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Abstract. Developing fast optimisation algorithms and decision support frameworks that can
produce accurate solutions in short computation time is crucial for integrated and real-time
optimisation in the 215 century. Recently, a new trend in optimisation science has emerged:
Neural Combinatorial Optimisation (NCO), where researchers apply generative Artificial
Intelligence (Al) models to combinatorial problems. This paper presents an end-to-end NCO
model designed to address the Vehicle Routing Problem (VRP) with time constraints and a
finite vehicle fleet. The NCO model developed in this study incorporates and extends various
state-of-the-art frameworks and algorithms, utilising Reinforcement Learning (RL) approach
to train the attention-based encoder-decoder model. We validate our approach by comparing
its constructed solutions with state-of-the-art VRP heuristics, demonstrating its performance
and scalability to larger problem instances. This study highlights the ability of the NCO model
to generalise, even to instances with unknown customer distributions and varying problem
sizes. Our findings indicate that NCO offers promising prospects for solving complex, multi-
objective optimisation problems in transport logistics, offering an effective solution strategy

for solving highly complex sequential decision problems.

1 MOTIVATION

Vehicle Routing Problem (VRP) is a well-known NP-
hard combinatorial problem that has been a subject
of substantial research over the past decades.
However, due to the exponential growth in
computational complexity, dynamic environment,
numerous constraints, and stochasticities in real-
world scenarios, the application of numerical
combinatorial methods become almost obsolete for
large-size VRPs. Recently, a new paradigm in
optimisation science has emerged - Neural
Combinatorial Optimisation (NCO). The combination
of Reinforcement Learning (RL) and generative
Deep-Learning (DL) models, such as Transformers
[1], offers a vital perspective for solving various
sequential decision problems, including VRP. Since
Bello et al. [2], and later Kool et al. [3] have
demonstrated the effectiveness of attention-based
encoder-decoder models for routing, researchers
increasingly leveraged, adapted, and extended this
paradigm to related combinatorial tasks [4-6].
Although these studies successfully adopt and
evaluate NCO paradigm, the hard-coded integration

of constraints, intricate implementation, and intensive
computational training limit their broader application.
This study presents an end-to-end NCO approach for
solving the time-constrained VRP (TCVRP) with a
homogeneous, finite vehicle fleet. Concretely, our
contribution can be summarised as follow:

e We extend the RL for Operational Research
(RLOR) framework [7], adopting it to multi-
objectives problems and implementing additional
constraints, such as dynamical time windows and
finite vehicle fleet, applying state-of-the-art
algorithms, and techniques in this field.

e We modify and fine-tune the reward function to
optimise for multiple objectives — maximising fleet
utilisation and minimising total mileage.

e The method for time constraints is integrated into
the decoder network to dynamically prioritise
nodes with urgent services.

e We evaluate the developed NCO approach by
benchmarking it against conventional techniques
and analyse its transferability and generalisation.
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2 METHODOLOGY

Designing an NCO algorithm involves (i) formulating
the problem as a Markov Decision Process (MDP)
and constructing the MDP environment (commonly
aligned with [8], (ii) developing a multi-layer encoder-
decoder policy network [3], and (iii) adapting a RL
algorithm to train the policy network. Moreover, the
problem constraints can be implemented either by
designing and tuning an appropriate reward function
or through a mask — effectively prohibit infeasible
actions. For our TCVRP formulation, we first model
the problem environment as a tuple of state §, action
a, reward r and transition Tr, as MDP = (S,a,r,Tr),
where each state § contains the information about
the customers N = {ny,n,,...,n;}. Each customer n
contains the information about the location (x™ and
y™ coordinates), time windows tw", demand d", the
capacity 7, and the number of available vehicles in
each time step V,, such asn = (x,y,tw,d,l{,V,).
Additionally, we include mask MY, so the state S is a
tuple s, = (N,V,M ). The objective is to construct
tours, i.e., a sequence of visited nodes for each
vehicle v;. The action a is therefore the index of the
next node to visit, which is based on the context
problem information and all previous states in this
episode. An episode is terminated if all customers are
masked m}},; = 1V N (i.e., if all customers are visited
or unreachable due to expired time windows tw{* <
0), or if there are no more available vehicles, i.e., V =
0. The transition function simply determines the rules,
how the state s, transitions to the next state s;,,. To
encourage the agent to visit as many customers as
possible and to prevent it from returning to the depot
after visiting the first customer, our reward function is
designed as follows:

1, = min(dist(ng, ngyq) + P x 1) for t <N, (1)

where dist represents the Euclidean distance
between the next unvisited node n,,, and the current
node n,. We set the penalty factor P = 10, effectively
penalising the agent for returning to the depot with a
full vehicle capacity [ - 1, and do not when the
capacity of the vehicle | > 0. To handle time
constrains (note that tw( vV N decreases with each
time step t), we incorporate our time windows directly
in the decoder by rescaling the attention score in the
pointer network, defining the urgency factor as
follows:

i v
Ja =%,vw, 0<f,<1. (2
f expresses the urgency for serving the unvisited
nodes N for the vehicle v being in the current node n.
In other words, Equation 2 computes the ratio
between the anticipated travel times and the total
travelled times, which are updated in each time step.
tdy /SV is the total time travelled so far by the vehicle
fleet V,. The factor S” represents the vehicle’s

which is set to

distance units

velocity SV = SOkTm =
0.014 for the normalised instances:

N
x,y € [0,1] . Therefore, if f, = 0, the customer's
requested end-time is far ahead, meaning there is no
urgency. If f, = 1, the service becomes time critical.
For f,, > 1 or f,, < 0 the services are considered as
missed.

For our policy network, we enhance the methods
introduced by [7], which in turn are based on the well-
proven encoder-decoder model developed by [3]. We
further incorporate our urgency factor f, directly in
the decoder by rescaling the attention score in the
pointer network [9], analogous to Wang et al. 2024.
The training procedure follows the Proximal Policy
Optimisation (PPO) — a state-of-the-art actor-critic RL
algorithm for training in continuous and discrete
environments [10].

3 RESULTS

We generate the training and evaluation problem
instances for each episode by following a procedure
analogous to [3,7]. Each environment episode is
initialised with 50 customer locations and a depot,
randomly distributed in the normalised Euclidean
space, i.e., x,y € [0,1]. Each problem instance is
parametrised by the vehicle capacity C” = 40, which
is then normalised to I7_, = 1. We further distribute
the demand uniformly: d,, ~ B,(1,10) forn = 1,2, ..., N

and normalise the demand by z—ZVN. The total

number of vehicles in each instance is setto V = 5.
Service time windows constraints tw™ are expressed
in time units and are randomly sampled from the
range 50 < tw™*° < 10,000 for the customers, and
tw™=% = 10,000 for the depot. Again, this range
defines the minimum and maximum time windows for
50 customers in a normalised instance, where the
vehicle is deployed at 50 km/h. The results of our
model are benchmarked against the PyVRP [11] — a
state-of-the-art optimisation framework for multi-
constrained VRP based on the genetic
metaheuristics. Table 2 shows the results in terms of
solution quality for PyVRP and the trained model.

Table 1. Solution costs from the benchmark heuristics
PyVRP and the proposed model.

Instance Nodes PyVRP NCO
N50 50 7.59 6.33
N100 100 7.70 6.25
N500 500 5.72 3.07
N1000 1000 7.56 4.48

The NCO model is trained on random instances
with 50 customers and then transferred to oversized
instances with 100, 500 and 1000 nodes. The policy
training takes approximately one week on a CPU
cluster machine. We do not compare the computation
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time between the OR solutions and the inference time
of the NCO solutions, as the tour construction in NCO
does not rely on computing combinations but instead
outputs the next node online based on the trained
policy weights. Figures 1 and 2 present a direct
comparison of the tours constructed by PyVRP and
the NCO model for instance N100.

As shown in Table 1, the NCO method achieves
better results in all cases examined. However, this
can be attributed to the fact that the NCO model is
trained with a penalty. Consequently, the trained
model prioritises nodes with higher demand first and
exploits the vehicle fleet faster. In contrast, the
PyVRP agent, which is designed to solve prize-
collecting VRP, aims to visit as many customers as
possible, thereby reducing vehicle mileage by
maximising rewards. Figures 1 and 2 show this
behaviour by comparing the N100 instance solved by
PYyVRP (see Figure 1) and by the NCO model (see
Figure 2).
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Figure 1. Solution computed by the OR model PyVRP.
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Figure 2. Solution constructed by the proposed NCO
model.

As illustrated in Figure 2, the tours generated by
our model are comparable to those found by the
PYyVRP heuristics. However, the NCO model
constructs tours with fewer customers and,
consequently, resulting in lower total mileage for the
vehicle fleet. This effect was particularly evident in
large instances (e.g., N1000) where the number of
alternative nodes with higher demand increases.
Surprisingly, despite being only trained on the 50N
instances, the NCO-model generalise well to
medium- and large-sized problems with 500N and
1000N, even with unknown node distribution.

4 CONCLUSION AND OUTLOOK

The objective of this study was to demonstrate a
proof of concept and test the applicability and
transferability of NCO for constrained, multi-objective
optimisation problems in transport logistics. We
developed, trained, and validated an end-to-end
NCO model for a multi-objective, capacitated VRP,
incorporating time constraints and a finite vehicle
fleet. By incrementally adopting state-of-the-art NCO
frameworks, our model effectively constructed tours
and achieved solutions comparable to that of state-
of-the-art heuristics. Furthermore, trained on
medium-sized instances, our method was able to
extrapolate the search procedure to the large-sized
instances with unknown customer distributions. This
highlights the ability of NCO models to generalise.
However, assessing NCO models proved
challenging, as their solution search logic demands
novel validation methods, especially for complex,
multi-objective tasks. In our further research, we plan
to extend this methodology to other scenarios with
additional constraints, such as service fees,
customer preferences, and limited mileage for
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electric vehicles. Furthermore, a real-world case
study for CEP transport in Germany will be developed
to apply the developed approach to a VRP with large
instances.
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