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Abstract: Transformer models have evolved as the state-of-the-art for computer vision tasks,
such as image classification and object detection. For sonar images, they recently have been
applied for classifying snippets of synthetic aperture sonar images. In this work, deep learning
models for object detection based on standard convolutional neural networks (CNN) and on
transformers are investigated and compared. The Retina-SWIN transformer model achieves a
true-positive rate of up to 99.5%. However, all investigated deep learning detectors suffer from
a high number of false alarms. Thus, the models are incorporated into two-step pipelines and
ensembles. With both setups the number of false alarms is reduced. However, the detection
ensembles show a lower true-positive rate than the two-step pipeline. The best overall model is
Retina-SWIN, which is trained for localisation of objects, combined with a custom CNN, which
classifies the extracted snippets. It reaches a maximum true-positive rate of 94.8% at 33.4 false
alarms, which is a reduction of over 80% compared to the baseline Retina-SWIN.
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1. INTRODUCTION

Being able to observe a scene under water is crucial for the security of maritime infrastruc-
tures. Due to physical limitations of optical systems, imaging sonar systems, such as sides-
can or synthetic aperture sonar, which utilise acoustic instead of electro-magnetic waves, are
commonly used to survey large seafloor areas. These sensors are typically mounted on an
autonomous underwater vehicle, which follows a predefined path to scan the requested area.
Analysing the captured data automatically is essential to increase the autonomy of a holis-
tic surveying system. Nowadays, deep learning methods like convolutional neural networks
(CNN) are primarily used for computer vision tasks relevant for the analysis of sonar images,
such as classification, detection and segmentation [1, 2, 3, 4]. Recently, vision transformers
have emerged as the state-of-the-art in many computer vision tasks and their application to the
classification of sonar images has been investigated as well [5, 6]. However, transformer-based
models for detecting objects in sonar images have not been analysed yet.

In this work, CNNs and transformer models are compared for the detection of objects in
sidescan sonar images. As representatives for the CNN methods one-stage as well as two-stage
detectors are selected. The transformer-based methods investigated here are Retina-SWIN [7]
and Deformable DETR (DDETR) [8], which use the attention mechanism in the network back-
bone or detection head, respectively. In addition, all detectors are used in two different two-step
pipelines, which further process predictions with another CNN to reduce the number of false
alarms [9]. Furthermore, the combination of multiple different object detectors into an ensem-
ble is studied. For classification, such ensembles of CNNs have shown to improve the overall
performance [1]. The results show that the transformer-based method Retina-SWIN can reach
a true-positive rate of 99.5% but at the cost of a high false alarm rate. Processing the detec-
tions with a CNN in the two-step pipeline significantly reduces the number of false alarms per
image but also negatively impacts the true-positive rate. The best trade-off is achieved with a
Retina-SWIN model, which is trained for localisation and a subsequent CNN for classification,
reaching a maximum true-positive rate of around 95% at slightly over 30 false alarms per im-
age. An ensemble of different object detectors can increase the detection performance but at
the cost of an increased number of false alarms.

The remainder of the paper is organised as follows. First, Section 2 provides a brief introduc-
tion into CNN- and transformer-based object detection. Afterwards, the experimental setup is
described in Section 3. In Section 4 the results of the experiments are presented and discussed.
Finally, the paper closes with a summary in Section 5.

2. BACKGROUND

2.1. CNN-BASED DETECTORS

Generally, CNN-based detectors can be divided into two categories: one-stage and two-stage
detectors. A two-stage detector, like CenterNet2 [10], predicts in the first stage a large number
of region of interests (ROI) and filters, classifies and refines these ROIs in the second stage. In
contrast to this, a one-stage detector, like YOLOv8 [11], directly predicts bounding boxes and
object classes from an input image without intermediate ROIs. This typically makes one-stage
detectors faster than two-stage detectors but also less accurate.



2.2. TRANSFORMER-BASED DETECTORS

A transformer is a deep learning architecture that has originated from natural language pro-
cessing and that translates an input sequence into an output sequence via an encoder-decoder
architecture and an attention mechanism [12]. The components of the attention mechanism are
a set of key-value pairs K ∈ RNk×Nl and V ∈ RNv×Nl as well as queries q ∈ RNk×1, where
Nl is the number of key-value pairs, e.g., the number of words in a sentence and Nk and Nv

are the number of features of the keys, queries and values, respectively. K, V, and q are real-
ized through a linear combination of the inputs to the attention module with learnable weight
matrices and the attention is calculated as

attention(K,V, q) = softmax

qTK√
Nk

VT. (1)

In computer vision models, this attention mechanism can either be used in the backbone of
the model, which learns to extract general features from the input image, or in the head of the
model, which performs the specific task based on these features, e.g., the prediction of bounding
boxes and object classes. In the backbone, in order to be applied to an image, the input is split
into patches, which form the input sequence of the encoder. The encoder applies the attention
mechanism and outputs learned image features. When used in the detection head, attention is
used in an encoder and decoder, where the encoder further transforms features from a backbone
model and the decoder maps an input query sequence into predictions using these features.

3. EXPERIMENTAL SETUP

3.1. SIDESCAN SONAR DATASET

To train the object detectors as well as the classification models for the two-step approach
sidescan sonar images from several sea trials are used [13, 9]. In these images objects from the
four classes Tire, Rock, Cylinder and Wreck were annotated with manually defined bounding
boxes tightly enclosing the object highlight and acoustic shadow. The detection dataset consists
of the whole sidescan sonar images as input and the bounding box coordinates and class labels
as target variables. For the classification dataset the snippets defined by the bounding boxes are
extracted from the sonar images. In addition, random background snippets are selected to form
a fifth Background class. The final classification dataset consists of the extracted snippets as
input and the class labels as the target variable.

Images from the classes Tire, Cylinder and Wreck are very limited. Thus, the training and
test split for both datasets is done such that these classes are roughly split 50:50. However,
multiple images of the same objects, e.g., from different viewing angels, exist in the dataset.
Thus, the data is split such that images from the same object are either in the training or test set.
Additionally, if multiple objects are in the same sidescan sonar image, their associated snippets
are all assigned to either the training or test set. This ensures that the same objects are used for
training and testing the detectors and the classifier. These restrictions result in the number of
samples in the training and test set for each class reported in Table 1.



Table 1: Overview about the datasets. Sidescan images are used for detection. Snippets from
the classes Tire, Rock, Cylinder, Wreck and Background are used for classification.

Number of
Dataset sidescan images tires rocks cylinders wrecks background
Training 769 24 2288 15 10 1390
Test 128 12 167 22 10 719

3.2. DETECTION PIPELINES

Besides the direct application of the deep learning detectors two additional pipelines previ-
ously introduced in [9] are used and shown in Figure 1. The purpose of these two-step pipeline
is to reduce the number of false alarms. In the first two-step approach the deep learning de-
tection models are used for pure localisation of the objects. To train these models all objects
are considered as one general class Target. The classification is carried out in the second step
by an additional CNN. In the second two-step pipeline the detections from the deep learning
models are filtered by another CNN. This classifies the extracted snippets either into Target
or Background. Detections whose corresponding snippets are classified as background will be
filtered.
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Figure 1: Two-step detection pipelines. (a) The detector is only used for localization (LOC)
while a CNN classifies the extracted snippets in a subsequent step (CLS). (c) The
detector (DET) predicts bounding boxes and object classes and another CNN carries
out a binary classification (FLT) to reduce the number of false alarms by filtering
background snippets.

In this study, the deep learning models YOLOv3 [14], YOLOv8 [11], CenterNet2 [10],
Retina-SWIN [7] and DDETR [8] are considered. The models are initialized with pre-trained
weights based on the MS COCO dataset. They are trained on the sonar data with their stan-
dard configuration using the MMDetection toolbox [15]. All models are trained for 100 epochs
except Retina-SWIN which is trained for only 5 epochs to prevent performance degradation.
As classification and filtering networks the same shallow architecture with three convolutional
layers and training parameter as in [9] is used.



3.3. DETECTOR ENSEMBLING

Combining the output of multiple models into one ensemble for a final decision has shown to
be beneficial for sonar image classification [1]. In this work an ensemble is build by combining
the output of multiple different detectors. Based on the previous sections we consider three
types of ensembles DET, LOC+CLS and DET+FLT, meaning that only outputs from within
one detection pipeline are combined. In addition, the detections of the DET ensemble after
ensembling are filtered with the CNN used in the filtering step of the DET+FLT pipeline. The
combination of the individual predictions of themodels in an ensemble is based on the number of
detectors that predict the same object class at a similar position. Two detections are considered
to belong to the same object if the predicted class matches and the intersection over union (IoU)
of the bounding boxes exceeds a value of 0.5. If a pre-defined number of models ndet detects
the same object it is counted as a detection of the ensemble. For the final prediction of the
ensemble the bounding box with the highest prediction score is considered.

4. RESULTS

The detection performance in all setups is compared based on receiver operating characteris-
tic (ROC)-like curves. In contrast to standard ROC curves for classification performances, here
the average number of false alarms per image is given on the abscissa. In addition to the IoU,
the pixel-wise Euclidean distance d between the center pixel of the true and predicted bounding
box is considered to determine true-positive detections. Figure 2 displays the ROC-like curves
of the five models for the three detection pipelines. As expected the two-step pipelines pro-
duce less false alarms but also reduce the number true-positive detections. Based on the IoU
for determining true-positives, DDETR shows the worst performance of the five deep learning
detectors. The performance is better if d is considered, which shows that the shape of the bound-
ing boxes predicted by DDETR does not match the true ones. This is also the reason for the
bad performance of DDETR in the DET+FLT pipeline, where snippets are extracted from the
sonar image and feed to the filtering CNN based on the predicted bounding boxes. With badly
defined bounding boxes parts of the object are missing in the snippet which leads to a wrong
classification result. Retina-SWIN shows the best performance in this comparison achieving a
maximum true-positive rate of 99.5%.

For a further quantitative analysis, Table 2 lists the maximum true-positive rate TPRmax,
the false alarm rate corresponding to this value as well as the false alarm rate for true-positive
rates of 0.9 and 0.5 of the individual detectors and pipelines. The deep learning model trained
for localisation in the LOC+CLS pipeline is indicated with an -L. The CNN-based models show
a higher TPRmax in the DET+FLT pipeline while the both transformer-based models perform
better in the LOC+CLS setup. Retina-SWIN for localization and the CNN for classification
achieves the best trade-off of a high TPR and a low number of false alarms with a TPRmax of
94.8% and 33.4 false alarms per image. If a low false alarm rate is preferable over a high TPR,
YOLOv8 for localization and the CNN for classification gives the best result with only 0.45
false alarms per image at a TPR of 50%.

With the five deep learning models available, five different ensembles E1-E5 are investi-
gated by successively combining more detectors. Based on their individual performance in the
previous analysis, starting with only Retina-SWIN in E1, YOLOv3, YOLOv8, CenterNet2 and
DDETR are subsequently added to form E2-E5. Figure 3 shows the performance metrics ex-
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Figure 2: ROC-like curves of the detectors with (a) IoU=0.5 and (b) d=10 px.

tracted from the ROC-like curves for the ensembles. For each ensemble the minimum number
of detectors that have to predict a specific detection in order to count as a detection of the en-
semble ndet is varied from one to four. For example, with E3 and ndet = 2 at least two models
of Retina-SWIN, YOLOv3 and YOLOv8 have to predict an object of the same class at the same
position to generate a detection of this ensemble. The ROC-like curves with d = 10 px are used
to extract the metrics in Figure 3. However, the plot for IoU=0.5 show the same behaviour.
Figure 3 additionally shows the performance metrics of Retina-SWIN-L+CNN as a reference.

Increasing ndet reduces the maximum true-positive rate but also the number of false alarms.
Enlarging the ensemble set while keeping ndet fixed increases the maximum true-positive rate
but also the number of false alarms. Since Retina-SWIN already has a high TPRmax, increas-
ing the set of models to form the ensemble while counting a detection if only one model outputs
a prediction only increases the number of false alarms. An additional filtering of the detections
from the ensemble slightly reduces the TPRmax but also drastically the number of false alarms.
Creating ensembles from the LOC+CLS detection pipeline leads to a worse performance com-
pared to the Retina-SWIN-L+CNN baseline. The number of false alarms can be reduced in
this ensemble from 33.4 to 6.3 but the TPRmax drops below 75%. The same behaviour can
be seen for the DET+FLT pipeline. However, here the best TPRmax for an ensemble with at
least two matched detections is 78.2% at a false alarm rate of 13. Compared to the baseline,
no ensemble configuration can increase the maximum true-positive rate and at the same time
reduce the number of false alarms. The best ensemble is E3 with the DET+FLT pipeline and
ndet = 3 which achieves a TPRmax of 87.7% at 31.4 false alarms per image.

5. SUMMARY

This work has compared CNN- and transformer-based models for object detection in sides-
can sonar images. Retina-SWIN, which uses the attention mechanism in the backbone model to
extract general features, achieves the highest true-positive rate of 99.5%. A two-step detection
pipeline in which the detector is trained for localization only and the classification is carried
out by an additional CNN significantly reduced the number of false alarms per image from 178
to 33 while keeping a high maximum true-positive rate of 94.8%. Furthermore, ensembles of
the detectors are constructed by combining the predictions of different models. These ensem-



Method TPRmax
False alarms

@ TPRmax @ TPR=0.9 @ TPR=0.5
YOLOv3 0.967 192.016 163.891 29.698
YOLOv8 0.910 193.837 187.651 4.636
CenterNet2 0.886 122.450 - 2.504
DDETR 0.877 133.961 - 5.860
Retina-SWIN 0.995 178.295 103.504 21.643
YOLOv3-L+CNN 0.839 12.884 - 2.240
YOLOv8-L+CNN 0.872 45.636 - 0.450
CenterNet2-L+CNN 0.773 14.674 - 1.519
DDETR-L+CNN 0.687 13.054 - 1.589
Retina-SWIN-L+CNN 0.948 33.403 27.876 2.550
YOLOv3+CNN 0.934 56.411 52.860 17.767
YOLOv8+CNN 0.900 53.295 53.295 1.264
CenterNet2+CNN 0.791 42.860 - 2.085
DDETR+CNN 0.114 19.899 - -
Retina-SWIN+CNN 0.900 55.000 55.000 13.953

Table 2: Maximum true-positive rate and number of false alarms for the detection methods with
d=10 px. Best values marked in bold.
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Figure 3: Maximum true-positive rate and number of false alarms of the ensembles with
d=10 px. Ensembles are based on the detection pipeline (a) DET, (b) DET with a
filtering after ensembeling, (c) LOC+CLS and (e) DET+FLT. Note that the y-axis
scale in the right sub-figure in (a) differs from the others.

bles can also reduce the number of false alarms but reduces the maximum true-positive rate too
much. The best ensemble combines detections from Retina-SWIN, YOLOv3 and YOLOv8 and
achieves a maximum true-positive rate of 87.7% and reduces the false alarms to 31.



REFERENCES

[1] D. P. Williams: “Demystifying Deep Convolutional Neural Networks for Sonar Image
Classification” inProceedings of the 4thUnderwater Acoustics Conference and Exhibition
(UACE), (Skiathos, 2017).

[2] L. Li, Y. Li, C. Yue, G. Xu, H. Wang, X. Feng: “Real-time underwater target detection
for AUV using side scan sonar images based on deep learning”, Applied Ocean Research
138, (2023).

[3] I. D. Gerg, V. Monga: “Deep Multi-Look Sequence Processing for Synthetic Aperture
Sonar Image Segmentation”, IEEE Transactions on Geoscience and Remote Sensing 61,
(2023).

[4] Y. Steiniger, D. Kraus, T. Meisen: “Survey on deep learning based computer vision for
sonar imagery”, Engineering Applications of Artificial Intelligence 114, (2022).

[5] B. W. Sheffield, J. Ellen, B. Witmore: “On vision transformers for classification tasks in
side-scan sonar imagery” in International Conference on Synthetic Aperture Sonar and
Synthetic Aperture Radar 2023 (Lerici, 2023).

[6] N. Waraiagoda, Ø. Midtgaard: “Vision Transformers for Sonar Image Classifaction” in
International Conference on Underwater Acoustics 2024 (Bath, 2024).

[7] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo: “Swin transformer:
Hierarchical vision transformer using shifted windows” in 2021 IEEE/CVF International
Conference on Computer Vision (virtual, 2021).

[8] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, J. Dai: “Deformable DETR: Deformable Trans-
formers for End-to-End Object Detection” in 9th International Conference on Learning
Representations (ICLR) (virtual, 2021).

[9] Y. Steiniger, J. Stoppe, D. Kraus, T.Meisen: “On the detection and classification of objects
in scarce sidescan sonar image dataset with deep learning methods” in 7th Underwater
Acoustic Conference and Exhibition (UACE) (Kalamata, 2023).

[10] X. Zhou, V. Koltun, P. Krähenbühl: “Probabilistic two-stage detection”,
arXiv:2103.07461, 2018, [online] Available: https://arxiv.org/abs/2103.07461.

[11] G. Jocher, A. Chaurasia, J. Qiu: “YOLO by Ultralytics” (8.0.0), 2023, [Software]
https://github.com/ultralytics/ultralytics.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I.
Polosukhin: “Attention Is All You Need” in Advances in Neural Information Processing
Systems 30 (Long Beach, 2017).

[13] Y. Steiniger, J. Groen, J. Stoppe, D. Kraus, T. Meisen: “A study on modern deep learning
detection algorithms for automatic target recognition in sidescan sonar images”, in 6th
Underwater Acoustics Conference and Exhibition (virtual, 2021).

[14] J. Redmon, A. Farhadi: “YOLOv3: An Incremental Improvement”, arXiv:1804.02767,
2018, [online] Available: https://arxiv.org/abs/1804.02767.

[15] K. Chen et al.: “MMDetection”, arXiv:1906.07155, 2019, [online] Available:
https://arxiv.org/abs/1906.07155.


