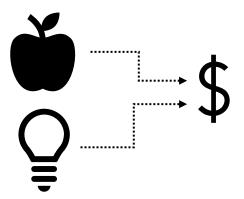


BENEFITS OF AN AGRIVOLTAIC INSTALLATION IN AN ECOLOGICAL VINEYARD IN SOUTHERN SPAIN

Álvaro Fernández Solas¹, Natalie Hanrieder¹, Anna Kujawa¹, Sergio González Rodríguez¹, Marleen Landes¹, Aitor Castillo², Estefanía Sánchez Vizcaíno³, Stefan Wilbert¹

- 1 German Aerospace Center (DLR e.V.), Institute of Solar Research, Almería, Spain,
- 2 Bettergy SL, Málaga, Spain,
- 3 Cortijo El Cura Eco-Bodega, Laujar de Andarax, Spain.

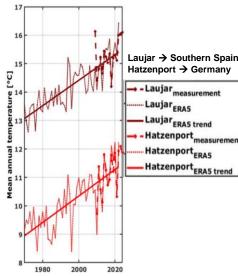
Background



<u>Agrivoltaics – Turning challenges into solutions</u>

- Challenge 1: Impact of climate change and crop stress on agriculture.
- Agrivoltaics can enhance resilience and adaptability of agriculture to extreme weather events, heatwaves and droughts.
- Challenge 2: Energy demand and competition for land
- Agrivoltaics can improve productivity per area, integrating renewable energy generation with farming.
- Challenge 3: Rural economic pressure and instability
- Agrivoltaics contributes to reducing the dependence on the grid and leads to an additional source of income for farmers.

Background


Viticulture & Climate Change

For more information about the topic, check the plenary presentation 4AP.1.2 given by Natalie Hanrieder.

- In 2024, global wine production fell to lowest level since 1961 due to extreme weather events (droughts, heatwaves and hail) in many winemaking regions [1].
- Climate change is reshaping Europe's wine regions
 - Traditional winemaking regions, such as Spain and southern France, are struggling with scarce precipitation and extreme heat.
 - Regions at northern latitudes are becoming more suitable for wine production.
- Since 1970, temperature has risen by ~2.5 °C in winemaking regions in Germany and Spain [2].
- Some future climate projections by 2100 indicate:
 - Higher average temperatures (↑ 4°C in some months, particularly in summer).
 - More frequent and intense heat waves in Europe.
 - Higher probabilities of droughts, specially in southern Europe.
- These events may negatively affect crop development, leading to:
 - Heat stress.
 - Water stress.
 - Phenological shifts (earlier budburst and accelerated ripening).

Berries after a heat wave

Historical average annual temperatures in two winemaking locations. Source of data: ERA5. Plot in [2].

^[1] https://www.decanter.com/wine-news/global-wine-production-falls-to-lowest-level-since-1961-545528/

^[2] Hanrieder et al. (2025), "Agrivoltaic System Potential to Mitigate Effects of Climate Change in Viticulture", under Review in Solar RRL.

Background

Viticulture & Agrivoltaics

In some vineyards, shading nets have been installed to mitigate and adapt the effects of climate change.

 APV systems as a replacement for these shading nets → Simultaneous crop protection and energy generation. Multiple APV installations have been deployed in Europe in the last decade:

This study

Aim of the study

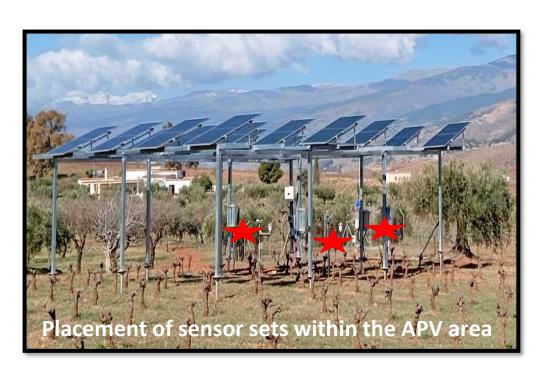
Viticulture & Agrivoltaics

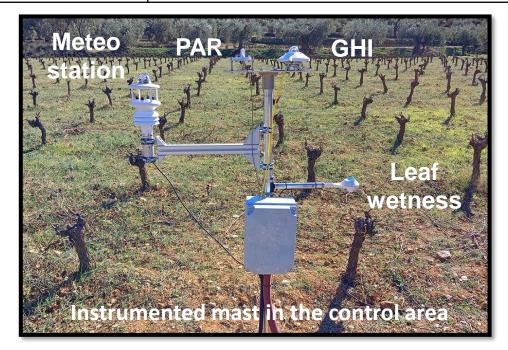
How do elevated agrivoltaic systems influence vineyard microclimate, crop performance, and energy production in southern Spain?

First results from the southernmost APV installation over a vineyard in Europe.

Description of the system

- Pioneering APV project in Almería, southern Spain, located within an organic vineyard¹.
 Installation date: January 2025.
- Overhead PV system with a checkerboard layout, covering 120 m² and shading 32 Merlot vines.
 Planting pattern: 2 m x 2 m spacing (2003).
 Ground Coverage Ratio GCR: 38%.
- System classified as Category I Use 1A under DIN SPEC 91434 (Germany).
- Eco-friendly foundation using ground screws to prevent soil compaction.
- PV capacity: 10.8 kWp from 18 bifacial modules.
 Inverter of 10 kWn.
- Energy use: Electricity is used on-site for selfconsumption by the main winery building.

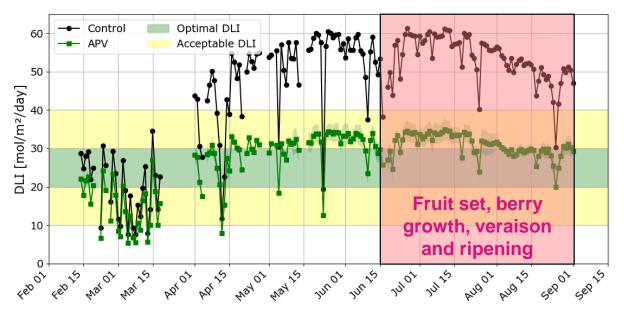

Description of the system


Monitoring system

4 measurement zones to assess the impact of shading on microclimate, soil and crop performance:

- Under the PV structure (x3) → APV area
- Control area (no shading)

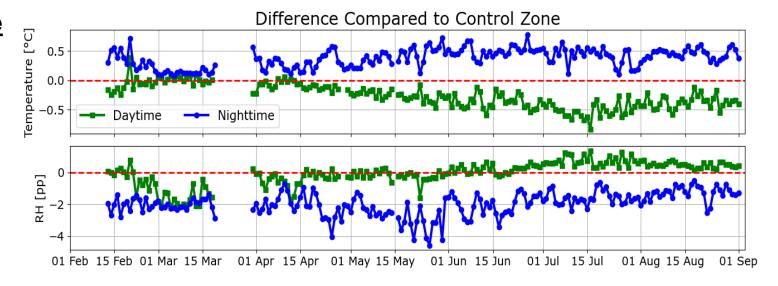
Category	Parameters Measured
Meteorological	 Air temperature • Relative humidity • Wind speed and direction • Precipitation
Irradiance	• Solar irradiance (PAR, GHI, G _{POA_f} , G _{POA_r})
Soil	Soil temperature Soil moisture
Crop	 Leaf wetness • Brix (sugar content) • Physiological traits • Yield quantity and quality

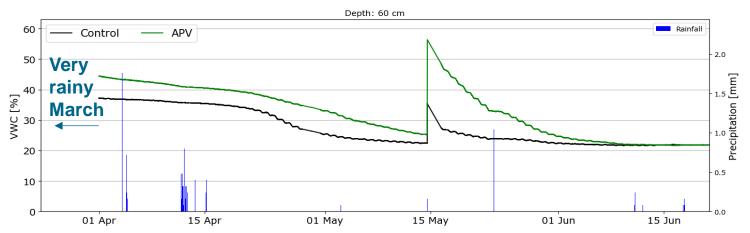


Microclimate: Radiation – DLI

- PAR (DLI) was monitored with EKO ML-020P PAR sensors at 1.5 m height.
- In APV zone, excessive DLI values are partially mitigated.
- Optimal DLI for grapevines: 20–30 mol m⁻² d⁻¹ (stage & weather dependent) [1].
- DLI > 20 mol m⁻² d⁻¹ in both APV and control zones, except on very cloudy days.
- During berry growth—ripening, DLI in APV zone stayed within the acceptable range, ~40% lower than control.

DLI evolution during the crop cycle $DLI = \int PPFD (PAR) dt$

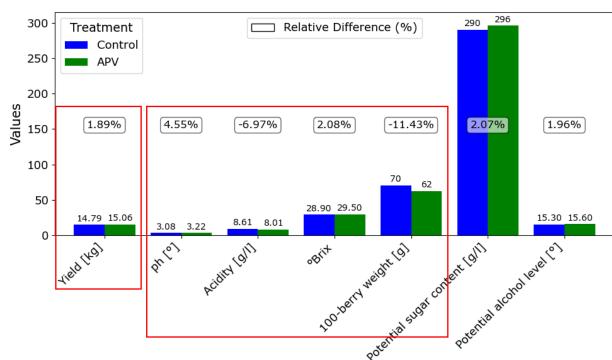

Microclimate: Air Temperature, RH and soil moisture


Microclimate Effects in the APV Zone

- Daytime:
- Temperature up to –0.5 °C
- Relative Humidity similar
- Nighttime:
- Temperature +0.6 °C
- Relative Humidity up to -4 pp

Soil moisture

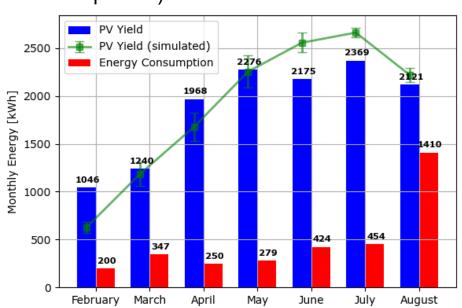
- Measurements of volumetric water content (VWC) at different depths.
- Extended soil moisture retention in the APV area → lower evapotranspiration.



Crop yield

- 28 plants were harvested in each zone.
- As expected due to the relatively small size of the system:
 - No differences were observed during the crop cycle. All phenological stages had the same start and end dates in both areas.
 - Yield → Slightly positive impact in the APV area (~2% higher), aspect that should be further analyzed in upcoming years.
- Smaller grapes in the APV area, but with slightly higher sugar content, lower acidity and higher pH than the grapes in the control zone.
- More advanced technical maturity in the APV area despite reduced light.

Energy yield


Simulations

- PV yield: 16400 ± 280 kWh/year (2.6 x winery demand); based on 15 years of weather data (2009 2024).
- Consumption profile: energy use is concentrated post-harvest, peaking between end August – October.

Actual data (2025)

- The APV installation has reduced grid dependence by 60% since February.
- PV yield in line with the simulations, with the exceptions of:
 - February → Better performance (sunnier than normal)
 - Summer → Underperformance (higher thermal and soiling losses than expected)

Conclusions

- The motivation behind the deployment of this pilot APV system was to meet farmer's urgent needs in mitigating the negative effects of climate change on grape yield.
- **Microclimate benefits**: Positive effects observed, helping to mitigate the impacts of extreme weather conditions.
- **Crop performance**: It performed as expected, with no negative impact on yield or quality detected during the first year of operation.
- Farmer benefits: Reduced electricity bills and crop protection against excessive radiation and hail.
 - This pilot site demonstrated the farmer that <u>simultaneous energy and grape production not only is possible, but can even enhance crop yield</u>.

• Next steps:

- As a result, the farmer is now convinced about the potential of agrivoltaics and ready to scale up the system with a tracked APV system and storage.
- Further validation of shading impacts on crop development and yield across multiple years with different rainfall patterns.
- Integration of technical solutions to ensure uniform rainfall distribution below the panels.
- Assessment of the O&M challenges (e.g. soiling) in elevated agrivoltaic systems.

EU PVSEC 2026

In EU PVSEC 2026:

Soiling in elevated agrivoltaics: a real challenge

† Soiling magnitude, Soiling seasonality

Bettergy

Let's connect on LinkedIn

Thanks for your attention!

Álvaro Fernández Solas

alvaro.fernandezsolas@dlr.de

Ready for a unique experience in Almería? Come and explore what Cortijo el Cura can offer (and take a look at the APV installation ©!!!)

You can do it. You are only one click behind:

Experiences - Cortijo El Cura Eco-Winery Laujar Wine Tasting Almeria

