

SPONSORED BY THE

aufgrund eines Beschlusses des Deutschen Bundestages

und Verkehr

Bundesministerium für Digitales

Anna Wendler

Shared work with Lena Plötzke. Hannah Tritzschak and Martin J. Kühn

An extension of age-of-infection models: A SECIR model based on integro-differential equations for epidemic outbreaks

3RD (INTER-) NATIONAL CONFERENCE ON INFECTIOUS DISEASE MODELING

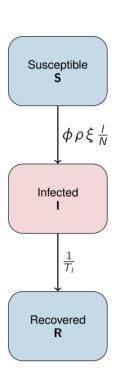
Ordinary-differential equation (ODE) based model

$$S'(t) = -\frac{S(t)}{N} \phi(t) \rho(t) \xi(t) I(t)$$

$$I'(t) = \frac{S(t)}{N} \phi(t) \rho(t) \xi(t) I(t) - \frac{1}{T_{I}} I(t)$$

$$R'(t) = \frac{1}{T_{I}} I(t)$$

$\phi(t)$	Number of contacts at time t
$\rho(t)$	Transmission probability at time t
$\xi(t)$	Proportion of infected individuals that are not isolated at time t
T_{I}	Mean stay time in compartment <i>I</i>



for Severe Infectious Diseases

- Simple ODE models are restricted to exponentially distributed stay times in compartments
 - But: unrealistic assumption^{1,2}
- Choice of transition distributions impacts disease dynamics; in particular at change points
- > Need for **flexible** choice of transition distributions
- > Use model based on integro-differential equations (IDE)

Wearing et al., Appropriate Models for the Management of Infectious Diseases, 2005. https://doi.org/10.1371/journal.pmed.0020174 ² d'Onofrio, Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times, 2004. https://doi.org/10.1016/S0096-3003(03)00331-X

Individuals that are still infected and not isolated at time t

IDE-SIR model

$$S'(t) = -\frac{S(t)}{N} \phi(t) \rho(t) \int_{-\infty}^{t} \xi(t, t - x) \underbrace{\gamma_I^R(t - x)}_{\text{Individuals that are still infected at time } t}^{\text{New infections at time } x} \, \mathrm{d}x$$

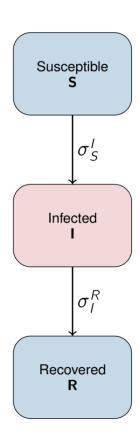
$\sigma_S^I(\mathbf{x})$	Number of individuals transitioning from S to I at time x
$\gamma_I^R(au)$	Mean proportion of individuals that are still infected at infection age $ au$
$\xi(t,\tau)$	Proportion of infected individuals that are not isolated at time t and infection age $ au$
$\rho(t)$	Transmission probability at time t
$\phi(t)$	Number of contacts at time t

IDF-SIR model

$$S'(t) = -\frac{S(t)}{N} \phi(t) \rho(t) \int_{-\infty}^{t} \xi(t, t - x) \gamma_{I}^{R}(t - x) \sigma_{S}^{I}(x) dx$$

$$I(t) = \int_{-\infty}^{t} \gamma_{I}^{R}(t - x) \, \sigma_{S}^{I}(x) \, dx$$

$$R(t) = \int_{-\infty}^{t} \left(1 - \gamma_{l}^{R}(t - x)\right) \sigma_{S}^{l}(x) dx$$



IDE-SIR model

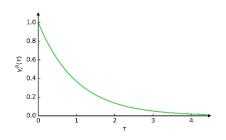
$$S'(t) = -\frac{S(t)}{N} \phi(t) \rho(t) \int_{-\infty}^{t} \xi(t, t - x) \gamma_{I}^{R}(t - x) \sigma_{S}^{I}(x) dx$$

$$I(t) = \int_{-\infty}^{t} \gamma_{I}^{R}(t - x) \sigma_{S}^{I}(x) dx$$

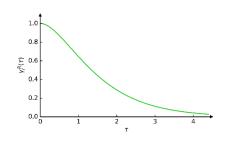
$$R(t) = \int_{-\infty}^{t} (1 - \gamma_{I}^{R}(t - x)) \sigma_{S}^{I}(x) dx$$

Flexible choice of transition distributions:

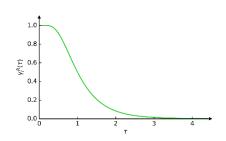
Exponential



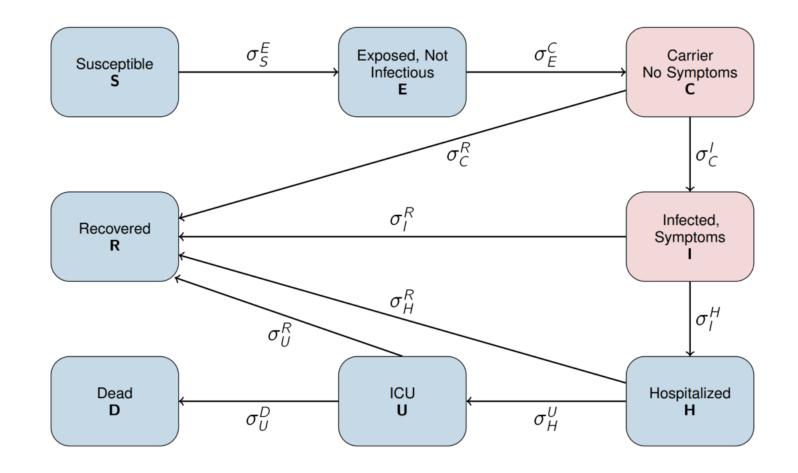
Gamma



Lognormal



Extension to IDE-SECIR model



Numerical scheme preserves biological properties

- Extension of nonstandard numerical scheme³ that preserves important biological properties:
 - Scheme is mass conserving

$$\hat{S}(t_n) + \hat{E}(t_n) + \hat{C}(t_n) + \hat{I}(t_n) + \hat{H}(t_n) + \hat{U}(t_n) + \hat{R}(t_n) + \hat{D}(t_n) = N.$$

• Susceptible compartment is monotonically decreasing and converges to some final size

$$\lim_{n\to\infty} \hat{S}(t_n) = \hat{S}_{\infty}(\Delta t).$$

Recovered and Dead compartments are monotonically increasing and converge

$$\lim_{n\to\infty} \widehat{R}(t_n) = \widehat{R}_{\infty}(\Delta t), \qquad \qquad \lim_{n\to\infty} \widehat{D}(t_n) = \widehat{D}_{\infty}(\Delta t).$$

Flows converge to 0

$$\lim_{n\to\infty} \hat{\sigma}_{z_1}^{z_2}(t_n) = 0.$$

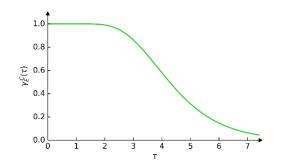
³ Messina et al., A non-standard numerical scheme for an age-of-infection epidemic model, 2022. https://doi.org/10.3934/jcd.2021029

Numerical comparison of IDE and ODE models

Assess impact of distribution by comparing IDE-SECIR model with a corresponding ODE model:

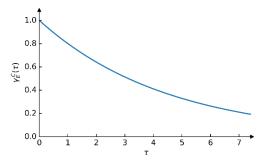
IDE model:

 Use lognormal distributions according to data on COVID-19⁴



ODE model:

• Use **exponential distributions** with corresponding mean stay times

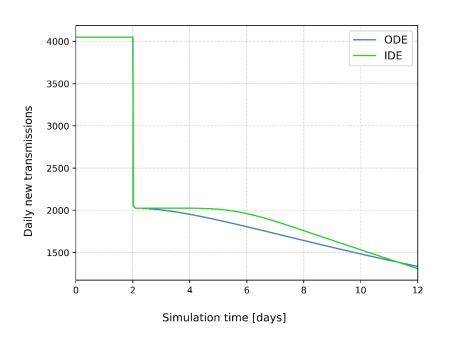


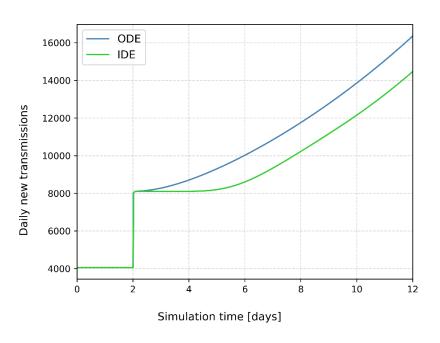
⁴ Kerr et al., Covasim: An agent-based model of COVID-19 dynamics and interventions, 2021. https://doi.org/10.1371/journal.pcbi.1009149

SPONSORED BY THE

Behavior at change points

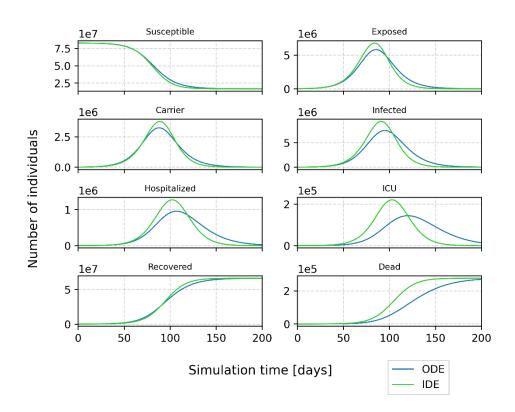
IDE model reacts slower to change in contact rate than ODE model, agreeing with literature ^{5,6}





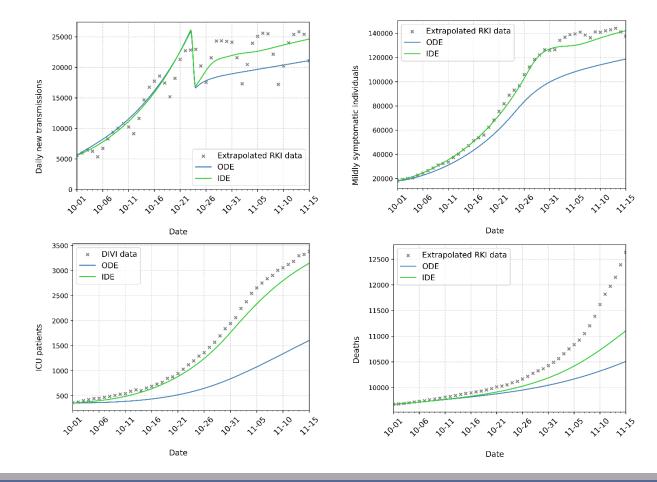
⁵ Dey et al., Lag time between state-level policy interventions and change points in COVID-19 outcomes in the United States, 2021. https://doi.org/10.1016/j.patter.2021.100306
⁶ Guglielmi et al., Identification of time delays in COVID-19 data, 2023. https://doi.org/10.1016/j.patter.2021.100306

Epidemic peak behavior



- Higher epidemic peak in IDE model
- Different timings of peak
- Same final size for both models

COVID-19 inspired scenario



Conclusion

- Using IDE model allows flexible choice of transition distributions
- Extended solver that preserves important biological properties
- Choice of distributions has significant impact on disease dynamics

SPONSORED BY THE

Paper

Software MEmilio

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

THANK YOU FOR YOUR ATTENTIO

