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Abstract—As the transition from 5G to 6G unfolds, a sub-
stantial increase in Internet of Things (IoT) devices is ex-
pected, enabling seamless and pervasive connectivity across
various applications. Accommodating this surge and meeting the
high capacity demands will necessitate the integration of Non-
Terrestrial Networks (NTNs). However, the extensive coverage
area of satellites, relative to terrestrial receivers, will lead to
a high density of users attempting to access the channel at
the same time, increasing the collision probability. In turn, the
deployment of mega constellations make it possible for ground
users to be in visibility of more than one satellite at the same time,
enabling receiver diversity. Therefore, in this paper, we evaluate
the impact of multi-receivers in scenarios where IoT nodes share
the channel following a non-orthogonal multiple access (NOMA)-
irregular repetition slotted ALOHA (IRSA) protocol. Considering
the impairments of satellite channels, we derive a lower bound of
system performance, serving as a fast tool for initial evaluation
of network behavior. Additionally, we identify the trade-offs
inherent to the network design parameters, with a focus on packet
loss rate and energy efficiency. Notably, in the visibility of only
one extra satellite as receiver yields significant gains in overall
system performance.

I. INTRODUCTION

Non-Terrestrial Networks (NTN) have steadily gained mo-
mentum as a crucial component of global connectivity, com-
plementing conventional terrestrial infrastructure by providing
coverage to remote and otherwise inaccessible areas [1],
[2]. With the inclusion in the third-generation partnership
project (3GPP) standards starting from Release 17, NTNs have
become integral to the future 6G-Internet of Things (IoT)
ecosystem. In parallel to this, the growing commercial interest
in massive machine-type communications (mMTC) and IoT
applications introduces new challenges, pushing the connec-
tivity requirements of next-generation networks to new limits
[3]. A key characteristic of IoT applications is the deployment
of a large population of low-power, low-complexity devices,
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which are active sporadically and unpredictably, transmitting
small packets over a shared channel.

In this context, modern random access schemes [4], have
emerged as techniques designed to meet the demands of
massive connectivity without requiring centralized coordina-
tion among users. Specifically, the irregular repetition slotted
ALOHA (IRSA) [5] protocol has proven to be an effective
solution for IoT applications, supporting high throughput lev-
els and providing tangible gains. This protocol relies on packet
repetition over the medium access control (MAC) frame and an
iterative decoding algorithm at the receiver to solve collisions,
i.e., successive interference cancellation (SIC). Specifically,
when a packet is correctly received, the interference caused
by its copies can be eliminated, allowing previously collided
packets to be retrieved. Today, IRSA and its special case,
contention resolution diversity slotted ALOHA (CRDSA), are
used by the return channel of the digital video broadcasting
(DVB)-RCS2 standard [6].

In ongoing efforts to develop more efficient access schemes
for IoT, recent literature has proposed to apply non-orthogonal
multiple access (NOMA) in the power dimension to random
access. The pioneering work [7] explores a scheme in which
IoT devices select from a set of predetermined power levels to
transmit their packets over an ALOHA channel. By exploiting
power differences, this approach enables the receiver to cap-
ture stronger packets, increasing the amount of information
received correctly. The NOMA approach has been further
investigated in protocols that support power diversity, such as
CRDSA in [8], [9], and in IRSA [10] and in [11] for satellite
communications.

Another line of research has highlighted the promising
potential of using multiple receivers in IoT to exploit spatial
diversity. Satellite channels can experience losses due to
varying channel conditions between the IoT device and the
satellite, compromising the system performance. To mitigate
this issue, leveraging large constellations and incorporating
multiple receivers can significantly enhance the overall ro-
bustness of the system. The impact of multiple receivers on
the throughput of a slotted ALOHA system was investigated,
for example, in [12] and [13]. Additionally, the authors in
[14] examine how multi-satellite cooperation enhances packet
detection in modern random access protocols.

Unlike previous studies in the literature, this work evaluates



Fig. 1: Example of m = 6 IoT nodes connected to k = 3
satellites. The OOF channel model is represented such that a
missed link between a user and a satellite indicates an erased
transmission.

the impact of multiple receivers within an IoT-NTN network
operating under the NOMA-IRSA scheme. We extend the
findings of [11] and [15] considering channel impairments
along with integration of multiple receivers. We evaluate our
network in terms of packet loss rate and energy efficiency of
the IoT devices. We formulate an analysis to establish a lower
bound of the decoding failure probability for asymptotically
long MAC frames, providing a rapid estimation of the sys-
tem behavior. Moreover, we report the outcome of detailed
simulations that account for the effect of the finite frame
duration. Our study offers valuable insights into understanding
the fundamental trade-offs associated with parameter design,
supporting ongoing efforts to develop more sustainable and
efficient IoT networks [16].

The rest of the paper is organized as follows. Section II
introduces the system model, while Section III describes the
evaluation of the performance metrics. The asymptotic analysis
is presented in Section IV. Numerical results are provided in
Section V, and finally Section VI summarizes the conclusions.

II. SYSTEM MODEL

We consider the uplink scenario sketched in Fig. 1 where
a population U = {u1, ..., um} of m uncoordinated IoT users
(nodes) transmits packets to satellites over a shared medium,
representing an NTN network.

A. Medium access contention

We assume that users follow the IRSA protocol [5], where
time is divided into slots of fixed duration, corresponding to
the packet time duration T. The MAC frame consists of n
consecutive slots, with both users and the receiver sharing
common knowledge of the frame’s start and end times, as
well as the timing of each slot.1 The channel load, denoted as
G, is defined as

G =
m

n
[packets/slot].

Each IoT node transmits ℓ replicas of its data packet,
distributed uniformly at random across the n available slots

1This is typically implemented with a beacon message.

within the frame. The number of replicas ℓ is independently
drawn by each user according to a predefined probability mass
function. Following the traditional polynomial formulation,
this can be expressed as [5]

Λ(x) =

ℓmax∑
ℓ=2

Λℓ x
ℓ with

ℓmax∑
ℓ=2

Λℓ = 1

where Λℓ represents the probability that a node transmits
ℓ replicas, while ℓmax denotes the maximum number of
replicas a node can send within a frame. For instance, the
IRSA distribution Λ(x) = 0.25x2 + 0.75x3 indicates that a
user sends two replicas with probability 0.25 and three with
probability 0.75. We also define the average number of trans-
mitted replicas per user as ℓ̄ =

∑ℓmax

ℓ=2 ℓΛℓ.
Each replica includes the indexes of the slot where its twins

are located. This information can be obtained, for example, by
inserting pointers into the packet header.2

B. Replica power diversity

We consider a NOMA scheme in which each replica might
be transmitted at a different power level. Once the number of
replicas has been determined, each user selects a transmission
power level for each of them. The IoT devices operate under
a peak power constraint,3 denoted by P. To manage power
allocation efficiently, we assume two distinct power levels,
weak and strong as in [17]. These power levels are fractions
of the peak power, specifically

p2 = (1− α)P and p1 = αP

where 0 < α < 0.5 and p2, p1 represent the strong and
weak power levels, respectively. The parameter α defines the
proportion of peak power employed. A replica can be assigned
to either strong or weak power with equal probability.

Following the approach introduced in [7], the power levels
need to satisfy the following condition

pk = γ(γ + 1)2−k k ∈ [1, 2] (1)

where γ represents the target signal-to-interference and noise
ratio (SINR) necessary for the receiver to successfully decode
a replica. This formulation ensures that a replica transmitted
with strong power can be decoded even in the presence of
interference from a weak power transmission within a slot.
Additionally, a replica transmitted at weak power can be
successfully decoded in interference-free slot.

By manipulating the relationship in (1) with the definition
of p1 and p2, we derive the value

α = (
√
P+ 1− 1)/P.

This expression establishes a relationship between the peak
power constraint and the power levels used in the transmission,

2A efficient method is to use the packet payload as the seed for the random
generator employed by the sender to place its replicas. In this way, once one
replica is decoded, the receiver can determine the positions of all the others.

3This assumption is based on practical factors, such as the performance
limitations of the power amplifiers and regulatory requirements governing
spectrum usage.



ensuring that both power levels are optimized for the network
performance.

C. Channel model

To capture the significant channel impairments resulting
from the short-term unavailability of an NTN link, we assume
that packets transmitted by nodes are subject to erasures.
Specifically, we consider the on-off fading (OOF) channel
framework proposed in [18].

In this model, a packet is completely erased with probability
ϵ, meaning it does not contribute any interference at the
receiver and is effectively lost. For example, this can occur
due to severe rain conditions or physical obstructions. Alter-
natively, the packet arrives successfully at the receiver with
probability (1 − ϵ). Erasures are independent and identically
distributed among users [12], while it is assumed that replicas
from the same user within the frame experience the same
realization of the on-off channel.

Additionally, when multiple satellites are considered as re-
ceivers, each user experiences independent channel realization
with each satellite. This means that replicas from a given
user may be completely lost at one receiver while being
successfully received by another. We illustrate this scenario
in Fig. 1, where, for example, the first user on the left is
connected to two out of the three satellites.

D. Successive interference cancellation decoding

At the receiver side, the satellite performs SIC over a
MAC frame [5]. This algorithm processes slots and the frame
iteratively. Whenever the SINR of a replica, denoted by Γ,
exceeds the threshold γ, i.e. Γ ≥ γ, the replica is decoded.

Recalling (1), the inequality Γ ≥ γ holds whenever a replica
is received without collisions within a slot. In the NOMA
scheme, the capture effect can be exploited at the receiver,
meaning that collisions are not always destructive. Specifically,
if a slot contains two replicas - one with higher power and the
other with lower power - the receiver can first decode the
stronger signal and remove it from the slot. This also allows
the receiver to decode the weaker signal later.

When the receiver decodes a replica, then it has information
about where its replica twins are located, and their contribution
from the incoming signal is also canceled. Due to cancelations,
replicas from other users may become decodable. This iterative
procedure is repeated until no additional replicas with Γ ≥ γ
can be identified.

E. Multiple receiver

We aim to evaluate the performance of the proposed sce-
nario in the presence of multiple receivers. To accomplish this,
we consider k ≥ 1 satellites.

After n slots, each satellite may observe a different version
of the MAC frame due to independent erasures. At the end
of a frame, with m users having transmitted, each satellite
may experience a distinct interference pattern across slots, as
different users may have been erased. However, a correlation
exists between the MAC frames, as replicas sent by a user
without erasure appear in the same slots across all satellites.

Each receiver j = 1, ..., k then independently runs the SIC
algorithm, resulting in the decoding of subsets Dj ⊆ U of
users. A total of d aggregated users are decoded by the entire
system over a MAC frame, where d

d =

∣∣∣∣∣∣
k⋃

j=1

Dj

∣∣∣∣∣∣ .
III. MULTI-RECEIVER PERFORMANCE METRICS

We aim to characterize the impact of assuming multiple
receivers in the proposed NOMA-IRSA scenario. To achieve
this, we analyze the system using two key performance met-
rics: packet loss rate PLR and energy efficiency η.

A. Packet loss rate

Let us denote by PLR(G) the probability that a user is
not decoded by the system when channel load is G. This
probability represents the likelihood that an arbitrary user, u,
is not included in any subset of users decoded by any satellite.
Therefore, we can write

PLR(G)= Pr

u ̸∈
k⋃

j=1

Dj

≥
k∏

j=1

Pr [u ̸∈ Dj ] = PLRB(G) (2)

where the inequality results from the correlation between
the MAC frames observed by the satellites. Thus, PLRB(G)
represents a lower bound.

The term Pr [u ̸∈ Dj ] evaluates the probability that a user
is not decoded by the j-th satellite. This occurs if the user’s
replicas were either not received (erased) with probability ϵ,
or if they were received with probability 1 − ϵ but the SIC
algorithm failed to decode the user. Denoting the probability
of the latter event by Pϵ(G), we can express

Pr [u ̸∈ Dj ] = ϵ+ (1− ϵ)Pϵ(G). (3)

The derivation of Pϵ(G) is challenging due to the complex-
ity in tracking the behavior of the SIC decoding algorithm
over finite frame length [5]. However, the evaluation can be
performed through Algorithm 1, which outputs the value of
Pϵ(G) considering asymptotically long frames. Details of its
derivations are provided in the next Section.

Finally, by inserting (3) into (2), we find that

PLRB(G) = [(1− ϵ)Pϵ(G) + ϵ]
k
. (4)

Due to the binomial theorem, this can also be written as
PLRB(G) =

∑k
i=0

(
k
i

)
(1− ϵ)k−iPϵ(G)

k−iϵi.

B. Energy efficiency

The energy efficiency of the system reflects the balance
between energy expenditure and successful data transmission.
By understanding this relationship, we can better assess the
network’s operational viability and identify potential optimiza-
tions for prolonging the devices lifespan.

Let Ē denote the average energy consumed by an IoT node
to transmit its replicas within a MAC frame. Given that the



probability of transmitting a replica at either strong or weak
power is equiprobable, we have that

Ē = ℓ̄
[1
2
p1 +

1

2
p2

]
T

=
ℓ̄

2

[
(1− α)P+ αP

]
T =

ℓ̄PT

2
.

Let the average number of successfully decoded users in
the system per time slot, or throughput, be denoted by
G
[
1− PLR(G)

]
. The energy efficiency of the system is then

defined by the following ratio

η =
2G

[
1− PLR(G)

]
ℓ̄PT

. (5)

The value of η represents the rate of successful data transmis-
sion per energy expended.

Algorithm 1: Density evolution to derive Pϵ(G)

Input: G, ϵ,Λℓ, ℓ̄, Imax

Output: Pϵ(G)
1 q0 = 1
2 p0 = 1
3 i = 1
4 while i ≤ Imax do
5 qi =

∑ℓmax
ℓ=1 Λℓ p

ℓ−1
i−1 .

6 pi = 1− e−ℓ̄G (1−ϵ)qi
[
1 + ℓ̄

2G(1− ϵ)qi
]

7 i = i+ 1

8 end
9 Pϵ(G) =

∑ℓmax
ℓ=1 Λℓ p

ℓ
Imax

IV. ASYMPTOTIC ANALYSIS

The performance of the SIC decoding process can be evalu-
ated using tools from code theory on graphs [5], [4]. A MAC
frame can be represented as a bipartite graph G = {U ,S, E}
consisting of a set U of m user nodes, a set S of n slot nodes,
and a set E of edges. In the graph representation, an edge e
connects the user node x to the slot node y if and only if user
x transmitted a copy of its packet over the y-th slot.

In the following, we consider the asymptotic scenario, where
the frame duration increases indefinitely, i.e. n → ∞ while
maintaining a proportional relationship between the number
of users and slots m ∝ n. This implies that users distribute
their replicas across an infinite frame. In this context, we apply
the density evolution (DE) algorithm to predict performance
of the iterative decoding process.

With DE we can estimate the user decoding failure proba-
bility, Pϵ, for a given channel load, G, by iteratively calculating
two key probabilities. The first, qi, represents the probability
that a randomly selected user has not been decoded at the
start of the i-th SIC iteration. The second, pi, denotes the
probability that a randomly selected slot has not been resolved
at the beginning of the i-th iteration.

Given that qi reflects a user’s unresolved status, it can be
defined as the probability that an edge e connecting the user
node and the slots node has not been removed in the i-th
iteration. This occurs when none of the ℓ − 1 replicas was
successfully decoded during the previous SIC step, each of
with has a probability pi−1. Consequently, we can express
this relationship with the following equation

qi =

ℓmax∑
ℓ=1

Λℓ p
ℓ−1
i−1 . (6)

Instead, pi reflects a slot’s unresolved status, which can be
expressed as

pi =
∞∑
t=1

τ(t, ϵ) p
[t]
i (7)

where τ(t, ϵ) is the probability that an edge is connected to a
slot node of degree t and where p

[t]
i is the probability that the

edge is not removed at the i-th iteration given that is connected
to a slot node of degree t.

In other words, τ(t, ϵ) represents the probability of having t
colliding replicas within the slot, which has been derived in [5]
for a channel without erasures. When considering the effects
of the OOF channel, we arrive at the following expression

τ(t, ϵ) =
[ℓ̄G(1− ϵ)]t−1

(t− 1)!
e−ℓ̄G(1−ϵ). (8)

Here, the channel load is scaled by a factor 1− ϵ to account
for the erasures introduced by the OOF channel, reflecting the
impact of erased users on the effective channel load.

Let us now focus on 1 − p
[t]
i , representing the probability

that a slot containing t colliding replicas is solved at the i-
th iteration. This is determined by two conditions. First, the
contribution of all replicas apart from one, i.e. t − 1, have
been canceled in the slot. The probability of this event is (1−
qi)

t−1. Secondly, when all replicas apart from two have been
removed in the slot and one has been transmitted at weak
power and one at strong power. The probability of this event
is 1/2(t − 1)qi(1 − qi)

t−2. Here, the term 1/2 accounts for
the probability of having the two power levels and the term
(t−1)qi(1−qi)

t−2 for all possible ways in which all replicas
can be canceled from a slot. By further inserting this result
and (8) into (9) we obtain

pi =
∞∑
t=1

[ℓ̄G(1− ϵ)]t−1

(t− 1)!
e−ℓ̄G(1−ϵ)

×
[
1− (1− qi)

t−1
(
1 +

t− 1

2

qi
1− qi

)]
.

With simple manipulations the expression of p(i) becomes

pi = 1− e−ℓ̄G (1−ϵ)qi
[
1 +

ℓ̄G(1− ϵ) qi
2

]
(9)

by observing that
∑∞

t=1
xt

t! = et.
The DE algorithm is then performed by iterating equations

(6) and (9). A pseudocode algorithm for executing DE is
provided in Algorithm 1. The inputs include the channel load
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Fig. 2: Packet loss rate PLR as a function of channel load G.

G, the channel erasure probability ϵ, replica degree distribution
parameters Λℓ and ℓ̄, and the maximum number of iterations
Imax for DE. The initial conditions are set as q0 = 1 and
p0 = 1. The output of the algorithm is the user decoding
failure probability at the evaluated channel load, given by

Pϵ(G) =

ℓmax∑
ℓ=1

Λℓ p
ℓ
Imax

. (10)

In the results, we show that the packet loss rate in (4), defined
by density evolution, becomes more accurate as the frame
duration increases.

V. NUMERICAL RESULTS

We now present numerical results for the proposed system,
considering the following degree distributions

Λ1(x) = x2 and Λ2(x) = 0.5465x2 + 0.1623x3 + 0.2912x8.

The distribution Λ2(x) is noted in literature, for example in [5],
for its strong performance. According to the NOMA scheme
presented, the system’s performance remains independent of
the peak power P4 as long as the parameters α, p1, and p2 are
selected as outlined in Sec. II-B. For simplicity, we assume a
unit peak power P = 1, and unit duration T = 1. The average
energy consumed per node and the energy efficiency values
scale simply with P and T.

Let us evaluate the tightness of the derived upper bound of
the packet loss rate in (2) using the output of the DE algorithm
with Imax = 100. For example, consider G = 1.2, ϵ = 0.05,
and Λ1(x), then the average number of replicas is ℓ̄ = 2.
We find that p1 = 0.7811, p2 = 0.6815, p3 = 0.6243. and
p100 = 0.4902 resulting in Pϵ(G = 1.2) = 0.2403, from (10),
which coincides with the simulation results.

In Fig.2a, the PLR(G) of the system is plotted as a function
of the channel load for the Λ1(x) distribution with k = {1, 2}
receivers and channel erasure probability ϵ = 0.05. The plot

4Observe that the expressions for PLR and Pϵ do not depend on the peak
power P.

illustrates that the trends observed in the simulations (curves
with markers) align with the analytical results (dashed curves).
It is evident that as the number of slots per frame considered
increases, the simulation results converge towards the derived
analytical values. As expected, by increasing the number of
receivers of one unit the performance of the system improves
significantly by decreasing the PLR by one order of magnitude
until channel loads of G = 1 [packets/slot]. Note that at low
and moderate channel load for one receiver, the PLR is driven
primarily by channel conditions, resulting in an error floor
determined by ϵ. We next show how this effect diminishes
when considering a larger number of receivers or alternative
degree distributions.

Note that the comparison analysis and simulations of Λ2(x)
show a tighter match with respect to Λ1(x) due to the superior
performance exhibited by the distribution. However, we do not
present these results here due to space constraints.

The upper bound derived enables quick evaluation of trends
and the impact of parameter design on performance. It also
provides insight into the limits of the best achievable results
for a given set of parameters.

Let us now evaluate the impact of an increasing number
of receivers. In this scenario, we consider a MAC frame of
n = 200 slots, OOF erasure probability of ϵ = 0.10, degree
distribution Λ2(x) and different number of receivers, ranging
from k = 1 to k = 6. In Fig. 2b, the simulated packet loss
rate PLR of the system as a function of the channel load G is
plotted. As expected, performance improves with increasing
number of satellite receivers. Also in this scenario, there is a
substantial gain in diversity when moving from one to two
satellites. However, the incremental benefit decreases with
each additional satellite, eventually leveling off. Indeed, the
impact of k = 6 receivers with respect to k = 5 becomes
minimal. This effect arises because receiver diversity helps
mitigate losses introduced by the channel. However, once these
channel losses are overcome, further losses are primarily due
to failures in SIC decoding. With increased receiver diversity,
the impact of the channel is reduced, and packet losses occur



predominantly due to SIC limitations.
In our next scenario, we show the impact of the degree

distributions Λ(x) over different values of channel conditions,
as shown in Fig. 2c for k = 2 receivers. Curves with circular
markers correspond to the Λ1(x) distribution, while curves
without circular markers indicate the Λ2(x) distribution. As
expected, the degree distribution significantly influences the
packet loss rate performance. For operational channel loads
Λ2(x) notably outperforms Λ1(x). This gain increases as the
erasures introduced by the channel decrease, e.g. by reducing
ϵ. However, under severe channel impairments and lower chan-
nel loads (e.g. ϵ = 0.10 and load G < 0.6), the performance
difference between the two distributions becomes negligible.
This insight may assist in optimizing the configuration for
these conditions and in evaluating other key performance
indicators, such as energy efficiency.

In our final scenario, we evaluate the energy efficiency of
the system for different network configurations, as shown in
Fig. 3. Energy efficiency grows linearly with channel load
until reaching a tipping point, corresponding to the maxi-
mum throughput that the system can support, after which
it declines. For each channel erasure value and number of
satellites considered, the distribution Λ1(x) is more energy
efficient than Λ2(x). This is mainly due to the fact that the
IoT device, on average, transmits fewer replicas with Λ1(x)
than with Λ2(x), i.e. ℓ̄ = 2 versus ℓ̄ = 3.3271. Although
Λ2(x) achieves higher throughput, the impact on the average
replicas transmitted in (5) is more significant. Additionally, for
a fixed distribution and a single receiver, the energy efficiency
trend shifts as the erasure rate varies. This stems from a
shift of the throughput caused by the erased transmissions in
the channel. As expected, adding a second receiver improves
η, as for a fixed channel load, more users are successfully
decoded. When multiple receivers are considered, energy effi-
ciency further improves under worse channel conditions. This
effect is particularly noticeable at higher channel loads, where
decoding failures are more impacted by the SIC algorithm.
With degraded channel conditions, each receiver captures a
different perspective of the MAC frame, resulting in a higher
number of successfully decoded users.

VI. CONCLUSIONS

We investigated the impact of multi-satellite receivers in an
IoT network operating under a NOMA-IRSA scheme within a
NTN network. We derived the expressions for the packet loss
rate and energy efficiency and formulated the DE analysis,
validating it through Monte-Carlo simulations. Our results
reveal critical trade-offs, highlighting the role of the number
of receivers, degree distribution, and channel conditions in
evaluating network performance. This analysis provides key
insights for designing more resilient and energy-efficient IoT
networks in challenging non-terrestrial environments.
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