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Abstract—Urbanization, characterized by physical growth 
and infrastructure expansion, remains a global phenomenon 
with profound economic, environmental, and social 
implications. Traditional methods of monitoring construction 
activity—key indicators of urban and economic development—
often suffer from delays and inconsistencies in reporting. This 
study introduces a Satellite-based Building Activity Indicator 
(SBAI) leveraging Sentinel-2 imagery and machine learning to 
provide highly resolved, spatiotemporal data on urban 
construction activities. The SBAI identifies new urban 
developments with high accuracy and highlights the ability to 
track seasonal and project-specific construction trends. 
Comparison with official statistics on construction activity 
validates its reliability, while its granularity offers enhanced 
insights into intra-year variations and localized urban growth 
dynamics. The SBAI demonstrates significant potential as a tool 
for national statistical frameworks, offering timely and detailed 
data to support responsive and informed decision-making at 
local and national levels. 
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I. INTRODUCTION  
The majority of the global population lives in urban areas, 

with a still ongoing trend of movement towards urban 
livelihood. Until 2050, more than 68% of the population is 
expected to live in urban areas [1]. Cities are not only the 
homes for residents, but also represent economical centers and 
are locations of industrial production, commerce, services, 
research and development and education which makes them 
places of innovation and wealth, and they are usually more 
productive than smaller communities [2]. Densely populated 
urban areas as a result of urbanization processes result in a 
spatial concentration of people and infrastructure and are thus 
much more efficient in terms of land consumption and the use 
of infrastructure in comparison to low density areas. At the 
same time, this densification also results in large impervious 
areas with increased surface water runoff, increased surface 
and air temperature leading to (surface) urban heat island 
effects [3], traffic and congestion and increased ambient air 
pollution [4]. While the scientific term urbanization includes 
a multitude of facets including population growth and 
economic growth, the most visible result of urbanization is 
physical urban growth as buildings and infrastructure are 
needed to house people, offices, shops and production sites, as 
well as transportation areas are needed to connect these places 
and people. The material of urbanization is concrete, which on 
the one hand has a dramatic balance sheet of CO2 emissions 
being responsible for a total share of 8% of global emissions 
[5], but on the other hand has helped to cut down the rate of 
extreme poverty since the 1990’s in half [6] due to the massive 
growth of urban areas.  

The transformation of natural land into built-up areas 
marks only the physical act of urbanization, while these 
processes are often preceded by long planning processes, 
including administrative and legal processes which makes it 
difficult to compare the physical urbanization processes at 
international scale compared to official statistics of building 
activities in cities. Reasons for this can be found in the various 
ways of monitoring of urban construction sites as part of 
official national reporting on building activities, e.g. for 
national censuses etc. Some statistics may report the 
beginning of the planning process, some report the date of the 
building permit and some report only the finalized 
construction. The time between these formal and practical 
processes can be long, especially in regions with high 
bureaucratic efforts, resulting in biased statistics on the 
timeliness of urban construction sites. The latter, however, is 
a relevant measure of economic activities and can be used to 
quantify the impact of such intense transformative processes 
to our environment and it allows to understand the intensity of 
man-made construction when we see that e.g. China has used 
as much cement in three years (2011-2013) than the whole 
U.S. in the entire 20th century [6].  

The need for understanding and monitoring of such 
processes from official side is high, also because they can be 
used as reliable early indicators of economic activity to be 
used in estimations of the gross domestic product (GDP) of a 
country, especially as a growing need of timely and precise 
statistical data can be observed. The intensity of construction 
activity plays an important role for the overall economic 
performs as it can be directly attributed to about 4% of the 
GDP (https://www.census.gov/construction/nrs/index.html). 
For the detection and monitoring of urbanization processes, 
earth observation satellites are an invaluable data source 
which deliver images in spatially high resolution over multiple 
decades to map and quantify urban growth at various scales 
[7]. Monitoring of land-use and land-cover change (LULCC) 
are key tasks for global Earth observation missions and can 
provide rapid, unbiased and reliable, objectively derived data 
and information on change processes on the Earth’s surface. 
With recent advances in satellite-based Earth Observation, 
some key issues for monitoring LULCC at high spatial 
granularity could be resolved. Especially the European 
satellite missions from Sentinel-2 are capable of providing 
constant data flows on the current state of urban areas and 
natural land covers. Through the spatial resolution of 10 m, 
fine-grained details can be extracted from these satellite 
images while covering large areas at the same time. The 
Sentinel-2 mission with its twin satellites (Sentinel-2A+B) 
offers a high revisting rate of 5 days (at the equator) under 
cloud-free conditions which results in 2-3 days at the latitudes 
of central Europe. Thus, a timely fine-grained identification of 
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LULCC can be accomplished. Recent advances in big data 
processing capabilities using machine learning techniques 
helped the development of global data sets on urban areas at 
various spatial scales, e.g. the Global Human Settlement 
Layer (GHSL) provides global maps of urban areas over four 
decades using Landsat data at 30 m resolution [8], or the 
World Settlement Footprint (WSF) providing yearly 
composites of urban areas [9]. Detailed Sentinel-2 satellite 
images in combination with high repetition rate of the 
satellites provide excellent conditions for a data set-up to 
monitor anthropogenic change processes in urban 
environments.  

Against the background of these recent developments in 
terms of data availability and image classification methods 
using novel machine learning techniques, we present in this 
study a Satellite-based building activity Indicator (SBAI) 
which aims to provide early information on the building 
activity in Germany and which can be used to measure and 
track activity related to commercial and residential 
construction using Sentinel-2 data. Specifically, the SBAI 
provides spatially and temporarily highly resolved data on 
urban building activities at the full spatial resolution of 
Sentinel-2 of 10 m and as monthly aggregates of newly 
constructed urban areas. Moreover, we compare and assess the 
SBAI with official statistics on construction completion from 
the Federal Statistical Office of Germany to evaluate the 
potential of satellite images for timely statistical reporting. 

II. TEST AREA AND DATA 

A. Test area 
We test the developed methods for the administrative area 

of the city of Munich in Germany, as Munich is the fourth 
largest city in Germany and ranks second in GDP after Berlin 
which makes it a good choice as an economical center 
including pronounced building activity. The administrative 
area of Munich incorporates 560 km² and ~1.6 million 
inhabitants (2024). Munich’s constant increase of population 
due to high quality of life, education and prosperous labor 
market, are drivers for ongoing transformation of natural land 
into urban land. In this context, Munich is planning and 
constructing some new neighborhoods, e.g. Freiham with an 
area of about 350 ha and housing for 25,000 inhabitants. 

B. Satellite data 
For the development of the satellite-based building 

indicator, we use a monthly time series of 59 Sentinel-2 (S2) 
images from 2016 until 2023 of ten spectral bands from at a 
geometric resolution of 10 and 20 m, respectively. The S2 
twin constellation of allows for a very high repetition rate of 
up to 5 days in Central Europe, thus increasing the probability 
of cloud-free acquisitions and making it possible to detect 
rapid changes on the Earth’s surfaces, e.g. in the case of 
natural disasters. However, even cloud-free satellite images 
underly various external factors which impact the image 
quality, such as the sun angle, atmospheric conditions such as 
haze, which make it difficult for automated processes or pre-
trained image classification models to detect the correct class. 
To increase the standardization of satellite image data, image 
pre-processing methods are applied for a more effective data 
utilization. Here, we use a two-stage data pre-processing: first, 
the Level-2A pre-processor MAJA which is based on the 
Multi-Temporal Atmospheric Correction and Cloud 
Screening software (MACCS) in combination with 
atmospheric correction (ATCOR) [10]. 

 
Fig. 1. Subset of Munich visualizing automated reference data for the image 
classification (green=’vegetation’, red=’urban’, yellow=’open soil’, 

blue=’water’, white=’NA’). 

The MAJA processor detects high altitude clouds in the 
optical images, generates cloud and cloud shadow masks, and 
corrects cirrus clouds and performs atmospheric correction of 
the images. In a subsequent step, Level-2A data is used as 
input for the Weighted Average Synthesis Processor (WASP) 
[11] which generates monthly aggregates of surface 
reflectance data. WASP calculates the weighted average of 
image data over 45 days of cloud-masked images and provides 
cloud-free Level-3 data with a very low level of artefacts 
compared to pixel-based methods. 

C. Land-cover reference data 
To facilitate and automate training data generation for the 

classification process, we use monthly land-cover reference 
data on urban areas from freely available data sources such as 
OpenStreetMap (OSM) (www.openstreetmap.org). 
Specifically, we use objects representing the urban land-
use/land-cover classes ‘buildings’, ‘streets’, ‘parking lots’, 
‘railway areas’, and also ‘water surfaces’ from OSM as the 
data quality and timeliness of the data is considered to be of 
high reliability, at least over large urban areas for countries 
with an active mapping community. For reference data on 
natural land, we use land-cover products from Google 
Dynamic World [12], which is an automatic pixel-based 
classification of all Sentinel-2 images based on a deep learning 
method using ca. 24,000 manually labeled image tiles. 
Empirical testing revealed rather conservative classification 
for natural land resulting in high user’s accuracy and low 
errors of commission, meaning a high reliability for the 
vegetated areas. Thus, a random sample taken from pixels 
classified as ‘vegetation’ in the Dynamic World product, 
corresponds very likely to ‘vegetation’ in reality. Both data 
sets are combined to a reference land-cover product with the 
classes ‘vegetation’, ‘urban’, ‘open soil’, ‘water’, and ‘NA’ 
(Figure 1). For independent quantitative evaluation of the 
performance of the image classification, we use spatial 
samples from the Land Use and Land Cover Survey (LUCAS) 
which represents a harmonized in-situ data set over the entire 
European Union. It is updated every three years and has been 
already used for large-scale land-cover classifications of 
Sentinel-2 data [13]. 

D. Statistical data 
For comparison with official data, we use statistics on 

finished constructions in urban areas from the Federal 
statistical office in Germany. These data report the number of 
finished constructions on a monthly basis. The data only 
reports finished constructions, but cannot temporarily resolve 
the beginning or the duration of a construction site.  
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Fig. 2. The satellite-based building activity indicator displaying newly constructed urban areas for the City of Munich over the time period 07/2016-10/2023. 
Colors indicate the begin of the construction activity (yyyymm). 

III. IDENTIFICATION OF NEWLY CONSTRUCTED URBAN AREAS 
To increase the separability of the target land-cover classes 

for the image classification, eight spectral features are 
calculated based on each of the 10 S2-bands. For a detailed 
description of the 18 indices (10 spectral bands, NDVI, 
NDWI, NDBI, NDTI, NBAI, NBI, BSI, DBSI), we refer to 
[14]. For the classification of the monthly-aggregated 
Sentinel-2 images from 07/2016 until 10/2023, we take 
random samples of 80% of the automated reference data and 
train a random forest model [15] for each of the images. The 
trained models are applied on the entire image tile resulting in 
a time series of 39 land cover classifications for the four land 
cover classes. Due to heavily cloudy images and snow cover 
in winter months, some of the scenes were removed from the 
classification process. For each classified image, an accuracy 
assessment is performed based on the remaining 20% 
reference data and LUCAS data reporting an average overall 
agreement with the reference data of 95.6% (min.: 93.3%, 
max.: 96.5%). Class ‘vegetation’ reports an average accuracy 
of 97.2% (min.: 96.0%, max.: 97.9%), class ‘urban’ reports an 
average accuracy of 94.4% (min.: 91.4%, max.: 95.8%) and 
‘water’ reports 85.3% agreement. Naturally, class ‘open soil’ 
reports the lowest agreement with the reference data (49.7%), 
because of the spectral confusion with urban land and because 
construction sites are sometimes classified as ‘open soil’ until 
the buildings are finished or the roads are paved. For further 
processing, only the class ‘urban’ is used, however four land-
cover classes are classified because multi-class classifications 
usually perform better than single-class classifications.  

In a next step, the time series of urban land classifications 
is processed to identify newly constructed areas between two 
images. Therefore, the land-cover class of each pixel from t0 
is compared with the land-cover class of the same pixel in the 
subsequent three classifications in t1-3. To account for pixel-
based classification errors and to identify only reliable 

construction sites, we aggregate the second time step over 
three months (t1-3). If the land cover of a pixel shows a non-
urban class in t0  and for at least two of the three subsequent 
time steps (t1-3) the class ‘urban’, the pixel is flagged as 
identified building activity and the time stamp of the month of 
the beginning of the construction is stored in the pixel 
(yyyymm). This step is repeated for all steps of the time series.  

Results of the satellite-based building activity indicator are 
displayed in Fig. 2. The image shows an overview of newly 
built areas over the time series for the entire city of Munich in 
the center. Dark blue pixels represent the state of urban land 
in May 2016. Boxes on each side of the image display 
magnifications of remarkable areas which have experienced 
significant building activity in the time period. Box 1 displays 
the newly constructed urban neighborhood Freiham in the 
West of Munich which is under construction since the year 
2016. Box 2 displays the construction of a new metro line 
since spring 2023, box 3 displays the construction of a large 
school campus and box 4 displays the transformation of a 
former area of military barracks into a newly developed 
housing area with more than 1,800 apartments for about 4,000 
residents. For both examples in box 1 and box 4, the beginning 
of individual parts of the construction sites can be identified 
based on the color coding. 

IV. COMPARISON WITH OFFICIAL DATA AND DISCUSSION 
To assess the applicability of the satellite-based building 

activity index for timely reporting of national statistics on 
construction sites, we compare the results of the classified 
time series for newly constructed urban areas with official data 
which reports finished constructions at a monthly scale. A 
visual comparison of both data is displayed in Fig. 3. To allow 
for a meaningful comparison, both time series were 
standardized using z-transformation and the timestamps of the 
SBAI to match the official data on finished constructions.  
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Fig. 3. Comparison of official statistics on finished constructions (red) and 
the SBAI(cyan) for the administrative area of Munich.  

Due to the temporal mismatch of the satellite-based 
detection of land cover changes versus the reported 
completion of the construction a detailed assessment of these 
temporal lags is still pending. While the gradient of the 
building activity observed in the official data is relatively 
stable over the analyzed time period, the results derived from 
the SBAI reveal significant intra-year variations. These 
variations can be attributed to the finer temporal granularity of 
satellite data, which enables the identification of seasonal 
construction trends, temporary pauses in building activity, or 
variations caused by external factors such as weather or 
economic disruptions. Moreover, the SBAI provides spatially 
explicit insights into construction trends. The ability to map 
and monitor specific urban development projects, as 
demonstrated in Fig. 2, offers a significant advantage for 
urban planners, policymakers, and researchers seeking to 
understand the dynamics of urban growth. The case of 
Freiham, as well as other highlighted projects, illustrates the 
potential of remote sensing-based approaches for tracking 
urban expansion in near real-time. Nevertheless, the 
comparison shows that the general development of 
constructions matches very well between the datasets as they 
have almost the same gradient in the time series, and thus 
showing a valuable proof-of-concept that building activity can 
be derived through change detections in Sentinel-2 imagery in 
fine-grained spatial and temporal detail at large scales.  

V. CONCLUSION 
This study demonstrates the value of combining high-

resolution S2 satellite data with advanced image classification 
methods to derive timely, spatially detailed information on 
construction activity, complementing traditional statistical 
methods that often depend on aggregated data with significant 
time lags. The strong correlation between SBAI results and 
official statistics validates its accuracy, while its finer 
granularity and ability to detect intra-year variations make it 
particularly useful for monitoring urban growth processes in 
greater detail. Beyond urban planning, the SBAI offers 
significant potential for integration into national statistical 
systems. By delivering near real-time data, the indicator can 
assess economic trends, especially in the construction sector, 
which constitutes a substantial share of GDP. The detailed 
temporal resolution of the SBAI enables policymakers and 

analysts to observe dynamic shifts in construction activity that 
might be obscured in traditional reporting, supporting more 
responsive and informed decision-making. As urban areas 
continue to expand and evolve, tools like the SBAI present a 
promising approach for understanding the interplay between 
urbanization and economic growth, ultimately contributing to 
more sustainable and effective policymaking.  
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