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Abstract—In this work, we provide a simple yet tight analytical
approximation of the packet loss rate in the error floor region
for a non-orthogonal multiple access (NOMA)-based irregular
repetition slotted ALOHA (IRSA) scheme. Considering an Inter-
net of Things (IoT) scenario, users randomly select both the
number of replicas based on a designed degree distribution
and the transmission power from predetermined levels, while
successive interference cancellation is performed at the receiver.
Our derived packet loss rate expression in the finite length regime
is promptly evaluated. Its accuracy is validated through Monte-
Carlo simulations, demonstrating a strong match even for systems
operating at channel loads exceeding 1 [packets/slot].

Index Terms—Non-orthogonal multiple access, irregular repe-
tition slotted ALOHA, error floor evaluation, finite length

I. INTRODUCTION

The convergence of the Internet of Things (IoT), massive-
type machine communications (mMTC), and 6G technology
promises to revolutionize connectivity, enabling a vast array
of low-cost devices to seamlessly exchange data [1]. A crucial
aspect of IoT and mMTC is implementing efficient medium
access methods capable of handling sporadic transmissions
from a massive number of IoT devices. Modern random access
protocols play a pivotal role in this context [2], offering flexi-
ble and scalable solutions to manage connectivity amongst the
dynamic and often unpredictable nature of IoT deployments.
These protocols enable devices to access the network with-
out prior coordination, optimizing resource utilization while
ensuring reliable and timely data transmission.

A notable contribution in modern random access schemes
was provided in [3], with the development of irregular repeti-
tion slotted ALOHA (IRSA). This protocol combines packet
diversity with successive interference cancellation (SIC), en-
abling the resolution of collisions. In IRSA, users transmit
a variable number of replicas over a frame according to
a predesigned distribution. The IRSA protocol was further
investigated by incorporating power diversity per user in [4],
[5] and per replica in [6], [7]. The advantage of power diversity
lies in exploiting the capture effect, which enables the SIC
algorithm to solve collisions even when multiple users transmit
in the same slot.

In parallel to this, NOMA-based schemes, originally pro-
posed for downlink transmissions, were also introduced for
random access in the pioneering work [8]. NOMA schemes
rely on accurately defining a set of power levels from which
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users can choose. This approach ensures that collisions in-
volving packets with different power levels can be resolved
effectively. Thus, the SIC algorithm benefits from both the
diversity of transmitting multiple packets and the diversity of
power levels. In this context, NOMA-based random access
schemes have been the subject of recent research.

Bounds on the throughput of the NOMA-ALOHA scheme
were presented in [9], and the optimal load was analyzed in
massive IoT scenarios with sparse user activity. In [10], the
authors investigate the asymptotic performance of a slotted
ALOHA scheme with NOMA to predict throughput perfor-
mance. The analysis assumes that users can place their replicas
within an infinitely long frame. This assumption allows for the
effective use of density evolution to understand the system’s
behavior. Similarly, asymptotic analysis using density evolu-
tion was also conducted for a special case of IRSA, namely
contention resolution diversity slotted ALOHA (CRDSA),
in [11]. In [12], the replica degree distribution and power
distribution are jointly optimized in the asymptotic regime
using density evolution for NOMA-coded slotted ALOHA.
This modern random access protocol integrates packet-level
erasure correcting codes with SIC techniques. Similarly, [13]
presents an asymptotic analysis for NOMA-IRSA, focusing on
the optimization of degree distribution and power levels.

In the existing literature, most studies consider the perfor-
mance of NOMA random access schemes under the assump-
tion of infinitely long frames [9]–[13]. However, to the best of
our knowledge, an analysis of their performance in the non-
asymptotic regime is missing. To address this gap, this work
evaluates the performance of NOMA-IRSA schemes in the
more practically relevant finite frame lengths. Specifically, we
derive a tight analytical approximation of the packet loss rate
for low and moderate channel loads, i.e., in the error floor
region.

Unlike the accurate yet involved approximation proposed
in [14] and [15], we present here a computationally efficient
one-shot expression derived from the balls in bins (BiB)
problem. In [15] authors present an approximation for the
IRSA scheme under the assumption of very short frames,
limited to a maximum of 50 slots. In contrast, this work
evaluates the NOMA-IRSA scheme, demonstrating its validity
even for significantly longer frames. Furthermore, we propose
a simplified method for evaluating the error floor, offering
reduced complexity compared to the approaches in [14], [16],
[17]. This work also provides an extension of the study
presented in [18], which estimates the packet loss rate in a
multipacket detection scenario under conditions of low channel
loads and for a specific degree distribution. In the results
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Fig. 1. Stopping sets in NOMA-based IRSA with the corresponding number of users and slots. The filling color-patterns represent different power levels.

section, we show that the solutions proposed in this work
provide more accurate results for the NOMA-IRSA scheme
compared to the evaluation given in [18].

Finally, we validate the proposed expression through Monte-
Carlo simulations, showing a strong match even for systems
operating at moderate channel loads.

The rest of the paper is organized as follows. Section II
presents the system model, while in Section III the packet loss
rate approximation is derived. Numerical results are given in
Section IV, and Section V concludes.

II. SYSTEM MODEL

We consider a system where m uncoordinated IoT active
nodes (users) transmit packets over a shared uplink wireless
channel to a common receiver. A medium access control
(MAC) frame is composed by n consecutive slots where the
duration of a slot equals a packet duration. Users are frame
and slot synchronized. The system channel load G is

G =
m

n
[packets/slot].

A NOMA-IRSA scheme is considered. Following the IRSA
protocol, each user sends r replicas of the generated data
packet and uniformly places them across the n available slots
in a frame. The number of replicas r to transmit is determined
by a predefined degree distribution. The polynomial formula-
tion of IRSA degree distribution can be written as [3]

Λ(x) =

rmax∑
r=2

λrx
r, with

rmax∑
r=2

λr = 1, (1)

where λr represents the probability that a user transmit r
replicas. Each replica has a pointer indicating where its copies
are placed over the frame. This information is used by the
receiver during the decoding process.

After determining the number of replicas to transmit, the
user selects the transmission power level for each replica
uniformly from the L available options, as suggested in [8].
We denote the power levels by

p1 > ... > pL > 0, with pk = γ(Ik + 1),

where γ is the target signal-to-interference and noise ratio
(SINR) and Ik =

∑L
j=k+1 pj with IL = 0. With easy

manipulations, the k-th power level can be written as

pk = γ(γ + 1)L−k. (2)

The transmission rate R is defined through R = log2(1 + γ).
At the receiver side, SIC is performed. Assuming the use

of capacity achieving codes [3], the receiver can decode a

replica whenever its SINR, denoted by Γ, meets or exceeds
a predefined threshold, i.e, Γ ≥ γ. Note that interference-
free replicas can always be decoded. Additionally, a slot
with replicas all transmitted at different power levels can
be resolved through intra-SIC iterations (i.e., following the
traditional NOMA principles). Once a replica is decoded, the
receiver can determine the position of its copies and remove
them from the frame using inter-SIC [3]. The decoder may
iterate multiple times over each slot and the entire frame until
all replicas are decoded or no more replicas with Γ > γ are
present.

III. PACKET LOSS RATE APPROXIMATION

In this section, we consider results from the balls into bin
(BiB) problem to derive a tight one-shot formula approxima-
tion of the packet loss rate, denoted by PLR.

A. Balls into bin problem

The general BiB problem, see e.g. [19], consists in indepen-
dently throwing m̄ balls into b̄ bins. This setup can be mapped
to the NOMA-IRSA scenario, where each ball represents a
user transmitting its replicas, and b̄ bins represent all possible
combination of slots in which a user can place its replicas.

Following this parallel, multiple balls landing in the same
bin correspond to multiple users transmitting their replicas
in the same slots. The BiB problem allows us to evaluate
distribution of the number of bins containing t balls. Let
Yt be the random variable (rv) denoting the number of bins
containing exactly t balls. Then, from [19], we have that

Pr{Yt = yt} =
m̄!

b̄b̄

b̄−yt∑
k=0

(−1)k
(
yt + k

yt

)
(m̄− k)m̄−yt

(t!)k(m̄− kt)!
. (3)

As shown in [19], for m̄ → ∞ the rv Yt can be approximated
to a Poisson random variable with parameter βt, i.e.

Yt ∼ P(βt) and βt =
b̄

t!

( m̄
b̄

)t

.

B. Packet loss rate as BiB

The packet loss rate PLR is defined as the probability that a
user is not successfully decoded at the end of the SIC process.
In IRSA, the PLR at low channel load can be approximated by
addressing the so call stopping sets [14]. A stopping set is a
configuration where the decoder gets stuck because multiple
users transmit their replicas in the same slots, preventing any



PLR ≈ 1

L2

2 (λ2)
2 m

n(n− 1)
+

1

L3

2(n− 2)(λ2 m)2

n2(n− 1)2
+

1

L3

6 (λ3)
2 m

n (n− 1) (n− 2)
. (5)

TABLE I

Parameters of considered stopping sets for m users and n slots

i µi νi m̄ b̄ = b(µi, νi)

1 2 2 λ2 m
(n
2

)
2 3 3 λ2 m

(n
2

)
/
√

2 (n− 2)

3 3 2 λ3 m
(n
3

)

of them from being decoded. A stopping set is characterized
by ν, the number of users, and µ, the number of slots
involved, respectively. When power diversity is considered as
in the NOMA-IRSA scheme, the receiver applying SIC fails
to decode the users if every slot belonging to a stopping set
contains packets transmitted at the same power.

We denote by σ(µ) the event in which each of the µ slots
of an stopping set contain colliding replicas transmitted at the
same power. Considering in total L different level of power,
we have

Pr{σ(µ)} =
1

Lµ
.

We evaluate an error floor expression by accounting for the
three most probable stopping sets that can occur for NOMA-
IRSA, denoted with S = {S1,S2,S3}. An example of each
stopping set is illustrated in Fig 1. The stopping set S1 consists
of two users transmitting two replicas each in the same time
slots at the same power. The stopping set S2 consists of three
slots and three users, each transmitting two replicas different
time slots, resulting in collisions where each user interferes
with the other two. Also in this case, each slot has colliding
replicas at the same power. The stopping set S3 consists of two
users transmitting three replicas each in the same three slots
at the same power. Note that S1 and S2 can occur only if the
IRSA distribution (1) includes a non null probability for a user
transmitting two replicas, i.e., if λ2 > 0. Similarly, S3 can only
occur if λ3 > 0. Note that these are the most representative
stopping sets for the NOMA-IRSA scheme under evaluation.
As demonstrated in the results, they are sufficient to provide
an accurate evaluation of performance.

The probability mass function of the stopping set Si can be
determined using (3) by mapping it to the BiB problem. Given
m users and n slots, the probability that the stopping set Si

occurs u times within a frame is expressed as Pr{Yνi
= u}.

The value of νi, µi, m̄ and b̄ = b(µi, νi) are provided in
Table I. In the appendix section, we discuss and explain
the derivation b(µ2, ν2) = b(3, 3) which does not have a
straightforward correspondence to the classic balls-in-bins
problem.

The packet loss rate is approximated by evaluating, for each
stopping set, the ratio of users colliding (positive cases) to the

total number of transmissions (total cases) as follows

PLR ≈
∑
Si∈S

Pr{σ(µi)}
∑∞

u=1 νiuPr{Yνi
= u}

m

=
∑
Si∈S

1

Lµi

νi
m

∞∑
u=1

uPr{Yµi
= u}.

Recalling that Yt can be considered Poisson distributed, then

PLR ≈
∑
Si∈S

1

Lµi

νi
m

∞∑
u=1

u
(βνi

)u

u!
e−βνi .

Observing that

∞∑
u=1

u
(βνi

)u

u!
e−βνi = βνi

,

we have

PLR ≈
∑
Si∈S

1

Lµi

νi
m

b̄

νi!

( m̄
b̄

)νi

.

≈
∑
Si∈S

1

Lµi

1

(νi − 1)!

( m̄
b̄

)νi−1

. (4)

Finally, by substituting the values from Table I into each
stopping set in (4) and performing straightforward manipula-
tions, we derive the approximated equation for the packet loss
rate given in (5).

Equation (5) addresses the challenge of dealing with more
complex formulations often required for evaluating the packet
loss rate PLR in the error floor region, as seen in works such
as [14]–[17]. By contrast, the proposed expression provides a
simple and efficient method for PLR computation.

While one might initially consider the proposed expression
a bound for the PLR, given that it accounts for a finite number
of stuck occasions for the receiver, this claim cannot be made
rigorously. This limitation arises because (5) is derived by
approximating certain terms, preventing it from being formally
classified as a bound.

IV. NUMERICAL RESULTS

This section examines the validity of the proposed PLR

approximation. We consider different setups and compare the
simulation results with the analytical form presented in (5).

In our first scenario we consider a frame length of n = 200
slots, target SINR γ = 3dB, and L = 3 different levels of
power. According (2), we have p1 = 17.9007,p2 = 5.9763,
and p3 = 1.9953. For n = 200, µ2 = 3 and ν2 = 3, the
number of bins is given by b(3, 3) = 1000. The packet loss
rate PLR for NOMA-IRSA, plotted as a function of the channel
load, is shown in Fig. 2. The following degree distributions,
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Fig. 2. Packet loss rate as a function of channel load for NOMA-IRSA for
n = 200 slots, L = 3 power levels, and Λ1(x), Λ2(x), and Λ3(x). Curves
with markers represent simulation results, while dashed lines correspond to
the analytical approximation given in (5).

commonly employed in literature and known to offer good
performance [3], are considered

Λ1(x) = 0.50x2 + 0.50x3,

Λ2(x) = 0.25x2 + 0.60x3 + 0.15x8, and

Λ3(x) = x3.

The marker curves correspond to Monte-Carlo simulation
while the dashed lines represents the packet loss rate ap-
proximation given in (5). Notably, the derived PLR accurately
predicts the simulated PLR across all considered IRSA degree
distributions in the error floor region. Note that the error floor
region for NOMA-based IRSA schemes includes not only low
channel loads but also moderate channel loads. Focusing on a
PLR of practical relevance, e.g. 10−3, we observe that channel
load up to 1.20 [packets/slot] can be supported.

These initial results demonstrate that the proposed expres-
sion is effective for evaluating a NOMA-based IRSA. The
provided expression offers a fast and simply method for
assessing the performance of the system, remaining accurate
even at very low values of packet loss rate.

Note that the derived approximation is valid in the error
floor region but, as expected, diverges under high channel
loads, i.e., in the waterfall region. This divergence arises
because the behavior of the SIC algorithm at high loads is
influenced by factors beyond the stopping sets; specifically,
the SIC process can stall due to excessive traffic. An analytical
evaluation in the waterfall region for NOMA-IRSA can be
implemented assuming infinitely long frames, a scenario that
has been extensively documented in the literature, for example,
in [9]–[13].

In our second scenario, represented in Fig. 3, we plot the
packet loss rate as a function of the channel load for degree
distribution Λ1(x) = 0.50x2+0.50x3. This is done for differ-
ent levels of power L considered, with frame length n = 200
slots and target SINR of γ = 3dB. The aim of these results is
to compare our evaluation with the findings proposed in [18].
As expected, the packet loss rate improves as the number of
power levels increases. This is because the receiver can resolve
more collisions, thanks to a higher probability of encountering
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Fig. 3. Packet loss rate as a function of channel load for NOMA-IRSA with
n = 200 slots, Λ1(x), and different powers levels. Curves with represent
simulation results, dashed lines indicate the approximation given by (5), and
dotted lines shows results from literature in [18].
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Fig. 4. Packet loss rate against frame length for NOMA-IRSA at G = 0.80
[packets/slots], L = 3 power levels, for Λ1(x),Λ2(x), and Λ3(x). Curves
with markers represent simulation results, while dashed lines correspond to
the analytical approximation given in (5).

colliding replicas with different power levels. Note that there
is a trade-off between increasing the number of power levels,
which leads to higher energy consumption, and the system’s
performance. This balance requires a dedicated investigation.
The dashed lines represent the proposed approximation, which
remains accurate in the error floor region for any number
of power levels considered. Dotted lines are results where
only considers the stopping set S1 as proposed in [18]. It
can be observed that the approximation in [18] holds well
only for low channel loads and becomes less accurate as the
channel load increases to moderate levels. This is because, for
many degree distributions, as the number of transmitting users
increases, the probability of S2 and S3 occurring becomes
non-negligible. This plot demonstrates that, for any value of
L, the proposed analytical evaluation consistently outperforms
the performance of the existing approximation.

Finally, we further evaluate the proposed approximation for
different MAC frame lengths. In our last scenario we consider
Λ1(x),Λ2(x), and Λ3(x) for L = 3 power levels, target
SINR γ = 3, and fixed channel load G = 0.80 packets/slot.
As shown in Fig. 4, the approximation remains accurate for
every value of n slots considered in the frame and across all
IRSA distributions. Increasing the number of available slots



decreases the packet loss rate (PLR), as the probability of users
experiencing lock situations becomes lower.

V. CONCLUSIONS

In this work, the packet loss rate for NOMA-IRSA scheme
is evaluated, targeting IoT and mMTC applications with finite
frame length. A tight approximation of the PLR performance is
presented and validated through Monte-Carlo simulations. The
results demonstrate a perfect match for different degree distri-
butions, across different power levels and frame lengths. The
proposed analysis provide valuable insights for IoT network
design by offering a simple and fast computational evaluation
of the system’s performance.

Additionally, while previous studies focus on the waterfall
region of the NOMA-IRSA scheme, this work complements
them by providing the evaluation of the error floor.

APPENDIX

The evaluation of number of bins b̄ = b(µi, νi) for stopping
sets S1 and S2 is straightforward, as these cases are align with
the BiB problem. Recalling that, balls represent users, while
bins represent the possible combinations of slots where users
can place their replicas. When two balls land in the same bin,
it corresponds to users transmitting their replicas in the same
slots. In contrast, the interpretation of b̄ = b(µi, νi) for the
stopping set S3 is not applicable because the number of slots
involved in the stopping set (µi = 3) differs from the number
of slots where a user place their replicas (two).

To find a analog formulation to BiB for this case we empiri-
cally derive a solution by first determining the packet loss rate
given by users involved only in the scenario given by stopping
set S3 through simulations, i.e. PLR(S3, n). Simulations are
performed for different values of slots n for a fixed channel
load, e.g. G = 0.4 [packets/slot], and one power level L = 1.

Two key observations are fundamental to have an evalation
of b̄. First, from equation (4), we can express b̄2 as

b̄2 =
m̄2

2PLR(S3, n)
.

Second, simulation results revealed that the trend of b̄2 as a
function of n closely aligns with the behavior of

(
n
2

)
. Given

this trend, we hypothesize that

b̄2 =

(
n

2

)2
1

g(n)2
,

where g(x) is a linear function of the form g(x) = a0+a1x. To
proceed, we use a fitting function (e.g. in Matlab) to determine
the coefficients a0 and a1, allowing us to approximate the
relationship between b̄ and n. As a result, we obtain the values
a0 = −4 and a1 = 2, allowing us to write

b(µ2, ν2) = b̄ =

(
n

2

)
1√

2(n− 2)
.
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[15] M. . Moroğlu, H. M. Gürsu, F. Clazzer, and W. Kellerer, “Short frame
length approximation for IRSA,” IEEE Wireless Commun. Lett., vol. 9,
no. 11, pp. 1933–1936, 2020.

[16] M. Ivanov, F. Brännström, A. Graell i Amat, and P. Popovski, “Error
floor analysis of coded slotted ALOHA over packet erasure channels,”
IEEE Commun. Lett., vol. 19, no. 3, pp. 419–422, 2015.

[17] E. Paolini, “Finite length analysis of irregular repetition slotted aloha
(irsa) access protocols,” in 2015 IEEE International Conference on
Communication Workshop (ICCW), 2015, pp. 2115–2120.

[18] I. Hmedoush, C. Adjih, P. Mühlethaler, and V. Kumar, “On the per-
formance of irregular repetition slotted ALOHA with multiple packet
reception,” in Int. Wireless Commun. Mobile Comput. (IWCMC), 2020.

[19] N. Johnson and S. Kotz, Urns models and their application. New York:
Wiley, 1977.


