AN EXTENSION OF AGE-OF-INFECTION MODELS

A SECIR model based on integro-differential equations for epidemic outbreaks

Anna Wendler

Joint work with Lena Plötzke, Hannah Tritzschak and Martin J. Kühn

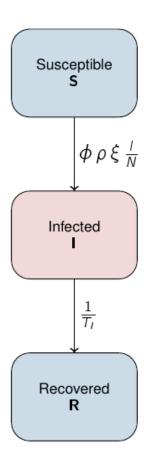
Ordinary-differential equation (ODE) based model

$$S'(t) = -\frac{S(t)}{N} \phi(t) \rho(t) \xi(t) I(t)$$

$$I'(t) = \frac{S(t)}{N} \phi(t) \rho(t) \xi(t) I(t) - \frac{1}{T_{I}} I(t)$$

$$R'(t) = \frac{1}{T_{I}} I(t)$$

$\phi(t)$	Number of contacts at time t
$\rho(t)$	Transmission probability at time t
$\xi(t)$	Proportion of infected individuals that are not isolated at time t
T_{I}	Mean stay time in compartment <i>I</i>
N	Total population



Motivation for age-of-infection models

- Simple ODE models assume exponentially distributed stay times
 - → unrealistic assumption^{1,2}

- Choice of transition distributions impacts disease dynamics; in particular at change points
- > Need for **flexible** choice of transition distributions
- ➤ Linear Chain Trick allows Erlang distributed stay times³
- > For full flexibility: Model based on integro-differential equations (IDE)

Wearing et al., Appropriate Models for the Management of Infectious Diseases, 2005. https://doi.org/10.1371/journal.pmed.0020174

² d'Onofrio, Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times, 2004. https://doi.org/10.1016/S0096-3003(03)00331-X

³ Plötzke et al., Revisiting the Linear Chain Trick in epidemiological models: Implications of underlying assumptions for numerical solutions, 2025. https://doi.org/10.1016/j.matcom.2025.07.045

IDE-SIR model

$$S'(t) = -\frac{S(t)}{N} \phi(t) \int_{-\infty}^{t} \rho(t-x) \quad \xi(t-x) \underbrace{\gamma_I^R(t-x)}_{\text{Individuals that are still infected at time } t}^{\text{New infections at time } x} \, \mathrm{d}x$$

Individuals that are still infected and not isolated at time t

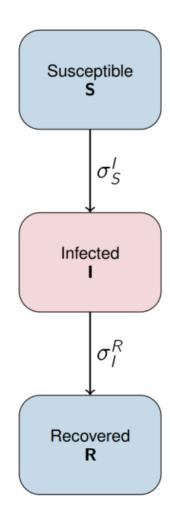
$\sigma_S^I(x)$	Number of individuals transitioning from S to I at time x
$\gamma_I^R(au)$	Mean proportion of individuals that are still infected at infection age $ au$
$\xi(au)$	Proportion of infected individuals that are not isolated at infection age $ au$
ho(au)	Transmission probability at infection age $ au$
$\phi(t)$	Number of contacts at time t

IDE-SIR model

$$S'(t) = -\frac{S(t)}{N} \phi(t) \int_{-\infty}^{t} \rho(t-x) \, \xi(t-x) \, \gamma_{l}^{R}(t-x) \, \sigma_{S}^{l}(x) \, \mathrm{d}x$$

$$I(t) = \int_{-\infty}^{t} \gamma_{I}^{R}(t - x) \, \sigma_{S}^{I}(x) \, dx$$

$$R(t) = \int_{-\infty}^{t} (1 - \gamma_I^R(t - x)) \, \sigma_S^I(x) \, dx$$



IDE-SIR model

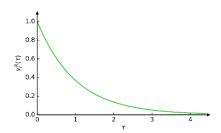
$$S'(t) = -\frac{S(t)}{N} \phi(t) \int_{-\infty}^{t} \rho(t - x) \xi(t - x) \gamma_{I}^{R}(t - x) \sigma_{S}^{I}(x) dx$$

$$I(t) = \int_{-\infty}^{t} \gamma_{I}^{R}(t - x) \sigma_{S}^{I}(x) dx$$

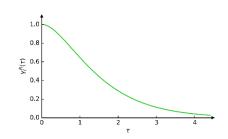
$$R(t) = \int_{-\infty}^{t} (1 - \gamma_{I}^{R}(t - x)) \sigma_{S}^{I}(x) dx$$

Flexible choice of transition distributions:

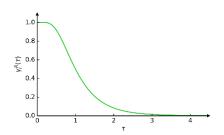
Exponential



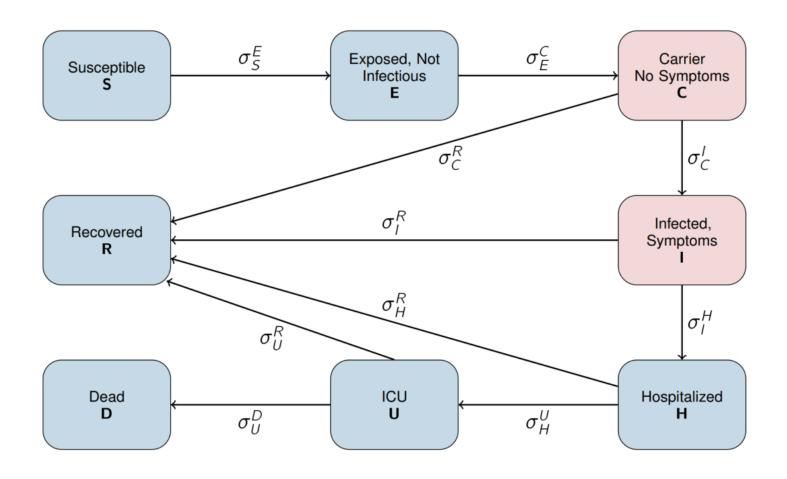
Gamma



Lognormal



Extension to IDE-SECIR model



Numerical scheme preserves biological properties

- Extension of nonstandard numerical scheme⁴ that preserves important biological properties:
 - Scheme is mass conserving

$$\widehat{S}(t_n) + \widehat{E}(t_n) + \widehat{C}(t_n) + \widehat{I}(t_n) + \widehat{H}(t_n) + \widehat{U}(t_n) + \widehat{R}(t_n) + \widehat{D}(t_n) = N.$$

Susceptible compartment is monotonically decreasing and converges

$$\lim_{n\to\infty} \hat{S}(t_n) = \hat{S}_{\infty}(\Delta t).$$

Recovered and Dead compartments are monotonically increasing and converge

$$\lim_{n\to\infty} \widehat{R}(t_n) = \widehat{R}_{\infty}(\Delta t), \qquad \qquad \lim_{n\to\infty} \widehat{D}(t_n) = \widehat{D}_{\infty}(\Delta t).$$

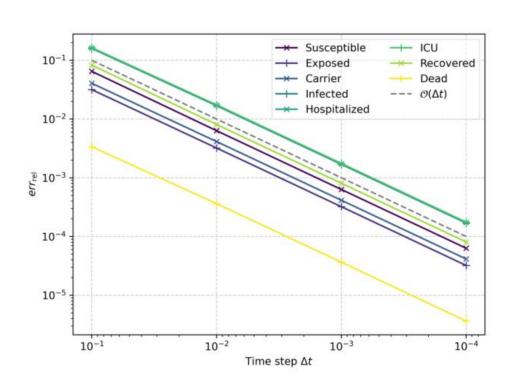
Flows converge to zero

$$\lim_{n\to\infty} \hat{\sigma}_{z_1}^{z_2}(t_n) = 0.$$

⁴ Messina et al., A non-standard numerical scheme for an age-of-infection epidemic model, 2022. https://doi.org/10.3934/jcd.2021029

Nonstandard numerical scheme

• Linear convergence of solver:





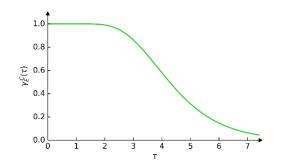
Current goal: Implement higher order solver

Numerical comparison of IDE and ODE models

Assess impact of distribution by comparing IDE-SECIR model with a corresponding ODE model:

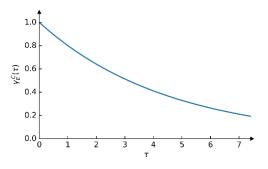
IDE model:

•Use **lognormal distributions** according to data on COVID-19⁵



ODE model:

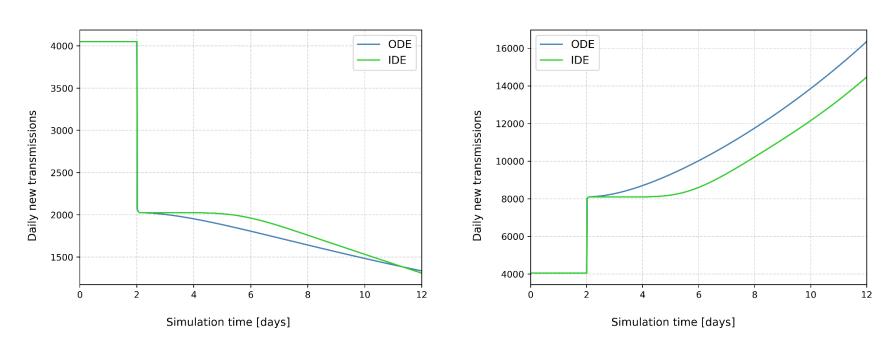
•Use **exponential distributions** with corresponding mean stay times



⁵ Kerr et al., Covasim: An agent-based model of COVID-19 dynamics and interventions, 2021. https://doi.org/10.1371/journal.pcbi.1009149

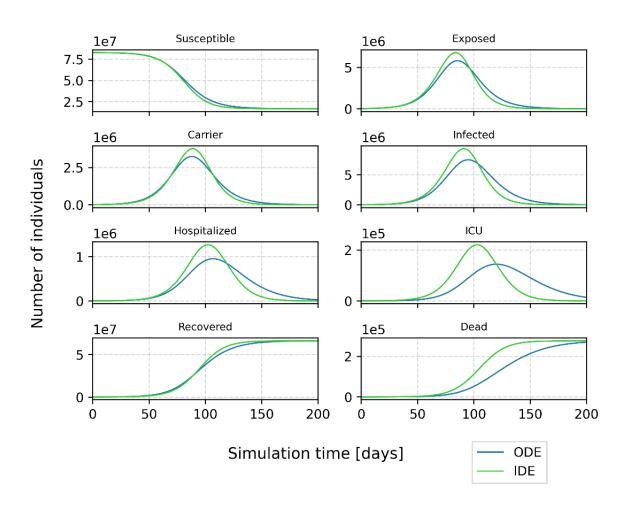
Behavior at change points

- IDE model reacts slower to change in contact rate than ODE model, in agreement with literature^{6,7}
- Important for timing of mitigation action



⁶ Dey et al., Lag time between state-level policy interventions and change points in COVID-19 outcomes in the United States, 2021. https://doi.org/10.1016/j.patter.2021.100306
⁷ Guglielmi et al., Identification of time delays in COVID-19 data, 2023. https://doi.org/10.1016/j.patter.2021.100306

Epidemic peak behavior



- Higher epidemic peak in IDE model
- Different timings of peak
- Same final size for both models

➤ Difference in required hospital and ICU capacities

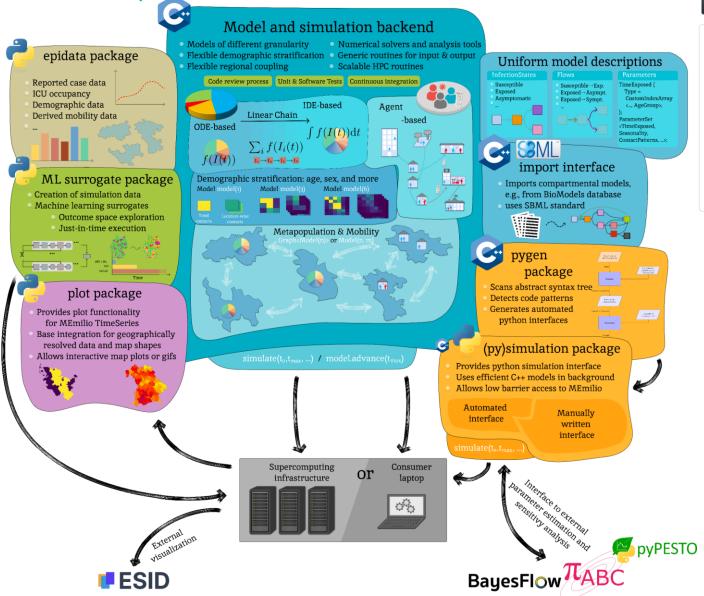
Conclusion

- Using IDE model allows flexible choice of transition distributions
- Extended solver that preserves important biological properties

 Choice of distributions has significant impact on disease dynamics, showing relevance of realistic assumptions

Emilio

A high performance Modular EpideMIcs simuLatIOn software



Activity (on main) August 2025

- 20 active pull requests (12 merged)
- 31 active issues (22 closed)
- 18 active authors

Software & Unit Tests

- C++: ca. 650 (2023: ca. 300)
- Python: ca. 230 (2023: ca. 200)

Thank you for your attention!