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Abstract. Developing fast optimisation algorithms and decision support frameworks that can 

produce accurate solutions in short computation time is crucial for integrated and real-time 

optimisation in the 21st century. Recently, a new trend in optimisation science has emerged: 

Neural Combinatorial Optimisation (NCO), where researchers apply generative Artificial 

Intelligence (AI) models to combinatorial problems. This paper presents an end-to-end NCO 

model designed to address the Vehicle Routing Problem (VRP) with time constraints and a 

finite vehicle fleet. The NCO model developed in this study incorporates and extends various 

state-of-the-art frameworks and algorithms, utilising Reinforcement Learning (RL) approach 

to train the attention-based encoder-decoder model. We validate our approach by comparing 

its constructed solutions with state-of-the-art VRP heuristics, demonstrating its performance 

and scalability to larger problem instances. This study highlights the ability of the NCO model 

to generalise, even to instances with unknown customer distributions and varying problem 

sizes. Our findings indicate that NCO offers promising prospects for solving complex, multi-

objective optimisation problems in transport logistics, offering an effective solution strategy 

for solving highly complex sequential decision problems.

1 MOTIVATION  

Vehicle Routing Problem (VRP) is a well-known NP-
hard combinatorial problem that has been a subject 
of substantial research over the past decades. 
However, due to the exponential growth in 
computational complexity, dynamic environment, 
numerous constraints, and stochasticities in real-
world scenarios, the application of numerical 
combinatorial methods become almost obsolete for 
large-size VRPs. Recently, a new paradigm in 
optimisation science has emerged – Neural 
Combinatorial Optimisation (NCO). The combination 
of Reinforcement Learning (RL) and generative 
Deep-Learning (DL) models, such as Transformers 
[1], offers a vital perspective for solving various 
sequential decision problems, including VRP. Since 
Bello et al. [2], and later Kool et al. [3] have 
demonstrated the effectiveness of attention-based 
encoder-decoder models for routing, researchers 
increasingly leveraged, adapted, and extended this 
paradigm to related combinatorial tasks [4-6]. 
Although these studies successfully adopt and 
evaluate NCO paradigm, the hard-coded integration 

of constraints, intricate implementation, and intensive 
computational training limit their broader application. 
This study presents an end-to-end NCO approach for 
solving the time-constrained VRP (TCVRP) with a 
homogeneous, finite vehicle fleet. Concretely, our 
contribution can be summarised as follow: 

• We extend the RL for Operational Research 
(RLOR) framework [7], adopting it to multi-
objectives problems and implementing additional 
constraints, such as dynamical time windows and 
finite vehicle fleet, applying state-of-the-art 
algorithms, and techniques in this field. 

• We modify and fine-tune the reward function to 
optimise for multiple objectives – maximising fleet 
utilisation and minimising total mileage. 

• The method for time constraints is integrated into 
the decoder network to dynamically prioritise 
nodes with urgent services. 

• We evaluate the developed NCO approach by 
benchmarking it against conventional techniques 
and analyse its transferability and generalisation. 
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2 METHODOLOGY 

Designing an NCO algorithm involves (i) formulating 
the problem as a Markov Decision Process (MDP) 
and constructing the MDP environment (commonly 
aligned with [8], (ii) developing a multi-layer encoder-
decoder policy network [3], and (iii) adapting a RL 
algorithm to train the policy network. Moreover, the 
problem constraints can be implemented either by 
designing and tuning an appropriate reward function 
or through a mask – effectively prohibit infeasible 
actions. For our TCVRP formulation, we first model 
the problem environment as a tuple of state 𝑺, action 
𝑎, reward 𝑟 and transition 𝑻𝒓, as 𝑀𝐷𝑃 = (𝑺, 𝑎, 𝑟, 𝑻𝒓), 

where each state 𝑺 contains the information about 

the customers 𝑵 = {𝑛0, 𝑛1, … , 𝑛𝑖}. Each customer 𝑛 
contains the information about the location (𝑥𝑛 and 

𝑦𝑛 coordinates), time windows 𝑡𝑤𝑛, demand 𝑑𝑛, the 

capacity 𝑙𝑡
𝑣, and the number of available vehicles in 

each time step 𝑽𝒕 , such as 𝑛 =  (𝑥, 𝑦, 𝑡𝑤, 𝑑, 𝑙𝑡
𝑣, 𝑽𝒕) . 

Additionally, we include mask 𝑴 𝑡
𝑁, so the state 𝑺 is a 

tuple 𝒔𝑡 = (𝑵, 𝑽, 𝑴 ) . The objective is to construct 
tours, i.e., a sequence of visited nodes for each 
vehicle  𝑣𝑖. The action 𝑎 is therefore the index of the 
next node to visit, which is based on the context 
problem information and all previous states in this 
episode. An episode is terminated if all customers are 
masked 𝑚𝑡+1

𝑛 = 1 ∀ 𝑁 (i.e., if all customers are visited 
or unreachable due to expired time windows 𝑡𝑤𝑡

𝑛 <
0), or if there are no more available vehicles, i.e., 𝑉 =
0. The transition function simply determines the rules, 
how the state 𝒔𝑡 transitions to the next state 𝒔𝑡+1. To 
encourage the agent to visit as many customers as 
possible and to prevent it from returning to the depot 
after visiting the first customer, our reward function is 
designed as follows: 

𝑟𝑡 = 𝑚𝑖𝑛(𝑑𝑖𝑠𝑡(𝑛𝑡 , 𝑛𝑡+1) + 𝑃 ∗ 𝑙𝑡
𝑣)   for  𝑡 ≤ 𝑁, (1) 

where 𝑑𝑖𝑠𝑡  represents the Euclidean distance 

between the next unvisited node 𝑛𝑡+1 and the current 

node 𝑛𝑡. We set the penalty factor 𝑃 = 10, effectively 
penalising the agent for returning to the depot with a 
full vehicle capacity 𝑙 → 1 , and do not when the 

capacity of the vehicle 𝑙 → 0 . To handle time 

constrains (note that 𝑡𝑤𝑡
𝑛 ∀ 𝑵 decreases with each 

time step 𝑡), we incorporate our time windows directly 
in the decoder by rescaling the attention score in the 
pointer network, defining the urgency factor as 
follows: 

𝑓𝑣
𝑛 =

𝑑𝑖𝑠𝑡(𝑛𝑡,𝑛𝑡+1)/𝑆𝑣  

𝑡𝑤𝑛−(𝑑𝑡
𝑉/𝑆𝑣)

, ∀ 𝑁, 0 < 𝑓𝑢 < 1. (2) 

𝑓𝑣
𝑛 expresses the urgency for serving the unvisited 

nodes 𝑵 for the vehicle 𝑣 being in the current node 𝑛. 
In other words, Equation 2 computes the ratio 
between the anticipated travel times and the total 
travelled times, which are updated in each time step. 

𝑡𝑑𝑡
𝑉/𝑆𝑣 is the total time travelled so far by the vehicle 

fleet 𝑽𝒕 . The factor 𝑆𝑣  represents the vehicle’s 

velocity which is set to 𝑆𝑣 = 50
𝑘𝑚

ℎ
=

0.014 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑢𝑛𝑖𝑡𝑠

𝑠
  for the normalised instances: 

𝑥, 𝑦 ∈ [0,1] . Therefore, if 𝑓𝑢 → 0 , the customer's 
requested end-time is far ahead, meaning there is no 
urgency. If 𝑓𝑢 → 1, the service becomes time critical. 

For 𝑓𝑢 > 1 or 𝑓𝑢 < 0 the services are considered as 
missed.  

For our policy network, we enhance the methods 
introduced by [7], which in turn are based on the well-
proven encoder-decoder model developed by [3]. We 
further incorporate our urgency factor 𝑓𝑢  directly in 
the decoder by rescaling the attention score in the 
pointer network [9], analogous to Wang et al. 2024. 
The training procedure follows the Proximal Policy 
Optimisation (PPO) – a state-of-the-art actor-critic RL 
algorithm for training in continuous and discrete 
environments [10]. 

3 RESULTS 

We generate the training and evaluation problem 
instances for each episode by following a procedure 
analogous to [3,7]. Each environment episode is 
initialised with 50 customer locations and a depot, 
randomly distributed in the normalised Euclidean 
space, i.e., 𝑥, 𝑦 ∈ [0,1] . Each problem instance is 

parametrised by the vehicle capacity 𝐶𝑣 = 40, which 

is then normalised to 𝑙𝑡=0
𝑣 = 1. We further distribute 

the demand uniformly: 𝑑𝑛 ~ 𝑃𝑢(1,10) for 𝑛 = 1,2, … , 𝑁 

and normalise the demand by 
𝑑𝑛

𝐶𝑣 ∀𝑁 . The total 

number of vehicles in each instance is set to 𝑉 = 5. 

Service time windows constraints 𝑡𝑤𝑛 are expressed 
in time units and are randomly sampled from the 

range 50 ≤ 𝑡𝑤𝑛≠0 ≤ 10,000  for the customers, and 

𝑡𝑤𝑛=0 = 10,000  for the depot. Again, this range 
defines the minimum and maximum time windows for 
50 customers in a normalised instance, where the 
vehicle is deployed at 50 km/h. The results of our 
model are benchmarked against the PyVRP [11] – a 
state-of-the-art optimisation framework for multi-
constrained VRP based on the genetic 
metaheuristics. Table 2 shows the results in terms of 
solution quality for PyVRP and the trained model. 

Table 1. Solution costs from the benchmark heuristics 
PyVRP and the proposed model. 

Instance Nodes PyVRP NCO 

N50 50 7.59 6.33 

N100 100 7.70 6.25 

N500 500 5.72 3.07 

N1000 1000 7.56 4.48 

The NCO model is trained on random instances 
with 50 customers and then transferred to oversized 
instances with 100, 500 and 1000 nodes. The policy 
training takes approximately one week on a CPU 
cluster machine. We do not compare the computation 
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time between the OR solutions and the inference time 
of the NCO solutions, as the tour construction in NCO 
does not rely on computing combinations but instead 
outputs the next node online based on the trained 
policy weights. Figures 1 and 2 present a direct 
comparison of the tours constructed by PyVRP and 
the NCO model for instance N100. 

As shown in Table 1, the NCO method achieves 
better results in all cases examined. However, this 
can be attributed to the fact that the NCO model is 
trained with a penalty. Consequently, the trained 
model prioritises nodes with higher demand first and 
exploits the vehicle fleet faster. In contrast, the 
PyVRP agent, which is designed to solve prize-
collecting VRP, aims to visit as many customers as 
possible, thereby reducing vehicle mileage by 
maximising rewards. Figures 1 and 2 show this 
behaviour by comparing the N100 instance solved by 
PyVRP (see Figure 1) and by the NCO model (see 
Figure 2).  

Figure 1. Solution computed by the OR model PyVRP. 

Figure 2. Solution constructed by the proposed NCO 
model. 

As illustrated in Figure 2, the tours generated by 
our model are comparable to those found by the 
PyVRP heuristics. However, the NCO model 
constructs tours with fewer customers and, 
consequently, resulting in lower total mileage for the 
vehicle fleet. This effect was particularly evident in 
large instances (e.g., N1000) where the number of 
alternative nodes with higher demand increases. 
Surprisingly, despite being only trained on the 50N 
instances, the NCO-model generalise well to 
medium- and large-sized problems with 500N and 
1000N, even with unknown node distribution.  

4 CONCLUSION AND OUTLOOK 

The objective of this study was to demonstrate a 
proof of concept and test the applicability and 
transferability of NCO for constrained, multi-objective 
optimisation problems in transport logistics. We 
developed, trained, and validated an end-to-end 
NCO model for a multi-objective, capacitated VRP, 
incorporating time constraints and a finite vehicle 
fleet. By incrementally adopting state-of-the-art NCO 
frameworks, our model effectively constructed tours 
and achieved solutions comparable to that of state-
of-the-art heuristics. Furthermore, trained on 
medium-sized instances, our method was able to 
extrapolate the search procedure to the large-sized 
instances with unknown customer distributions. This 
highlights the ability of NCO models to generalise. 
However, assessing NCO models proved 
challenging, as their solution search logic demands 
novel validation methods, especially for complex, 
multi-objective tasks. In our further research, we plan 
to extend this methodology to other scenarios with 
additional constraints, such as service fees, 
customer preferences, and limited mileage for 
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electric vehicles. Furthermore, a real-world case 
study for CEP transport in Germany will be developed 
to apply the developed approach to a VRP with large 
instances.  
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