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Abstract—Urbanization, characterized by physical growth
and infrastructure expansion, remains a global phenomenon
with  profound economic, environmental, and social
implications. Traditional methods of monitoring construction
activity—LKkey indicators of urban and economic development—
often suffer from delays and inconsistencies in reporting. This
study introduces a Satellite-based Building Activity Indicator
(SBAI) leveraging Sentinel-2 imagery and machine learning to
provide highly resolved, spatiotemporal data on urban
construction activities. The SBAI identifies new urban
developments with high accuracy and highlights the ability to
track seasonal and project-specific construction trends.
Comparison with official statistics on construction activity
validates its reliability, while its granularity offers enhanced
insights into intra-year variations and localized urban growth
dynamics. The SBAI demonstrates significant potential as a tool
for national statistical frameworks, offering timely and detailed
data to support responsive and informed decision-making at
local and national levels.
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1. INTRODUCTION

The majority of the global population lives in urban areas,
with a still ongoing trend of movement towards urban
livelihood. Until 2050, more than 68% of the population is
expected to live in urban areas [1]. Cities are not only the
homes for residents, but also represent economical centers and
are locations of industrial production, commerce, services,
research and development and education which makes them
places of innovation and wealth, and they are usually more
productive than smaller communities [2]. Densely populated
urban areas as a result of urbanization processes result in a
spatial concentration of people and infrastructure and are thus
much more efficient in terms of land consumption and the use
of infrastructure in comparison to low density areas. At the
same time, this densification also results in large impervious
areas with increased surface water runoff, increased surface
and air temperature leading to (surface) urban heat island
effects [3], traffic and congestion and increased ambient air
pollution [4]. While the scientific term urbanization includes
a multitude of facets including population growth and
economic growth, the most visible result of urbanization is
physical urban growth as buildings and infrastructure are
needed to house people, offices, shops and production sites, as
well as transportation areas are needed to connect these places
and people. The material of urbanization is concrete, which on
the one hand has a dramatic balance sheet of CO2 emissions
being responsible for a total share of 8% of global emissions
[5], but on the other hand has helped to cut down the rate of
extreme poverty since the 1990’s in half [6] due to the massive
growth of urban areas.
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The transformation of natural land into built-up areas
marks only the physical act of urbanization, while these
processes are often preceded by long planning processes,
including administrative and legal processes which makes it
difficult to compare the physical urbanization processes at
international scale compared to official statistics of building
activities in cities. Reasons for this can be found in the various
ways of monitoring of urban construction sites as part of
official national reporting on building activities, e.g. for
national censuses etc. Some statistics may report the
beginning of the planning process, some report the date of the
building permit and some report only the finalized
construction. The time between these formal and practical
processes can be long, especially in regions with high
bureaucratic efforts, resulting in biased statistics on the
timeliness of urban construction sites. The latter, however, is
a relevant measure of economic activities and can be used to
quantify the impact of such intense transformative processes
to our environment and it allows to understand the intensity of
man-made construction when we see that e.g. China has used
as much cement in three years (2011-2013) than the whole
U.S. in the entire 20" century [6].

The need for understanding and monitoring of such
processes from official side is high, also because they can be
used as reliable early indicators of economic activity to be
used in estimations of the gross domestic product (GDP) of a
country, especially as a growing need of timely and precise
statistical data can be observed. The intensity of construction
activity plays an important role for the overall economic
performs as it can be directly attributed to about 4% of the
GDP (https://www.census.gov/construction/nrs/index.html).
For the detection and monitoring of urbanization processes,
earth observation satellites are an invaluable data source
which deliver images in spatially high resolution over multiple
decades to map and quantify urban growth at various scales
[7]. Monitoring of land-use and land-cover change (LULCC)
are key tasks for global Earth observation missions and can
provide rapid, unbiased and reliable, objectively derived data
and information on change processes on the Earth’s surface.
With recent advances in satellite-based Earth Observation,
some key issues for monitoring LULCC at high spatial
granularity could be resolved. Especially the European
satellite missions from Sentinel-2 are capable of providing
constant data flows on the current state of urban areas and
natural land covers. Through the spatial resolution of 10 m,
fine-grained details can be extracted from these satellite
images while covering large areas at the same time. The
Sentinel-2 mission with its twin satellites (Sentinel-2A+B)
offers a high revisting rate of 5 days (at the equator) under
cloud-free conditions which results in 2-3 days at the latitudes
of central Europe. Thus, a timely fine-grained identification of
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LULCC can be accomplished. Recent advances in big data
processing capabilities using machine learning techniques
helped the development of global data sets on urban areas at
various spatial scales, e.g. the Global Human Settlement
Layer (GHSL) provides global maps of urban areas over four
decades using Landsat data at 30 m resolution [8], or the
World Settlement Footprint (WSF) providing yearly
composites of urban areas [9]. Detailed Sentinel-2 satellite
images in combination with high repetition rate of the
satellites provide excellent conditions for a data set-up to
monitor anthropogenic change processes in urban
environments.

Against the background of these recent developments in
terms of data availability and image classification methods
using novel machine learning techniques, we present in this
study a Satellite-based building activity Indicator (SBAI)
which aims to provide early information on the building
activity in Germany and which can be used to measure and
track activity related to commercial and residential
construction using Sentinel-2 data. Specifically, the SBAI
provides spatially and temporarily highly resolved data on
urban building activities at the full spatial resolution of
Sentinel-2 of 10 m and as monthly aggregates of newly
constructed urban areas. Moreover, we compare and assess the
SBAI with official statistics on construction completion from
the Federal Statistical Office of Germany to evaluate the
potential of satellite images for timely statistical reporting.

II. TEST AREA AND DATA

A. Test area

We test the developed methods for the administrative area
of the city of Munich in Germany, as Munich is the fourth
largest city in Germany and ranks second in GDP after Berlin
which makes it a good choice as an economical center
including pronounced building activity. The administrative
area of Munich incorporates 560 km? and ~1.6 million
inhabitants (2024). Munich’s constant increase of population
due to high quality of life, education and prosperous labor
market, are drivers for ongoing transformation of natural land
into urban land. In this context, Munich is planning and
constructing some new neighborhoods, e.g. Freiham with an
area of about 350 ha and housing for 25,000 inhabitants.

B. Satellite data

For the development of the satellite-based building
indicator, we use a monthly time series of 59 Sentinel-2 (S2)
images from 2016 until 2023 of ten spectral bands from at a
geometric resolution of 10 and 20 m, respectively. The S2
twin constellation of allows for a very high repetition rate of
up to 5 days in Central Europe, thus increasing the probability
of cloud-free acquisitions and making it possible to detect
rapid changes on the Earth’s surfaces, e.g. in the case of
natural disasters. However, even cloud-free satellite images
underly various external factors which impact the image
quality, such as the sun angle, atmospheric conditions such as
haze, which make it difficult for automated processes or pre-
trained image classification models to detect the correct class.
To increase the standardization of satellite image data, image
pre-processing methods are applied for a more effective data
utilization. Here, we use a two-stage data pre-processing: first,
the Level-2A pre-processor MAJA which is based on the
Multi-Temporal ~ Atmospheric  Correction and Cloud
Screening software (MACCS) in combination with
atmospheric correction (ATCOR) [10].

Fig. 1. Subset of Munich visualizing automated reference data for the image
classification (green=’vegetation’, red="urban’, yellow="open soil’,
blue="water’, white="NA’).

The MAJA processor detects high altitude clouds in the
optical images, generates cloud and cloud shadow masks, and
corrects cirrus clouds and performs atmospheric correction of
the images. In a subsequent step, Level-2A data is used as
input for the Weighted Average Synthesis Processor (WASP)
[11] which generates monthly aggregates of surface
reflectance data. WASP calculates the weighted average of
image data over 45 days of cloud-masked images and provides
cloud-free Level-3 data with a very low level of artefacts
compared to pixel-based methods.

C. Land-cover reference data

To facilitate and automate training data generation for the
classification process, we use monthly land-cover reference
data on urban areas from freely available data sources such as
OpenStreetMap (OSM) (www.openstreetmap.org).
Specifically, we use objects representing the urban land-
use/land-cover classes ‘buildings’, ‘streets’, ‘parking lots’,
‘railway areas’, and also ‘water surfaces’ from OSM as the
data quality and timeliness of the data is considered to be of
high reliability, at least over large urban areas for countries
with an active mapping community. For reference data on
natural land, we use land-cover products from Google
Dynamic World [12], which is an automatic pixel-based
classification of all Sentinel-2 images based on a deep learning
method using ca. 24,000 manually labeled image tiles.
Empirical testing revealed rather conservative classification
for natural land resulting in high user’s accuracy and low
errors of commission, meaning a high reliability for the
vegetated areas. Thus, a random sample taken from pixels
classified as ‘vegetation’ in the Dynamic World product,
corresponds very likely to ‘vegetation’ in reality. Both data
sets are combined to a reference land-cover product with the
classes ‘vegetation’, ‘urban’, ‘open soil’, ‘water’, and ‘NA’
(Figure 1). For independent quantitative evaluation of the
performance of the image classification, we use spatial
samples from the Land Use and Land Cover Survey (LUCAS)
which represents a harmonized in-situ data set over the entire
European Union. It is updated every three years and has been
already used for large-scale land-cover classifications of
Sentinel-2 data [13].

D. Statistical data

For comparison with official data, we use statistics on
finished constructions in urban areas from the Federal
statistical office in Germany. These data report the number of
finished constructions on a monthly basis. The data only
reports finished constructions, but cannot temporarily resolve
the beginning or the duration of a construction site.
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Fig. 2. The satellite-based building activity indicator displaying newly constructed urban areas for the City of Munich over the time period 07/2016-10/2023.

Colors indicate the begin of the construction activity (yyyymm).

III. IDENTIFICATION OF NEWLY CONSTRUCTED URBAN AREAS

To increase the separability of the target land-cover classes
for the image classification, eight spectral features are
calculated based on each of the 10 S2-bands. For a detailed
description of the 18 indices (10 spectral bands, NDVI,
NDWI, NDBI, NDTI, NBAI, NBI, BSI, DBSI), we refer to
[14]. For the classification of the monthly-aggregated
Sentinel-2 images from 07/2016 until 10/2023, we take
random samples of 80% of the automated reference data and
train a random forest model [15] for each of the images. The
trained models are applied on the entire image tile resulting in
a time series of 39 land cover classifications for the four land
cover classes. Due to heavily cloudy images and snow cover
in winter months, some of the scenes were removed from the
classification process. For each classified image, an accuracy
assessment is performed based on the remaining 20%
reference data and LUCAS data reporting an average overall
agreement with the reference data of 95.6% (min.: 93.3%,
max.: 96.5%). Class ‘vegetation’ reports an average accuracy
0f97.2% (min.: 96.0%, max.: 97.9%), class ‘urban’ reports an
average accuracy of 94.4% (min.: 91.4%, max.: 95.8%) and
‘water’ reports 85.3% agreement. Naturally, class ‘open soil’
reports the lowest agreement with the reference data (49.7%),
because of the spectral confusion with urban land and because
construction sites are sometimes classified as ‘open soil” until
the buildings are finished or the roads are paved. For further
processing, only the class ‘urban’ is used, however four land-
cover classes are classified because multi-class classifications
usually perform better than single-class classifications.

In a next step, the time series of urban land classifications
is processed to identify newly constructed areas between two
images. Therefore, the land-cover class of each pixel from ¢
is compared with the land-cover class of the same pixel in the
subsequent three classifications in #;.3. To account for pixel-
based classification errors and to identify only reliable

construction sites, we aggregate the second time step over
three months (#,-3). If the land cover of a pixel shows a non-
urban class in #) and for at least two of the three subsequent
time steps (#;3) the class ‘urban’, the pixel is flagged as
identified building activity and the time stamp of the month of
the beginning of the construction is stored in the pixel
(yyyymm). This step is repeated for all steps of the time series.

Results of the satellite-based building activity indicator are
displayed in Fig. 2. The image shows an overview of newly
built areas over the time series for the entire city of Munich in
the center. Dark blue pixels represent the state of urban land
in May 2016. Boxes on each side of the image display
magnifications of remarkable areas which have experienced
significant building activity in the time period. Box 1 displays
the newly constructed urban neighborhood Freiham in the
West of Munich which is under construction since the year
2016. Box 2 displays the construction of a new metro line
since spring 2023, box 3 displays the construction of a large
school campus and box 4 displays the transformation of a
former area of military barracks into a newly developed
housing area with more than 1,800 apartments for about 4,000
residents. For both examples in box 1 and box 4, the beginning
of individual parts of the construction sites can be identified
based on the color coding.

IV. COMPARISON WITH OFFICIAL DATA AND DISCUSSION

To assess the applicability of the satellite-based building
activity index for timely reporting of national statistics on
construction sites, we compare the results of the classified
time series for newly constructed urban areas with official data
which reports finished constructions at a monthly scale. A
visual comparison of both data is displayed in Fig. 3. To allow
for a meaningful comparison, both time series were
standardized using z-transformation and the timestamps of the
SBAI to match the official data on finished constructions.
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Fig. 3. Comparison of official statistics on finished constructions (red) and
the SBAI(cyan) for the administrative area of Munich.

Due to the temporal mismatch of the satellite-based
detection of land cover changes versus the reported
completion of the construction a detailed assessment of these
temporal lags is still pending. While the gradient of the
building activity observed in the official data is relatively
stable over the analyzed time period, the results derived from
the SBAI reveal significant intra-year variations. These
variations can be attributed to the finer temporal granularity of
satellite data, which enables the identification of seasonal
construction trends, temporary pauses in building activity, or
variations caused by external factors such as weather or
economic disruptions. Moreover, the SBAI provides spatially
explicit insights into construction trends. The ability to map
and monitor specific urban development projects, as
demonstrated in Fig. 2, offers a significant advantage for
urban planners, policymakers, and researchers seeking to
understand the dynamics of urban growth. The case of
Freiham, as well as other highlighted projects, illustrates the
potential of remote sensing-based approaches for tracking
urban expansion in near real-time. Nevertheless, the
comparison shows that the general development of
constructions matches very well between the datasets as they
have almost the same gradient in the time series, and thus
showing a valuable proof-of-concept that building activity can
be derived through change detections in Sentinel-2 imagery in
fine-grained spatial and temporal detail at large scales.

V. CONCLUSION

This study demonstrates the value of combining high-
resolution S2 satellite data with advanced image classification
methods to derive timely, spatially detailed information on
construction activity, complementing traditional statistical
methods that often depend on aggregated data with significant
time lags. The strong correlation between SBAI results and
official statistics validates its accuracy, while its finer
granularity and ability to detect intra-year variations make it
particularly useful for monitoring urban growth processes in
greater detail. Beyond urban planning, the SBAI offers
significant potential for integration into national statistical
systems. By delivering near real-time data, the indicator can
assess economic trends, especially in the construction sector,
which constitutes a substantial share of GDP. The detailed
temporal resolution of the SBAI enables policymakers and

analysts to observe dynamic shifts in construction activity that
might be obscured in traditional reporting, supporting more
responsive and informed decision-making. As urban areas
continue to expand and evolve, tools like the SBAI present a
promising approach for understanding the interplay between
urbanization and economic growth, ultimately contributing to
more sustainable and effective policymaking.
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