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Project Definition (1/2)

Initial Situation

The optimization of composite laminates often begins in a mathematically feasible design
space defined with respect to lamination parameters, which represent the mechanical behavior
(stiffness matrix) of a laminate independent of its stacking sequence. However, this notion
introduces a critical gap between the mathematically feasible lamination parameter vectors and
those that correspond to stacking sequences that are physically realizable and compliant with
design guidelines such as symmetry, balance, 10% rule, disorientation, damage tolerance, and
contiguity.

Evaluation of optimal stiffness and designing a stacking sequence matching it are the two levels
of bi-level optimization process. If the selected lamination parameter lies outside the realizable
region, this retrieval fails and results in a mismatch, compromising structural performance.

This thesis addresses the need to systematically define and validate the realizable domain, a
subset of the lamination parameter space that corresponds to stacking sequences satisfying
practical design guidelines.

Goals

The goal of this thesis is to analytically characterize the realizable domains of lamination
parameters under selected design guidelines and validate these domains through numerical
experiments and bi-level optimization. This involves:

* Deriving analytical bounds in lamination parameter space for individual and combined
design guidelines (disorientation, contiguity, and damage tolerance).

* Validating the derived domains against laminate datasets for varying ply counts.

* Integrating these domains into a bi-level optimization framework to study their effect on
design consistency and structural performance.

* Quantifying the reduction in mismatch between optimization levels when realizable
domains are enforced.

v



Project Definition (2/2)

Contents of this Thesis

* Theoretical Formulation of Realizable Domains
— Introduction of the realizable domain concept with respect to lamination parameters.

— Analytical characterization of individual design guidelines in lamination parameter
space.

— Derivation of combined realizable domain equations for multiple guidelines.
* Numerical Validation of Derived Domains

— Brute-force laminate dataset generation using discrete angle steps for varying ply
counts.

— Visualization of realizable vs. mathematically feasible regions through scatter plots.

— Quantification of misclassified laminates across various design guidelines.

Implementation in Bi-Level Optimization
— Setup of a bi-level optimization scheme for single-panel laminate design.
— Comparison of performance with and without realizable domain constraints.

— Analysis of safety factor mismatch due to design guidelines.

Interpretation and Evaluation of Results
— Inference from the trends across ply counts and guideline combinations.
— Discussion on the robustness and limitations of the characterized domains.

— Identification of potential improvements for practical deployment.
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1 Introduction

Composite materials are paramount in modern aerospace engineering due to their superior spe-
cific mechanical properties [Daniel and Ishai 1994; Kaw 2005]. In comparison to using metals in
traditional structural configurations, they offer higher stiffness-to-weight and strength-to-weight
ratios, resulting in substantial weight savings, improved fuel economy, greater payloads, and
greater ranges of operation [Barbero 2010; Herakovich 1998]. As a result of these advantages,
composite materials have been widely adopted in aircraft structures, rotorcrafts, satellites, and
launch vehicles [Mallick 2007; Soutis 2005].

A unique advantage of composites is their directional stiffness, which allows engineers to
tailor structural performance by adjusting the fiber orientation in each ply. Unlike isotropic
materials whose mechanical properties are the same in every direction, composites require
deliberate decisions concerning fiber angles and SS for obtaining performance specifications.
Fibre orientation of plies in a laminate is specified by a SS, which defines the angle and position
of each ply along the laminate’s thickness. However, this flexibility introduces intricacy to the
design process. The number of plies, their directions, and several performance requirements
(such as strength, stiffness, stability, and design guidelines) should be treated in a unified
manner [Giirdal et al. 1999].

Laminate stiffness is typically modelled via CLT. It employs A, B, and D matrices to describe
extension, coupling, and bending responses, which are calculated by adding individual ply
contributions. CLT is computationally expensive if applied directly in optimization since it
leads to a growing number of design variables with an increase in plies.

To overcome this, Lamination Parameters (LPs) were introduced in Tsai and N. J. Pagano 1968.
LPs are a compact continuous laminate stiffness approximations and are one set of alternate
design variables. The same stiffness matrices are characterized in terms of a fixed number
of LPs (at most 12 for an arbitrary laminate), which otherwise requires specifying the fibre
orientation of each ply.

However, for a set of LPs to be feasible, a corresponding real SS must exist. A set of all LP
vectors for which at least one real SS exists is called a mathematically feasible domain. In
physical design, engineers follow specific design guidelines, which are defined based on industry
experience. Without being aware of these guidelines, optimization can produce theoretically
optimal but practically infeasible solutions.

Bi-level optimization process while using LPs as design variables is as follows:
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In the first level, optimal LPs are determined by treating them as continuous design
variables.

In the second level, a corresponding SS is retrieved to match these LPs as closely as
possible.

Mismatch between the LPs and their derived SS introduces an epistemic uncertainty, resulting
from undefined design guidelines in the first level and the discrete nature of plies. The main
hypothesis of the present work is that by defining the realizable domain, this uncertainty is
reduced.

To validate the outcomes, the optimization is performed on a single panel test case. The panel
has a fixed aspect ratio, subjected to multiple load cases [Bloomfield et al. 2008].

The structure of this thesis is as follows:

Chapter 2: State of the art introduces the fundamentals of composites, design guide-
lines, and different parameterization techniques like CLT and LPs. Moreover, this chapter
identifies the research gap addressed in this work.

Chapter 3: Research Questions enumerates the formulated research questions that guide
the findings of this work.

Chapter 4: Methodology presents the theoretical framework describing the realizable
domain in LP space with respect to each design guideline. In addition to this, it states the
computation method used to validate and incorporate the described domains into the bi-level
optimization tool.

Chapter S: Results provides quantitative and graphical validation of the described spaces,
as well as the performance evaluation in the bi-level optimization using an in-house tool.
Outcomes are compared under different load cases.

Chapter 6: Conclusion summarizes the findings and provides suggestions for future work.




2 State of the art

This chapter introduces the fundamental concepts necessary to understand the findings of
the current work. The basic principles of composites, macromechanical behaviour, industry
guidelines, optimization, and laminate optimization using LPs are clarified. Bailie et al. 1997
outlines the design guidelines, based on laminate definitions, that form the basis for the SS
design of most composite structures in the aerospace industry.

However, not all guidelines are accounted for when using LPs as design variables in the opti-
mization stage. These guidelines are presented in the context of optimization, meaning they
are defined with respect to the chosen design variables to facilitate their analytical characteriza-
tion.

This chapter focuses on the design guidelines characterized in the literature, namely symmetry,
balance, and the 10% rule. Additional design guidelines, disorientation, damage tolerance, and
contiguity are likewise introduced in the current chapter and are characterized in Chapter 4. At
the end of the chapter, the consequent research gap is summarized.

2.1 Laminated composites

Composite materials can be described as a mixture of two or more different types of materials
with micro- or macroscopic dimensions and clearly identifiable boundaries [Chawla 1988].
Fibre-reinforced laminated composites are commonly used in the industry and are the focus of
this work.

J /"

Yy
h 16,
s
_/
(a) Laminate. (b) Ply. (c) Fiber orientation in ply.

Figure 2.1: Constituents of a laminate.
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Figure 2.1 shows a laminate of height &, comprised of plies stacked together. Each ply with a
certain thickness ¢ constitutes fibres bound within a matrix. The orientation of these fibres is
measured with respect to the global coordinates of the laminate and can vary in the range of
[—90°,90°]. The material axis of a composite ply refers to the local coordinate system aligned
with the fibre direction (axis-1) and the transverse direction (axis-2), while the axis-3 points
through the thickness of the ply, aligning with the global z-coordinate (see Figure 2.1c). SS of a
laminate defines the stacking order of plies with certain fibre orientation 6. The laminate SS
is represented in Figure 2.2. Laminates with plies stacked symmetrically about the mid-plane
are known as symmetric laminates (Figure 2.2b). Figure 2.2b and 2.2c illustrate equivalent
alternatives to present the same laminate. Notation with subscript s is commonly used for
symmetric laminates (see Figure 2.2c).

6, 0,
0 0
2 h/2 3 h/2
03 z 0, z
Midplane 64 Midplane 01
95 91
96 92
h/2 h/2
97 03
08 94
(a) [01/6,/03/04/05/65/67/65]. (b) [04/65/6,/0,/6,/6-/03/64].
0,4
0
3 h/2
0, z
Midplane 61
(c) [04/65/6,/0 ];.

Figure 2.2: Laminate SS notation.

Combinations of two different materials are utilized to benefit from both of their individual
properties. Fibres govern axial stiffness, and the matrix governs shear and transverse prop-
erties. However, this generates a complex inhomogeneous stress distribution in the material.
Unlike their isotropic counterparts (metallic alloys), composites exhibit anisotropic/orthotropic
properties derived from the combined effect of stiff load-bearing fibres and a ductile matrix.
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At the ply level, fibre and matrix properties are studied under micro-mechanics. Micro-
mechanics is not further discussed, as it is out of the scope of this thesis. For further details on
micromechanics, Aboudi 1991 can be referred.

A homogenization approach is applied to simplify the analysis associated with the inhomo-
geneous stress distribution. Here, the fibre and matrix properties are averaged to define an
equivalent homogeneous material. This enables the use of traditional mechanics formulations,
such as stiffness matrices, without explicitly modelling individual fibres and matrices and
their interaction. Hooke’s law provides stress-strain relationships along the material axis. The
homogenized properties are used in the stress-strain relationships. Mathematically, Hooke’s law
is represented as:

o =Qe¢ 2.1)

(o (011 Q12 Q13 Qs Q15 Qi [ &
) O 02 023 Qo O Ox| | &
O3 | _ |91 O3 033 O3 035 O |& 2.2)
73 Q41 Qu 043 QOs4s4 Qss Qus| |13 '
T31 Os1 Os2 Os3 QOsq4 QOss Q| |11

Ti2]  [Oe1 Oz Q63 Qea Qo5 Qss| [N2]

In Equation 2.1, o and € represent the stress and strain tensors, respectively. Q matrix defines
the stiffness of the ply in the material axis. Since the ratio of ply thickness to its in-plane
dimensions is extremely small, the out-of-plane stresses (03, 713, and 7»3) are considered
negligible compared to the in-plane stresses [Nettles 1994]. Hence, the plane stress assumptions
are applied and the Equation 2.2 reduces to:

O] On Onn O £
o|=10n 0O0»n O & (2.3)
T12 0 0 Qe N2

Elements of the stiffness matrix Q are defined based on material properties (Young’s modulus
(E), Poisson’s ratio (v), and Shear modulus (G)). For a homogenized ply, these properties are
defined by moduli Ey, E, G2, and Poisson’s ratio vy» (or V,1) in the material axis (Figure 2.1c¢).
Equation 2.3 can be expressed as:

E| V21 Ep
o1 I=viava1  1=Viavy &
— VioEs E,
;_72 I=vpvar  1=vpvy 0 & 2.4)
12 0 0 G "2
where:
m — E (2.5)
E; E; '
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Since each ply in a laminate is generally oriented at a different angle 0, the stiffness contribution
of each ply must be expressed in a common coordinate system for analysis. Transforming the
stiffness matrix from material coordinates to laminate global coordinates allows for a consistent
representation of the stiffness across all plies. Using fibre orientation information, Hooke’s law
is expressed in global coordinates by using the transformation matrix T:

cosZ 6 sin% 0 —2sin6cos O
[T]= | sin’6 cos’ 0 2sinBcos 6
sinfcos® —sinBcosO cos?O —sinZO
1 00
R]=10 1 0
0 0 2
Oy Ex
oy | =[T]"'[Q]R][T][R] ' | &,
Txy '}/xy
Ox O Qi O3l | &
Oy | = |01 O 0| |& (2.6)

Txy 031 03 033] [%

Achenbach 1975 can be reffered for the detailed derivation of Equation 2.6.

2.1.1 Classical Laminate Theory

Having understood the stress-strain relation at the ply level, CLT is used for studying the
combined effect of all stacked plies in a laminate, accounting for both in-plane forces and
bending moments. In a laminate subjected to external loads, forces, and moments are not
applied directly to the individual plies but to the laminate. Hence, the resultant in-plane forces N
and bending moments M are obtained by integrating the stress components through the laminate
thickness as per Equation 2.7 and 2.8.

Nx_ i _Gx_

N=|N, :/h o, | dz 2.7)
No] 72 [T
X % Oy

M= | M, :/h o, | zdz (2.8)
xy 2 | Ty




2.1 Laminated composites

According to Love 1888, the total strain at any point € in thin elastic shells is a linear variation
of midplane strain & and the curvature of the shell k. Mathematically, it is expressed as:

e=¢e"+zx (2.9)

By substituting Equations 2.9 and 2.6 into the integrals given in Equations 2.7 and 2.8, a set
of coupled linear equations is obtained, expressing laminate forces and moments as functions
of midplane strains and curvatures. This leads to the compact matrix form of CLT shown in
Equation 2.10, where the A, B, D matrices represent the extensional, coupling, and bending
stiftness of the laminate, respectively.

=[5 o[

Ny (A1 A A B Bio Big| [€)]

Ny Aip Ax Ay B By Byl | €&

Ny | _ |Ais A Aes Bis B Bes| | %) (2.10)
M, Bi1 B2 Big D11 D12 Dig| | ke '
M, By By By D12 D Dy | K

(Myxy|  |Bie B Bes Dis Dz Dec] | Ky,

Equations 2.10 and 2.9 are used for computing the midplane strains and curvatures under applied
loads. These can be extended to determine strain and stress distributions within individual
plies, which are the basis for further analyses such as ply-level failure assessment or buckling
checks [Jones 1999]. With experience in designing laminates for manufacturing aircraft struc-
tures, certain guidelines have been commonly adopted in the industry to avoid practical and
manufacturing complications.

2.1.2 Laminate design guidelines

Experience-based knowledge stemmed from designing composite aircraft for many years,
resulted in the development of the so-called design guidelines for the laminate SS [Bailie et al.
1997]. Through the thickness design guidelines described in the literature are listed below:

* Symmetry

* Balance

* 10 % Rule

* Disorientation

* Damage Tolerance
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* Contiguity

Design guidelines related to constant thickness structures are discussed in the current work.
For completeness, it is important to note that laminates can have variable stiffness by changing
thickness or the constituent fibre orientation across the structure. Related design guidelines
pertaining to ply-drop/blending, bonding, assemblies, and repair of composite structures are not
focused on in this study and can be found in US Dept of Defense 1999.

Symmetric laminates

Figure 2.2b shows a laminate with fibre orientations distributed symmetrically about the mid-
plane. This type of laminate is called a symmetric laminate. Such a design results in uncoupling
a laminate’s bending and membrane response. This uncoupling simplifies the evaluation of the
ply-level strain and stress distribution. It also prevents the warping effect during manufacturing
[Niu 1992]. For completeness, it is worth noting that symmetry is a sufficient but not a necessary
condition for uncoupling the bending and membrane responses [Verchery 2011].

Figure 2.3: Effects of [ABD] coefficients on deformation [Franz et al. 2019].

Mathematically, the uncoupling is expressed as:

[B]=0 (2.11)




2.1 Laminated composites

Balanced laminates

In this type of laminate, plies oriented at +-60 (excluding 0° and 90°) are always paired with
corresponding — 6 plies, ensuring a balanced fiber arrangement (see Figure 2.4).

+45° 15°
0° 0°

h/2 h/2

—45° z -30° z

Midplane 90° Midplane 45°
+30° 60°
+60° 90°

h/2 h/2
—60° —75°
—-30° 45°

(a) Balanced Laminate. (b) Unbalanced Laminate.

Figure 2.4: Example for a balanced and unbalanced laminate.

The guideline is enforced to decouple the laminates’ in-plane normal and shear properties. As a
result of implementing this guideline, the mechanical properties and behavior of the laminate
become more intuitive. It also reduces the cost of tests, such as determining open-hole strength
[Bailie et al. 1997].

Uncoupling the normal and shear properties of the in-plane is called in-plane orthotropy. This
can be satisfied by nullifying the coupling terms in Equation 2.10:

Al6,426 =0 (2.12)

10% rule

Although laminates are designed for known primary loads, failure might occur due to uncertain
secondary loads. To mitigate this problem, the 10% rule is enforced to maintain minimum
stiffness across 4 principal directions, or uniaxial load states. The 10% rule requires at least ten
percent of the fibres to be oriented in 0°, +45°, —45° and 90° angles. Since the rule is enforced
on the ply counts, it is not straightforward to generalize it for laminates with arbitrary ply angles.
Hence, Abdalla et al. 2009 proposes a generalized 10% rule, which ensures a minimum amount
of in-plane stiffness in each principal direction of the laminate. Constraints on stiffness make it
more intuitive to understand the guideline as a robustness criterion for the laminate.
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Disorientation

The guideline restricts the absolute maximum difference between the fibre orientation of two
consecutive plies to 45°. This mitigates the delamination due to the high stiffness and coefficient
of thermal expansion difference between consecutive plies [Niu 1992]. Figure 2.5b shows an
arbitrary laminate obeying the disorientation design guideline.

On
|
|
Or+1 45°
300
Ok
i 60°
| 15°
l —30°
P —60°
2 90°
0, 750
(a) (b)

Figure 2.5: Disorientation design guideline. (a) The constraint is defined as |AB| < 45° (see
Equation 2.13). (b) Example of a laminate SS that satisfies the disorientation
requirement.

16k — Oy | < 45° (2.13)

Damage tolerance

To ensure the safety of primary load-carrying plies and increase the impact resistance, e.g.,
against tool drop while manufacturing or assembly, damage tolerance design guideline is
enforced. It requires +45° plies to be placed on the outer laminate surface. Three common
interpretations of the damage tolerance design guideline are:

* The outermost plies are assigned 45° or —45° individually, while the remaining fibre
orientations of the plies are selected based on the remaining design guidelines enforced.

10
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* The outermost two plies are oriented at 45° and —45°. This way, the remaining plies can be
treated as a sublaminate while enforcing other design guidelines independent of damage
tolerance.

» Separating the outermost +45° plies with 0° or 90° ply to account for disorientation design
guideline.

Figure 2.6: Top and bottom plies of an arbitrary laminate fixed at +£45°.

Contiguity

Contiguous plies are defined as consecutive plies with identical fibre orientation. Figure 2.7
illustrates a laminate segment with n contiguous plies. Contiguity design guideline constrains
the total thickness of contiguous plies z),.

The CLT predicts the plane stress in laminates under membrane loading. However, when
adjacent plies are oriented in different fibre directions, a mismatch in their Poisson’s ratios leads
to the development of interlaminar stresses. These interlaminar stresses are not captured by
CLT but play a significant role in the onset of delamination, particularly near the free edges of
the laminate. According to Love’s hypothesis for thin shells [Love 1888], the membrane stress
at the free edge must vanish. Consequently, the normal stress component G, is balanced by an
interlaminar shear stress 7,,. However, the forces resulting from o, and 7;, are not collinear
[Pipes and N. Pagano 1970], generating a local moment. An additional interlaminar normal
stress o, is induced to maintain equilibrium.

The magnitude of this interlaminar stress o, is directly proportional to the thickness of the
contiguous region tp. Therefore, the contiguity design guideline is imposed to mitigate excessive
interlaminar stress and reduce the risk of delamination. In practice, the guideline constrains the
total thickness of contiguous plies to 0.6 mm. However, based on the standard ply thickness
used in most laminates, this translates to a maximum of 4 or 5 plies.

11
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(//j:'l><l T?yrl

y 6z 0z

|
—

Figure 2.7: Free body diagram of outer ply illustrating the interlaminar stress [Pipes and N.
Pagano 1970].

Fibres are the primary load-bearing elements in composite laminates, and the stiffness is
maximized along the direction of fibre orientation. Engineers can tailor the stiffness distribution
to achieve desired mechanical properties by strategically varying fibre angles across plies.
Optimizing fibre orientation is a key aspect of composite design, as it involves balancing trade-
offs among stiffness, weight, and performance. Optimizing laminated composites amidst all
this 1s challenging.

2.2 Optimization

In optimization problems, attributes are typically categorized as design variables, parameters,
or Quantities of Interest (Qols). Requirements posed on Qols serve as a mean to evaluate
performance requirements or objectives, which help determine whether an optimized solution is
acceptable or not. The values of Qols are directly influenced by the chosen design variables and
parameters. They are usually bounded considering, for example, manufacturing or geometrical
constraints. These bounds span the design space. One of the main challenges of the optimization
process is to explore the available design space and find the best possible set of design variables
that are feasible. Optimization is an inverse process of verification, where the design variables
are optimized based on the system requirements [Zimmermann 2022a]. Mathematically, an
optimization problem is expressed as:

min  f(x)
X
subject to: g(x) <0
h(x) =0
X] <X <Xy

12



2.2 Optimization

The objective function of an optimization is defined by the function f(x), where x represents
the vector of design variables. The goal of an optimization process is to minimize the value of
the objective function. The search for an optimal solution is carried out within a n-dimensional
design space (n being the number of design variables), constrained by the lower and upper
bounds x and xy, respectively. Additionally, the optimization problem is mostly constrained
by a set of inequality constraints g(x) and equality constraints h(x), which are satisfied for a
feasible design.

Some optimization methods include gradient-based methods, population-based methods, or data-
driven approaches. A detailed discussion is beyond the scope of this work; readers interested in
an overview of optimization methods are referred to [Papalambros and Wilde 2017].

The objective function contains either a single optimum or multiple optima. Determining
properties, such as convexity, supports the decision making process regarding choosing the
appropriate optimization algorithm for the specific problem. A function is convex if a straight
line connecting any two points on the function lies entirely above the function itself [Ekeland
and Turnbull 1983].

intersection

a b x X X
convex concave nonconvex

Figure 2.8: Visual representation of convex, concave, and non-convex functions [Bletzinger
2021].

As illustrated in Figure 2.8, convex problems are characterized as functions having one lo-
cal/global minimum. This does not imply that there is just one minimum but that the entire
collection of minima lies within a convex region [Boyd and Vandenberghe 2004]. However, non-
convex problems may possess multiple local minima. Convexity thus facilitates the optimization
task by removing the ambiguity in the local and global solution.

Gradient-based methods, dependent on the gradient information with respect to design variables
for iteratively optimizing the design, are utilized for solving convex optimization problems. The
methods include the steepest descent, conjugate gradient, and feasible direction methods, among
others. These methods are particularly effective in convex spaces for which no constraints
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are applied because any descent direction improves the objective value, and the absence of
non-global local minima ensures convergence to the global optimum [Belegundu 1985].

If gradient information is available, and the design space is restricted by (in)equality constraints,
Sequential linear or quadratic programming is suitable. When dealing with non-convex prob-
lems, where there are multiple local optima, one can utilize methods such as Sequential Convex
Programming to solve the original problem by an approximation via a sequence of convex
subproblems, leveraging the solvability of convexity while addressing larger non-convex prob-
lems [Bruyneel 2008; Zimmermann 2022b]. However, for the problems where multiple local
minima are present, and if the gradient of 1% and 2" order is not available, population-based
methods, such as Evolutionary algorithms, are more appropriate [Zimmermann 2022c]. The
following section introduces how laminates are optimized using CLT and LP.

2.3 Laminate optimization using lamination parameters

Laminates must be designed to satisfy the requirements on its Qols. As discussed in Chapter
2.1, tailoring elastic properties in different directions with ease is one advantage compared to
metals. To formulate the optimization problem, appropriate design variables influencing the
Qols (e.g., displacement) are to be selected.

The structural properties of a laminate can be tailored by modifying the SS, which in turn
influences the coefficients of the stiffness matrices [ABD] defined in Equation 2.10. Recalling
the equations describing the [ABD] matrices, the coefficients are mathematically represented
as:

A Z[Qlj(ek)](hk_hk—l) — Z Ql] ek
k=1 k=1
18 n

Bij =5 Y. (0500 —hiy) <= Bij= Y [0ij(0)]nx (2.14)

=1 k=1

18 n 3

Dij=3 Y [0i(0)1(h, — 1) Z 0i(61)] (tkzk+ i2>
k=1 k=1

i,j=12,6

The fibre orientation 6 and the number of plies n are used as design variables to optimize the
stiffness matrix. This choice of design variables - corresponding to the physical parameters
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2.3 Laminate optimization using lamination parameters

directly used in manufacturing - facilitates the evaluation of local stresses and strains using
Equation 2.6. This optimization setup is also beneficial when considering multiple materials.
However, the number of design variables in this parameterization depends on the number of
plies in a laminate. For n number of plies, there are n design variables. The dimension of the
optimization problem rises with the number of plies.

For this reason, a continuous parameterization independent of SS is introduced [Tsai and N. J.
Pagano 1968]. Each term in the [ABD] matrix is represented as a linear combination of LPs,
with the corresponding lamina invariants I'y to I'y serving as constant coefficient matrices.
LPs define the [ABD] matrices in a compact form. To express the stiffness coefficients of the
laminate compactly, the A, B, and D matrices in CLT are written in terms of LPs and lamina
invariants as follows:

A =hCy+T VA + TV +T3VA 4T VA (2.15)
B=T VP +DL VP 4+ V8 + T,V (2.16)

h3
D =T +T VP TV + T3V 4TV (2.17)

Here, VA, VB, and VP represent the in-plane, coupling, and bending LPs, respectively. These
are defined as integrals over the ply orientations as follows:

h/2
\/[’?234] :/ / [c0s26(z),c0840(z),sin26(z),sin46(z)] dz (2.18)
o —h/2
5 h/2 ‘ .
VB = / o [c0s26/(z),cos40/2),5in20(z), sin 46 (2)] dz (2.19)
o h2 o ‘ ‘
Vias4 :/h/zz [c0s26(z),c0840(z),sin26(z),sin460(z)] dz (2.20)

LPs are defined by separating the lamina invariants from the CLT formulation. The matrices
I'y to I'4 contain material stiffness information and are functions of the lamina invariants U,
through Us:

Uy, Uy O U, 0 O
I'y= Uy 0 ' = -U, 0
sym Us sym 0
Us -Us; 0 0 0 % 0 0 Us
I = Us 0 I'; = 0 % I's= 0 —U; (2.21)
Ssym —-U; sym 0 Sym 0
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The lamina invariants are given by:

U, = % (3011 +302 +2012+40¢6)
Ur= 5 (01— 0n)

Us = % (011 + 022 — 2012 — 4Qs6)
Uy = % (Q11+ 022+ 6012 —4Q46)
U5:%(QH+QD_QQU+4Q%)

In Equations 2.15, 2.16, and 2.17, h denotes the total thickness of the laminate, z denotes the
distance of each ply from the mid-plane. These equations compactly represent the full set of 12
LPs. As described in Equations 2.18 to 2.20, LPs are independent of the total number of plies in
a laminate. Regardless of the laminate size, a maximum of twelve LPs and laminate thickness
are sufficient to characterize its stiffness, making them a more compact and scalable alternative
to CLT. For instance, the compact form of the second coupling parameter is given by:

h/2
v = / zcos40(z)dz (2.22)
—h/2

LPs are expressed as integrals of trigonometric functions of the fibre angle 6(z), as shown
in Equations 2.18 to 2.20. Hence, the design space of LPs is [—1, 1], collectively forming a
12-dimensional hypercube. Each point represents a vector of LPs. However, not all vectors
within this hypercube correspond to real laminates, since all LPs in a single vector are derived
from the same SS. These interdependencies define the "mathematically feasible domain" of
LPs, which is a subset of the 12-dimensional hypercube. Each point in this subset represents a
combination of LPs that can be obtained from at least one real SS.

A vector of LPs is said to be feasible if there exists a physical laminate whose SS produces
that exact set of parameters. Conversely, an infeasible vector does not correspond to any real
laminate and leads to an inconsistent or complex stiffness matrix. Miki 1983 presents the
feasible region of two in-plane LPs which was later extended to bending LPs in Miki and
Sugiyama 1993. Mathematically, it is represented as:

VP > oy A2 (2.23)

The derivation stemmed from the trignometric relation between cos46 and cos260 (cos40 =
2cos? 0 — 1). The inequality trigonometric relation is represented as an inequality when the
laminate has more than one fibre orientation angle. The feasible domain shown in Equation 2.23
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2.3 Laminate optimization using lamination parameters

a) 0-, +45-, and 90-deg plies b) 0-, £30-, +60-, and 90-deg plies

Figure 2.9: Feasible in-plane LP values for a 4-ply SS,considering two different sets of allowed
fibre angles [Haftka and Giirdal 1992].

can be visualized in the VlA — V2A space, generally known as Miki’s diagram (see Figure 2.9).

Equation 2.23 was derived for LPs, when V3A4 18 zero. However, for a fixed value of VlA and V2A
the relation between the four in-plane LPs is derived in Fukunaga and Sekine 1992 as:

2014+ V() —avrvVE + (V) < (2P (=) (224)

Although certain equations are derived considering in-plane and bending LPs, a unified relation
between all 12 parameters is still not derived. C. Diaconu et al. 2002 discussed the feasible
region of any two LPs, with a numerical derivation of the complete feasible domain using
a variational approach. The equations defining the feasible region of LPs are discussed in
C. G. Diaconu et al. 2002 and C. Diaconu and Sekine 2004, and can be referred to for further
interest.

The fixed number of design variables (LPs) simplifies the formulation of optimization problems
for stiffness tailoring. However, optimization using LPs yields just an optimal stiffness matrix; it
does not provide the corresponding physical SS required for manufacturing. Therefore, laminate
optimization is done on two levels. This bi-level optimization process refers to: (1) optimizing
the stiffness using LPs, and then (2) retrieving a manufacturable SS that closely matches the
optimal parameters (see Figure 2.10).

In the first level of the procedure, stiffness is optimized with respect to LPs as design variables.
Grenestedt and Gudmundson 1993 discuss the convex nature of LPs. With the feasible region
of the LPs defined, gradient-based optimization algorithms are generally utilized to optimize
problems with continuous design variables.
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1 - Conceptual Optimization

Optimum Stiffness
(Lamination Parameters)

Design Drivers:
Structural Requirements
(Strength, Buckling, Weight)

v

Output:
Conceptual Optimum
Design Sensitivities

2 - Fiber Angle Retrieval

Design Drivers:
Conceptual Optimum and
Manufacturing Requirements

v

Output:
Fiber Angles and Stacking
Sequence Per Point

Figure 2.10: Bi-level optimization procedure of composite laminates [1Jsselmuiden 2011 ].

The second level of the bi-level procedure addresses the inverse problem: retrieving a SS that
corresponds to a target vector of LPs. Due to the periodic nature of trigonometric functions, the
mapping from LP to SS is generally one-to-many because multiple SSs can produce the same set
of LPs, preventing a direct inversion. To address this, various discrete optimization techniques
are explored in the literature - such as Genetic Algorithms [Ghiasi et al. 2010, 2009; Irisarri
et al. 2014] and Branch-and-bound strategies [Matsuzaki and Todoroki 2007] - to efficiently
search for SS that best approximates a given LP vector.

An ADG is a graph that models how attributes (properties) of a system depend on one another.
Each node represents an attribute that may vary during the design or use of a product, and each
directed edge indicates a dependency [Zimmermann 2024]. Such an overview serves as a tool
for the visualization of dependencies of the system (see Figure 2.11).

The graph can be interpreted in two directions:

* Bottom-up: This direction represents verification - checking whether a given set of design
variables satisfies the laminate performance criteria.
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2.3 Laminate optimization using lamination parameters

Figure 2.11: Visualization of bi-level ADG.

* Top-down: This direction outlines the optimization path - starting from high-level objectives
and progressively determining the required design variables.

As the initial optimization problem is split into two levels, it becomes essential to correctly
allocate constraints at every stage of the graph. However, not all constraints naturally align with
intermediate variables. For example, a constraint defined at the SS level may not be directly
definable with respect to LPs. When such constraints are omitted in early stages, the result is a
mismatch between optimized variables and realizable designs, introducing epistemic uncertainty
(uncertainty due to missing or incomplete information in the modelling process) (Figure 2.13).
Figure 2.11 provides an overview of an ADG, in which the attributes at Level 1 serve as design
variables for the optimization of the Qol at the top of the hierarchy. Simultaneously, the attributes
at Level 2 act as design variables for optimizing the Level 1 attributes, which in this context
serve as the Qols for the lower level of optimization.

The design guidelines discussed in Chapter 2.1.2 are defined on SSs. They can be easily
described as constraints in the optimization when considering fibre orientation and ply thickness
as design variables. This is because of the presence of SS information during optimization.
While considering LPs as design variables, the constraints are defined in the second optimization
level where the information of SS is present. But, at the first level of the bi-level procedure,
optimization is carried out based on the geometric bounds on the LPs and the described feasible
region. The absence of the SS information poses a difficulty in enforcing the design guidelines
in this step. This epistemic uncertainty creates a mismatch between the optimal set of LPs found
and the retrieved SS. Addressing this mismatch is important, as it poses a structural and/or
instability failure potential (see Figure 2.13).
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Figure 2.12: ADG for the laminate design.

Upper Wing Skin Front Wing Spar Failure Index
for strength
D:W_J 25
o, s SR 2
1.5
Lower Wing Skin Rear Wing Spar

Figure 2.13: Unsatisfied strength constraint due to the mismatch error [Bordogna et al. 2016].

2.4 Design guidelines as optimization constraints

To mitigate the effects of mismatch error, numerous studies have been carried out to characterize
the design guidelines in the LP space [Abdalla et al. 2009; Miki and Sugiyama 1993]. In this
work, the term realizable domain refers to the set of LP vectors that correspond to real SSs
which satisfy the imposed design guidelines.
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2.4 Design guidelines as optimization constraints

The work carried out by Tsai and N. J. Pagano 1968 defines the LPs for symmetric and balanced
laminates. As described in Chapter 2.1.2, symmetric laminates uncouple the in-plane and
out-of-plane properties of the laminate. In the LP space, the four parameters (VIB2 3.4) used to
calculate the corresponding B matrix are equated to zero, characterizing the realizable domain
for the symmetry design guideline.

Figure 2.14: Adapted ADG for the laminate design when the symmetry design guideline
characterized in LP space is enforced.

Similarly, the balance design guideline, enforced to maintain in-plane orthotropy, is defined by
equating V3‘§4 defining the coupling terms in the A matrix (A and Aye) to O.

T A1q A1z
[A] = A12 Azz

Figure 2.15: Adapted ADG for the laminate design when the balance design guideline
characterized in LP space is enforced.
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The two guidelines, symmetry and balance, are characterized as equality constraints. The 10%
rule defines the constraint on the percentage of plies with certain fibre orientations. Abdalla
et al. 2009 characterized the realizable domain as a shrinkage of the feasible domain by 40%
(Figure 2.16). This is mathematically expressed as:

(1—4p)>+(1—4p)Vg—2(V{*)* >0 (2.25)
1—4p—Vi+>0 (2.26)
The rule visualized in Figure 2.17 is characterized for symmetric and balanced laminates in

the literature [Abdalla et al. 2009]. The aforementioned percentage (in this case, 10%) in the
characterized design guideline (Equation 2.25 and 2.26) is denoted by p.

[90°];, [0°]

o/
v/

Figure 2.16: Shaded region illustrates the shrunk feasible domain due to the enforced 10% rule.

Table 2.1: Design guidelines characterized in the literature [Abdalla et al. 2009; Miki and
Sugiyama 1993].

Design Guideline Characterized Equation Eq. Ref.
Symmetry VB =0 2.11
Balance VA =VA =0 2.12
10% Rule (1—4p)?+(1—4p)Vi-2(VA)?2>0
where: p = 0.1 2.25
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2.5 Research gap

Figure 2.17: Adapted ADG for the laminate design when the 10% design guideline
characterized in LP space is enforced.

2.5 Research gap

Design guidelines, namely symmetry, balance, and 10% rule, have been characterized as
constraints for the optimization (see Table 2.1). However, some key guidelines, namely disori-
entation, damage tolerance, and contiguity, remain uncharacterized. Additionally, the explicit
impact of existing guidelines on reducing mismatch between the optimal LPs and the designed
SS has not yet been systematically quantified.

Three design guidelines, namely disorientation, damage tolerance, and contiguity, have not
been mathematically characterized. Although symmetry, balance, and the 10% rule have been
mathematically characterized in the literature, it doesn’t explicitly explain how they reduce the
epistemic uncertainty. This generates a gap in understanding the importance of defining the
realizable domain. The characterized region of design guidelines with respect to LP is known as
the realizable domain. Moreover, the question of epistemic uncertainty stemming from the lack
of characterization of these design guidelines is to be explored.

Posed research questions addressing this gap are given in Chapter 3, followed by the derivation
of the missing guidelines in Chapter 4.
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3 Research Questions

This work is dedicated to addressing the research gaps identified in Chapter 2. In particular,
mathematically defining disorientation, damage tolerance, contiguity, and quantitatively evaluat-
ing the reduction in mismatch between the two levels of bi-level optimization. Therefore, the
research questions addressed by this thesis are:

1. How can the design guidelines be defined with respect to LPs without the SS information?

a) What are the implications on the size of the LP space given the derived design
guidelines?

b) What is the accuracy of the classified realizable domain?

2. How do the characterized design guidelines influence the mismatch between the concep-
tual and the designed laminate stiffness?

a) How can the mismatch occurring due to the uncharacterized design guidelines be
quantified?

b) Is the mismatch sensitive to the nature of applied loads?
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One of the fundamental issues in specifying design guidelines in the LP space stems from
the absence of explicit SS information, which is discussed in Chapter 2. To deal with this
limitation, vector analysis of LPs is employed, offering an intuitive approach to understanding
and visualizing the impact of design guidelines in the LP space.

The framework has three main components: vector analysis, theoretical formulation, and
computational verification. Vector analysis is performed by considering the 2D projections of
LPs. The theoretical framework formulates the equations defining the realizable domain for
disorientation, damage tolerance, contiguity, and balance guidelines individually, and studies
their combined interaction. The computational process employs a brute-force search approach
to verify the correctness and feasibility of the constraints.

4.1 Vector Analysis of lamination parameters

Irrespective of the SS, LPs individually always range between [-1, 1]. However, while each
parameter is mathematically valid within this range, a vector representation of multiple LPs
must satisfy interdependencies which define the mathematically feasible domain [Grenestedt
and Gudmundson 1993; Miki and Sugiyama 1993].

Similarly, to gain deeper insight into the influence of individual ply contributions on the overall
stiffness of a laminate, this study examines pairs of LPs. The contribution of each ply is
understood by decomposing the LP equations into summation terms, each representing a vector.
The components of the resultant vector, formed by summing these individual contributions,
determine the final value of the respective LPs. The vector analysis approach clarifies how
design guidelines influence the feasible domain in LP space. The laminates that follow the
design guidelines are called practically feasible. The region defined by these guidelines in the
LP space is called the realizable domain. The key aspects considered include:

* Pairwise Representation of LPs: By analyzing LPs in pairs, the interdependencies be-
tween different parameters become more apparent, aiding in the visualization of realizable
solutions.

* Geometric Interpretation: The spatial distribution of feasible laminates is analyzed within
the parameter space, allowing for a structured representation of realizability constraints.

A graphical representation of vector addition helps visualize how SSs influence the resulting
LPs. The resultant vector can be broken down into components by summing the individual
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D

Figure 4.1: Visualization of vector summation.

effects of each vector in the system. Considering arbitrary vectors A, B, C, D, E and F as shown
in Figure 4.1, the resultant vector is mathematically represented as:

R=A+B+C+D+E+F 4.1)
Each vector in Equation 4.1 is defined by its x and y components.

A =My (cosBy i + sinBy j)
B = Mp (cosBp i + sinbp j)
C = Mc (cosBci + sinbc )
D =Mp (cosBp i + sinbp ) 4.2)
E = Mg (cos6g [ + sin6g ﬂ
F =Mr (cosepf+ sinOFﬁ

Ma Mg, Mc,Mp, Mg, and My in Equation 4.2 represents the magnitudes of respective vectors.
This formulation can be extended to an arbitrary number of vectors as:

n n
R=) Micos6 i+ ) Msin6 j 4.3)
k=1 k=1
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In Equation 4.3, M, represents the magnitude of each vector, and the components of the vectors
are scaled by the trigonometric terms cos 6 and sin 6;. This representation aligns with the
physical behavior of LPs, reinforcing the idea behind representing plies as vectors.

4.2 Theoretical Formulation of realizable domains

For a structured analysis of LPs obeying different design guidelines, the LPs are represented
in their summation form with respect to discrete number of layers. For a symmetric laminate
of height A, ply thickness ¢, and total number of layers n, the eight LPs can be mathematically
expressed as:

2% 2
sz7374 =< Z [c0826),c0840y,sin26,sin46;]
k=1
L) 2%
VD54 = Z((%)t( Z]’; L)3)[cos 26y, cos 46y, sin 26y, sin46;] (4.4)
k=1

Following this equation, constraints for four design guidelines - Disorientation, Damage toler-
ance, Contiguity, and Balance - are derived in terms of LPs.

4.2.1 Disorientation

The disorientation design guideline constraints the maximum angle jump between consecutive
plies as per Chapter 2.1.2. Mathematically, it is represented as:

|6k — Or—1| < 45°
|6 | < 45° 4.5)

- vy

Since the constraint is enforced on the SS, LP pair (VlD , V3D ) is used to visualize the effects of
the design guideline in LP space. From Equation 4.4, VID and VZD are written as:

n

2
VID = Z Wy 0820y
k=1
%l
VP =Y wy sin26; (4.6)
k=1
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Where,
we= (B - (Bt
2kt 2(k— 1)t
— (5)3 _ (%)3
= == 1))
8 a2
wi= (3 =3k +1) (4.7)

While representing the summation terms as vectors, the following needs to be noted:

* Each summation term, representing its corresponding ply contribution, constitutes a vector.

» The orientation of each vector is measured by 26;. Hence, the maximum angle difference
between two consecutive plies, allowed by the disorientation guideline, is 90° (|26;| < 90°).

vP VP
L RN ™ ~<
~ ~
. “T7~ < R - T~ < I
\ 1 \
/ N 7/ \
’ / \ \ , \ 190 \
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| ' ! : | |2 :
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\ Wk1 / / Vi \ Wk1 i ~ 50° / Vi
\ \ ’ ! \ /
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~_._‘\\~ _e’ ~—=" 1 _.”
(a) Inactive disorientation guideline. (b) Active disorientation guideline.

Figure 4.2: Influence of disorientation design guideline visualized by representing ply
contributions as vectors in LP space.

Since the disorientation design guideline constrains the consecutive vectors, they can only rotate
by a maximum of 90° relative to their previous vector. This restriction directly affects the
realizability of certain LP combinations.

In an unconstrained system (Figure 4.2a), the vectors are free to rotate 360°, meaning that
for any arbitrary ply angle 6, the set of possible resultant vectors forms a full circular region.
However, under the disorientation constraint, the set of realizable resultant vectors is reduced
to a semicircle (Figure 4.2b). This reduction affects the minimum attainable magnitude of the
resultant vector.
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Figure 4.3: Sequential ply orientation selection to attain the minimum possible (VID , Vg) ) pair.

The influence of fiber orientation on the resultant vector in lamination parameter space can be
better understood by examining laminates with increasing numbers of plies. In a single-ply
laminate, the contribution forms a vector with a fixed magnitude, and since there are no other
plies to balance or cancel it, the resultant vector remains unchanged (see Figure 4.3a). When
a second ply is added, even if it is oriented at the maximum allowable 90° relative to the first,
the resultant vector does not decrease in magnitude. Instead, it changes direction, forming a
right-angle path that increases the overall magnitude (see Figure 4.3b). With three plies, it
becomes possible to partially cancel the effect of the previous vectors. This is most effective
when each ply maintains the 90° disorientation limit, keeping all orientations within the allowed
semicircle. However, even in this case, full cancellation is not possible because the added vectors
only redirect the resultant rather than completely reverse it (see Figure 4.3c). In laminates
with four or more plies, the additional vectors can be oriented more effectively to reduce the
magnitude of the resultant vector (see Figure 4.3d). Each new vector offers more flexibility to
redirect the overall direction of the resultant, allowing it to gradually move closer to the origin.
The most effective reduction occurs when each new vector is chosen to counterbalance the
influence of the previous ones.

A finite magnitude of the resultant vector would signify that the disorientation design guideline
is active, and the entire mathematically feasible domain is not accessible. A crucial requirement
in this process is that all vectors must follow the same rotation direction - clockwise or counter-
clockwise. If the vectors alternate in direction, the resultant vector will not be minimized but
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instead oscillate away from the origin. This behavior occurs because alternating the rotation
direction between consecutive plies prevents the sequential reduction of the contributions made
by previous vectors. Instead of progressively canceling out earlier effects, the resultant vector
oscillates, which maintains or even increases its magnitude rather than moving it closer to
Zero.

Thus, for a symmetric laminate of n plies, the minimum magnitude of the resultant vector
is achieved when the maximum number of vectors are oriented in a single direction (either
all clockwise or all counterclockwise). Up to three vectors are oriented at the maximum
allowable angle difference of 90° relative to the previous vector. The remaining vectors are
oriented towards the origin, progressively minimizing the magnitude of the resultant vector Ry.
Mathematically, this can be calculated as:

IRy| = OA—AB
13

= [Wo +wa_y+wa_y|— ) |wy
k=1

Equation 4.7 gives each vector’s magnitude. Using said equation, the magnitude of the resultant
vector shown in Figure 4.3d is calculated as:

8( on4 27n3+267n
16 4 4

IRy| = —279n+373 — (%—3)3) 4.8)

n3

Since the LPs VID and V3D are derived from the vector summation of individual ply contributions,
their relationship inherently follows a circular equation due to the underlying trigonometric terms
(cos26;) and (sin26;) present in their definitions (Equation 4.6). The derived expression for
the magnitude of resultant vector |R,| (Equation 4.8) represents the minimum attainable value
under the disorientation constraint. Consequently, the realizable domain for the disorientation
design guideline in the VID —V3D space is characterized as:

(VP +(3)* = Ry (4.9)

This inequality ensures that the calculated LPs stay within the realizable domain. It confirms
that at least one SS is available to accommodate the favourable (VlD , V3D) combination while
respecting the disorientation guideline.
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vit - vit

Representing VlA and V3A in the form of Equation 4.6, it is observed that the magnitude of the
vectors is independent of the ply position (Equation 4.10).

n

2
V3A = Z Wy sin26;
k=1

n
2
VlA = Z Wi c0s26;
k=1

Where,
2
W= — (4.10)
n

Since the magnitude of every vector is a constant, for a symmetric laminate with more than 3
vectors, the disorientation guideline becomes inactive in the VIA-V3A space.

VP - vp
%
VlD = Z Wi 08206y
k=1
%
VY =Y wi cos46; 4.11)
k=1
Where,

8
wk:’?(3k2—3k+l)

The k" summation term in Equation 4.11 is represented as (V?), and the relation between each
summation term is parabolic in nature (see Equation 2.23). Which is represented as:

(VzD)k = WkCOS49k

= wi(2(cos26;)2 — 1)
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(V)= —(VP)* —wy (4.12)

As per Equation 4.11, the LP V2D attains a value of one for laminates composed exclusively of
0° and 90° plies, due to cos(4 x 0°) and cos(4 x 90°). In contrast, the value of V2 is influenced
by the through-thickness distribution and relative proportion of these ply orientations within
the laminate. Hence, to account for the disorientation guideline 0° and 90° plies are clubbed
together, and at least one +45° ply is placed between them. The subsequent mathematical
derivation accounts for this constraint.

For a symmetric laminate consisting of 5 plies above the mid-plane, the first "a" number of
plies are oriented at 90°, followed by a single ply at 45°, with the remaining plies oriented at 0°.
This stacking arrangement is designed to achieve the maximum possible value of the LP V2D
while ensuring compliance with the disorientation design guideline.

The value of a can be varied from [2, 5 — 1] to obtain the exact fit of the curve. The following
mathematical derivation demonstrates the procedure for determining the realizable maximum
value of V2’ when VP = 0.

n

a 2
VD = Zwk cos2 x90° + wyi1cos2 x45° + Z wy cos2 x 0°

k=1 k=a+2
= COceny w0+ (- 2Dy

1
= ()24’ +3a* +3a-+1 - (%)3)

The value of a, when VID is equal to 0, is calculated by solving the polynomial:

2a3—|—3a2—|—3a+1—(g)320 (4.13)

To simplify the analytical model, a linear fit was applied to the root of this cubic polynomial as
a function of the total number of plies n, as shown in Figure 4.4.

The fit shows a high R? value of 1.000, indicating an excellent linear correlation. This enables an
approximation for constructing the disorientation boundary across varying ply counts, thereby
reducing computational cost in practical evaluations.
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4.2 Theoretical Formulation of realizable domains

Linear Fit of Root vs Number of Plies
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Figure 4.4: Linear regression of the root of the cubic equation 2a> +3a* +3a+1 = (%)3 with
respect to total number of plies n.

Similarly,

n

a 3
v = Zwk cos4 x90° + w,1cosd x 45° + Z wicosd x 0°
k=1 k=a+2

:(2761)3X1 + ((2(a+1))3_(2(na))3)x(_1) + (1_(2(a’j_1))3)xl
:l+2:38(—3a2—3a—1)
= 14+500 - (5))

vg):3i?3—1

By substituting the value of a obtained from the linear fit, the realizable maximum value of V2D
can be determined. This value is a function of both the variable a and the LP VlD. Consequently,
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4 Methodology

the realizable domain for disorientation design guideline in the VID — VZD space is characterized
as:

1.153 1.153
)? —1.1824) (VD)2 4-2.1824 — 4(

vD < (4
2_((n "

)? (4.14)

vt — v

As discussed, the in-plane LPs VIA2 3 4 are invariant of the SS. This is mathematically represented
as:

n
2

VlA = Z Wy cos26;
k=1

n

2
Vit =} wi cosd6y (4.15)
k=1
Where,
2
Wi = —
n

Similar to the characterization of the VID —VQD relationship, the disorientation guideline requires
the inclusion of at least one +45° ply to prevent abrupt fibre angle transitions. In contrast to the
bending LPs, the contribution of the +45° ply to the in-plane LPs is independent of its position
within the laminate.

Building on this, the realizable maximum value of VZA. Hence, the in-plane LP V2A 1s formulated
as:

n

a 2
VZA = Zwk cos4 x90° + w,iqcosd x45° + Z wicos4 x 0°

k=1 k=a+2
2 2 1) 2 2 1
:—axl—i—( latl) (a))x(—l)—i—(ﬁ— at ))xl
n n n n n
1
=—-(2a+2a—2a—-2+n—2a—-2)
n
n—4
v =
2 n

Consequently, the realizable domain for the disorientation design guideline in the VlA — V2A
space is characterized as

(4.16)

n
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4.2 Theoretical Formulation of realizable domains

Using Equations 4.9, 4.14, and 4.16, the realizable domain associated with the disorientation
design guideline is formally characterized.

4.2.2 Damage Tolerance

The damage tolerance design guideline constrains the fibre orientation of the outermost plies.
Mathematically, the first interpretation of the damage tolerance design guideline explained in
Chapter 2.1.2 is represented as:

|6,| = 45°

VP —vP

Contrary to the disorientation guideline, damage tolerance constraints both the ply position and
its orientation. Hence, the vector’s orientation and magnitude, representing the contribution of
the outermost ply, are fixed.

This has a significant geometric implication in the LP space. Instead of tracing arcs or circles, as
seen in vector rotation scenarios (see Figure 4.2b), fixing the vector’s orientation and magnitude
effectively shifts the origin of the vector summation. In other words, the baseline contribution
of the outermost ply becomes a constant offset, altering the shape and position of the realizable
domain. Therefore, when characterizing the realizable region under damage tolerance, the
domain is not simply clipped or rotated; it is translated due to this fixed vector contribution.

The design guideline is analytically formulated by splitting the summation in a way that isolates
the outermost ply’s influence as:

1] 1]

VlD = kzl Wy c0s29k+w% cos29g = kZl Wy c0s26; +wa cos2 x 45°

n_1
2

VP =Y wi cos26; (4.17)
k=1

5-1 i
v = kzl Wi Sin26; +wy sin20; = kzl Wi Sin26; +wy sin2 x +45°
21

V3D$w% =Y wy sin26; (4.18)
k=1
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4 Methodology

The LPs show a circular dependency as per Equations 4.17 and 4.18 because the contributions
from all plies except the outermost are expressed as weighted sums of trigonometric functions
c0s 20 and sin26;, which naturally describe points on a unit circle. However, in the case of
the damage tolerance guideline, the outermost ply’s orientation is fixed, and its corresponding
contribution to V3D is constant and non-zero, i.e., w,, 2 sin(2 x +£45°) = +w, /2- This shifts the
origin of the circle in the V3D direction, while the rest of the plies still define a circular pattern
centered around this shifted origin. The realizable domain for the damage tolerance design

guideline in the VlD — Vg) space is characterized as: )
-

(VP)?+ (V3 Fwy)? < () wi)?
k=1
n—?2
(VP + (P Fwy)? < (=) (4.19)
The inequality seen in Equation 4.19 arises because it describes all possible resultant vectors
formed by the contributions of the inner plies alone. Given that the magnitude of their combined
vector cannot exceed the total sum of their weights. This is similar to the well-known result that
the magnitude of a vector composed of cos and sin terms is bounded by the Euclidean norm of
their weights [Eliezer and Daykin 1967].

w-v

The LPs V]D and V2D are mathematically represented by separating the outer ply contribution
as:

n
11
2
VD = Y wicos26; + wa €026z
k=1
1y

= ) WkC0826; +wx cos2 x 45°
=1

k=
1o
= Wy oS 26y
k=1
11
V2D = wy cos46; + W1 COS 46%
k=1
1]
= wy cos46;, + wa cos4 x 45°
k=1
1]
= wy cos46;, — wa
k=1
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4.2 Theoretical Formulation of realizable domains

By representing the summation terms as a separate variable, VID and VZD can be rewritten as:

v =x (4.20)

V2 =y —(1-b) (4.21)
Where,

<
I
ST
I
S
~
(@]
e}
@»
\®)
>

M:W
_

Hence,
n—2
n

b=(—)

The outer boundary of the corresponding P space can be traced by orienting every vector in
the same direction. Since the parameters are defined with cosine terms, the variables X and
Y defined earlier are written considering laminates made up of plies oriented in +-6 and —0
direction.

1
wy cos 406y

~!
I

E S

1

n=2 (171 a0

(n/2)

(=~

(
b x cos46

Similarly,
X =bcos20
bcos40 = b(2(cos260)* —1)
= 2b(c0s26)> —b
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4 Methodology

Hence, for an arbitrary SS, the equation is substituted by an inequality:

Y > %Xz —b (4.22)

By substituting Equations 4.20 and 4.20 in Equation 4.22, the realizable domain in the LP space
i1s mathematically represented as:

2
VP +(1=b) > (VP b
2
vy > E(VP)2 —1 (4.23)

Equation 4.23 is a parabolic equation defining the realizable domain satisfying the damage
tolerance design guideline. The values of LPs Vll?z range between [-1,1]. The new range of LPs
satisfying the damage tolerance design guideline is calculated as:

—1<co0s26;, < +1
—b <bxcos26, <+b

(4.24)
From Equation 4.20 the range of V]D is calculated as:
—b<VP <+b (4.25)
Similarly,
—b < bxcosd46;, < +b
—b<Y<+b
—b—(1-b)<Y—-(1-b)<+b—(1-0b)
—1<VP <21 (4.26)
vt — vt

The mathematical representation of damage tolerance in VlA — V2A space is expressed as:

=

-1
Wy c0529k+w% cos29%
=1
1o
VQA = kzl wy cos46y, + wa 00549%

A 2
Vl -
k
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4.2 Theoretical Formulation of realizable domains

Where,
2
Wr = —
n
01 = +45°
Substituting these variables into the LPs:
) 2
VA = Y =c0s26; 4 = cos (2 x £45°)
=1 " n
21
2 2
=- cos26;
=1
L 2 2
Vit =— 46+ — 4 x +45°
f anos k+ncos( )

k=1
5o

2
Z cosdf, — —
k=1 n

Similar to the bending LP space, the realizable domain for the damage tolerance design guideline
in VIA — V2A space is characterized as:

2
n

VA > 2n

VA2 -1
= — W)

(4.27)

VA —vA

As previously shown in the characterization of the VID3 LP space, the realizable domain is
defined by a circular inequality, as given in Equation 4.19. A similar approach is used here,
where the inequality describing the realizable domain is derived by translating the circle’s origin
and modifying its radius to account for the sum of vector magnitudes, excluding the contribution
from the outermost ply.

(V) + (V) < ()2

2 n—2
V24 (v < (O

)? (4.28)
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4.2.3 Contiguity

The contiguity design guideline restricts the maximum number of consecutive plies sharing the
same fibre orientation, which are prone to delamination and local failure. When visualized in the
LP space, this constraint prevents all vector contributions from aligning in the same direction.
As a result, the magnitude of the resultant vector is reduced, and the outer boundary of the
realizable domain becomes unattainable.

Due to the discrete nature of the total number of plies in a laminate, a continuous approximation
is used to derive an analytical formulation. The following derivation quantifies the maximum
reduction in the feasible region as the total number of plies n tends to infinity.

Figure 4.5 illustrates an arbitrary symmetric laminate satisfying the contiguity guideline, with
the maximum allowable number of consecutive plies set to four. The parameter § in the figure
denotes the minimum allowable step size for fibre placement. For instance, if 6 = 15°, fibres
can only be oriented in discrete increments such as —90°, —75°,...,75°. In this study, 0 is fixed
at 15°, while the contiguous ply limit is treated as a variable limit in the derivation.

vy

Figure 4.5: Schematic representation of vector contribution under contiguity constraint.

The derivation proceeds under the following assumptions:

* The total number of plies is approximated as a continuous variable.

» For a given contiguous ply limit L, the symmetric half-laminate is divided into equal groups
of (L+ 1) plies, resulting in ﬁ such groups.
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4.2 Theoretical Formulation of realizable domains

* The plies inserted to satisfy the contiguity rule are placed as close to the mid-plane as
possible to maximize the magnitude of the resultant vector R..

To compute the maximum magnitude of the realizable resultant vector, the contributions of the
plies enforcing the contiguity constraint are isolated, assuming all other plies are oriented at 0°,
while the constraint plies are oriented at o.

The position of the inserted plies is defined as:

n—2
2xL

g—ka, where k =1,...,

The corresponding vector weight is calculated using the standard weighting function for bending
parameters (Equation 4.7):

8 n o 2 n
wk—$<3<§—lzmztxk) —3(§—ka)+1>

8 /3n? 3
= (2 3 imitk —3nx Lx k— 2 430 x k+1
n\ 4 2
8 3n? 3
:g((%—En—i-l)—|—3L2k2—(3n><L—3L)k)
8 ((3n*> 3n —
we= 5 ( (=5 H1) +3L2 K —(Bnx L—3L) xk (4.29)

Using standard summation identities:

- - ala+1) &5 ala+1)2a+1)

The total weighted contribution is given by:

a 2 D(2a+1 1
Zwkzi{(ﬂ_zl+l>a+3L2xa(a+ )2a+ )—(3n><L—3L)><a(a;_ )

] n’ 4 2 6
(4.30)
where a = %
As n — oo, the normalized weight summation converges to:
.y 1
,}ﬂéwk: 7 (4.31)
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Figure 4.6: Convergence of weight summation with increasing number of plies.

The reduction in the realizable radius is computed as:

RP| = /(1 — (1—cos26) x )2+ (sin26 x 1)’

1
:Z\/L2+4sin25><(1—L)

The realizable domain under the contiguity constraint for an infinite number of plies is given
by:

(VP)*+ (V)* < |R?| (4.32)

For laminates with a finite number of plies, Equation 4.30 can be substituted in place of the
asymptotic value in Equation 4.31 to obtain a non-conservative characterization of the realizable
domain.
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4.2 Theoretical Formulation of realizable domains

vit—vit

In contrast to the bending LPs, in-plane parameters are not weighted by the ply position.
Consequently, characterizing the realizable domain for the contiguity guideline in the VlA — Vf‘
space adopts a simplified form.

To maximize the resultant vector magnitude under the contiguity constraint, all plies not
enforcing the guideline are oriented at 0°, while the plies inserted to satisfy the guideline are
oriented at an angle 6. Assuming one out of every L+ 1 plies is assigned the angle , the

fraction of such plies is given by:
1

T

The normalized radius of the realizable domain is then expressed as:

R = /(1= (1—cos 8) x @) + (sin & x a)® 4.33)

Substituting a = =, we obtain:

L+1°
1—cosd\? sin & \ 2
RA=¢/(1-—= 4.34
R \/( L+l )+(L+1) (4.34)

The realizable domain for contiguity design guideline in the VlA — V3A space is characterized
as:

(V)2 + (V) < IR2J? (4.35)

4.2.4 Balance

The laminate must contain an equal number of plies oriented at +6 and —80 to satisfy the
balance condition. This equates the A and A,¢ terms in the extensional stiffness matrix to 0,
and ensures the decoupling of laminates’ in-plane normal and shear properties.

VP —vP

For analytical convenience, the laminate is constructed by grouping all +86 plies and all —60
plies separately. It enables a simplified mathematical treatment without violating the balanced
condition. This grouping allows separation of the contributions from the two angular families to
the bending LPs.
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4 Methodology

Due to the even symmetry of cosine and the odd symmetry of sine, the trigonometric identities,
cos(20) = cos(—260), sin(20) = —sin(—20)

allow simplification of the LP expressions. Specifically, the cosine contributions reinforce,

while the sine contributions cancel out.

Assuming the laminate is symmetric and consists of n plies, with half above the mid-plane, and
with 7 plies at +6 and 7 plies at —6, the bending LPs are given by:

: ;
VlD = ZwkCOSZG—f— Z wy cos —260

k=1 k=2+1
%
= Z Wi c0s20 = cos26
k=1

n

4 2
VZP = Z Wy sin26 + Z wy sin—20
k=1 k=2+1

2\’ wm\ >

- <4—”) sin26 — (1—4—”) sin26
n n
1

= (4_1 — 1) sin26 = —%sin29

This construction shows that VlD reaches its maximum magnitude, while V3D is scaled by a factor
of _43'1 due to the asymmetry in the distribution of sin26 terms around the mid-plane.

Accordingly, the realizable domain in the VlD — Vg) space is bounded by an ellipse defined by:

(VP)? + v 2<1 (4.36)
! 075) — ‘

Equation 4.36 describes the elliptic constraint surface induced by the balance design guideline
in the bending LP space.
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4.2 Theoretical Formulation of realizable domains

Table 4.1: Definitions of variables used in characterized equations.

Variable Definition

a Intermediate ply count for maximizing VZD
solution of 2a° +3a? 4+ 3a+1 = (4)° = a = 0.3978VP —0.5765

b Fractional weight of inner plies for damage tolerance: b = (”;—2) 3

Wwa Weight of the outermost ply for bending LPs

IRy Minimum magnitude of the resultant vector under disorientation guide-
line

IRD| Maximum magnitude of the resultant vector obeying contiguity guideline
in VlD - V3D space

|RA| Maximum magnitude of the resultant vector obeying contiguity guideline

in VlA - V3A space

Table 4.2: Summary of analytically characterized realizable domains for each design guideline.

Design Guideline LP Pair Characterized Equation Eq. Ref.
vP-vy (VP + (V) = Ryl 49
Disorientation VP _yp VP < (4(1133)3 _1.1824) (VD)2 +2.1824 — 4( 11533 4.14
—4
VA_VA va<t 4.16
n
D_ yD D2 D 2 n—2\°
VP ] VP2 + (VPFwy) < (= 4.19
2
vP—vP VP> Z(vP)2 -1 4.23
Damage Tolerance b
2
VA VA VA > ”2 (VA2 -1 427
e
A_yA A2 A2 : n—2\?
Vit =3 VAP {ViF ) < 428
o VP -V VPP + () <IRPP 4.32
Contiguity
vt —vi (V)2 + (v < IR2P 435
VP2
Balance vP—vD (VD)2 + <ﬁ> <l 4.36
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4 Methodology

4.2.5 Disorientation — Damage Tolerance — Balance

This section investigates the implications of simultaneously enforcing multiple design guidelines
on the realizable domain. In such cases, the SS must be designed to satisfy all conditions
simultaneously, thereby introducing stricter limitations on allowable ply orientations. The
resulting space is inherently more restricted than any of the individually characterized domains
and provides insight into the overlap and interaction between the design constraints.

VP —vP

In earlier analyses, the inner boundary of the realizable domain under the disorientation con-
straint was characterized as a circle centered at the origin in the VlD — V3D space. For the balance
design guideline, the outer boundary followed an elliptical form with its major axis aligned
along the VID axis. The damage tolerance requirement introduced an offset along the Vg) axis
due to the enforced outermost ply orientation.

When all three guidelines are enforced simultaneously, the realizable domain is bounded from
the inside by the disorientation limit and from the outside by the intersection of balance and
damage tolerance constraints. The following assumptions are made in the derivation of this
composite domain:

Assumptions:
* The outer boundary of the realizable domain is modeled as an ellipse:

— Its width corresponds to the full range of VlD values realizable under the damage
tolerance constraint.

— Its height is twice the vertical offset from the origin to the maximum value of V3D
derived from the balance constraint.

These are computed as:

_2\?
width W = 2 x (maximum value of V?) =2 (n )
n

height H = 2 x (0.75 . w%>

Hence, the outer elliptical boundary is characterized by:

D\2  /2(VP w.) )2
W e
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4.2 Theoretical Formulation of realizable domains

* The inner boundary is modeled as a circle centered at the same offset as the ellipse, with
its radius computed using the reduced SS of 5 — 1 plies. This reflects the removal of the
outermost ply used to enforce damage tolerance.

Using the same approach as in Equation 4.8, the radius is calculated as:

5—4
|Rc0m| - |W%71 —|—W%,2+W%,3| - Z ’Wk’
k=1

3
= \/(6n—30)2+ (0.75n2 —7.5n+19)2 — (”2 8)
n

The corresponding inequality for the inner circular boundary is:

(VP2 + (VP £w1)* > [Reom|® (4.38)

Under these assumptions, the realizable domain in the VlD — VZP space is bounded between a
shifted ellipse and a concentric inner circle, forming an annular region offset along the V3D
axis. All SSs that generate this region adhere to the disorientation, damage tolerance, and
balance guidelines. The resulting geometry reflects the compounded limitations introduced by
the interaction of these three constraints.

vp —vpP

Although VID and V2D are related through cosine-based trigonometric formulations, the entire
region within the theoretical parabola cannot be fully realized due to the restrictions imposed
by the disorientation guideline. To characterize the lower bound of V2D , plies oriented at £15°
or +75° are introduced between +45° plies, creating a disallowed configuration that violates
disorientation.

The minimum value of V2D under these conditions is calculated using:

-1 41 ;
V2 = Z Wy X cos46; + Z Wy X cos46; + Z Wy X cos46;
k=1 k=1 k=142
-1 741 5
= Z wi X cos(4x —45°) + Y wi xcos(4x £15%) + Y wy x cos(4 x 45°)
k=1 k=1 k=242

i1 a+1 5
= WkX(—l)—FZWkX(%)—i- Z WkX(—l)

k=1 k=1
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Upon simplification, the lower bound is characterized as:

3
D 2
VP2 2 5(16+30%) 1 (4.39)

The upper bound of V2D is obtained by extending the method used in the isolated disorientation
case. Here, a £45° ply is inserted between 0° and 90° plies, and the topmost ply is fixed at
1+45° to satisfy the damage tolerance constraint. The remaining 5 — 1 plies are arranged such
that disorientation and balance are satisfied, and the maximum V2D is computed accordingly.

To enforce VlD = 0, the value of a — representing the number of 90° plies — is obtained by
solving the following equation:
a ~1
D __ o o o o
VP =Y wicos(2 X 90°) +wappcos(2x —45°)+ ) wycos(0°) +wa cos(2 x 45°)

ST

k=1 k=a-+2
2a\° 2\ /2(a+1)\?
:(-“) < (—1)+0+ (” ) —( (at )> X140
n n n
3 ) n—2 3
2a° +3a“+3a+1— > =0 (4.40)

To simplify the analytical model, the evaluation of the root is approximated with a linear fit (see
Figure 4.7). The fit shows a high R? value of 1.0, indicating an excellent linear correlation.
Then, the corresponding V2D is computed as:

n

1
a 2
VZD = Z wycos(4 X 90°) + w1 cos(4 x —45°%) + Z wicos(0°) + wa cos(4 x 45°)
k=1 k=a+2

() e () G e [ - ()
(e (5)) o

Simplifying:

16 ny\3
D __ 3
V] —n—3(2a —(§> )+1
_32613
==

1
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4.2 Theoretical Formulation of realizable domains

Linear Fit of Root vs Number of Plies
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Figure 4.7: Linear regression of the root of the cubic equation 2a> +3a*+3a+1 = (%)
with respect to total number of plies n.

The calculated V2D value defines the vertex of the parabolic boundary. The upper bound of the
realizable domain in the VID — V2D space is then given by:

2b—1—c¢
where:
B n—2 3
o n
3243
= —1
c 3
VA —vp

Since the in-plane LPs are independent of ply position, the contributions to VlA and V2A depend
solely on the number and orientation of the plies. Under the simultaneous enforcement of
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disorientation, damage tolerance, and balance guidelines, at least two plies must be oriented at
+45° - one to satisfy damage tolerance, and one to maintain a valid transition between fiber
angles under the disorientation constraint. Together, these plies also satisfy the balance guideline
by forming a conjugate pair.

The contribution of these two +45° plies to V2A is:

2 2
Vi = Z % cos(4 x 45°) + = x cos(4 x (—45°))
n n
2 2 —4
=X (=D+=x(-1)=—
Cx (=D 4o x (=) =—

Thus, even in an ideal configuration where all other plies are oriented at either 0° or 90°, the
maximum realizable value of V2A is reduced by the contribution of these two required plies:

n—_
n

Vi < (4.42)
To characterize the lower bound of VZA, a symmetric laminate is constructed where all plies are
oriented at angles +45°), and +£15° plies are inserted in between to satisfy the disorientation
constraint. Mathematically, it can be represented as:

VA > (”/nz/;z) X (—1)+g % 0.5

_ 6—n

n

Therefore, the minimum value of V2A under these constraints is:

ya > 0on

(4.43)
n
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4.2 Theoretical Formulation of realizable domains

Table 4.3: Realizable domain equations for simultaneously enforced Disorientation, Damage
Tolerance, and Balance guidelines.

LP Pair Characterized Equation Equation Ref.
VID — V3D %) ? + (m) i < 1 (outer bound)

(VP)? + (VP £wx)? > [Reom|* (inner bound) 4.37,4.38
| 55(1643n%) — 1§v21)_%(v1) +c 4.39,4.41
VLA _ VzA 6;_” < VzA < "; 4.43,4.42

Table 4.4: Definition of variables used in the realizable domain equations for Disorienta-
tion—-Damage Tolerance—Balance case.

Variable Description
a Solved using a cubic polynomial
203 +3a* +3a+1— (52)° =0 =
a=0.3977VvP —1.3671
wa Contribution of the outermost ply used to satisfy the
damage tolerance guideline
b Maximum value of VID under damage tolerance, defined
n—2\3
as b= ("3%)
c Maximum realizable value of VZD when VlD =0, defined
asc= 32§’3 —1
n
IR com| Radius of the inner circle in VlD — V3D space, computed
using 5 — 1 plies after removing the outermost ply
width Horizontal span of the outer elliptical domain in
VD — V3D space: 2b =2 (%)3
height Vertical span of the ellipse: 2 x (0.75 — w%), accounting

for offset from the balance and damage tolerance
constraints
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4.3 Laminate optimization using lamination parameters

The bi-level optimization framework is implemented to assess the practical implications of the
realizable domains characterized in this thesis. The optimization framework models a realistic
composite panel. It performs stiffness optimization at the first level using LPs, followed by SS
retrieval at the second level. This section outlines the model setup and the tools employed at
both optimization levels.

4.3.1 Benchmark case setup

Constraints on LPs, derived based on the realizable domains characterized (see Table 4.2 and 4.3),
were imposed at the first level to ensure manufacturability and mitigate epistemic uncertainty
associated with infeasible SSs. A single composite panel model with an aspect ratio of 4
[Bloomfield et al. 2008] was used to evaluate the optimization procedure. The panel is simply
supported along all edges and subjected to a combination of in-plane normal and shear loads
(see Figure 4.8). The five standard load cases considered in Bloomfield et al. 2008 were adopted
as shown in Table 4.5:

Table 4.5: Load Cases.

SLno| N, | Ny
] 0 |-800

2 0 | 400

3 | -100 | 500

4 | -300 |-300

5 | -500 | 200

6 | 500000 | 100
Ny

Figure 4.8: Illustration of an arbitrary panel under the defined loads.

In addition, a sixth case is introduced in this work to evaluate performance under tension-
dominated loading, which is relevant to stiffened panels under service loading.
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4.3 Laminate optimization using lamination parameters

4.3.2 First-Level stiffness optimization

The first level of the bi-level optimization problem involves minimizing weight, while satisfying
compliance to strain and buckling with respect to LPs. The in-house tool developed at the
German Aerospace Center (DLR), named 1ightworks [Dihne et al. 2024], was used to
perform this task. In 1ightworks tool, the design space is handled by using hyperplanes
derived from the mathematically feasible region.

IPOPT algorithm is utilized in 1 ightworks, which employs an interior-point filter line-search
algorithm suitable for large-scale nonlinear programming. The algorithm ensures convergence
from poor starting points and accommodates inequality constraints through its filter-based merit
approach. Further details on the algorithm and its implementation can be found in Wichter and
Biegler 2006.

4.3.3 Second-level stacking sequence design

Once the optimal set of LPs was obtained, the second level of the bi-level optimization involved
retrieving a SS that closely matches the optimized parameters. This was achieved using LAYLA,
an open-source beam-search-based SS generator [Fedon et al. 2020].

LAYLA enforces design guideline enforcement (e.g., disorientation, balance, contiguity) during
SS design, ensuring that retrieved sequences are mechanically optimal and manufacturable.
The search is guided by heuristic cost functions designed to promote convergence toward a
sequence that yields LPs close to the optimized targets. If the retrieved sequence does not
sufficiently match the targets, a refinement loop is executed to iteratively improve alignment
with the optimized stiffness matrix.

The complete implementation can be summarized as follows:
* Input: Define panel geometry, boundary conditions, and loading scenarios
* First Level: Use 1ightworks to solve for optimal LPs within realizable domains

* Second Level: Use LAYLA to retrieve a SS satisfying the optimized LPs and design
guidelines

* Output: Find the predicted performance (critical SF) under defined load cases

Results obtained using this setup are discussed in Chapter 5, where the impact of realizable
domain enforcement on structural performance and manufacturability is evaluated.
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5 Results

5 Results

This chapter presents the outcomes of the study in two parts. The first section evaluates the
realizable domains characterized analytically in Chapter 4.2, and the second demonstrates their
integration within the bi-level optimization procedure as explained in Chapter 4.3. Finally, this
serves as a foundation for the validation of the theoretical framework and assessments of the
designed laminates.

5.1 Validation of Realizable Domains

The objective is to evaluate how well the characterized boundaries align with the practically
realizable regions in the LP space and to quantify the coverage efficiency. As discussed in
Chapter 4:

* The symmetric laminates are generated using fibre orientations in [—90°,90°] with a step of
015° (see Appendix A).

* The design guidelines characterized are disorientation, damage tolerance, contiguity, bal-
ance, and the coupled disorientation, damage tolerance, and balance.

* Their corresponding realizable domain equations are summarized in Tables 4.2 and 4.3.

5.1.1 Disorientation

The disorientation design guideline limits the allowable angular difference between consecutive
plies, translating to nonlinear geometric constraints in the LP space. The equations for these
bounds, derived in Chapter 4.2, required solving a cubic polynomial (Equation 4.13). To
visually validate the derived realizable domain, Figures 5.1 to 5.3 present scatter plots of LP
pairs obtained from symmetric laminates with 8, 10, and 12 total plies. The blue points represent
laminates within the analytically defined disorientation boundaries, while red points indicate
misclassifications, i.e., laminates that obey disorientation beyond allowable limits.

Figure 5.1 shows the result for an 8-ply laminate. Subfigure 5.1a shows the in-plane LP space
(VIA,VZA), where the upper bound V2A < %, derived directly from the maximum permitted
disorientation is shown. Subfigure 5.1b presents the bending lamination parameter space
(VID , V2D ) with the parabolic upper bound derived from the cubic polynomial fit. Subfigure 5.1c
shows (VP Vg) ), where a circular inner bound characterizes the realizable domain.
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5.1 Validation of Realizable Domains

The same three projections are shown for 10-ply (Figure 5.2) and 12-ply (Figure 5.3) laminates.
It is evident that increasing ply count leads to a more dense and quasi-continuous space. The
proportion of misclassified points consistently decreases. This trend validates the analytical
model’s improved coverage accuracy with increasing ply count. The reason behind this is that
as the number of plies increases, the discrete nature of stacking possibilities starts to resemble a
continuous distribution. This allows the discrete laminate configurations to better approximate
the analytically derived realizable domain, which is based on treating the number of plies as a
continuous variable in the theoretical formulation.

The summation definitions of LPs indicate that certain pairs, such as (VZD , Vf ) and (VZA, Vf‘), also
rely on sine and cosine functions. However, their interaction with the disorientation constraint
differs due to the argument inside the trigonometric functions. The key difference between these
groups is the frequency of oscillation in trigonometric terms. Vf P follow a 46, dependency,
meaning that the same 45° constraint the vectors rotate in the range of [—180°,180°] instead of
[—90°,90°] (see Figure 4.2b). As a result, vectors are no longer confined to a semicircle but
instead to a full circular region. Since the resultant vector can explore the entire circular domain,

the disorientation constraint does not impose any additional limitations in this space.

Table 5.1 summarizes the percentage of laminates that violate the analytically defined disorienta-
tion bounds to quantify these visual insights. The table includes the proportion of misclassified
points across three LP pairs for each ply count. This shows, the percentage of misclassified
laminates decreases as the number of plies increases, consequently confirming that the analytical
bounds become tighter and more accurate with finer discretization of ply count. However, for
the VIA — V2A projection, a small portion of misclassified laminates (0.26%) persists even at
higher ply counts. This residual misclassification is due to the linear approximation used to
characterize the realizable domain in this space. Specifically, the straight-line boundary does
not enclose certain unidirectional laminates, particularly those fully oriented at 0° or 90°, which
lie outside the realizable domain despite satisfying the disorientation guideline. This limitation
highlights a trade-off between model simplicity and exact coverage.

Table 5.1: Percentage of laminates misclassified by the characterized disorientation constraints

for varying ply counts.
Total Plies | V2 —VP | vP —vD | VA VA
8 0.00% 4.96% 5.20%
10 0.00% 1.46% 1.33%
12 0.00% 0.58% 0.26%
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5 Results

Disorientation: Vf vs V¢
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Figure 5.1: Characterized realizable domains under the disorientation design guideline for a
symmetric 8-ply laminate.
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5.1 Validation of Realizable Domains
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Figure 5.2: Characterized realizable domains under the disorientation design guideline for a
symmetric 10-ply laminate.
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Disorientation: Vf vs V¢
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Figure 5.3: Characterized realizable domains under the disorientation design guideline for a
symmetric 12-ply laminate.
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5.1 Validation of Realizable Domains

5.1.2 Damage Tolerance

The damage tolerance guideline constrains the fibre orientation of the outermost plies. To
analytically characterize the realizable domain for this guideline, three equations were derived
(see Chapter 4.2):

* A parabolic constraint in the (V*, V) space: Vi* > 22 (VA)2 — 1

e An upper bound in (VA V) v < 22

n—1

* A circular bound in (VA V{A): (VA2 + (VA - 2)2 < (u)2

n n

Similarly, the bending parameters are constrained by:

o VP> RVPPR -1, with b = (%2)]

e VP<2h-1
o (VPP 4+ (VP —w,p0)? <R, withw,p =1—b

Figures 5.4 to 5.6 visualize these constraints for n = 8,10, 12, highlighting the region that
satisfies all analytical bounds. Any misclassified laminates outside the region are highlighted.
As shown in Table 5.2, the percentage of laminates lying outside the realizable domain for
damage tolerance is extremely low (< 1%), especially for higher ply counts. For 10- and 12-ply
laminates, most combinations show no misclassification at all, while for 8-ply laminates, the
deviation is marginal. These small percentages are likely due to computational errors, such as
numerical rounding or interpolation errors during domain boundary checks. This reinforces
the robustness of the characterized constraints in accurately capturing the realizable region,
especially as the ply count increases. Results for the alternate interpretation of the damage
tolerance design guideline can be referred to in Appendix C.

Table 5.2: Percentage of laminates misclassified by the characterized damage tolerance con-
straints for varying ply counts.

Total Plies | V2 —VP | VP —vD | VA VA | VA VA

8 0.29% 0.98% 0.00% 0.12%
10 0.00% 0.00% 0.01% 0.00%
12 0.00% 0.00% 0.03% 0.00%
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Figure 5.6: Characterized realizable domains under the damage tolerance guideline for a
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5.1 Validation of Realizable Domains

5.1.3 Contiguity

As described in Chapter 4.2, the realizable domain under this constraint is characterized by
a circular outer bound in the lamination parameter space, defined in terms of (VID , V3D ). The
maximum realizable radius was derived analytically and varies slightly (< 1% for thin laminates)
depending on the ply count.

Figures 5.7 present the distribution of laminates in the (VlD , V3D ) space for 8, 10, and 12-ply
symmetric laminates, respectively.
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Figure 5.7: Characterized realizable domains under the contiguity guideline in (VID , V3D ) space.
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5 Results

The figures show that the analytical bound exactly matches the realizable region. The percentage
of misclassified points (i.e., those lying outside the characterized domain) is summarized in
Table 5.3. Although the realizable domain was described entirely, the mathematically feasible
LP space reduction is negligible (maximum 2.5%) as observed in Figure 5.8. In the Figure 5.8
the difference in the analytically derived solution for |R|? is seen. This difference occurs due
to the discreteness of the ply count. Also, the kink observed in the Figure 5.8 occurs when
the number of plies just crosses the contiguity limit L. Since the observed reduction of |R|?
is negligible for non-conventional laminates, it is concluded that characterizing this guideline
with respect to LPs offers no significant advantage. However, contiguity has a significant effect
in conventional laminates (i.e., laminates with fibre orientations in [0°,45°, —45° 90°]). The
results for the same are presented in Appendix B.

Loss due to Contiguity Constraint vs. Total Plies

Reduction of |R[2 (%)

100 200 300 400 500

Figure 5.8: Reduction of |R|P with increasing ply counts.

Table 5.3: Percentage of laminates violating the characterized contiguity constraint in (V1D , V3D )
space.

Total Plies | Misclassified (%)

8 0.00%
10 0.00%
12 0.00%
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5.1 Validation of Realizable Domains

5.1.4 Balance

Analytically, the realizable domain under this guideline is characterized as an elliptical region
in the (VlD, V3D) space (Equation 4.36). The equation of the outer boundary is defined as:

2 2
vP vy
. 3 ) <1
() + (o) =

Figure 5.9 shows the projection of SSs onto the VID — V3D space for different ply counts. The
analytically characterized elliptical bound is overlaid, and misclassified points outside the
domain are highlighted.

Most SSs across all ply count respect the elliptical nature of the domain. A few outliers appear
at the edges, especially for lower ply counts, as quantified in Table 5.4. Similar to the damage
tolerance case, the few misclassified laminates are likely the result of numerical or interpolation
errors rather than inaccuracies in the realizable domain formulation itself. Moreover, as the total
number of laminates increases with ply count, the sampling density of the LP space improves.
In effect, a denser dataset reduces the relative impact of numerical inaccuracies and validates
the robustness of the analytical domain formulation.

Table 5.4: Percentage of laminates violating the characterized balance constraints for varying
ply counts.

Total Plies VID — V3D Misclassification (%)

8 1.52%
10 0.34%
12 0.03%
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Results

Figure 5.9: Characterized realizable domains subjected to the balance guideline in VID — V3D
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5.1 Validation of Realizable Domains

5.1.5 Disorientation — Damage Tolerance — Balance

The realizable domain of combined design guidelines was characterized in Chapter 4.2.5. A
conservative boundary was derived, since the equations were sensitive to the discrete nature of
ply counts n. This is reflected by an increase in misclassified points as shown in Table 5.5. The
derived conservative boundaries converge to the actual boundary with increasing n. Visualization
of the characterized realizable domain along with the misclassifications is shown in Figures 5.10

to 5.12.

Constraint Lines in V{ vs V4§

Figure 5.10:

Realizable Domain: V{ vs V2

— Mat Ily Feasible Domain

Lo
=~ Realizable Domain

(c) (VP, VD).

Characterized realizable domains under the combined design guideline for a

symmetric 8-ply laminate.
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5 Results

Table 5.5: Percentage of laminates misclassified by the characterized combined guidelines for
different ply counts.

Total Plies | VP —VP | VP —vDP | vA VA

8 12.5% 50.0% 12.5%
10 0.00% 31.25% 12.5%
12 1.33% 9.33% 5.33%

025

0 075 050 025 0.00 025 050 075 100 -100 075 050 025 0.00 025 050 075 100

(a) (VA VA), (b) (VP V).

050

Figure 5.11: Characterized realizable domains under the combined design guideline for a
symmetric 10-ply laminate
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5.1 Validation of Realizable Domains
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Figure 5.12: Characterized realizable domains under the combined design guideline for a
symmetric 12-ply laminate.

69



5 Results

5.2 Benchmark optimization problem

To evaluate the effectiveness of the characterized realizable domains, a structured test plan
is followed. A single-panel problem is studied under various load cases using a bi-level
optimization approach. In the first part of the study, the optimization with respect to the LPs
(Level 1) is performed without enforcing any of the derived realizable domains. The optimal
LPs and their corresponding critical SFs are recorded. Subsequently, in Level 2, SSs are
designed to closely match the optimized LPs. These SSs are explicitly designed to satisfy all
design guidelines. FEA is then performed on the designed SSs to compute the critical SFs.
By comparing the SFs between Level 1 and Level 2, the difference is quantified, where any
reduction in SF indicates a potential structural or stability failure due to mismatch.

In the second part of the study, the same optimization procedure is repeated, this time incorpo-
rating the analytically derived realizable domain constraints into Level 1. Again, the optimal
LPs, designing the SSs, and their respective SFs are recorded and compared. The objective is to
analyze whether the mismatch between the two levels reduces when the realizable domain is
enforced at the first level. A reduction in this mismatch would indicate that defining realizable
domains improves consistency across optimization levels and contributes to structurally safer
laminate designs.

Tables 5.6 and 5.8 present the results from the first test scenario, where the optimization is
performed without enforcing the characterized realizable domains. This introduced a mismatch
between the optimized LPs and those retrieved from valid SSs, reflected in the changes in the
critical SFs.

While some cases (e.g., S1. no 1-4) showed a positive difference, indicating that the retrieved SS
unexpectedly improved the structural performance, cases like 5 and 6 demonstrated a decrease
in SF, implying potential structural or buckling failure. These outcomes highlight the risk
of ignoring practical design constraints in Level 1: the optimization may select theoretically
optimal, but practically unrealizable, designs.

To address this, the second scenario incorporated the characterized realizable domains as
inequality constraints during Level 1 optimization. The results are shown in Tables 5.9 and 5.11.
Notably, the optimized LPs from Level 1 now already satisfies the design guidelines, ensuring
better alignment with the designed SSs in Level 2. Consequently, the mismatch in SFs reduced
significantly across most load cases.

This effect is systematically quantified in Table 5.12, which compares the difference in SFs
between the two scenarios. The reduction column shows how much mismatch was eliminated
by enforcing the characterized realizable domain. For instance, in SI. Nos. 5 and 6, where the
original mismatch led to a SF drop of more than 20%, the mismatch was notably corrected,
resulting in safer, more reliable designs.
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5.2 Benchmark optimization problem

Table 5.6: Optimal Ip obtained and the retrieved SS without realizable domains enforced as
constraints during optimization.

Loads (N) Vector Design Variables
Ny | Ny LP [VA, VA VP VD vD VD] h (mm)
0 200 Optimal [-0.2023, -0.2473,-0.4096, -0.1907, 0.1366, 0] 1.39
Retrieved [-0.3333, -0.3333, -0.3148, -0.3703, 0.1666, 0] 1.5
0 400 Optimal [-0.2226, -0.3793, -0.4096, -0.1907, 0.1596, 0] 1.11
Retrieved | [-0.2738, -0.1111, -0.3740, -0.3470, 0.5761, -0.1425] | 1.125
100 500 Optimal [-0.1976, -0.2465, -0.3060, -0.3978, 0.1375, 0] 1.26
Retrieved | [-0.2727, -0.2727, -0.3448, -0.4891, 0.6201, -0.1873] | 1.375
Optimal [-0.2200, -0.3807, -0.0415, -0.9269, 0, 0] 1.26
-300 | -300
Retrieved [-0.2727, -0.4545, -0.1645, -0.6709, 0.6491, 0] 1.375
Optimal [0.5623, -0.7302, -0.0050, -1.00, 0, 0] 1.36
-500 200
Retrieved [0.0909, -0.4545, 0.1630, -0.6709, 0.6491, 0] 1.375
Optimal [1.00, 0.9528, 0.9704, 0.8973, 0.0003, 0] 1.48
500000 | 100
Retrieved [0.6667, 0.3333, 0.5740, 0.1481, 0.4167, 0] 1.5

It is important to note that the characterized realizable domain does not exclusively contain LP
sets that always yield SSs obeying all design guidelines. Rather, a point within the realizable
domain merely guarantees the existence of at least one real SS that satisfies the design guidelines
and maps to that LP vector. A huge overlap of laminates violating the design guidelines over the
realizable domain is shown in Figure 5.13. This explains why, in several cases, the SF did not
decrease even when the characterized realizable domain was not defined in the first optimization
level. Since the realizable domain is a subset of the broader mathematically feasible space, it is
possible for the optimizer to naturally converge to a solution that lies within this subset, even
without constraining the search. In such cases, the retrieved SS aligns well with the original
LPs, and the observed SF mismatch remains the same for both constrained and unconstrained
scenarios, resulting in a 0% reduction in mismatch. The position of the optimal LP vector
depends on the applied load case. As seen in Table 5.6 initial 3 load cases (shear dominant) lie
within the realizable domain. Whereas, tension dominant load case (6’4 case) and combined
load cases with high compression and shear (5'h case) push the optimum outside the realizable
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5 Results

Table 5.7: Retrieved ss for optimal Ip obtained without enforcing the design guidelines.
Sl.no Retrieved SS

1 [ 45°,90°,—45° —45°,90°,45°,45°,90°, —45°,—45°,90°,45°]
2 [45°,75°,—T75°,—45°,0°, —45°,—75°,75°,45°]
3 [45°,60°,90°, —60°, —45°,0°, —45°,—60°,90°,60°,45°]
4 [—45°,—45°,90°,45°,45°,90°,45°,45°,90°, —45°, —45°]
5
6

[45°,45°,0°,—45°,—45°,90°, —45°, —45°,0°,45°,45°]
[45°,0°,0°,0°,0°, —45°,—45°,0°,0°,0°,0°,45°]

domain. The characterized realizable domain plays a major role in such cases (as seen in
Table 5.12).

Moreover, due to the discrete nature of ply counts, laminate thickness is rounded up to the
nearest manufacturable value. This slight increase in thickness can contribute to an increased SF
in the second level, offering a structural buffer that compensates for any residual mismatches.

Table 5.8: sf calculated for the defined load cases at each level of the bi-level optimization
procedure, where realizable domains were not defined as constraints at Level-1.

Safety Factor Difference in

SLno
Optimum Retrieved Safety Factor (%)

1 0.999999990211397 | 1.22453157807513 22.45315901

0.99999990206508 1.0503357815691 5.033588443
0.999999981285433 | 1.27112204641014 27.11220702
0.999999990239191 | 1.10688193846731 10.68819493
0.999999988755915 | 0.780581122327177 -21.94188689
0.999999985349831 | 0.751509210705762 -24.84907783

AN || W N
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5.2 Benchmark optimization problem

Table 5.9: Optimal lp obtained and the retrieved SS with realizable domains enforced as con-

straints during optimization.

Loads (N) Vector Design Variables
Ny | Ny LP [VA, VA VP VD vD VD] h (mm)
0 200 Optimal [-0.2076, -0.2105, -0.4076, -0.1847, 0.1623, 0] 1.39
Retrieved [-0.3333, -0.3333, -0.3148, -0.3703, 0.1667, 0] 1.5
0 400 Optimal [-0.2608, -0.2195, -0.4076, -0.1847, 0.2349, 0] 1.11
Retrieved | [-0.2737, -0.1111, -0.3740, -0.3470, 0.5761, -0.1425] | 1.125
100 | 500 Optimal [-0.2079, -0.2074, -0.3474, -0.3052, 0.1419, 0] 1.26
Retrieved | [-0.2727, -0.2727, -0.3448, -0.4891, 0.6201, -0.1874] | 1.375
Optimal [-0.2601, -0.2170, -0.2293, -0.5412, 0.2806, 0] 1.26
-300 | -300
Retrieved | [-0.2727, -0.2727, -0.3448, -0.4891, 0.6201, -0.1874] | 1.375
Optimal [-0.2059, -0.2100, -0.2078, -0.5843, 0.2121, 0] 1.36
-500 | 200
Retrieved [-0.3333, -0.3333, -0.3148, -0.3703, 0.1667, 0] 1.375
Optimal [0.8626, 0.6905, 0.6112, 0.2225, -0.0074, 0] 1.48
500000 | 100
Retrieved [0.6667, 0.3333, 0.5463, 0.0926, -0.3889, 0] 1.5

Table 5.10: Retrieved ss for optimal lp obtained with enforcing the design guidelines.

Sl.no Retrieved SS
1 [ 45°,90°, —45°,—45°,90°,45°,45°,90°, —45°, —45°,90°,45°]
2 [45°,75°,—75°,—45°,0°, —45°, —75°,75°,45°]
3 [45°,60°,90°, —60°, —45°,0°, —45°, —60°,90°,60°,45°]
4 [45°,60°,90°, —60°, —45°,0°, —45°,—60°,90°,60°,45°]
5 [45°,90°, —45°,—45°,90°,45°,45°,90°, —45°, —45°,90°,45°]
6 [—45°,0°,0°,0°,45°,0°,0°,0°,0°,45°,0°,0°,0°, —45°]
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5 Results

Table 5.11: sf calculated for the defined load cases at each level of the bi-level optimization
procedure, where realizable domains were defined as constraints at Level-1.

Table 5.12: Reduction of SF mismatch occurring due to the derived equations for realizable

SLno i Difference in
Optimum Retrieved
1 0.999999990208326 | 1.22453157807513 | 22.45315901
2 0.999999990268234 | 1.0503357815691 | 5.033579179
3 0.999999990172361 | 1.27112204641014 | 27.11220589
4 1.00000001368227 | 1.07949457899591 | 7.949456423
5 1.00000001073767 | 1.14714404793283 | 14.71440356
6 0.999999985349831 | 0.923659810741142 | -7.634017573

domain.
Slao Difference in SF (%) Dl;i{fefg:-l:;ic(:gn(%)
Without Guidelines | With Guidelines
1 22.45315901 22.45315901 0.0000
2 5.033588443 5.033579179 0.0000
3 27.11220702 27.11220589 0.0000
4 10.68819493 7.949456423 -25.6240
5 -21.94188689 14.71440356 167.0608
6 -24.84907783 -7.634017573 69.2785
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5.2 Benchmark optimization problem

Shaded Realizable Domain: V4 vs V4 Shaded Realizable Domain: V2 vs V&
1.00 . - 1.00 ras e
\ - Lamination Parameters violating the design guidelines 15 violating the design guidelines J|
|
\
0.75 0.75
0.50 0.50
0.25 0.25
L 0.00 w 0.00
—0.25 —0.25
—0.50 —0.50
-0.75 -0.75 '1['
\5% @1
/
LK OK )P
ALK 2
-1.00 -1.00 S
-1.00 -0.75 —0.50 -0.25 0.00 0.25 0.50 0.75 100 -1.00 -0.75 —0.50 -0.25 0.00 025 0.50 0.75 100
vt ve

(a) (V8 V3Y). (b) (VP V).

Shaded Realizable Domain: V9 vs v

- Lamination Parameters violating the design guidelines

-1.00
-1.00 -0.75 -0.50 -0.25 0.00 025 0.50 0.75 1.00
v

(c) (VP, VD).

Figure 5.13: Overlap of Ip violating the design guidelines for 12-ply symmetric laminates in the
characterized realizable domain.
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6 Conclusions

6 Conclusions

6.1 Summary of the Thesis

This thesis aimed to bridge the gap between mathematically feasible LPs and those that cor-
respond to physically realizable SSs adhering to practical design guidelines. The realizable
domain was introduced to characterize the subset of LP space (pertaining to design guidelines).
LP space maps SS, which is feasible with respect to the design guidelines such as disorientation,
damage tolerance, contiguity, and balance.

Analytical expressions for the realizable domain were derived for each guideline and visualized
in various LP projection spaces for different ply counts (n = 8,10, 12). These domains were
validated against brute-force enumeration of symmetric laminates with fiber angles ranging
from —90° to 90° in §15° steps. The results confirmed that the derived constraints accurately
enclosed the practically realizable regions with minimal misclassification (1% — 10% for 12-ply
laminates subjected to the combined design guidelines).

The realizable domains were then incorporated into a bi-level optimization framework. Two test
scenarios were compared: (1) with the domains enforced, and (2) without the domains enforced
during the Ist level of optimization. Across multiple load cases, the SF mismatches between
Level 1 and Level 2 were computed to assess the impact of the realizable domain constraints.
For the load cases where there was a high reduction in SF (> 20% for tension dominant case),
defining the realizable domain at earlier stages proved beneficial, and a minimum mismatch
reduction of 69.3% was observed.

6.2 Inferences from the Resulis

Several important insights emerged from the numerical evaluation:

* Improved accuracy with higher ply counts: Across all design guidelines, the proportion
of misclassified laminates decreased as the number of plies increased. This is attributed
to the discrete nature of SSs better approximating the continuous assumption used in the
analytical derivations.

» High fidelity of characterized domains: The analytically defined realizable domains
showed excellent agreement with actual realizable regions, particularly for disorientation,
damage tolerance, and balance guidelines. Misclassification rates were mostly below 1%,
with outliers often yielding from numerical rounding and/or boundary approximation.
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6.3 Future work

Limited utility of contiguity domain: For contiguity, the realizable domain closely
matched the mathematically feasible space. Since the constraint offered a negligible
reduction in design space (for 66 = 15°), enforcing it in LP space yielded limited benefit.

Mismatch reduction in bi-level optimization: Incorporating the realizable domain at the
first level of bi-level optimization led to a clear reduction in SF mismatch between the
two levels, especially in cases where the unconstrained optimum lay outside the realizable
region.

Robustness of the approach: Even in cases where the mismatch was initially negligible,
the use of realizable domains did not deteriorate performance. This confirms that realizable
domains only restrict infeasible regions and never exclude good solutions.

Insight into zero reduction cases: When the unconstrained optimum already lies within
the realizable domain, the retrieved SS aligns well with the target LP, and the SF difference
remains unchanged. Thus, the mismatch reduction is zero, not because the domain is
ineffective, but because the optimizer naturally chose a realizable point.

Benefits observed in non-zero reduction cases: For tension dominant, and coupled (shear
and compression) load cases, the optimum was observed to be outside the characterized
realizable domain. The critical SF of the retrieved SS was reduced by 20 —25%. Defining
the realizable domain for obtaining the conceptual stiffness reduced the mismatch com-
pletely for the coupled (shear and compression) load case. Whereas, a mismatch reduction
of 69.3% was observed for the tension dominant case.

6.3 Future work

While this study provides a strong foundation for integrating design guidelines into early-stage
laminate optimization, several directions remain open for further research:

Extension to variable stiffness laminates: The current work is limited to symmetric
laminates with constant stiffness. Extending realizable domain characterization to more
complex configurations (multi-panel problems) is needed for generalization. Guidelines
such as the 10%-rule and blending constraints may be studied and potentially coupled with
the derived realizable domains.

Improved boundary approximation: The few misclassifications observed may be ad-
dressed by refining the current linear or polynomial fits with machine learning models or
spline-based interpolations.

Probabilistic Realizable Domains: Rather than binary classification (inside or outside
the domain), a probabilistic confidence metric may be introduced, enabling risk-aware
optimization and robust laminate design.
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6 Conclusions

* Characterization of higher dimensional LP space: For the visualization purposes, pairs
of LPs were considered to characterize the realizable domain. Characterizing the realizable
domain in a higher-dimensional vector space could be beneficial to uncouple the realizable
and non-realizable laminates.

In conclusion, this thesis demonstrates that realizable domains offer a computationally and
structurally effective means of ensuring guideline-compliant laminate designs. Their integration
into optimization workflow reduces epistemic uncertainty, enhances design safety, and supports
a more streamlined transition from conceptual to manufacturable composite structures.

78



Bibliography

Abdalla, M., C. Kassapoglou, and Z. Giirdal (Jan. 2009). “Formulation of composite laminate
robustness constraint in lamination parameters space”. In: Collection of Technical Papers -
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference.

Aboudi, J. (1991). Mechanics of composite materials: a unified micromechanical approach.
Studies in applied mechanics. Includes bibliographical references and index. Elsevier.

Achenbach, J. (1975). A Theory of Elasticity with Microstructure for Directionally Reinforced
Composites. English. Springer Verlag.

Bailie, J. A., R. P. Ley, and A. Pasricha (1997). “A SUMMARY AND REVIEW OF COMPOS-

ITE LAMINATE DESIGN GUIDELINES”. In: URL: https://api.semanticscholar.
org/CorpusID:138632302.

Barbero, E. J. (2010). Introduction to Composite Materials Design. 2nd. CRC Press.

Belegundu, A. D. (1985). “A Study of Mathematical Programming Methods for Structural
Optimization”. In: URL: https : //api . semanticscholar . org/ CorpusID :
59878906.

Bletzinger, K.-U. (2021). “Structural Optimization [Lecture Notes]”. Available: https :
/ /www . moodle .tum.de/pluginfile.php /4138872 /mod_resource/
content/1.

Bloomfield, M., J. Herencia, and P. Weaver (Apr. 2008). “Optimisation of Anisotropic Composite
Plates Incorporating Non-Conventional Ply Orientations”. In: DOI: 10.2514/6.2008~
1918.

Bordogna, M., T. Macquart, D. Bettebghor, and R. De Breuker (June 2016). “Aeroelastic
Optimization of Variable Stiffness Composite Wing with Blending Constraints”. In: DOI:
10.2514/6.2016-4122.

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. Cambridge, UK: Cambridge
University Press.

Bruyneel, M. (2008). “Optimization of laminated composite structures: problems, solution
procedures and applications”. In: URL: https ://api . semanticscholar.org/
CorpusID:1123866009.

Chawla, K. K. (1988). “Composite materials: science and engineering”. In.

79



Bibliography

Dihne, S., E. Werthen, D. Zerbst, L. Tonjes, H. Traub, and C. Hithne (May 2024). “Lightworks,
a scientific research framework for the design of stiffened composite-panel structures using
gradient-based optimization”. In: Structural and Multidisciplinary Optimization 67, pp. 1-15.
DOI: 10.1007/s00158-024-03783-1.

Daniel, I. M. and O. Ishai (1994). Engineering Mechanics of Composite Materials. 2nd. New
York: Oxford University Press.

Diaconu, C., M. Sato, and H. Sekine (Mar. 2002). “Feasible Region in General Design Space of
Lamination Parameters for Laminated Composites”. In: Aiaa Journal - AIAA J 40, pp. 559—
565.D0I1: 10.2514/2.1683.

Diaconu, C. and H. Sekine (Oct. 2004). “Layup Optimization for Buckling of Laminated
Composite Shells with Restricted Layer Angles”. In: Aiaa Journal - AIAA J 42, pp. 2153—
2163.D0O1: 10.2514/1.931.

Diaconu, C. G., M. Sato, and H. Sekine (2002). “Buckling characteristics and layup optimization
of long laminated composite cylindrical shells subjected to combined loads using lamination
parameters”. In: Composite Structures 58.4, pp. 423-433. DOI: https://doi.org/10.
1016/S0263-8223(02)00130-7. URL: https://www.sciencedirect.com/
science/article/pii/Ss0263822302001307.

Ekeland, I. and T. Turnbull (1983). “Infinite-Dimensional Optimization And Convexity”. In:
URL: https://api.semanticscholar.org/CorpusID:1179536009.

Eliezer, C. J. and D. E. Daykin (Jan. 1967). “GENERALIZATIONS AND APPLICATIONS
OF CAUCHY-SCHWARZ INEQUALITIES”. In: The Quarterly Journal of Mathematics
18.1, pp. 357-360. DOI: 10.1093/gmath/18.1.357. eprint: https://academic.
oup.com/gjmath/article-pdf/18/1/357/4498774/18-1-357.pdf. URL:
https://doi.org/10.1093/gmath/18.1.357.

Fedon, N., P. Weaver, A. Pirrera, and T. Macquart (Nov. 2020). “A method using beam search
to design the lay-ups of composite laminates with many plies”. In: Composites Part C: Open
Access 4, p. 100072. DO1: 10.1016/7.jcomc.2020.100072.

Franz, M., B. Schleich, and S. Wartzack (July 2019). “Variation Analysis of Design Parameters
of Fibre-Reinforced Plastic Parts”. In: Proceedings of the Design Society: International
Conference on Engineering Design 1, pp. 2725-2734. D0O1: 10.1017/dsi.2019.279.

Fukunaga, H. and H. Sekine (1992). “Stiffness design method of symmetric laminates using
lamination parameters”. In: AIAA Journal 30.11, pp. 2791-2793. DOI1: 10.2514/3.11304.
eprint: https://doi.org/10.2514/3.11304. URL: https://doi.org/10.
2514/3.11304.

80



Ghiasi, H., K. Fayazbakhsh, D. Pasini, and L. Lessard (2010). “Optimum stacking sequence
design of composite materials Part II: Variable stiffness design”. In: Composite Structures
93.1, pp. 1-13. DOI: https://doi.org/10.1016/7j.compstruct.2010.06.
001. URL: https://www. sciencedirect .com/science/article/pii/
S0263822310001947.

Ghiasi, H., D. Pasini, and L. Lessard (2009). “Optimum stacking sequence design of composite
materials Part I: Constant stiffness design”. In: Composite Structures 90.1, pp. 1-11. DOI:
https://doi.org/10.1016/j.compstruct.2009.01.006. URL: https://
www.sciencedirect.com/science/article/pii/S026382230900018X.

Grenestedt, J. and P. Gudmundson (Dec. 1993). “Layup Optimization of Composite Material
Structures”. In: Optimal Design with Advanced Materials. DOI: 10.1016/B978-0-444~-
89869-2.50027-5.

Giirdal, Z., R. T. Haftka, and P. Hajela (1999). Design and Optimization of Laminated Composite
Materials. Wiley.

Haftka, R. T. and Z. Giirdal (1992). Elements of Structural Optimization. 3rd ed. Vol. 11. Solid
Mechanics and Its Applications. Springer Science+Business Media Dordrecht. Springer
Dordrecht, pp. XIV + 481. DOI: 10.1007/978-94-011-2550-5. URL: https:
//doi.org/10.1007/978-94-011-2550-5.

Herakovich, C. T. (1998). Mechanics of Fibrous Composites. Wiley.

IJsselmuiden, S. (2011). “Optimal Design of Variable Stiffness Composite Structures Using
lamination Parameters”. English. Dissertation (TU Delft). Delft University of Technology.

Irisarri, F.-X., A. Lasseigne, F.-H. Leroy, and R. Le Riche (2014). “Optimal design of laminated
composite structures with ply drops using stacking sequence tables”. In: Composite Structures
107, pp. 559-569. DOI: https://doi.org/10.1016/j.compstruct.2013.
08.030. URL: https://www.sciencedirect.com/science/article/pii/
S0263822313004376.

Jones, R. M. (1999). Mechanics of Composite Materials. Taylor & Francis.
Kaw, A. K. (2005). Mechanics of Composite Materials. 2nd. CRC Press.

Love, A. E. H. (1888). “The Small Free Vibrations and Deformation of a Thin Elastic Shell”. In:
Philosophical Transactions of the Royal Society of London. A 179, pp. 491-546. DOI: 10.
1098 /rsta.1888.0016. URL: https://royalsocietypublishing.org/
doi/10.1098/rsta.1888.0016.

Mallick, P. (2007). Fiber-Reinforced Composites: Materials, Manufacturing, and Design. 3rd.
CRC Press.

81



Bibliography

Matsuzaki, R. and A. Todoroki (2007). “Stacking-sequence optimization using fractal branch-
and-bound method for unsymmetrical laminates™. In: Composite Structures 78.4, pp. 537—
550. DOIL: https://doi.org/10.1016/j.compstruct.2005.11.015. URL:
https://www.sciencedirect.com/science/article/pii/S0263822305003454.

Miki, M. (1983). “A Graphical Method for Designing Fibrous Laminated Composites with
Required In-Plane Stiffness™. In: Transactions of the Japan Society for Composite Materials
(JSCM) 9, pp. 51-55.

Miki, M. and Y. Sugiyama (1993). “Optimum Design of Laminated Composite Plates Using
Lamination Parameters™. In: AIAA Journal 31.5, pp. 921-922. pO1: 10.2514/3.49033.

eprint: https://doi.org/10.2514/3.49033. URL: https://doi.org/10.
2514/3.49033.

Nettles, A. (Oct. 1994). “Basic Mechanics of Laminated composite plates™. In.

Niu, M. C.-Y. (1992). Composite airframe structures: practical design information and data.
Conmilit Press.

Papalambros, P. Y. and D. J. Wilde (2017). Principles of Optimal Design: Modeling and
Computation. 3rd ed. Cambridge University Press.

Pipes, R. B. and N. Pagano (1970). “Interlaminar Stresses in Composite Laminates Under
Uniform Axial Extension”. In: Journal of Composite Materials 4.4, pp. 538-548. DOI:
10.1177/002199837000400409. URL: https://doi.org/10.1177/002%
201998370004004009.

Soutis, C. (2005). “Fibre reinforced composites in aircraft construction”. In: Progress in
Aerospace Sciences 41.2, pp. 143-151. pO1: 10.1016/j.paerosci.2005.02.004.

Tsai, S. W. and N. J. Pagano (1968). “INVARIANT PROPERTIES OF COMPOSITE MATERI-
ALS.” In: URL: https://api.semanticscholar.org/CorpusID:136436586.

US Dept of Defense (1999). Composite Materials Handbook-MIL 17. 1st. Vol. I1I: doi:10.1201/978131513989(
Design, and Analysis. Routledge: Materials Usage.

Verchery, G. (Mar. 2011). “Design rules for the laminate stiffness”. In: Mechanics of Composite
Materials 47, pp. 47-58. D01: 10.1007/s11029-011-9186-x.

Wichter, A. and L. Biegler (Mar. 2006). “On the Implementation of an Interior-Point Filter Line-
Search Algorithm for Large-Scale Nonlinear Programming”. In: Mathematical programming
106, pp. 25-57.DO1: 10.1007/510107-004-0559~y.

Zimmermann, M. (Apr. 2022a). Lecture notes in Multidisciplinary Design Optimization, Lec-
ture 1: Introduction. Laboratory for Product Development and Lightweight Design (LPL),
Technical University of Munich.

82



Zimmermann, M. (Apr. 2022b). Lecture notes in Multidisciplinary Design Optimization, Lecture
5: Optimization Algorithms 1. Laboratory for Product Development and Lightweight Design
(LPL), Technical University of Munich.

Zimmermann, M. (Apr. 2022c¢). Lecture notes in Multidisciplinary Design Optimization, Lecture
6: Optimization Algorithms 2. Laboratory for Product Development and Lightweight Design
(LPL), Technical University of Munich.

Zimmermann, M. (Oct. 2024). Lecture notes in Methods of Product Development, Lecture
5: Models. Laboratory for Product Development and Lightweight Design (LPL), Technical
University of Munich.

83






Appendix

85



A Computational approach for laminate dataset generation and filtering

A Computational approach for laminate dataset generation and
filtering

This section presents the computational framework developed to validate the analytically
characterized realizable domains discussed in Section 4.2. A brute-force laminate generation
approach is employed to evaluate all possible symmetric laminates constructed from discrete
fibre orientation sets. These laminates are tested against several design guidelines, and their
corresponding LPs are computed. The validated laminates are then visualized in various
parameter spaces to examine their alignment with the analytically derived bounds.

Analytical characterization presented in Chapter 4.2 offers closed-form expressions for LP
realizable domain under the given constraints. However, these derivations involve idealized as-
sumptions, continuous approximations, or asymptotic behaviors. In contrast, SSs are inherently
discrete, especially in manufacturing contexts where fiber angles can only assume a discrete set
of values. Hence, a brute-force computational search helps bridge the gap between analytical
idealization and practical realizability.

The objective is to:

* Generate all possible symmetric laminates given an angle step size and ply count.
* Apply design guideline filters to exclude non-feasible laminates.
* Compute all eight LPs (V{A_ 4 and VlD_ 4)-

» Store and plot feasible laminates to compare against theoretical realizable domains.
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Table A.1: Breakdown of the use of Python scripts for the verification of the derived realizable

domains.

Requirement

Solution

Memory management (see
Figure A.1)

With an increasing number of pies, the num-
ber of feasible laminates increases exponentially.
For example, a 12-ply symmetric laminate has
2,985,984 different possible combinations of fi-
bre orientations for 615°. To account for this
huge set of data, batch processing is used to split
the generated laminates into smaller batches for
further processing and save them as .pk1 files
before clearing the memory. This prevents RAM
exhaustion.

Design guideline filtering (see
Figures A.2 to A.5)

While studying the laminates that obey the de-
sign guidelines, LPs are calculated only once
they pass the guideline check. Also, just the
unique set of parameters is stored to reduce the
computational load.

Post processing and visualiza-
tion

The stored . pk1 files are loaded to visualize the
2-D projections of LPs. This way, the charac-
terized realizable domains are verified for their
accuracy.
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A Computational approach for laminate dataset generation and filtering

T

|

Initialize: &, O array, n plies

|

Generate all symmetric laminates (half stacking)

|

Y

Loop over laminates (within batch)

Satisfy design guidelines? b, > Compute VA, VP
Store (VA,VP) in batch
Discard laminate Next laminate
— Next batch «— Save batch to .pk1l Xes

|

Read . pk1 files and plot LP pairs

|

T

Figure A.1: Flowchart of the brute-force laminate evaluation and batch-based data generation
and plotting process.
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For each laminate

!

Loop over all adjacent ply pairs

¥

Is |9k = Gk_|| S 45°7

Reject laminate

Continue to next pair

Figure A.2: Flowchart for enforcing the disorientation design guideline.
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A Computational approach for laminate dataset generation and filtering

For each laminate

|

Count +6 and —0 pairs

l

Does every +6 have Yes
a —0 counterpart?

Reject laminate

Accept laminate

Figure A.3: Flowchart for enforcing the balanced design guideline.
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For each laminate

l

Is outermost ply £45°? Accept laminate

Reject laminate

Figure A.4: Flowchart for enforcing the damage tolerance design guideline.

91



A Computational approach for laminate dataset generation and filtering

For each laminate

|

Check contiguous identical plies

l

Are more than 4 ad-
jacent plies identical?

’ Accept laminate

Reject laminate

Figure A.5: Flowchart for enforcing the contiguity design guideline.
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B Contiguity design guideline enforced on conventional laminates

Conventional laminates are made of fibre orientations in [0°, £45°,90°]. The equation defining
the contiguity design guideline in LP space was derived in Chapter 4.2.3 (see Equation 4.32).
By substituting the value of § with 45°, the equation for the realizable domain for conventional
laminates is obtained. In Figure B.1, the realizable domain for varying ply counts is visualized,
and the percentage of misclassified points is summarized in Table B.1.

Table B.1: Percentage of conventional laminates violating the characterized contiguity con-
straint for varying ply counts.

Total Plies VID — V3D Misclassification (%)
14 0.0%
16 0.0%
18 0.0%
20 0.0%

From the percentage of misclassification, it is concluded that the derived realizable domain
defines the contiguity guideline in the LP space perfectly. Also, from Figure B.1 it is observed
that the rate of reduction of the |[R|? is higher when compared to non-conventional laminates.
To validate this hypothesis, the reduction of |R|? is plotted across varying ply counts (see
Figure B.2).

Although |R|P is reduced by over 20% for conventional laminates with n > 200, the reduction
is not negligible for smaller ply counts. Hence, when optimizing the conventional laminates, the
contiguity guideline should also be defined and enforced during the optimization process with
LPs as design variables.
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B Contiguity design guideline enforced on conventional laminates

Contiguity Guideline: VP vs v

Contiguity Guideline: VP vs V§
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(c)n=18. (d) n = 20.

Figure B.1: Characterized realizable domains under the contiguity guideline for conventional
laminates 86 = 45°.

94



Loss due to Contiguity Constraint vs. Total Plies
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Ply counts n

Figure B.2: Reduction of |R|Ic) with increasing ply counts for conventional laminates.

95



C Different interpretation of damage tolerance design guideline

C Different interpretation of damage tolerance design guideline

Multiple interpretations of the damage tolerance design guideline were presented in Chap-
ter 2.1.2. The theoretical formulation and visualization of results for the outermost ply orienta-
tion fixed at 45° were also presented. Similarly, by expanding the summation, the results for
the second interpretation of damage tolerance (outermost two plies are fixed at 45° and —45°
angles) can be easily derived. The derivation follows similar steps to those in Chapter 4.2.2.
To show the reliability of the derivation procedure, the results, along with the expansion of

summation terms, are hereby shown:

L)
2
VID = ];1 wi 0826 +wn c0s260s +wn_ cos26x_
1
= ) Wk co826+wn cos2 x 45° +wz_y C082 X —45°

NIz
|

k=1
D 2
V3 = Z W sm29k—|—w% sm29%—|—w%_1 c0529g_1
k=1
1]
= ) Wi sin26+ws sin2 x 45° +ws_y sin2 X —45°
k=1
12
D
V' = Z Wy c0846; +wnr cos40n +wn_| cosdOn_
2 2 2 2
k=1
1o
= Wi cos49k—i—w% cos4 x 45° +wa_y cos4 x —45°
k=1

A_ S
VA = l;lwkcos26k+w§cos26rzz+Wg_1C0529';—1

A g
Vit = 1;1 W sm29k—|—Wg sm29% +wiy sm26%_1
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Similar to the results obtained in Chapter 5.1.2, the derived realizable domain shows a good
fit as seen in Figures C.1 to C.3. Hence, it can be stated with confidence that the procedure
followed for the derivation of the realizable domain in the respective LP spaces can be extended
for different interpretations with minimal changes.
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C Different interpretation of damage tolerance design guideline
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Figure C.1: Characterized realizable domains under the second interpretation of the damage
tolerance guideline for n = 8 ply laminates.
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Figure C.2: Characterized realizable domains under the second interpretation of the damage
tolerance guideline for n = 10 ply laminates.
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C Different interpretation of damage tolerance design guideline
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Figure C.3: Characterized realizable domains under the second interpretation of the damage
tolerance guideline for n = 12 ply laminates.
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