networks [15], [16], [17], [18].

QRLCs are a much more flexible solution than other struc-
tured quantum codes for QECCs, with advantages in respect
to the state-of-the-art solutions designed to detect and correct
errors in quantum setups [19], [20]. In contrast to structured
codes, which may only exist for a very limited number of
code rates and codeword lengths [21], [22], QRLCs can ex-
ist for a wide range of coding rates and codeword lengths
that may better fit some particular applications. A method to
generate QRLCs efficiently was proposed in [23]. However,

2100626

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


https://orcid.org/0000-0002-8678-5456
https://orcid.org/0000-0003-2381-6320
https://orcid.org/0000-0002-9980-1857
mailto:diogo.cruz@lx.it.pt

@IEEE Transactions on,
uantumEngineering

Cruz et al.: FAULT-TOLERANT NOISE GUESSING DECODING OF QUANTUM RANDOM CODES

almost no practical method existed until recently to decode
them until the proposal in [2].

The channel model used in that work was a Shannon-
like channel, where errors occur only in the channel and
all the decoding process is perfect. However, in all current
technologies implementing qubits, the errors that take place
in the quantum gates of the decoding circuit cannot be ig-
nored. Hence, a practical challenge remained after [2]: can a
QRLC-QGRAND system be made practical in the presence
of the extra errors coming from the quantum gates, enabling
fault-tolerant QECCs based on QRLCs?

This article shows that, surprisingly, due to the particular
way that the syndrome extraction (SE) takes place in codes
based on stabilizers, some heavy reduction of the effects of
those errors takes place, making the whole system viable.
Building on previous work [2], [14], we present a com-
prehensive analysis of fault-tolerant QRLCs, incorporating
the effects of preparation, measurement, and gate errors.
Our results show that QRLCs, decoded with the proposed
method, exhibit robust error correction capabilities with a
threshold error rate pinreshold Of approximately 2 x 1072,
This advancement paves the way for practical implemen-
tations of QRLCs in quantum error correction, contribut-
ing to the development of scalable and resilient quantum
systems.

While recent work by Nelson et al. [24] has addressed
fault-tolerant quantum error correction using low-depth ran-
dom circuit codes, our work focuses on QRLCs decoded
with the QGRAND technique. Both approaches work with
stabilizer codes generated through random constructions, but
differ in their specific code constructions, decoding meth-
ods, and target applications. Their work addresses fault-
tolerant state preparation and distillation protocols for quan-
tum memory applications, while our approach focuses on
fault-tolerant syndrome decoding for error correction.

Although our results suggest that QGRAND could in the-
ory enable a fault-tolerant implementation of QRLCs, some
challenges remain that limit its usefulness in that regime.
QGRAND is most suitable for situations where the noise en-
tropy is relatively low, in which case decoding becomes com-
putationally efficient. However, in the fault-tolerant regime
where n may be considered to be considerably large or it
is necessary to iteratively apply error correction to suppress
errors, the noise entropy can be considerably high. In this
regime, the optimal procedure described in this article be-
comes infeasible, and suboptimal heuristics would have to be
introduced. Nonetheless, this work paves the way for applica-
tions of QGRAND whenever the considered noise types all
have low entropy, which encompasses setups with realistic
noise conditions.

The rest of this article is organized as follows. In Sec-
tion II, we introduce the setup considered in the analysis, and
in particular its noise model. In Section III, we define some
useful error notation terms and set the notation used through-
out this article. Section IV presents the decoding method,
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extended form [2] to account for degenerate errors. In Sec-
tion V, we present an analysis of the codes’ performance
for various qubit counts. Finally, Section VI concludes this
article. To help the reader, a notation summary is listed in
Table 1.

Il. SETUP AND NOISE MODEL

‘We use the same setup as in [2], but consider the fault-tolerant
regime, where the constituent quantum gates in the circuit
may be affected by error. We consider an initial k-qubit |y)
quantum state, to be encoded into n > k qubits. Brown and
Fawzi [23] presented a method of generating a random qubit
encoding, which we use in this work. One starts by randomly
selecting Clifford unitaries from the C, group (i.e., Clifford
unitaries for 2 qubits). There are |Cp| = 11520 such uni-
taries, and all of them can be built by simple combinations of
the Hadamard (H), phase (v/Z), and cNOT gates, which have
efficient physical implementations in virtually any quantum
setting [25]. In matrix form, these are defined as

(i )= (s =3 )
(D

with X, Y, and Z the Pauli matrices, and / the 2 x 2 identity
matrix.

After selecting these random unitaries from C,, one suc-
cessively applies each of them to a random pair of qubits,
taken from the set of n qubits.

This process leads to an encoding unitary for our stabilizer
code which, when applied to the initial k qubits and (n — k)
extra |0) qubits added, returns a n-qubit encoded quantum
state. As shown in [23], as long as O(n log2 n) gates are used,
with a circuit depth of O(log? n), the construction leads to
a highly performant (n, k) code, and from [26] it is already
known that these complexity orders can be further lowered.

We use these QRLCs to construct stabilizer codes. Com-
pared to the approach in [2], in this work, we consider a
noise model that is more realistic by also including prepa-
ration, measurement, and gate errors. Given that, in practical
applications, the error of 2-qubit entangling gates generally
dominates over single-qubit gate errors [10], we focus on the
former type of error. We further analyze the appropriateness
of our model in Appendix L. We assume that every gate
in both the encoding and SE steps is decomposed into the
Clifford gates {CNOT, H, v/Z}.

For the noise statistics, we consider the model similar
to the one in [10], but without single-qubit gate errors
(see Fig. 1).

1) cNot gate errors: After the ideal implementation of
the cNOT(a, b) gate, with qubit a controlling b, it is
assumed that one of the 15 errors of the form

040y, 2
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TABLE 1. Notation Summary

Variable | Description Relationships
U Unitary encoding circuit for a quantum error-correcting code
S; The ™ minimal stabilizer of the code (1 <i<n —k ) S =UZ; ,UT
X; Logical X operator on the j® encoded qubit (1 < j < k) X; =UX,;UT
Z; Logical Z operator on the j™ encoded qubit (1 < j < k) Z; =UZ;U'
N List of all possible errors E; in the noise model, with associated
probabilities p;
EZ-B A base error (error affecting a single qubit or gate)
w The number of base errors that compose a compound error E; = Eﬁ e Eili
eé Local error pattern corresponding to a base error EiB
C,B Unitary components of a SE circuit, applied before/after an error | V = CB
EP occurs
Ve SE circuit affected by error EZ Vi = CelB
e Propagated error pattern on the main qubits after £ and subsequent | e; = (CelCT),,
circuit operations
e Propagated error pattern on the ancilla qubits after £ and subsequent | e = (CelCT),
circuit operations
A Quantum check matrix of the code (binary representation in [X|Z]
format)
e; Binary representation of the main error pattern e; (in [Z|X] format)
L Logical error group generated by X; and Z;
L; One of the 2%% logical error patterns in £ e; = E;S;L;
S Stabilizer group generated by S;
Si One of the 2"~ F stabilizer patterns in S e; = E;S;L;
E; Error pattern with the same syndrome as e; e; = E;S;L;
0 Vector representing zero syndrome (n — k zero bits)
S; Syndrome associated with a (propagated) error pattern e; §; = ;AT
D A degenerate set: A set of error patterns with the same syndrome that
can be corrected similarly
ed Representative of the errors in a degenerate set D ed = E;L;
g Index of the SE where an error EZ occurred
S; Syndrome acquired in the same extraction as error EP §; = comp y (bin(ef))
S; Syndrome acquired in a subsequent extraction after 7 occurred 8, = compy (bin((Ve;VT),))
S; Measured syndrome in a particular SE
s List of all acquired syndromes over multiple extractions: {s’,...,s?}
Q(E;) | Syndrome sequence expected for a compound error E; O(E;) =5 & B sy,
transmission 3) Measurement errors: While measuring each ancilla
) o Ut e”Em | momEn--- - g . qubit to extrgc?t the sync%romej each measurement b?t
10) ] L e PNk has a probability p gf being misread, so that a zero bit
Encoder gate isread as a 1, and vice-versa.
€error @_B

preparation
1 UTOUISINSROUI

0 {H———4HHA,

Syndrome extraction

FIGURE 1. Noise model considered.

with O, Oy, € {1, X, Y, Z} and excluding 0,0y, # 1,1,
occurs with probability p/15. Here, I is the identity
gate, and X, Y, and Z are the Pauli matrices.

2) Preparation errors: While setting the (n — k) ancilla
qubits (for each SE) to |0), each qubit has (indepen-
dently) a probability p of being prepared in the state
|1) instead.
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Unlike the model in [2], to demonstrate the fault-tolerant
properties of this model, we exclude a source of error be-
tween the encoding and SE sections (i.e., the “transmis-
sion error” in Fig. 1), and instead focus on the case where
the cNOT gate error stemming from the SE dominates the
noise statistics of the circuit. This simpler model facilitates
the study of the QGRAND decoding approach in the fault-
tolerant regime, which is the focus of this work. While pos-
sible (see Appendix A), we make no further modifications to
the circuit implementation.

11l. ERROR CORRECTION OVERVIEW

In the fault-tolerant regime with a noisy gate model, de-
generate errors play a significant role in the error cor-
rection capabilities of the code [27]. As a result, the
approximation made in [2], where codes were approximated
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to be nondegenerate, is no longer accurate, as it would sig-
nificantly underestimate the code’s capabilities.

In addition, in the fault-tolerant regime, we must consider
an iterated application of the SE procedure, instead of a
single application, in order to capably detect the errors being
introduced by the SE procedure itself. This is a common
approach [19], [28] to quantum error correction when gate
and measurement errors are nonnegligible, and the decod-
ing procedure has into account not just the syndrome from
one extraction process, but the whole history of syndrome
measurements.

As a result of this added complexity, in this section we
clarify the notation we use in this work. We use X, Z; to
represent the logical operators corresponding to the unen-
coded operators X;, Z;, respectively. Given an encoding U
(see Fig. 1), the choice of minimal stabilizers S; and logical
operators is not unique. Without loss of generality (W.l.o.g.),
we consider the minimal stabilizer S; (for 1 <i <n — k) and
logical operators X, Z; (for 1 < j < k) to be given by

Si = UZipU' 3)
X, =ux;Uu’ )
Z;=UZ;U". Q)

Following Section II, the noise model enables us to cre-
ate a list N = {(po, Ep), (p1, E1), ...} of all the errors E;
that the encoded quantum state may be subjected to, along
with its, respectively, probability p; of occurring. An error E;
refers to the qualitative process that occurred physically, such
as “a X»Z3 error occurred in the cNOT(2,3) gate, and no other
errors,” for example.

An error E; that corresponds to either only one wrongly
prepared qubit, or one wrongly measured qubit, or one noisy
CNOT gate, is called a base error, and may be explicitly
labeled as EiB . Every other error in the noise model of
Section II can be described as a combination of base errors.

We consider the errors E; to be disjunctive, so only one
error in N may occur, and their probability sums to 1. When
using the base error notation EiB , we implicitly refer only to
the specific base error that occurred, without making claims
about the occurrence of other base errors. For example, using
the noise model in Section II, the base error EZ =“X,Z3 error
in the cNOT(2,3) gate” would have a probability of occurring
of p/15, while the corresponding error E =*“X,Z3 error in the
CNOT(2,3) gate, and no other errors” would have a probabil-
ity of (p/15) x P(no other base error occurs), which would
possibly be much lower. We may use the shorthand notation
EB := E for errors where only one base error occurs.

Compound errors may be represented by their own sym-
bol or as the product of errors that compose it. That is, for
simplicity, given base errors £/ and E7, we also have the
compound error notation

E, =EPnE¥n| () EB

mi, j

=: EJEY}. (6)
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An error £ is said to be of order w if w base errors suffice to
describe it, so that £ = EiB e Ei . Note that the constituting
base errors may stem from different SE.

Given a base error, let ¢! be the local error pattern corre-
sponding to the error that occurred locally. In the example
above, we would have ef = X»Z3. In general, for gate er-
rors affecting only one cNOT gate, we would have an error
pattern from (2). For preparation and measurement errors,
¢! would be represented by X operators in the appropriate
ancilla qubits.

Unless the error ElB occurs at the end of a SE process,
it will propagate through the rest of the quantum circuit,
possibly impacting other qubits. Let V be the unitary corre-
sponding to one noiseless SE process, minus the final mea-
surement step of the ancilla qubits. We may partition V into
the unitaries B and C, corresponding to the portion of the SE
circuit that occurs before and after the error E iB , respectively.
If the SE affected by EZB is given by the unitary Vg, we have

V =CB (7)
Ve = CelB = (¢ @ e))V. (8)

The resulting (propagated) error pattern may affect nontriv-
ially both the main n qubits (main error pattern e;) and the
(n — k) ancilla qubits (ancilla error pattern e;).

A Pauli string of n qubits is an operator that is the product
of the Pauli operators X, Y, and Z on those qubits. It has the
form

gi%‘pOlOZ - On
with O; € (XY, Z I}and ¢ € {0,1,2,3}.  (9)

As eﬁ is a Pauli string, and C is a Clifford unitary, then both
e; and ef are Pauli strings. Similarly, following (3) to (5),
the minimal stabilizers and logical operators are also Pauli
strings, since U is a Clifford unitary as well. A Pauli string is
said to have weight 7 if it acts on ¢ qubits, that is, if its Pauli
string contains ¢ Pauli operators (excluding the identity).

For the previous example with E,.B, we would have ef ®
e; = C(X»Z3)C". While the effect of e} is removed by the
syndrome measurement, the same cannot be said of ¢;. As
E iB propagates through the circuit, the pattern ¢; is picked up
by subsequent SE, and is ultimately the error pattern that our
correction process needs to consider to undo the effect of El.B
on the main n qubits. See Fig. 2 for an example.

In Fig. 2, we showcase a simple example, with two SE,
where there is only one minimal stabilizer S| = X;X>. An
error occurs in the first cNOT gate, so E = “Z; 1, error in first
CcNoT gate, and no other errors.” The error is not detected
by the first SE process, so s =8 = 0. By the end of the
first SE, the evolved uncorrected error is e = Z; . It is now
detected by the second extraction, so s = § = 1. If it is not
corrected, subsequent extractions will behave similarly to the
second one, returning the syndrome 1.
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SE; SE,
1), = A
100)+]11) z Y
V2 P &P
s=0
0) A -

0){z}e—e{Hli A

FIGURE 2. Simple example, with two SE. The error is not detected by the
first SE process, but it is detected by the second extraction.

Since Y = iXZ, any Pauli string of n qubits can also be
written in the form

¢3¢ (0F...0%) (07.-.0%) (10)

with oj? e {X, 1}, OJZ. e{Z Iyand ¢ € {0, 1,2, 3}.
The Pauli string may then be encoded as a binary row
vector. In [X|Z] format, it takes the form

(b by - by D5 By ] (an
.p_ |1, ifO;=P
with bj o, 0, =1 and P € {X, Z}. (12)

In [Z]X] format, the bj‘ entries are swapped with bf By
default, binary vectors and matrices are represented in bold.
We may use the functions

bin(e) :=e, op(e) :=e (13)

compp(e) := [b] -+ b ] (14)

with P € {X, Z} and ¢ = |e|/2, to indicate the conversion to
and from binary representation, and to refer to a particular
component of e, respectively. Calculations using binary are
performed in [, that is, using modular arithmetic mod 2. The
functions bin and op stand for the transformations of Pauli
operators from and to, respectively, binary arrays.

Let A be the quantum check matrix [29], a (n — k) x 2n
binary matrix (in [X|Z] format) where each row j encodes
the minimal stabilizer S; of the code. This is a compact
way of representing the encoding used. Let e; be the binary
representation of the error pattern e; as a 2n-sized row vector,
in [Z]X] format. Any evolved error pattern e; can be written
as

e; = E;S;L (15)

where L; is one of the 22 logical error patterns in the logical
error group £ generated by the logical operators X s V4 i1 <
Jj < k; S; is one of the 27—k stabilizers in the stabilizer group
S generated by the minimal stabilizers S 1< j<n-—k
and E; is some error pattern with the same syndrome § =
e;AT as ¢; [29]. We use 0 to represent the syndrome with all

VOLUME 6, 2025

entries equal to zero. W.l.o.g., for the decomposition, we as-
sume the phase factor ¢ [see (10)] to be zero, since neglecting
it adds at most a global phase to the encoded quantum state,
which can be disregarded. As a result, we consider each error
pattern to equal its inverse.

The decomposition in (15) is not unique, and is depen-
dant on the choice made for the particular logical operators,
minimal stabilizers, and E; patterns to use. For the sake of
simplicity in the notation, in this work, it is assumed that such
a decomposition is the unique one obtained deterministically
by following the procedure described in Section IV. Conse-
quently, we assume that, associated with each error pattern e;,
there is a unique set of operators E;, S;, and L;. In particular,
for patterns with § = 0, the operator E; is the identity. Since
all error patterns with the same syndrome will have the same
error component E, we use E;g to indicate the error component
of the error patterns with syndrome §.

Compound error patterns, such as e, = ¢;e;, may be eas-
ily encoded in binary form by using the modular sum (i.e.,
XOR), so that e, =e; @ e; and §, = §; @ §;. Given two er-
ror patterns e;, e; with the same syndrome §, their product
e, has syndrome §; =8§ @ S§ =0, so E, is the identity op-
erator. Therefore, there is a unique S € S, L € L such that
e; = ¢;SL, with S = SiS; and L = LiLj.

A degenerate set D is a set of evolved error patterns that
can be treated similarly, for correction purposes. This set
depends on § and L. Although all error patterns with the same
syndrome § have the same representative error pattern Eg, not
all can be corrected similarly. For that to be the case, their
logical error component L must be the same. Since we know
that two error patterns are degenerate if e;e; € S, we may
verify this by computing e, = e;e; = (E;S;L;)(E;S;Lj) =
(E;E;)(S;S;)(L;Lj) = E,S;L,. For e, to be in &, we must
have E, = L, = I, which is only the case if E; = E; and
L; = L;. The former is true if ¢; and e; have the same syn-
drome §, while the latter is more complicated to verify, but
we know that there are only 2% possibilities in £ to consider.
Ultimately, we may index the degenerate sets based on their
syndrome and logical error component, both represented by
the tuple (S, L). We use ef’ = E;L; to refer to the actual rep-
resentative of ¢; (and its degenerate equivalents) during the
correction process, since we know that if we can correct e? by
applying the unitary (e;i)T to the circuit, so can we indirectly
also correct ¢;, since (ef)Te; = S;, and stabilizers act as the
identity on the encoded quantum state.

For an error E; arising from SE g, there are two associated
syndromes of interest, instead of one. The syndrome

§ =eAT (16)

corresponds to the syndrome obtained from a subsequent
noiseless SE after extraction g, that is, after the error has
occurred. In this case, we can consider the error model to be
similar to the one used in [2], where the (propagated) error
pattern e; is present before any stabilizer is applied for the SE
process. Instead of using (16), we may alternatively compute
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§; by first computing the ancilla error pattern. If we think of
e; as a different local error pattern eﬂ., then, following (8), we
must have

VeV = VeleT = ej ® e; (17)

and §; is given by the X component [i.e., second half in [Z]|X]
format; see (11)] of e‘;.. This type of syndrome is always zero
for preparation and measurement errors, since measurement
errors do not affect subsequent extractions. Under this latter
formalism, we may observe this by noting that if e; = I, then
necessarily ¢’ = I and §; = 0.

Beyond this typical syndrome, we also have the syndrome
S; obtained from the same extraction g where the error ElB
occurred. For instance, if the error occurs at the last imple-
mented CNOT gate, it is likely that §; = 0. Unlike §;, this syn-
drome is nonzero for simple measurement errors. In general,
this syndrome contains less information than §;, since, for
errors later in the extraction, many of the syndrome bits will
be zero, as the stabilizers were applied before the error oc-
curred. Following the second approach previously presented
to compute §; [see (17)], we have that §; is given by the X
component of the original ancilla qubit pattern €] (in binary
form).

Both § and § refer to a (n — k) bit string, corresponding
to the syndrome that could be obtained from a single SE.
As both these syndromes can be deterministically obtained
from the error E of interest, we use the simple notation s
to specifically refer to the syndrome that is measured dur-
ing the SE. As previously stated, for errors stemming from
only one extraction (labeled g), we have either s = § (if the
measured syndrome comes from the noisy extraction), s = 0
(if it comes from a previous extraction) or s = § (if from a
subsequent extraction).

In general, compound errors may stem from multiple SE.
We use superscript notation to indicate the extraction index,
in order to distinguish it from the error index (which is a
subscript). When there are g SE, we refer to the total list
of measured syndromes by s := {sl, ..., 87}, If some base
error Ef’g occurs at extraction g, we expect to measure the
syndrome sequence given by

1 ~g agtl .
si:{...,05 85, 8% ,...,s?}. (18)

Note that, for compound errors, the syndrome sequences of
the constituting errors may be combined. If E, = E;E}, then
s, = 5; @ sj, where the modular sum operation is applied
element-wise, to all g syndromes. Then, for E; = Eﬁ e Efi ,
we have

Q(E/) =5;=5,D - Dsj,- (19)

In particular, if errors E; and E; occur at extractions g and
h (h > g), respectively, and no other errors occur, then we
would expect to measure the syndrome sequence

i gy e ey

1 g agtl
s:{...,()g l,s‘f,sng
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FIGURE 3. Relations between the different quantities of interest. For
simplicity, every error represented is assumed to be a base error. The
notation is explained in the last paragraph of Section III.

glgesidtedt ) Qo)

As a result, we observe that §;,§;, §;, and §; do not directly
provide the full information necessary to identify the com-
pound error ElgE;’ that occurred. In the general case where
there are ¢ SE, we may require all ¢ measured syndromes to
optimally correct errors.

For compound errors E, stemming from multiple SE, the
syndrome §, is undefined, but §, may still be defined as

w
s =Ps; @1
j=1

where §;; are the syndromes of the constituting base errors.
Similarly, e, = ¢;, - --e;,. The decomposition in (15) and
subsequent analysis is also applicable.

The notation is summarized in Fig. 3, with an exam-
ple given in Fig. 2. The mappings V,, V, H, H, Fg,
and F; are mostly independent, and generally noninjec-
tive. V and V; stem from (8), and provide the main
and ancilla error patterns ¢; and e;. Concretely, we have
ej = V(el) = (CelC),y, and e = Vy(el) = (CelCT),, where
m and a stand for the main and ancilla subspaces,
respectively. Using (17) yields # and H. The latter can
also be implemented by using (16). Concretely, we have
§; = H(e;) = bin(e;))AT = compx(bin((Ve,-V'I')a)) and §; =
ﬁ(ef) = compy (bin(e)) [see (13) and (14)]. The §; and s;
obtained by the SE process can then be used to try and de-
termine el‘.’ , the representative pattern of the degenerate set
to which e; belongs. By applying ef to the noisy quantum
state, we correct the effect of the error E;. The mappings Fg
and F, are quite involved, so their description is delegated
to Section IV.
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Algorithm 1: Optimal decoding.
Require: A/
Ensure: A decoding table T
1: Initialize empty decoding table T
2: D < DATA(N)
3: for all entry s in D do
4:  Set T'[s] as the pattern ¢4 with highest p in D[s]
5: end for

Algorithm 2: Error processing.
Require:
Ensure: A data table D
1: Initialize empty data table D
2: for all (p;, E;) € N do
: Compute ¢;, §;, and s;

3
4:  Compute L; associated with ¢;

5:  Compute ef

6. if e;.l not in any entry in D[s;] then
7: Store (eld, pi)in D[s;]

8: else

9 Add p; to pin entry (¢?, p)

10:  end if

11: end for

IV. DECODING

The error pattern statistics given by the noise model of Sec-
tion II lead to a very high number of degenerate error patterns
(see Section B for examples). As a result, the approximation
made in [2], where codes were approximated to be non-
degenerate, is no longer accurate, as it would significantly
underestimate the code’s capabilities. In this section, we
modify the decoding procedure in [2] to account for error
degeneracy. The modified procedure is optimal in principle.
It has previously been shown that such optimal procedures
must be #P-complete in general [30], [31], [32]. Since we
are applying the decoding procedure to random codes with
no exploitable structure, our decoding procedure has poor
scaling capabilities for high entropy noise and large code
sizes. Nonetheless, following [2], we hope to show it to be of
interest in regimes of small code size or low entropy, so it is
still worth exploring the decoding properties of this optimal
procedure. It is also possible (though not covered in this
work) for the decoding complexity to be greatly improved
with simpler approximations and heuristics to the optimal
approach. The optimal decoding procedure is summarily
presented in Algorithm 1.

When considering this optimal decoding procedure, we
note that, while we focus on the noise model in Fig. 1,
the decoding procedure is naturally applicable to models
where there are additional sources of error independent of
the SE themselves. For that case, the noise statistics would
simply include those additional errors.

Moreover, the decoding procedure presented in this sec-
tion does incorporate any assumptions about the underlying
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nature of the noise, as it meant to be a fully general procedure.
In particular, we do not wish to assume that higher order
errors are less likely than lower order ones, as there may be
practical regimes where particular high order errors dominate
the noise statistics (such as burst errors). In Appendix H,
we adapt the general decoding procedure to the particular
noise model described in Section II.

For the decoding, we require a procedure that, given a
syndrome sequence s, outputs the error pattern e that needs
to be applied to the circuit to correct the most likely source
of error. Since we are interested in the analysis of the de-
coding procedure in the optimal case, and less concerned
about practical limitations, we assume that such a procedure
corresponds to a decoding table T, storing the s, ¢? pairs.

The decoding table 7 may be obtained as follows (see
Algorithms 1 and 2 for pseudocode, and Fig. 8 in Appendix
E for an example).

1) For each error E; (with corresponding probability p;),
we compute its syndrome sequence s;, and also e; and
§; (corresponding to the mapping Q in (19), and the
mappings V and H o V, respectively, in Fig. 3, for
base errors). Since the circuit is a stabilizer circuit, it
can be efficiently simulated [33], and these quantities
efficiently computed.

2) We compute E; = Fg(§;) and L; = Fr(e;). As we al-
ready know §;, we end up with the degenerate set
(8i, L) (and its representative eld = E;L;), to which ¢;
belongs.

3) We repeat steps 1 and 2 for all errors in . Starting
with an empty data table D, for each error E;, we
add (e?, pi) to the entry D(s;). If an entry with elfl
already exists, we add p; to the entry’s probability. This
procedure results in the data table D.

4) For each syndrome sequence s = {s] ,...,87}in D, we
choose the degenerate set with the highest associated
probability as the actual coset leader, that is, the one
that is corrected if s is measured.

5) The resulting syndrome table 7 then acts as our
decoding method.

This decoding is optimal because, for any given syndrome,
there is no other way for the decoding to be more successful
than as described here, since this method already picks the
most probable degenerate set (8, L), given the only informa-
tion available a priori, which is A/ and the observed syndrome
s. It is optimal under the reasoning that we consider any
unsuccessful correction to be a complete failure, with no
possible partial success.

While the procedure as described is done in series, itera-
tively traversing the E; errors, it can be trivially parallel, by
splitting the error list across multiple parallel workers. (See
Appendix E for a full description, including the pseudocode
for the parallel implementation, in Algorithm 4.)

To implement the decoding procedure (in particular step
2), a priori, we require the efficient implementation of two
functions as follows.
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1) A function Fg : § +— Eg that, for a given code, and
taking a syndrome § as input, outputs a deterministic
error pattern Eg that can act as a coset leader for the
syndrome §. That is, any error pattern ¢; with syndrome
§ can be decomposed [following (15)] using the error
component Eg. Having access to this function consid-
erably reduces the required serialized processing for
the decoding, and the required memory, as we do not
need to keep track of tentative coset leaders as we
iterate through the errors E;, and we can be sure that
different parallel workers have the coset leader in the
same degenerate set (in fact, we can be sure that they
are equal).

2) A function Fj :e; — L; that, for a given code, and
taking an error pattern e; as input, deterministically
outputs the logical component L; of the degenerate set
to which this error pattern belongs to.

These functions are described in detail in Sections IV-A
and I'V-B.

A. FUNCTION F¢
When analyzing the code, instead of working with the (n —
k) minimal stabilizers {S;} we extracted from the encoding U
[see (3)], we work with a different set {S; . }. Each stabilizer
in this new set can be thought of as some combination of the
stabilizers in {S;}. To be more specific, considering that S;
corresponds to row i of the quantum check matrix A (with
size (n — k) x 2n), {S; e} corresponds to row i of A in re-
duced row echelon form (also known as canonical form). We
can convert A to reduced row echelon form because products
of stabilizers are still stabilizers. Since we are in IF», adding or
subtracting rows of A is equivalent to multiplying stabilizers.
As long as the resulting matrix is full rank (which is always
the case, since the procedure for converting to reduced row
echelon form preserves rank), the resulting new matrix A
encodes a new set of minimal stabilizers, {S; .}, in its rows.
In practice, we can imagine that the measured syndrome
s gets converted to the “reduced row echelon” syndrome
Stre, Which can be done with a (n — k) x (n — k) matrix that
encodes the steps needed to convert A to reduced row echelon
form. Let this matrix be J. We have A = JA and sy = Js.
Working with A, let ; be the index of the pivot of row i
(it is not guaranteed that h; = i, since the pivots may not all
be along the main diagonal of Ar). Since {S; .} comes from
reduced row echelon form, the stabilizer S; ;. Will be the only
minimal stabilizer with a nonzero entry at index h;. Then,
if 1 < h; < n, the error Z;, necessarily yields the syndrome
bit 1 for S; . and zero for all other minimal stabilizers in
{Sie}- Ifn + 1 < h; < 2n, the error Xj,, _, necessarily yields
the syndrome bit 1 for S; . and zero for all other minimal
stabilizers. Consequently, we can use these (n — k) errors
as a basis to construct a deterministic error pattern Eg for
every syndrome §. Let E; be the error associated with S; i (E;
equals Z, or Xj,_,, as described). Since the code is linear, for
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any syndrome Sy, if i1, . . ., i are the indices where the syn-
drome sy is 1, then the compound error e = E;, ... E;, must
necessarily have syndrome Sre. In other words, Syre = eArreT.

Since e = Eg_, when using the minimal stabilizers {S; rrc},
and J is a linear transformation, then we must have ¢ = E;
when using the minimal stabilizers {S;}. Therefore, if the
code has stabilizers {S;}, then Fr implements the procedure

§ = Sie = ¢ = Es. (22)

Because of the construction of e, for all error patterns with
the same syndrome, the same error component is computed.
The error Eg then acts as the error component for all error
patterns with syndrome §, for the decoding.

B. FUNCTION F,

For the function F7, we need to consider the different degen-
erate sets. We know that each error ¢; can be decomposed in
terms of the coset leader E;, some stabilizer S;, and some
logical operator L; [see (15)]. There are 4k logical operators
(including the identity) and each identifies one of the 4%
degenerate sets associated with each syndrome §.

Consequently, we can create a one-to-one mapping be-
tween the logical operators and the degenerate sets. Since we
can determine the tentative coset leader E; with Fg, we only
need to determine the logical component L; that composes
our input error pattern.

With this in mind, we continue the approach from
Section IV-A. We use the row echelon form of A, that is,
Arre, so we work with {S; e} instead. We perform the same
procedure to the logical operators. Let X; and Z,; be the binary
row vector representations of X; and Z;, respectively [see (4)
and (5)], in [X|Z] format. Let L be the 2k x 2n binary matrix
that encodes the original 2k minimal logical operators (see
(4) and (5)), that act as generators to the 4 total logical
operators. Row i of L is given either by X;,ifl <i<k or
by Zi_j,ifk+1<i <2k

Just as with the stabilizers, we know that products of
logical operators are also logical operators. Moreover, prod-
ucts of a logical operator with stabilizers correspond to the
same logical operator. Since we are working in [F,, adding
or subtracting rows of A or L is equivalent to multiplying

stabilizers and operators in Pauli string form. Considering

the augmented (n + k) X 2n matrix [A]:” ] by using the rows

of Ay and L, we may put the L. component in its row ech-
elon form, L. We can then put L;. in reduced row echelon
form using only the rows of L., yielding L. Note that we
cannot use the rows in L. to further simplify Ay, as the
resulting rows would no longer correspond to stabilizers. The
procedure may be represented as

Arre _ ik O Arre

|:ere:| - |: 0 JL1| |:Lre] (23)
_ In—k 0 In—k 0 Arre
- |: 0 JL:| |:JA Izkj| |: Li| 24)
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with I, a p x p identity matrix. The matrices J4 and J are
of size 2k x (n — k) and 2k x 2k, respectively, and just like
J in Section IV-A, they represent the linear transformation
required to put the matrix in reduced row echelon form.

The resulting rows of Ly correspond to 2k (possibly dif-
ferent) generators for the logical operators. These genera-
tors may no longer satisfy the anti-commutation relations
expected of X and Z, but they are not required to. The final
L. matrix is such that the columns with the same index as
the pivots of Ay, are zero, and the columns with the pivots
of Ly have only one nonzero element, its pivot.

For every error pattern e; with syndrome s;, we know that
its error component E; (given by Fg) is such that ¢;E; =
S;L; =: ¢}, for some unknown S; and L;. Consequently, to
determine the degenerate set to which e; belongs, we only
need to decompose e; into its S; and L; components. Con-
cretely, we are looking for the unique row vectors uy (of size
n — k) and ug, (of size 2k) such that

/ AITC
€ xjz1 = [wa w] |:ere:| (25)
where e;. is exceptionally in [X|Z] format. Since A and
Ly are already in reduced row echelon form, finding the
two vectors is straightforward. The procedure is described in
Algorithm 3. Once the uy and uz, row vectors are determined,
the S; and L; components are simply given by [see (13)]

Si = op(upAre) (26)
L; = op(uLyre). (27)

Alternatively, we may simply skip the computation of uy, in
Algorithm 3. Let v/ equal the computed row vector v just after
uy is computed, but before the iteration through the pivots of
L. Then, we equivalently have L; = op(V').

The full procedure

ei = ¢;E; = ug, (or V/) =L (28)

corresponds to the function F7y.

V. ASYMPTOTIC REGIME

We can estimate the optimal performance we can obtain from
the decoding procedure by looking at how it performs as
the number of extractions considered is increased. We are
interested in computing the limit where we have infinite ex-
tractions, where the decoding would be optimal. Although
this regime is impossible to attain in practice, we expect
that, as we increase the number of extractions, the decod-
ing dynamics should converge to the asymptotic correspond-
ing to that optimal case, allowing us to estimate the code’s
performance in that regime.

We consider the total probability of correction failure Py
to correspond to the probability that an error is not com-
pletely corrected. That is, the correction chosen does not cor-
respond to the right degenerate set. Note that this definition
provides a lower bound on the fidelity ' of the resulting
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Algorithm 3: Finding logical component.

Require: ¢}, A, Lire
Ensure: Vectors uy, uy, v’
1: Initialize uy4 , uy, to zero vectors
2:Letv < ¢;
3: Let Hy (respectively, Hy) be an ordered list of pivot
positions of A (respectively, Ly.)

4: for all i; in Hy do

5: ifentry i; of vis 1 then

6: Subtract row i of A from v (mod 2)
7. [ug]; <1

8: end if

9: end for

10: Let v/ < v
11: for all /; in H; do
12:  ifentry /; of v is 1 then

13: Subtract row i of L. from v (mod 2)
14: [up];, < 1

15:  endif

16: end for

17: return uy, uy,
18: (if the computation was correct, then v should
equal 0)

t 4 t

n

_|noisy | |noisy | . .. | noisy |
Ve 'sE, [1'SE, SE,

FIGURE 4. Model considered to compute the asymptotic regime, where
q — .

quantum state, given by
F > 1= Poal (29)

since it effective treats any unsuccessful correction as pro-
ducing a state with zero fidelity, whereas in practice the
uncorrected error may not produce an orthogonal quantum
state. Nonetheless, it is a useful lower bound often used in
the literature [2], [10], and that we choose to use here as well.

Let Py, be the asymptotic limit of Py When the number of
SE ¢ goes to infinity (see Fig. 4). Since there are L = 2%* de-
generate sets associated to each syndrome sequence s, then,
regardless of the encoding used, for a given s, the probabil-
ity p of an error having occurred that is in the most likely
degenerate set satisfies p > 1/L. If ef is the error pattern
representative of the most likely degenerate set for s;, then
we must have

Pso=1-)  pleje; € SIEDP(E) (30)
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< 1= (/L)p(E) (31
=1-1/L (32)
=1-27% (33)

with equality achieved for the case of maximum noise
entropy.

When comparing two setups, A and B, with g4 and
qp = q4 + h (h > 0) SE, respectively, we necessarily have

Ptotal (A) < Ptotal (B) (34)

since introducing /& additional noisy syndromes extractions
introduces additional errors in the model, which may or may
not be correctable.

We are interested in determining the failure probability
Praire induced by a single additional SE, preceded and suc-
ceeded by an arbitrarily high number of extractions. In the
context of fault-tolerance, we wish to determine if, for a
given p, Pgilre increases or decreases with increasing qubit
count n. We expect, for low (respectively, high) values of
D, Prilure decreases (respectively, increases) with n, with a
phase transition at Some preshold, t0 be determined.

Since we do not have direct access to Prjjure, it must be
computed from the measured value of Pi,. We develop an
effective model to quantitatively relate the two quantities.

Consider a variant of the B setup above, labeled B’, where
the first g4 extractions are solely used to identify and cor-
rect errors stemming from implementing those extractions,
and similarly, the last & extractions are solely used to deal
with errors resulting from the % extractions, for a total of
qB = qa + h, as before. In other words, in the B setup, the
procedure is partitioned into to separate and independent
decoding processes.

We expect

Ptotal(B) = Ptotal(B/)~ (35)

Since, in the B setup, the last & extractions also provide
information about errors in the previous extractions, which
can lead to a more successful decoding. The B’ setup does
not use this information.

In fact, if an error occurs at extraction g4, we expect that
a lower number % of subsequent extractions will result in
higher failure rates (per extraction), since the decoding pro-
cess has less information to correctly identify the error. Since
we are interested in the limiting case where the number of
subsequent extractions is infinite (for any given extraction
where an error can occur), we wish to discount the effect of
limited syndrome information from the calculated probabil-
ity of failure Pgjjyre. We label the errors that could have been
successfully corrected with 7 — oo but were not with low i
escaped errors.

For low ¢, we expect (see [28]) that escaped errors (in
particular errors with § = 0 but § # 0) can be identified with
additional syndromes from more subsequent extractions, SO
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that each new extraction reduces the number of escaped er-
rors by a factor §. Of course, new extractions also introduce
new escaped errors, and errors at the end extractions are more
likely to escape correction.

Consider a setup with g extractions as a setup with ¢ — 1
extractions preceded by one additional extraction. The errors
of this additional extraction will be detected by the ¢ — 1
subsequent extractions, so that only a factor 89~! escape
through the whole setup incorrectly identified. Therefore, ap-
plying the reasoning recursively for g extractions, we expect
the probability of an error passing through the extractions
undetected to be given by

Pu(p.q) = Pu(p, g — 1)+ 87 "Py(p, 1) (36)

~ pyp =Y 37

= Pp ) (37)

For ¢ > 1, we expect that the probability of success-

ful correction with g extractions Pyc(p, g) will be ap-

proximately the probability of success with ¢ — 1 extrac-

tions times the per-extraction probability of success (which
accounts for the additional extraction). We have

Psucc(ps 61) = Psucc(pa q— 1)(1 - Pfailure(p)) (38)
= (1 - Pfailure(p))q (39)
with Pyyec(p, 0) = 1. (40)

However, since Pgjyre does not incorporate escaped errors,

the true probability of success P, is given by

P;ucc(pv 5]) = PSUCC(pv Q)(l _Pu(p» 6])) (41)
yielding
Ptotal(p» Q) ~1- (1 - Pfailure(p))q(l - Pu(ps Q)) (42)

If § « 1, which is expected, then, when using ¢ > 1 to-
tal extractions, we may approximate P,(p, q) ~ P,(p, 00),
leading to

Powal(p,g) =1 —-C(p)(1 — Pfailure(p))q (43)
with C(p) := 1 — P,(p, o0) (44)

where C incorporates the escaped errors. See Fig. 5 for a
numerical verification of this model. Once more, note that
we discount these errors, and their probability P,, from the
failure probability Ppjjure, Since we are interested in the per-
extraction failure probability, and P, constitutes a global ef-
fect. As previously indicated, if a SE is followed by & —
oo extractions, then the probability that an error stemming
from that extraction goes completely undetected is 8" P, (p, 1)
— 0.

Priture 18 the asymptotic contribution of each SE to the
probability of failure. We have that, by fitting, for each p

Y=mX+b (45)

with Y :=log(l — Powi(p, ). X :=gq. (46)
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FIGURE 5. Experimental P, and resulting fit by (43). We observe the
experimental data matching the qualitative description of the theoretical
analysis, with R? > 0.999 for all cases.
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FIGURE 6. Performance of QRLCs with k = 1, using fault-tolerant
QGRAND. We observe that the asymptotic version presents a threshold
around p ~ 2 x 1075, The shaded regions denote a 60% confidence
interval (from 50 samples), and the dots are the median performance
observed. The vertical line indicates the py,eshoiqa Value. The dashed lines
at the top correspond to the uncoded case, which is plotted for
reference.

Then, from (43)

Prilure(p) = 1 — €™ (47)
C(p) = (48)

for each p considered.

The results are are presented in Fig. 6. We observe
Pihreshold = 2 X 107>, suggesting the QGRAND technique
can be used in the fault-tolerant regime. Nonetheless,
we note that this optimal decoding procedure is not scalable
for high entropy noise models, such as those given by p =
Pthreshold- Therefore, to use these techniques, we are forced
to either simplify our model, turning the decoding procedure
suboptimal, or to focus on a regime where it can be applied
in practice.

For reference, we also estimate the performance of the
uncoded case. Considering the number of noisy CNOT gates
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present in a circuit with g iterations to be Ncnor(g), we get

Pfailure, uncoded(p) ~1- (1 - p)NCNOT(l) (49)

where Ncnot does not include preparation and measurement
errors, as these do not propagate throughout the circuit.

The simulation is performed for @ < wmax, and approxi-
mated for the higher w values. For high w, we use the reason-
ably accurate assumption that error patterns are uniformly
assigned to the syndrome sequences. Therefore, before
computing Ppyjjure, We modify P, with the correction

P(w > wmax)

otk 50)

Pt/otal = Pootal —
where 2" is the number of degenerate sets associated with
each syndrome sequence. The correction is negligible for
high n, but may play a noticeable role for p ~ 1. Based on our
analysis in Appendix K, we find that for the n values consid-
ered, the minimum error order that nontrivially contributes
to the failure probability never exceeds 2. This justifies using
wmax = 2 for exact simulation in the parameter regimes stud-
ied. The effect of higher orders can be reasonably accounted
for using (50).

VI. DISCUSSION AND CONCLUSION

In this work, we extend the decoding procedure for QRLCs
introduced in [2] to explicitly account for error degeneracy.
Consequently, our technique constitutes a maximum likeli-
hood decoding procedure, which is guaranteed to be optimal.
We analyze the fault-tolerant characteristics of QRLCs with
the presented decoding technique, by accounting for prepa-
ration, measurement, and gate errors in the SE procedure
itself, and observe a pureshold =~ 2 X 107 in the asymptotic
limit. To the best of our knowledge, this work presents the
first fault-tolerant decoding technique specifically applying
QGRAND to QRLCs in the presence of preparation, mea-
surement, and gate errors during SE.

We note that this decoding procedure is not equivalent to
finding the lowest weight error pattern associated with each
syndrome, as might be done by more standard algorithms,
since a faulty cNOT gate error effect can propagate consider-
ably through the circuit before being possible to detect it, so
that, by the time it is detected, its error pattern is no longer
low weight.

In this work, we have removed the channel errors present
in [2] and considered only the main error sources associated
with the SE process. In particular, we considered preparation
and measurement errors in the ancilla qubits, and two-qubit
gate errors. Although this is a common approach to take
when studying the fault-tolerance capabilities of different
codes [10], it leads to unrealistic results for high code rates.
In the limit when R — 1, the SE process has a negligible
number of minimal stabilizers, and as a result negligible
error sources, under this noise model. Consequently, in this
regime, higher code rates lead to lower Pjlyre, NOt because
of better correction capabilities, but because error sources
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decrease faster than the correction capabilities do, as the code
rate increases.

Moreover, we have analyzed the asymptotic regime of
infinite SE. Although impractical, these asymptotic results
enable us to study the behavior of the optimal decoding
procedure, as previously described. Nonetheless, practical
limitations might impose suboptimal steps in the decoding
process, and obviously a finite number of SE.

To account for these limitations, we must consider that,
in practice, there are nontrivial computing steps performed
between SE (such as logical gates for quantum computing,
and Bell-pair creation for quantum communication) that in-
troduce their own errors independently from the SE steps.
When accounting for this additional error source, we expect
the pathological behavior for high code rates to disappear. In
future work, we intend to study these more practical regimes.
Furthermore, we assumed that all-to-all connectivity (be-
tween any of the n qubits) is possible in practice. This as-
sumption is required for the scaling results in [23], and is
used in this work. Nonetheless, it may be dropped for prac-
tical reasons, as the more recent results in [26] suggest.

As previously mentioned, the noise guessing decoding
procedure is expected to be viable only in situations of low
noise entropy and low n. Even disregarding the limitations
imposed by the asymptotically large number of SE, it is also
the case that the noise entropy increases rapidly as n — oo
and k = 1, as considered for the fault-tolerance analysis.
This is a known limitation of the decoding procedure. For
this reason, and for the fact that better known codes, such
as surface codes, have higher pyresnold values, we do not
expect the decoding procedure described in this work to be
competitive in those regimes. Although it remains to be con-
firmed in future work, we conjecture that, given the optimal
decoding properties of the described procedure, it may be
worthwhile to employ in scenarios where code versatility
is needed, the noise statistics are not approximately fixed,
and the code rate is desired to be very high. In those cases,
we expect the method to have similar use cases to those
previously described in [2], as the additional gates used by
the SE process would not have a strong impact on decoding
performance.

Beyond the straightforward approach described in Algo-
rithm 1, we may also wish to sacrifice the decoding optimal-
ity for the sake of decoding throughput, or lower hardware
requirements, rendering the decoding process more easily
scalable. This can be achieved with either known techniques,
such as compressive sensing or deep learning, or with more
straightforward approaches, such as greedy variants of the
method. For instance, for the Bernoulli noise model in this
work, if we take the coset leader to be the first error pattern
associated with a syndrome, we will end up with a subopti-
mal version of Algorithm 1, equivalent to [2], but one which
reduces the memory requirements by as much as a factor of
4% There are also specific simplifications that can be used
to implement the decoding procedure faster when the noise
model has some exploitable structure, as is the case with
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FIGURE 7. For the example code in Fig. 2, we may observe the three
forms of degenerate errors. Considering E; as the error showcased in the
top left circuit, the identical, pseudoidentical, and nonidentical errors
can be seen in (a), (b), and (c), respectively.

the noise model considered here. We plan to cover some of
these approaches in future work.

APPENDIX A

REDUCING STABILIZER WEIGHT

Although we are working with QRLCs, which have little
exploitable structure a priori, we note that the minimal stabi-
lizers can be efficiently chosen to have weight lower than the
average of 3n/4. To do so, we may take the original minimal
stabilizer arising from the technique described in [2], repre-
sent them with the parity check matrix, and put the matrix in
canonical form, which is equivalent to reduced row echelon
form. The new simpler minimal stabilizers correspond to the
rows of the resulting matrix.

If the pivots of the matrix in reduced row echelon form
are all in the first n columns, then this technique reduces the
weight of the non-Z components of each minimal stabilizer
to at most 1 + k, and 1 + k/2 on average. If k is low and n is
large, this technique can result in a considerable reduction in
the weight of the minimal stabilizers, as their average weight
goes from 3n/4 to 3k/4+ (n—k—1)/2+1=2n+k+
2)/4. Instead of each term being equally distributed between
1,X,Y, and Z as before, here only the indices greater than
n — k maintain that distribution, and we have, for §;, index
i equally distributed between X and Y, and index j <n —
k, j # i equally distributed between / and Z.

This structure simplifies the application of the SE process,
as it reduces the number of cNOT gates from ~ 3n(n — k)/4
to 2n + k + 2)(n — k)/4, and similarly reduces the number
of 1-qubit gates. Despite these benefits, in our numerical
analysis we have not assumed such an approach was taken in
the circuit implementation, in order not to introduce unwar-
ranted structure in the noise statistics, as we are interested in
analyzing the more general scenario.
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Nonetheless, as explained in Sections IV-A and IV-B, we
have used this simplification in our decoding implementa-
tion, when given the noise statistics associated with the un-
simplified stabilizers. As they generate the same stabilizer
group, they are mathematically equivalent for the same given
noise statistics, and we expect either approach to lead to
similar numerical results.

APPENDIX B

DEGENERACY ANALYSIS

Regarding degeneracy, following the notation introduced in
Section III, we consider errors E; and E; to be degenerate
if and only if e¢;e; € S. Nonetheless, we may describe three
types of degenerate errors, all prevalent in the noise model
considered in this work.

a) Identical errors: These are errors such that ¢; = e;
and e} = ej. For example, since we are considering the
model implementation where the cNoOT gates of the con-
ditional stabilizer are implemented in succession, with the
control always being the ancilla qubit (see Fig. 1), then any
error of the form Z.I; (with ¢ and ¢ the control and target qubit
indices, respectively) will commute with subsequent CNOT
gates controlled by the qubit c. Therefore, this component
does not add any error terms to the main n qubits, and instead
simply negates the measured ancilla qubit. As a result, for
any error term without this component, there is an error term
with this component where the error pattern in the main n
qubits is the same, and the ancilla qubit is simplify negated.
Given this degeneracy, the problem reduces to two scenarios:
one where there is an even number of such errors, where the
syndrome is unaffected, and one with an odd number of such
errors, where the ancilla bit is negated. Among these two
classes, all errors are not only degenerate, but identical.

b) Pseudoidentical errors: Besides the identical errors,
we also observe cases where e; =e; but e} # e} (with
compy (e; e‘;.) = 0, otherwise the errors would have different
syndromes).

¢) Nonidentical errors: We also have the more general case
where e; # e; (with either e} = e;. or e # e;.), while still
retaining e;e; € S.

See Fig. 7 for an example. There, the code’s sole nontrivial
stabilizer is X1 X>. We have e} = ¢, = a; =X, e) =Y (ig-
noring the phase), ¢; = e, = a, = 11, and e, = X1 X>.

APPENDIX C

ANALYTICAL THRESHOLD WITHOUT DEGENERACY

For this analysis, we disregard preparation and measurement
errors, as the derivation can be readily extended to the com-
plete model.

Keeping k constant, the value of n will determine the
number of CNOT gates (Ncnor) in the circuit, and the code’s
correction capabilities. We may estimate its performance by
considering the approximation given by random ideal codes,
as in [2].
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For S =: 2" % > 1 and N the number of distinct errors,

the equation
S 1 N+1
f=N—+1 1—(1—3) (&)Y

may be approximated by
I-e? g N1 (52)
r S
1—(—=r+r%/2)
. =
Since, from (51), we have

Sy
~ % [1- ()] (55)

Since § = 2"k this indicates that

fzl-e€ (56)

fx~

= fx

1—§forr<< 1. (53)

— N <2 kHle (57)

W.l.o.g., consider that each cNOT gate can only suffer from
a specific error, instead of 15. For the Bernoulli noise model
we are considering, the error order w is given by the binomial
distribution

w ~ B(NcNor, p)- (58)

For p fixed, and as Ncnor — 00, this distribution can be
approximated by

N (Nenorps Nenorp(l — p)) (59

using the De Moivre—Laplace theorem.

Suppose we start by correcting the lowest order errors
(which are more likely to occur), and we wish to correct
the errors up to order wmax such that we have the probabil-
ity (1 — €) of correcting an error we observe. For a normal
distribution, this is given by the quantile function

0(p) = u+ o~ 2erf 1 2p — 1). (60)

The error function erf cannot be easily approximately.
Nonetheless, we may observe that it can approximated by

erf(x) ~ 1 —aexp(—(x — B)%), forx>1  (61)

leading to

erf "L (x) ~ § + 1og<lo’Tx> forl —x< 1. (62)

For simplicity, we consider « = 1, 8 = 0, which does not
meaningfully affect our conclusions here. The quantile
function then becomes

Q(l—e):,u-{-aﬁ(ﬂ—i— /1og(2“—e)) (63)
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~u+o [2log (%) (64)

n = NeNotp (65)
o = /Ncenorp(1 — p) (66)
>~ /NcNotp- (67)

Now that we have wnax = Q(1 — €), we need to estimate the
number of errors N up to order wmgx, given by

N=Y" (NCJNOT). (68)

j=0

with

Unfortunately, there is no closed form expression for this
value. However, for wmax << NeNor, this is roughly equal to

N~ (NCNOT ) )
Wmax
- NCNOTNCNOT
- wmaxwmax (NCNOT — Wmax )NCNOT_wmax
N
% CNOT ' (70)
27 Wmax (NCNOT — @max)

This may be simplified down to

N = 2NeNorha (@max/Neor) ; (71)
27T Wmax

where 5, is the Shannon entropy.
From (57) and (71), we therefore conclude that

log N ~ O(n) (72)
log N ~ O(Ncnor) (73)

where O denotes big-O notation up to log factors. Since N
indicates the code’s correction capabilities, while N indicates
the necessary number of errors that the code needs to correct
to preserve Ppjure, then we must have N 2> N and conse-
quently Nenor ~ O(n). This is verified for some common
codes, such as surface codes, but for our implementation we
have

3
Nexor = nn—k) ~ O <n2) (74)

so we conclude that, if all errors are nondegenerate, the code
does not have a visible pireshold, SiNce an increase in 7 in-
creases Pryilure, regardless of p.

However, we actually observe a threshold for QRLCs. This
is thanks to the fact that the noise statistics given by the
noise model of Section II actually lead to a very high number
of degenerate errors. Therefore, in practice, the number of
distinct errors grows with O(n) and not O(n?) as indicated by
the analysis above. We later confirm this scaling for escaped
errors, in Appendix K.
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Algorithm 4: Parallel decoding.

Require: N/, W

Ensure: A decoding table T
1: Initialize empty data table D and decoding table T
2: Split N into W sets (almost) equal in size, labeled
Ny (1 <=w < W)

: for all w parallel workers do

Initialize empty data table D,

D,, < Data(\Ny)

: end for

:D <, Dw

: for all entry s in D do

Set T'[s] as the pattern ¢4 with highest p in D[s]

10: end for

11: return T

O 0NN AW

With this insight in mind, we modify the QGRAND algo-
rithm in [2] to account for the possibility of degenerate errors.
The modified algorithm is presented in Section IV.

APPENDIX D

APPLYING ERROR CORRECTION

Certain QECCs, such as surface codes, are designed so that
a physical error correction is actually unnecessary to im-
plement, as all changes can be made in software, classi-
cally [10]. If the whole quantum circuit is unitary, then this
procedure can actually be implemented in general: instead
of correcting the error, we leave the affected state as is and
simply XOR any subsequent syndrome s with the identified
error syndrome e, that is, s = s @ e. As a result of this, we
only need to keep track of these detected errors classically,
in order to correct the subsequent syndromes.

In any case, since the correction portion is always single-
qubit gates, we assume that their contribution to the total
error is negligible, so we can disregard this trick for now,
for the sake of simplicity. As a result, the procedure to apply
the error correction is the same as in [2].

APPENDIX E

PARALLEL DECODING

The decoding procedure described in Section IV can be per-
formed in parallel. If there are W parallel workers available,
we start by splitting the entries in A/ into W parts of equal
size, labeling each V,,, 1 < w < W.Each set V,, is then pro-
cessed independently by an individual procedure according
to the procedure described in the Section IV, thereby yielding
the data table D,,.

All the W data tables D,, may then be merged to generate
the full data table D, from which the decoding table 7' can be
straightforwardly computed. See Algorithm 4 for a descrip-
tion of the parallel decoding procedure.
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Eoy =111, E =7l
s=0 s=1
(0,0),. .. (Pl»P?,.(‘Pz,M),
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pot- prtp2t---
= D(0,1) = D(o,1)

correction /_} * *

T:s— (EL)': (Bo)! =1 (EI)f =

FIGURE 8. Optimal decoding of the code in Fig. 2 (but with only one SE),
as described in Algorithm 1.

APPENDIX F
FULL DECODING EXAMPLE
For the example in Fig. 8, we consider the encoding gate to be
U = CNOT(2, 1)H,, with the starting qubit at index 1. P and
M stand for preparation and measurement error in the only
ancilla qubit a, respectively, AB)) is the error corresponding
to “error A, B; occurred at CNOT gate j.” Following Algo-
rithm 1, we iterate through the errors in A and, using the
functions Fg and JF7, determine where to put them in the
table D. Once we have iterated through all errors, we com-
pute the optimal (8, L) entry, or alternatively, ¢ representa-
tive, and delete the remaining entries, yielding the decoding
table 7.

Given U, and following (3) to (5), the minimal stabilizer is
S1 = X1 X, and the logical operators are X = I} X, and Z =
Z17Z,. This choice of encoding leads to minimal stabilizers
and logical operators such that the augmented matrix is

a1 [
2-[3)-

Z
Since, in this simple example, we already have A = A and
L = Ly, so J =1I. Here, A, X, and Z are the binary repre-
sentations of the minimal stabilizers and logical operators, in

[X|Z] format.
Following the procedure in Section IV-A, we have

1100 A
0100 =[Lm’]. (75)
00 1 1 e

Eo =11 El =27b. (76)

Let us consider the full procedure in Section I'V applied to
the specific error in Fig. 2, such as

E = “Error 1,Z; in CNOT gate 1.” 77
Associated to this error, we have the quantities

§=0 (78)
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TABLE 2. Decoding for the Code in Fig. 2

(8re, L)| € s=0 s=1
(0,I) | LIz 0, X1, XX, PM,Z15,71,,Y X1,Y I,
(O,{() LXo|IX, XL, IX0, XXy ZX1,Y1,Z2X5,Y Xo
(O,Xf) Z1Ys
(0,2) 2124
(1,[) Zh 1 17,, XY, Z27,,YY,
(1,{() Z1Xo XZy,I, YZ,,ZYy
(1,Y) |Z1Y> 1Y, XY, ZY9,YYs
(1,2) |1 Zy 175, X 7o ZZ5,Y Zo
TABLE 3. Final Decoding Table for Fig. 2
s=0 s =
(0, X) (0,1)
o |
EoX =1 Xs | Eol =111,
e=2Zih (79)
e=[0 0 1 0] (80)
s=eAl =1 (81)
Spe =8 =1 (82)
eEs =11, = SL (83)
SL=nLhL=1I (84)

Applying the procedure in Section IV and Algorithm 1,
we obtain the tentative decoding table in Table 2. In the
table, for the sake of simplicity, we represent preparation and
measurement errors by P and M, respectively. AB; represents
the cNoT gate error where error A,B; occurs just after the
noiseless CNOT gate. For simplicity, compound error are not
shown.

The preparation and measurement errors have probability
p of occurring, and the gate errors have probability p/15.
If we assume that it is very unlikely that no error has oc-
curred (i.e., p is high), then the final decoding table (when
only considering errors of order 1) is given by Table 3. In
the table, if s = 0 is measured, the most likely degenerate
set to have occurred is (0, X), with probability 4p/15 (see
Table II). We assume that p is such that the no-error case is
unlikely, otherwise (0, I) would be the most likely degenerate
set. If s = 1 is measured, the most likely degenerate set to
have occurred is (0, I), with probability 34p/15. For each
case, the error pattern that should be applied to the quantum
state to correct the error is given by e? = EgL.

APPENDIX G

SIMPLIFIED NOISE STATISTICS

When considering a Bernoulli noise model, such as in Ap-
pendix H, including preparation and measurement errors into
the noise model breaks some of the structure of the noise
statistics, since not all base errors will be equally likely. It
also makes the decoding process harder to simulate. In the
simpler setup where only gate errors occur, if we have g
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cNoT gates affected with an error, with each error having
probability pcnot/15 of occurring, then the number of errors
and their individual probability would be given by

Ni(g) = 15¢ (Ncg‘”) (85)
P = (2925) (1 = pexor)* . (86)

These formulas stem from the fact that each cNOT gate has 15
associated errors, and only one of these may occur at a time.
For preparation and measurement errors, there is only one
error pattern per ancilla qubit: either there is a bit flip, or there
is not. If there are A ancilla qubits (generally, A = n — k), and
a preparation or measurement error occurs with probability
Pu, these same quantities are given by

Ng(w) = Z 158 <NC;OT) (wag) 87)

§=0

8
P@.9) = (P5) (1= penor)¥ror= (88)
X Py S(1 = )™t (89)

where w indicates the total error order and g indicates the
error order when ignoring preparation and measurement er-
rors. Note that these expressions are somewhat more com-
plicated. In particular, for errors of order w, we now need to
keep track of the distinct number of cNOT (g) and prepara-
tion/measurement (w — g) base errors that occurred, instead
of just one parameter.

Fortunately, if we are using optimal decoding (that prop-
erly accounts for degenerate errors), there is a quick-and-
dirty way to mimic the simpler noise statistics associated
with only having gate errors. If we use py = pcenor =:
p (which is a relatively common choice in the literature,
see [10], and the one used in Section II), then we can consider
that each preparation and measurement error is a CNOT gate
error. Instead of there being only one error per qubit (corre-
sponding to the possible bit flip), we consider that there are
15, all equal in nature, and each occurring with probability
pu/15. These cloned errors will be degenerate among them-
selves, so the optimal decoding procedure will analyze this
setup correctly. The total number of error patterns Ng (w) will
be overcounted, but we never actually use it directly for the
decoding procedure, so the overcounting does not constitute
an issue. In this formulation, we may pretend that we have
no preparation and measurement errors, and that we have
instead

Nenor = Newor + 24 (90)

cNoT gates in the SE circuit. The probability associated with
each error will be correct, yielding

P(w) = (%)w (1 — p)Nevor—o. ©1)
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APPENDIX H

BERNOULLI NOISE MODEL IMPROVEMENTS

For the special case where each cNOT gate has the same
probability p of suffering an error, as described in Section II,
the decoding procedure can be made much more efficient.
This procedure may be adapted to other Bernoulli-like noise
statistics, but here we focus on this error model. We can opti-
mize this decoding process in order to avoid having to iterate
through all compound errors. Since the technique relies on
the inherent structure of errors with the same probability,
here we employ the reformulation detailed in Appendix G to
treat preparation and measurement errors as additional gate
errors.

The procedure for the list of base errors (with w = 1)
is similar to the one described in the beginning of Sec-
tion IV. Instead of using the full noise statistics N, instead we
consider a list of base errors

B:={(EFES, ..} (92)

Given the Bernoulli noise model, all base errors have the
same associated probability of occurring, given by p/15, so
it does not need to be stored in B (we exclude the no error
case). Once we have the data table Dy for v = 1, we can
start to optimize the analysis for compound errors. Instead
of iterating through compound errors individually, we iterate
through the degenerate sets obtained in the w = 1 step. We
also preserve the probability associated with observing an
error pattern from each degenerate set in the table. Forw = 1,
and given the reformulation of Appendix G, all errors EiB
may be considered to have a probability P(1) of occurring
[see (91)], so the probability associated with each degenerate
set in the data table is given by

pi == NiP(1) 93)

where N; is the number of errors E; that can be corrected by
applying the coset leader eld associated with the degenerate
set of Ef . In summary, we may restructure the data table D
obtained with Algorithm 1 (before the final degenerate set
selection)

Dy = {s1 : {(e{}. p11), (e, p12) - . s
52 (€81, p21). (€55, p2), ..} (94)

to encode the count N; instead of p;, and to store a list of error
counts for different orders, yielding

Dy = {s1: {e‘{l1 1npq, e‘fz Ny, ...},
sp:{ed imyp, .., (95)
with
n; := (0, N;,0,...) (96)

a list of size (w + 1), where only the second entry of the
list (corresponding to w = 1) starts with nonzero entries.
The first entry is only nonzero for the Ey = I case, when
s =8 =0 and L = I, corresponding to the case where no
error occurs. We represent the entry of order g by n;(g).
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Under the formulation of (95), instead of iterating
through the combinations {Eng, EfEf, R EgEf, ...}as
we could do with the naive implementation of Algorithm 1,
we iterate through the degenerate sets in D as a whole.

Consider the data table D,_; that includes the errors up
to order w — 1. To obtain the table for errors up to order w,
we iterate through the combination of the degenerate sets in
D,,_1 and D;. If the noise statistics are highly degenerate
(which is generally the case following the noise model in
Section II), we can have considerable computational savings,
since we only need to perform |D,,_1||D;| computations in-

stead of 15w(NCNOT +w2(” - k)) (see Appendix G). While

we expect the latter to grow quickly with O(n>®), the former
approach should grow, at worst, with O(n®), and it may grow
more slowly in practice.

With this approach we generally overcount the number of
errors N; associated with each degenerate set. There are the
following three types of overcounting.

1) Counting permuted copies: Consider an order-(w — 1)
error EﬁEg...ElBil (with ij < iy < i3 <...), com-
ing from D,_1, and the error EAf, coming from D;.

W.l.o.g., suppose j < i1. Then, for D,, we will not
only count the error EFEJEP ... Ef ., but also that
same error coming from the comb1nat10n of the errors
EfEng .. .Eli_l \Eg and Elli. In total, we overcount
each order-w error w times.

2) Recounting lower order errors: for the error
EBEE EB o composing with any EB (1<k<
w—1) reduces the error to one of order w — 2, which
was previously counted. Each order-(w — 2) error we
counted before will be recounted ¢,,—1,; times, where
¢ is given in (100).

3) Counting two errors occurring in the same CNOT gate:
An error of order w stems from base errors that oc-
curred on w CNOT gates. When composing this error
with another, the resulting compound error may have
more than one base error occurring at one or more
CNOT gates. As this compound error is impossible, it
should be discounted.

We can extend this approach further. Instead of construct-
ing the data table in one order increments, if we already have
D,,, we may combine it with itself to obtain Dzw, thereby re-
quiring exponentially fewer iterations, as w increases, as long
as w is such that the codes capabilities are not yet saturated,
i.e., not all syndromes are assigned to a degenerate set.

In general, if we compute the noise statistics of errors
of order a and b to compute those of order v = a + b, we
have

n;(w) =

nj(w) —

Y astkrmie) | O7)

O0<k+r<b
k,r=0
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Algorithm 5: Data table D; for Bernoulli noise.
Require: 5
Ensure: A data table D,
1: Initialize empty data table D;
2:ng < (1,0)
3: Store {I : ngy} in D1[{0, ..., 0}]
4: for all E? in B do
5:  Compute ¢;, $§;, and s;
6: Compute L; associated with ¢;
7
8

Compute el‘.’
:if ¢/ notin Dy [s;] then
9: n; < (0,0)
10: ni(l) <1
11: Store {e¢ : n;} in Dy[s;]
12: else
13: ni(l) < ni(1)+1
14: Update {e¢ : n;} in Dy [s;]
15:  endif
16: end for
17: return D,

Algorithm 6: Data table D ;.
Require: D, D;,
Ensure: A data table D,
1: Initialize empty data table Dy,
2: for all (s;, e ,n;)in D, do
3: for all (s], ej,nj) in Dy, do
4 Hjj < n;xnj (convolution)
5: n;j < n;; with overcounting correction
6: if ed ;’ not in Dy p[s; ® s;] then
7
8
9

Store {efle? 21} in Doy pls; @ 5]
else

Add rij; to vector in ef'¢q entry in
a+b[sl 2] SJ]
10: end if
11:  end for

12: end for

13: for all (s, e ,n.)in D,y p, do

14:  n, < n, w1th overcounting correction
15:  Store {ef :ny}in Dy ypls]

16: end for

17: return D,

withc:=a+b—-2k—r (98)

where 1n;(w) is the count obtained for order w before the
overcounting correction. The auxiliary functions are given
by

Ry = (“ e ) (99)
Canth, ) = KEK — 1k, 7) (100)
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Algorithm 7: Decoding table 7.

Require: D,
Ensure: A decoding table 7,
1: Initialize empty decoding table 7,
2: for all s in D,, do
(. p) < (=1,0)
for all (¢?, n;) in D,,[s] do
Using n;, compute p; ((102))
(J,p) < (G, p)ifpi>p
end for
Set T[s] as the pattern e? , which has the highest p
in D[s]
9: end for
10: return 7,

._ (Nenor — ¢ ¢
s“’b(k’r)'_( k ><r,a—k—r,b—k—r>
(101)

e A A

where K is the number of distinct errors per CNOT gate (in
our case, always 15). Note the use of binomial and multi-
nomial coefficients. To incorporate the effect of preparation
and measurement errors, we use Nenot = Nenor + 2(n —
k) and not Ncnor, as explained in Appendix G. See Ap-
pendix I for a derivation of these expressions.

The probability associated with the degenerate set with list
n; is given by

pi=Y_m(jHP()).

=0

(102)

Given this procedure to obtain D,, we may obtain the
decoding table T, by following Algorithm 5 and 7.

APPENDIX 1

DERIVATION OF DECODING FORMULAS FOR
BERNOULLI NOISE

As stated in Appendix H, a straightforward implementation
of the procedure described will overcount the number of
errors associated to any given syndrome sequence. There
are three types of overcounting, which we may analyze
separately.

A. RECOUNTING LOWER ORDER ERRORS
Suppose we have already computed the correct error count
n;(j) for 0 < j < w — 1 (for all degenerate sets), and we are
currently trying the determine n;(w).

For the error EPE] ... EP _ , composing with any Ef (1 <
k < w — 1) reduces the error to one of order w — 2, which
was previously counted. To determine how many errors stem
from this dynamic, we may note that any fake compound
error of order w has a corresponding error of order w — 2,
which has already been counted in n;(w — 2). Similarly, any
error E; counted in n;(w — 2) has a corresponding set of
fake compound errors that appear in n;(w). As E; stems from
w — 2 base errors, each affecting a different cNOT gate, these
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fake compound errors must correspond to an error of the
form EiEfEf , where E? is a base error from a CNOT gate not
present in E;. For each cNOT gate there are K = 15 associated
base errors, so there are a total of

Cw—1,1(1,0) = K(Nenor — (@ — 2))

fake error compounds that associated with the error E;. Alter-
natively, defining w = a + k, with k = 1, we may also write
the total as

(103)

£a1(1,0) = K(Nenor — (a — k).

The same principle applies to higher order combinations. If a
order-a error E; is composed with a order-k error E; (a > k),
and the base errors composing E; all stem from CNOT gates
whose same base errors already compose E;, then the result-
ing compound error will have order a — k, instead of a + k.
The total number of errors is now given by

(104)

k—1

1 iy .
Cakk, 0) = = [ [KNenor —(@=k)—j)  (105)
e
_ Kt (NCNOT 7{ (a— k)) . (106)

Note, however, that, when composing a order-a error E;
with a order-b error E; (a > b > k), it may be the case that
only some, and not all, of the base errors composing E;
appear in E;. In general, there will only be k base errors in
common, forall 1 <k <b.

In this case, to cover all possible fake errors, we must
choose not k cNOT gates out of the Nenor — (a — k) gates
not related to the order-(a — k) error (as in (106)), but instead
choose k cNOT gates out of the gates not related to both the
order-(a — k) error, but also the (b — k) base errors in E; that
are valid. Therefore, there are a total of Nonor — (a — k) —
(b — k) cNoT gates from which we must consider k invalid
base errors.

Moreover, associated with the order-(a — k) error from E;,
there are several possible valid (b — k) base errors stemming
from E;. The total number of fake errors is then given by

Can(k, 0) = K* <NCNOT —(a ; k) — (b — k)) (107)
y ((a—k[z—l—](cb—k)) (108)

— Kk <NCN(3;F—C) (bik> (109)

with ¢ :=a+ b — 2k. (110)

Note that, for b = k, we have ¢ = a — k, so that (109) trivially
reduces to (106). The resulting lower order error will have
order ¢. We would need to discount its affect on n;(w) to ob-
tain the correct count. Unfortunately, it would be difficult to
determine the original syndromes of the errors that combined
to result in the impossible error, as they may have different
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origins. As an approximation, we use n;(c) to estimate the er-
ror count. The resulting correction is achieved by subtracting
n;(c) times ¢ from n;(w).

B. COUNTING IMPOSSIBLE ERRORS

If a order-a error E; is composed with a order-r error E;
(a > r), and the base errors composing E; all stem from cNOT
gates already associated with the base errors that compose E;,
then the resulting compound error will be impossible, since it
will contain at least two different base errors associated with
the same cNoT gate (one from E; and one from E)).

For r = 1, each error in n;(a) will have

$a,1(0,1) = (K = 1)a (111)

associated impossible order-(a + 1) errors, since E; is com-
posed of a base errors, and for each base error, there are
(K — 1) different base errors associated to the same CNOT
gate.

For a general r, we have, for each order-a error

a
8a,r(0, r)=(K—1)’<r> (112)
associated impossible errors.

When composing a order-a error E; with a order-b error
E; (a > b), it may be the case that only r < b base errors
composing E; are impossible, with the remaining (b —r)
base errors stemming from cNOT gates not related to E;.

To estimate the number of impossible errors, we may look
atn;(a + b — r). As before, we must choose r CNOT gates out
of the a gates related to E; to count the number of impossible
errors. But, as seen in the previous section, to must also count
the possible (b — r) base errors in E; that are valid. These
factors result in

~fa\ (a+b—r
w0 =i -1y (1) (3077 (13
r c
=&-D (r,a—r,b—r) (14
withc:=a+b—r (115)
and Y+y+z __(x—}-y——i—z)! (116)
xy.z ) xlylz!

The multinomial coefficient. Again, note that (114) trivially
reduces to (112) when b = r. The resulting lower order error
will have order ¢, so, for this case, we would also need to
discount its affect on n;(w) by subtracting n;(c) times ¢.

C. COUNTING PERMUTED COPIES

Consider an order-(w — 1) error Eng . Eii_l (with i] <
i» < i3 < ...), coming from D,_1, and the error E?, com-
ing from D;. W.l.o.g., suppose j < i;. Then, for 'Dw, we
will not only count the error EfEiBEin .. .Ef)_l, but also
that same error coming from the combination of the errors
EfE.BEB . .Eiil\Ei and Eg. In total, we overcount each

i1 ]
order-w error w times.
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In general, for every order-w error, any possible combina-
tion of order-a errors and order-b errors that can generate it
(with @ = a + b) will appear in the counting. Since there are

()~

ways for order-a and order-b errors to generate an order-w
error, the final counting (after discounting the previous over-
counting cases) should be reduced by a factor of R, p.

(117)

D. FULL EXPRESSION

In general, the erroneous errors that the decoding procedure
may containing not only repeated base errors (k > 0), but
also base errors stemming from the same cNOT gate (r > 0).
Therefore, these two factors need to be considered together.

Combining the analyses of the previous sections, we con-
clude that, when composing a order-a error E; with a order-b
error E; (a > b), we can have k base errors E; already ap-
pearing in E;, and r base errors in E; sharing the same origin
CNOT gate as a base error in E;, with k + r < b.

To count all these errors, we may look that the errors with
order ¢ = (a + b — 2k — r), from which we can generate all
the invalid order-w errors. As before, the k repeated base
errors are chosen from those associated with cNOT gates
that are not related to a valid base error in the compound
error. There are Nenor — ¢ such gates, and each one has K
associated base errors.

Moreover, the from the ¢ base errors, we may consider
that a — k — r (respectively, b — k — r) correspond to the
base errors in E; (respectively, E;) that raise no issue, with
the remaining r errors corresponding to base errors stem-
ming from CNOT gates that also originated invalid base errors
in £ j

Grouping all three overcounting issues, we end up with

Cap(k, 1) = KN(K = 1) €, p(k, r) (118)
with
__ (Nenor — ¢ ¢
éa’b(k’r)'_< k )(r,a—k—r,b—k—r)
(119)
andc:=a+b—-2k—r (120)
which generalizes (109) and (114).
The corrected count is consequently given by
nj(w) = n;(w) — Z Sap(k, rmi(c) | (121)
@ O<k+r<b
k,r=0
withc:=a+b—2k—r (122)

as indicated in (97), with fi;(w) being the original count from
the optimized decoding process. As previously indicated,
since the estimate of the impossible errors is not exact, this
formula is approximate.
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APPENDIX J
ALTERNATIVE DEFINITIONS OF 7 AND 7,
Instead of using the formulation described in Sections IV-A
and IV-B, we may consider an alternative formulation that,
while less computationally efficient, is conceptually more
straightforward. Under this formalism, the components E;
and L; can be computed at once from e;, so there is less of an
need to separate the two processes.

For a given error E;, we compute e;. Taking the encoding
U, we compute

e =UeU. (123)

The unencoded error pattern e} corresponds to the effect of e;
on the quantum state if it were decoded. We may decompose
it into

e = EiSILY (124)
with

EY = UTE,U (125)

st =U'sU (126)

LY = U'LU. (127)

We may also decompose it into the Pauli string for the first k
data qubits (elD ) and the additional (n — k) redundancy qubits

(ef)

el = e’ @ ek, (128)
From (3) to (5), we have that
Zig =U'SiU (129)
X; =U'X;Uu (130)
Z;=U'ZU. (131)

Therefore, decoding e; into e} cleanly separates the different
components. L corresponds to the components of ¢! in the
first k qubits. We have

L= ®h (132)
k X Wz
= l_[Xij HZJJ (133)
j=1 j=1
SLi=UE L U (134)
k k
_bX _V:
- HXjf }]_[Zj’ (135)
j=1 Jj=1

where bf and bf are the X and Z components of e”,
respectively.

Let ef’X and ef’z be the X and Z components of ef, re-
spectively [where the Y components have been decomposed

into X and Z, as in (10)], so that ef = ef’xef’z (disregarding
the phase factor). We have
Ef = @ elX (136)
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ﬁ X

= (137)
i=k+1
=B = U fNUT (138)
n
= [] wxuvh (139)
i=k+1
and
St =1 @ eR? (140)
n
v
=[] z™* (141)
i=k+1
= S = Ul ® FH)UT (142)
n
= [] wzuiyt (143)

i=k+1

where b?ik and bl.Zf i are the X and Z components of ef’x

and ef’z , respectively. As this procedure is deterministic, we
obtain unique components E;, S;, and L; associated with the
error pattern e;.

Regarding runtime complexity, the method presented in
Section I'V-A requires just O(n — k) steps per error E;, in or-
der to assemble E; from the precomputed Z,, and X}, ,, terms.
The method presented in Section IV-B is more involved.
Computing e} requires 2n steps. Determining its stabilizer
component S; requires identifying the pivots in €, (O(n)
steps) and then multiplying the constituting stabilizers by ;.
As it is constituted by O(n — k) stabilizers, and accounting
for each takes at most (2n — (n —k — 1)) = n + k + 1 steps,
the whole stabilizer part takes O((n — k)(n + k + 1)) steps.
For the logical component, there are O(2k) components in
e;, and the whole each operator takes (2n — (n — k) — 2k +
1) = n — k + 1 steps, for a total of O((2k)(n + k — 1)) steps.
The full procedure requires

Om+m—k(n+k+1)+ n—k+1)(2k))

~ 0w 42) ~ 0 (n?)

steps per error E; to compute L;. The computation for Ng
errors requires

(144)

(145)

O (Ngn?) (146)
steps.

For this simpler technique, the greatest computational ex-
pense comes from computing e} for each error E;, as the re-
maining steps can be precomputed and subsequently applied
to all errors.

To facilitate the calculation, we may precompute the e*
patterns associated with all base errors, and use those to
compute the pattern e for each error E;.

From [33], simulating a stabilizer circuit (i.e. U) with N
gates takes O(n®> N) steps. Since U is built from O(n 10g2 n)
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Clifford gates, we have that the full precomputation
associated with the base errors scales as

O (NCNQTH3 10g2 n) . (147)
The cost of computing ¢} for each E; then scales as
O (nw) (148)

where w is the order of the error. The full computation for
NE errors requires

O (NEnw + Nenorn log? n) (149)

steps. For cases where Ng > NcNor, the simpler approach
may lead to a faster implementation, while, for smaller
cases, the main approach is faster, as it does not require
precomputation.

APPENDIX K

ANALYSIS OF NUMERICAL RESULTS

To get a good understanding of the performance of the de-
coding method, we consider an equidistant range for 4, and
we sample p using the expression

p=10" (150)

For that reason, most of the fits in this section are performed

after applying a logarithmic transformation to both the de-

pendent and independent variables. That is, we prefer to work

with log(p) than p directly, as it is more numerically stable.
In this section, we verify that C(p) and Prajjure Scale as

C(p) ~ e~ VNevorp (151)

=~ 1 — yNenorp (152)
Praiture(p) =~ 1 — ¢ *7", forn € N (153)
> up" (154)

for p < 1. u and y are positive real parameters, and 7 is the
lowest order that the code cannot fully correct. We analyze
these expressions separately in the next sections.

A. ESCAPED ERRORS

We start by considering P,(p, 1). For the noise model in
Section II, we expect that the probability of finding escaped
errors will be given by

Nenor

P(p. D= ) (NC?OT)(pr(l—yp)NCNOTf (155)

i=1

Nenor . N, .
= (—1)'“( Clj‘”)(yp)' (156)
i=1
e Nenor '
=1- Z( l. )(—yp) (157)

i=0
where y reflects the fraction of errors that can escape. For
p < 1, the lower order terms dominate, so we may use the
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TABLE 4. Fitted Parameters for g

Variable  Value
b1 0.4494
ng 3.6453
b 0.7505
approximation
N, i
(NC?OT) ~ 2N for Newor > i (158)
r!
and we have
Nenot i
—N, !
Pp =1y NPT g5,
i!
i=0
0 )
N (=Nenory p)'
~1-— Z — (160)
i=0
— 1 — ¢~ VNeNorp, (161)
Given (37) and (44), we end up with (151)
C(p) ~ ¢~ VNexorp (162)

where y is an unknown parameter. Since we are considering
p < 1, this expression may be further simplified into

C(p) = 1 — yNexorp- (163)

In order to perform a fit, we consider a more general ver-
sion of this expression, given by

C(p) = exp(—y Nenorp™) (164)

and we fit the function

logo(—1log(C(p))) = nc log,o(p) + log,y(¥ Nenot)
(165)

= logjo(=b) = nclogo(p) + B (166)

where 8 = log,o(yNcnor) and b stems from (48). We use
log to keep the figures more legible.

We may now study the behavior of n¢ and g for different
n. See Fig. 9 for the results. As expected, we observe that
nc =~ 1, regardless of n.

From Appendix C, we have that Nenor ~ O(n?). If we

assume that y ~ O(poly(n)), then 8 should scale as
B = bilog(n —ng) + bs. (167)

with ng = 1. We assume this expression for its fit. The fitted
parameters are given in Table 4.

We may alternatively write 8 as
B =~ 10g,((5.630 - (n — 3.6453)1-03%), (168)

Given the dependence between 8 and Ncnot, We may con-
clude that

yNenor ~ O <n1'035> >~ O(n) (169)
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FIGURE 10. Fit of (166), for a random example with n = 20. We fit only
£ =1 using values below 10-5, where it is safe to assume p « 1. As expected,

2.0 -

n

FIGURE 9. Fit of the various parameters, averaged over 50 random codes
for each n.

despite the actual Nenor count scaling with O(n?). These
results are in line with the expectations from the theoretical
analysis of Appendix C, indicating that we may observe a

visible preshold-

B. DIRECT Pranyre EXTRAPOLATION
We may apply a similar procedure to Ppyjjure. We empiri-
cally observe that (153) holds. However, unlike the previous
section, it is no longer the case that nc >~ 1.

If a code is able to correct all errors of order w < 7, then
we expect Pgilure to be given by

Nenor

N, : »
Praiture = Z fi(p, Nenot) ( CI;OT) p‘(l — p)NCNOT !

i=1

(170)

Nenor N . '

= Z Ji < CTOT> pi(1 — pyNexor~for p « 1
i=n

(171)

~ J (NCZOT) (1= p)NeNor=ifor p < 1
(172)

=pup', forp « 1 (173)
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the fit worsens for higher p.

TABLE 5. Fitted Parameters for «

Variable 1ng=1 19=2
ay —0.0074 0.0838
as —0.8170  2.8530

for some unknown j, where f; is an approximation of
fi(p, Ncnot), which is the unknown function. In the approx-
imation in (171), we consider f, as a scalar.

In order to perform a fit, we consider an equivalent version
of this expression for p < 1, given by

Pfailure(p) ~1- eXp(—MPn) (]74)

and we fit the function

logjo(—1log(1 — Priture)) = nlog;o(p) +log;o(n) (175)

=nlog;y(p) + (176)

where o = log;(1). As before, we use log;, to keep the
figures more legible. See Fig. 10 for an example.

We may now study the behavior of n and « for different
n. See Fig. 11 for the results. In this case, we have different
n values, and the values cluster around integers. Since the
n values we tested are relatively low, we only observe 7
equal to either 1 or 2. As these cases display notably different
behavior, we separate their data before fitting.

As before, we fit n to an expression of the form

n = no +dilog(1 +exp(dy - (n —np))). a7

We empirically observe that the « variable is better fitted by
a simple linear expression

a=an+a. (178)

The fitted parameters are given in Table 5.

We may also have a look at the probability of having dif-
ferent 1 values. The empirical results can be seen in Fig. 12
and Table 6. We observe that, for low n values, the fraction
of random codes with n = 1 and n = 2 is roughly constant,
since the code’s capabilities are not large enough to generally
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FIGURE 11. Plot of 5 and «. We fit a linear function to « for the higher n
values.
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FIGURE 12. Fraction of the simulations with different 5, values.

TABLE 6. Fitted Parameters

Variable 19 =1 No =2
51 —0.7206  0.7206
59 0.8665 0.8665
ny 16.5506  16.5506
53 0.4673 0.5327

correct all @ = 1 errors. As n increases, the probability that
the code corrects all order-1 errors also increases, and we so
the fraction of n = 2 cases increases. Its behavior follows a
sigmoid-like function, of the form:

1 1
| <m - 5) + 53. (179)
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The errorbars indicate the standard deviation, which stems
from the finite number (48) of samples taken for each n
value. Also, note the symmetry in the parameters in Table 6,
reflecting the fact that the fractions must add up to one.

For very low n < 12, we observe that about 20% of the
codes have n = 2. On further inspection, their seemingly
high performance does not stem from strong correction ca-
pabilities, but from the fact that, due to random chance, the
stabilizers of these codes have relatively low weight, lead-
ing to a very low number of cNoOT gates in the SE circuit,
and consequently fewer errors needed to consider. In a more
complex setting where there are additional sources of error,
we would expect these codes in particular to perform poorly.

C. EXTRAPOLATING BEHAVIOR FOR LARGER n

We may take the results above and use them to extrapolate
the performance for larger n values. We also incorporate
the uncertainty observed in the numerical data by using the
standard deviation observed for the sampled 7 to estimate the
deviation for larger n.

APPENDIX L

SINGLE-QUBIT GATE ERROR MODEL CONSIDERATIONS
Standard circuit-level noise models typically include single-
qubit gate errors, particularly identity gate errors from qubit
idling [34]. The exclusion of these errors in the present work
represents a limitation of the current theoretical analysis. In-
cluding comprehensive single-qubit gate errors would likely
reduce our reported threshold values, and we consider it as
important future work.

We deliberately use a simple, unoptimized stabilizer
implementation to avoid confounding our theoretical re-
sults with circuit-specific optimizations, as indicated in Ap-
pendix A. While gate count and idling could be reduced
through circuit optimization techniques, we chose not to in-
corporate such optimizations to maintain the generality of
our theoretical analysis.

Our model would be more realistic for trapped-ion systems
where idling errors (due to relaxation or decoherence) are
significantly lower (~ 10~°) compared to superconducting
qubits (~ 10™%). In trapped-ion platforms, coherence times
are typically much longer, making idling errors less sig-
nificant compared to active gate operations. This platform-
dependent behavior suggests that our simplified model
captures the dominant error sources for certain quantum
computing architectures.

Nonetheless, in the rest of this section we show that many
of the single-qubit gate errors can be absorbed into our model
through mathematical equivalences.

A. HADAMARD GATE ERRORS

The circuit contains, for each ancilla qubit, a Hadamard gate
after preparation and before measurement. If we model this
gate as suffering an error corresponding to an additional Pauli
gate, then it can be shown that the error can be absorbed into
preparation and measurement errors, respectively.
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For the Hadamard gate after preparation, a Z-type error
is equivalent to an X error before the Hadamard gate (since
HX = ZH), which is equivalent to a flip preparation bit. A
X-type error similarly corresponds to a Z-type error before
the Hadamard gate, i.e., right after preparation. Since the
prepared qubit is initially either in the state |0) or |1), a Z-type
error does not introduce additional errors, since it acts as the
identity.

For the Hadamard gate before measurement, a Z-type error
is similarly irrelevant, since the measurement is done in the
computational basis. A X-type error is equivalent to a mea-
surement error, where the measurement bit flips.

For both cases, a Y-type error is a combination of
both error types. Therefore, if the probability of a
preparation/measurement error is pys, and the probabil-
ity of a specific Hadamard gate error is py/3, then
we can model Hadamard gate errors by simpl;r using
the equivalent probability p;w = py(1 — 2PTH) + %(1 —
PMm) = py + 2177” Since, in practice, py > pp, disregard-
ing the Hadamard gate errors does not significantly affect the
analysis.

B. 1-QUBIT GATE ERRORS

For the 1-qubit gates we consider in our model, possibly
appearing before and after the target of a CNOT gate, we can
similarly map them so that the errors actually arise from the
associated CNOT gate, while assuming that the 1-qubit gates
are perfect. If their error rate is pg, then the equivalent error
rate for the CNOT gates incorporating the 1-qubit Pauli gate
errors is p' >~ p + pg. Similarly to before, p > pg, so their
exclusion from our model does not significantly affect the
analysis.

C. IDLING ERRORS

For comprehensive circuit-based error models, it is standard
to also include errors coming from idle qubits changing over
time, either due to relaxation, decoherence, or more complex
dynamics (e.g., crosstalk). This scenario can be modeled by
assuming that identity gates are applied to the circuit, and
that these gates get converted to a Pauli gate when an error
occurs.

Unlike the previous scenarios, it is harder to map these
errors to equivalent errors in the cNOT gates. We can evolve
the idling errors forward in the circuit up to the first cNOT
error they encounter, where they can potentially increase in
weight. In our formulation, if we assume that each identity
gate with error p; takes as long as a CNOT gate application,
then the errors can compound quickly. Since the stabilizer
application is not optimized, if we apply the n — k stabilizers
in series, and each stabilizer affects w := An qubits (where
A = 3/4 in our implementation, and ~ 1/2 in the optimized
version in Appendix A), then for each main qubit there are
on average

:An[l+2(l—k)+3(l—)»)2+~--] (180)

2100626

(181)

identity gates between CNOT gates.
During every idle slot the qubit is acted on by a
singlequbit depolarizing channel D, (p) = (1 — 2L)p +

%Zae{X,Y,Z}O‘p(X'
In the Pauli frame each gate independently applies

E; - I, with pr?bability 1 - q (182)
X,Y or Z, each with probability ¢/3
g:=322 (183)

Because the nontrivial Pauli operators modulo a phase
form the abelian group V4 = {I, X, Y, Z}, the net error after
the m idle slots is the group product E := E,,- - - E1. A stan-
dard character argument for random walks on Vj gives

PrlE =1 = 1+3(1 —¢)"] (184)
Hence, the equivalent identity error is
py=1—PrE =1] (185)
3
= Z[l -1 —-9" (186)
3 3 n/x
=1 (1-2 (187)
4 4
9
~ —npy/r, fornp;/r <L 1. (188)

16
Since we expect py to be about one order of magnitude lower
than p (except for trapped-ion platforms, where p; is much
lower), even relatively low values of n make idling nonneg-
ligible. Nonetheless, we can show that, in a more realistic
setting, where the gate implementation is optimized, idling
can be largely removed, thereby making this error source
negligible.

In an optimized setting, besides implementing the stabi-
lizer optimizations in Appendix A, we would also parallelize
the cNOT gates associated with the different stabilizers as
much as possible. In general, it would be possible to paral-
lelize cNOT gates associated with different stabilizers when-
ever their target qubits are different.

To quantify how much circuit parallelization is possible
we model the scheduling of the cNOT gates associated with
the 1 := (n — k) >~ n stabilizers. Write A = {ay, ..., a;} for
the ancilla (control) qubits and B = {by, ..., b,} for the data
(target) qubits. Every CNOT is an edgee = (a;, b;) in the bi-
partite graph G = (A U B, E). For the code families consid-
ered here the following:

1) each ancilla participates in w = A n edges (A = % or
2);

2) for a fixed data qubit b; the number of incident
edges X; is a random variable X; ~ Binomial(r, £) =
Binomial (n, ) with mean u = E[X;] = An = w.
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A single time step (“layer”) of the circuit is a matching
of G: a set of edges with no common end—points, so that no
qubit is touched twice in the same layer. Partitioning E into
the minimum number of such matchings is the edge—coloring
problem; for every bipartite graph, Kénig’s theorem gives

x'(G) = A(G) (189)
where A(G) is the maximum vertex degree. Consequently

D= AG) = max{ w, max Xj}

l=j=n

(190)

is the optimal cNoOT depth.
Let M, := max; X;. A standard Chernoff bound gives, for
anya > 0

2
PrX; > pu +a] < exp (‘W) . 191

Choosing a = +/2u Inn and unionbounding over the n data
qubits

Pr [M,, > 1420 lnn] — 0 (192)
n—od
so that, with high probability
M, < w+V2wlnn.

Because M,, > w always, we may replace the order symbol
in (190) by its leading constant and write

E[D]= w+2winn + 0<\/wlnn) (193)
~ w++2wlnn (194)
= An++2Ainlnn. (195)

Along any ancilla line exactly w cNOTs are executed in D
layers, so the number of idle layers on that qubit is D — w.
Averaging the gap between successive CNOTSs over the w — 1
internal intervals gives

D—
N=—% (196)
w—1
V2wl
~ NYeowon (197)
w
21 21
- j2ar_ o nn (198)
w Aon
Hence, keeping only the firstorder term,
2 Inn
Ny ~ |- —. (199)
A on

This value is lower than 1 and quickly converges to O for
high n. Therefore, similarly to before, we could consider an
equivalent p’ >~ p 4+ N;p; to model idling errors.

D. EQUIVALENT THRESHOLD

Accounting for these errors, and considering that they are
at least one order of magnitude lower than cNOT, prepara-
tion and measurements, leads to an equivalent error rate that
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is around 10% higher. Consequently, in this more complex
model, with the necessary circuit optimizations, we would
get a Pereshold that is 10% lower. We note, however, that this
setup would not be sensible, since our empirical threshold
stems from an purposefully unoptimized stabilizer imple-
mentation. It is possible that an implementation with opti-
mized stabilizers (which is outside the scope of this work)
would lead to a naturally higher threshold, regardless of the
1-qubit gate and idling errors.
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