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Abstract

The operation of microgravity research missions, such as sounding rockets, CubeSats, and
small landers, typically relies on proprietary mission control infrastructures, which limit re-
producibility, portability, and interdisciplinary use. In this work, we present an open-source
blueprint for a distributed ground-segment architecture designed to support telemetry,
telecommand, and mission operations across institutional and geographic boundaries. The
system integrates containerized services, broker bridging for publish-subscribe communi-
cation, CCSDS-compliant telemetry and telecommand handling, and secure virtual private
networks with two-factor authentication. A modular mission control system based on
Yamcs was extended with custom plug-ins for CRC verification, packet reassembly, and
command sequencing. The platform was validated during the MAPHEUS-10 sounding
rocket mission, where it enabled uninterrupted remote commanding between Sweden and
Germany and achieved end-to-end command-response latencies of ~550 ms under flight
conditions. To the best of our knowledge, this represents the first open-source ground-
segment framework deployed in a space mission. By combining elements from computer
science, aerospace engineering, and systems engineering, this work demonstrates how in-
terdisciplinary integration enables resilient, reproducible, and portable mission operations.
The blueprint offers a practical foundation for future interdisciplinary research missions,
extending beyond sounding rockets to CubeSats, ISS experiments, and planetary landers.
This study is part two of a three-part series describing the apex Mk.2/Mk.3 experiments,
open-source ground segment, and service module simulator.

Keywords: commercial off-the-shelf; mission control systems; ground segment; open
source; CCSDS; sounding rockets

1. Introduction

“It’s rocket science!”—the idiom to label something inherently difficult—might be a
bit clichéd; however, it still bears a lot of wisdom about the inner workings of the aerospace
industry. Space is hard, so many specialists are needed to land a probe on an asteroid, for
example. These specialists, working in their narrow fields, design harnesses, on-board
computers, power sources, and thermal solutions, all with the same goal: to create a small
package that fulfills all the requirements to successfully deliver and execute an experiment
at a certain location and send back its findings. To allow for such a puzzle to be completed
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in the first place, everyone needs to follow the same rules; otherwise, the multitude of
complex parts will not fit together. Such rules are also known as standards and are the
backbone of every major space project; for example, the Consultative Committee for Space
Data Systems (CCSDS) has standards for all kinds of data formats (e.g., space packets [1]).

One subset of these challenges includes the remote control and monitoring of an exper-
iment or complete spacecraft in flight, which is usually achieved using a monitoring and
control system [2] or a mission control system (MCS). In the two standard scenarios shown
in Figure 1, we can see the difference between controlling the experiment in flight or on the
ground, as differentiated by the ground segments and hardware present. Nevertheless, the
same basic principles apply: the experiment generates some type of data (e.g., temperature
values), which are transmitted to the operator in the form of telemetry (TM) data. In return,
the human operator can control elements within the experiment (e.g., a heater) in the
form of telecommand (TC) instructions. As bandwidth for data transfer from space to the
ground and back is limited, using American Standard Code for Information Interchange
(ASCII) encoding, for example, to show data or commands as normal text strings would
be detrimental. Instead, a space-efficient binary representation is chosen as the preferred
space packet standard [1]. This is where the necessity of an MCS becomes apparent—the
MCS server uses a Mission Database (MDB) to translate the space packet representation
into human-readable values in a process called calibration. Alongside this functionality,
MCS servers also archive all TM data received in calibrated and raw (uncalibrated) form,
generate TCs, keep a command history, generate alarms if defined limits are violated
(e.g., excessively high temperature), and expose interfaces to allow external systems to be
connected for data evaluation and science support. Still, the operators normally do not use
the MCS server directly but interface with it through a tool called the MCS client. The MCS
client allows for the generation of synoptic displays, which are customized interfaces that
show the calibrated TM data in an organized fashion and allow personnel to react quickly
using prepared TCs.

Operation in flight scenario

Experiment,
Spacesystem, e.g. apex
e.g. Service Module of a sounding rocket

Flight Segment

mcs ¥
MDB

P

MCS Server

egment

MCS Client LRRRL

i . Experiment,
Service Module Simulator e.g. apex”

(Simulating groundstation and service module)

LAB Segment
Ground Segment
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Figure 1. Basic ground segments for flight and ground scenarios.
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Clearly, an MCS is an important backbone of space operations and, fortunately, is
backed by standards.

And while these standards are built and utilized to perfection, the instrumenta-
tion of these in certain areas—e.g., ground segments, testing facilities, and development
centers—is implemented in a myriad of ways by every single actor, especially when it
comes to MCS. Be it the National Aeronautics and Space Administration (NASA) with the
Telescience Resource Kit (TReK), the International Space Station (ISS) Columbus with the
Columbus Distributed Mission Control System (CD-MCS), or the Microgravity User Sup-
port Center (MUSC) with SpaceMaster—all of which process CCSDS-compliant TM/TC
data—all are vendor-locked-in, proprietary, protected, and closed-source solutions. In some
cases, users of these solutions have no access to the underlying source code and are unable
to verify the validity of the algorithms and scientific output except through black-box
testing. Consequently, these users also lose the ability to improve their own products,
and any new projects or changes in mission parameters warrant additional expensive
contracts to make the needed modifications, in addition to the efforts required to keep the
software working on modern or changing operating systems, to apply security patches
to used libraries, and to manage the risk of a vendor declaring bankruptcy. The high cost
of ownership, upkeep, and the complexity of such solutions also disqualify their use for
small applications, e.g., sounding rockets, experimental rovers, or CubeSat missions. These
drawbacks sometimes drive development engineers of smaller missions to ditch standards,
robustness, and bandwidth efficiency altogether in exchange for a quick data-interface
implementation with tools like National Instruments LabVIEW.

For these reasons and many more, the European Space Agency (ESA) encourages the
use of open-source software whenever possible to circumvent vendor lock-in, empowering
all member states with powerful tools and enabling faster integration of newer space
standards [3].

Alongside this open-source policy, the ESA has started to support the implementation
and rollout of the open-source MCS Yamcs [4], developed by Space Applications Services
(SAS) for use in the ISS project [5,6]. NASA has also taken notice of the software and
mentioned it in its 2025 “State-of-the-Art Small Spacecraft Technology” report [7] as having
a Technology Readiness Level (TRL) of 9. NASA also employed it as the MCS for its
Commercial Lunar Payload Services (CLPS) program, e.g., with Astrobotic’s Peregrine
moon lander [8] in 2024, and has planned its use with the NASA VIPER rover [9].

Some proprietary mission control systems (e.g., CD-MCS) are closed source and tied to
institutional infrastructure. In contrast, our blueprint offers open-source licensing, modular
deployment, and portable mission control components. This reduces vendor lock-in and
lowers barriers for small missions.

Following the example of NASA and the ESA and emphasizing the importance of open-
source software, the use of standards, and transparency, Yamcs was chosen as the main
MCS for this study. While a direct comparison of Yamcs and the other MCSs mentioned
above would be interesting, it was not included, as it would not only exceed the scope of
this document but also prove difficult, as public documentation and citation of those tools
pose their own legal challenges. Furthermore, the drawbacks of closed-source software
have already been discussed, demonstrating that the use of these tools is unlikely to be
future-proof.

This study describes the implementation of a secure, open-source mission control
center and ground segment. It focuses on the ground segment for the second-generation ad-
vanced processors, encryption, and security experiment (apex) Mk.2/Mk.3 payloads, flown
aboard the Material Physics Experiments Under Microgravity (MAPHEUS)-10 sounding
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rocket [10] on 12 December 2021 from the Swedish Space Corporation (S5C) Esrange facility
in Kiruna, Sweden.

The blueprint showcases the first open-source ground segment validated in a sound-
ing rocket mission, including CCSDS-compliant TM and TC pipelines, containerized de-
ployment of all subsystems, secure multi-site operation, and portable mission control on
commodity hardware. This study will also discuss how this system can be retrofitted for
use in other experiment types and mission profiles.

Remark: This study is part two of a three-part series describing the apex Mk.2/Mk.3
experiments [11], open-source ground segment, and service module simulator [12].

2. Materials and Methods
2.1. Querview

Prior to discussing implementation details, we provide a generalized overview of the
concepts and objectives. The most important requirement for the new ground segment was
to increase flexibility without compromising security. This is especially important due to
the necessity of including remote commanding capabilities as a core component and not an
afterthought. The system is designed with a wide range of flexibility, from easy integration
of new capabilities to offloading all components onto a single laptop functioning as a
mobile control center. The key reason for allowing such flexibility is to reduce the rigid
communication structures between the different components in exchange for a broker-
based message-queue approach. This system serves as a communication pipeline between
all subsystems, allowing the MCS to receive data even from remote locations. A message
queue can be thought of as a bundle of message channels. Each channel has its own name
(topic) and can contain one piece of information (message) at a time. Systems can listen
(subscribe) to one or multiple topics and receive any new message entered into a named
channel by other systems called publishers. For example, the temperature sensor of a
weather station could publish its value to the topic “sensors/roof/temperature”, and a remote-
control unit could subscribe to this topic and receive the value for display. The last piece
within the message-queue setup is the broker: the server provides the overall message-
queue service to all the different clients as a connection endpoint, encrypts communications,
authenticates users, and enforces that subscription or publishing is only allowed to the
correct clients and with their associated topics. With this information in mind, a generalized
setup would foresee TM data being fed into an incoming telemetry queue, which different
services subscribe to; e.g., packet decoders would receive the latest TM data, process it,
and publish it to another queue for additional preprocessing. Then, the last subscriber
would be the MCS, which receives, calibrates, and displays the data. As topics can be
generated on the fly, adding or removing new services can also be done during operations
without downtime. It also allows changing routing/data flow by changing topics for
subscription and publishing within the services. Each client also communicates with the
broker via encrypted channels and can choose to use a username/password or a more
secure public/private-key scheme for authentication.

While this improves information flow and security, it still lacks the vision of how to
span the single system to a multi-site ground segment (breaking up the rigid communi-
cation structures). While it is possible to host the broker at the leading site and have all
other clients/services connect to it, this also means that those remote services will not
be able to communicate with each other should the connection to the broker drop. It
would also necessitate new firewall rules for each new service added, which would slow
down the implementation of new features while also increasing the attack surface. This is
where bridges come into play: multiple brokers, each installed at their site, can choose to
bridge parts of the topics to other brokers. As bridging works transparently, the overall
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message-queue system can be set up for testing on one machine, including all TM ingests
and TC receivers, preprocessing services, and MCS endpoints. This approach can then
later move the first services to their own physical broker at the launch site, which then
bridges the data flow to the home control center via a single broker-to-broker communi-
cation link—no matter the number of added services. All communications between both
brokers are encrypted, and the systems can be configured to cache or temporarily store
all incoming data if it cannot be forwarded to the bridge partner. With that, an automatic
retransmission is carried out as soon as connectivity is restored, preventing any data loss.
Also, if connectivity to the remote site is lost, e.g., due to an internet outage, locally running
services connected to the local broker will still retain their functionality. In this instance,
Mosquitto (Eclipse Foundation, Brussels, Belgium) is used, an open-source implementation
of the Message-Queueing Telemetry Transport (MQTT) standard supported by the Eclipse
Foundation. It was chosen due to its security, performance, minimal resource requirements,
and included features, as benchmarked against other message queues in a prior master’s
thesis [13]. For the apex experiments in the MAPHEUS-10 campaign, brokers were installed
at the launch site for both the flight (OPS) and the laboratory (LAB) setups. These brokers
transmitted and received TM and TC messages from the ground antenna to the broker at
the ground segment in the MUSC, where they were processed at the MCS. In addition to
OPS and LAB TM and TC, control messages and data for the service module simulator
(Test Support Equipment (TSE) stream) within the LAB, along with the countdown clock,
were transferred using MQTT. The countdown clock implementation came in two varieties.
Within the OPS environment, the existing SSC countdown clock was captured and sent
to the MUSC to be included in the MCS as a time reference. For the LAB environment,
a synthetic countdown clock was simulated according to the SSC standard to allow for
more complex flight simulations and reference experiments executed by the service module
simulator. For a better overview of the segments and systems used, see Figure 2.

In addition to the data transferred via MQTT, legacy Internet Protocol (IP)-based
data communication also took place. This included, foremost, video data from a self-
built weather camera as well as OPS and LAB videos from the apex Mk.2 microscope.
Additionally, scientists, as well as operators, needed to be connected to the MCS at the
MUSC to allow for remote commanding within OPS and LAB contexts, unless they were
using the mentioned mobile control center.

Regarding the MQTT data services, most were written in Python 3 to strike a balance
between performance, ease of development, and flexibility in terms of the hardware
platform used. These services were then deployed in the form of Docker (Docker Inc., Palo
Alto, CA, USA) containers and implemented with automatic service restoration in case
of issues.

All communication channels (MQTT, video, MCS) were provided through the use
of a two-factor-authentication (2FA)-secured virtual private network (VPN) service as an
additional layer of security.

This VPN service, hosted at the MUSC at the German Aerospace Center (DLR) in
Cologne, also served as the central communication endpoint.

All systems mentioned later in this study (the MAPHEUS service module simulator in
the LAB segment and the apex-node, apex-video, and remote consoles in the OPS segment)
at the SSC directly connect with their own VPN clients through the Ethernet-connected,
provided hardware firewall and internet connection to the VPN endpoint at the MUSC at
DLR. All other defined connections, e.g., MQTT broker communication, video, or direct
MCS access, are transported via this virtual, secure network. This secure endpoint also
allows remote OPS connections via the internet to connect to the mission control center
(MCC) and establish secure remote commanding capabilities. This can be done either with
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an OpenVPN-enabled (OpenVPN Inc., Pleasanton, CA, USA) and provisioned client or by
using the mobile control center.
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Figure 2. Ground-segment architecture of apex.
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In case of a complete internet outage or issues at the MCC, the mobile control center
can also replace the MCC with a local backup to allow all operations to take place at the
SSC without the need for an internet connection. During these outages, the mobile control
center can also provide a VPN server interface to allow external scientists to connect to the
apex payloads, making the MCC redundant.

With the key communication guidelines outlined, we now examine the specific systems
in the operations and laboratory contexts and, later on, the mission control center, where
all systems are terminated, data is computed, and remote access capabilities are provided.

2.2. OPS Segment

Within the operations segment, data is received and transmitted to the payload in
flight. This is done via multiple antennas as well as specialized ground equipment to
control the rocket, its flight parameters, and the downlink and upload of parameters
needed to support science operations. As such, a scientific data network (ScienceNet) exists
to provide all the services needed by scientists to conduct experiments. ScienceNet provides
an interface between rocket and payload operations in the form of two User Datagram
Protocol (UDP) ports, exposing the TM and TC links to the individual experiments onboard
the rocket. An additional stream is the network broadcast of the countdown clock, allowing
ground stations to synchronize their operations to the mission time and view the current
status and holds. In addition to these network links, an analog video link via a Bayonet
Neill-Concelman (BNC) cable carries the analog Phase-Alternating Line (PAL) video format
of the experiment downlink, if needed by the experiment. The control station can be seen

in Figure 3, with more detailed communication services shown in Figure 4.

Figure 3. OPS segment at the SSC Esrange in Kiruna: (left) laptop and monitor used with the MCS;
(right) laptop and monitor used for live video streaming, social media, and general notes. Between
the monitors are the firewall, apex-node, and apex-video. The remote science console is not shown.

To allow remote control of these links, the data exposed here needs to be forwarded to
the MCC. This is done via two Raspberry Pi (RPi) 4 (Raspberry Pi Foundation, Cambridge,
UK) single-board computers: one has two network interfaces and is connected to ScienceNet
and the MCC via a VPN and an additional firewall, and the other provides a video grabber
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that converts the analog video signal into digital data and streams it to the MCC via a VPN
and an additional firewall.

apex-node (RPi 4) \ ( Hardware
Firewall

OpenVPN

Docker

Tc udp_tc_ops.py
MQTT Broker

H(UDP) Receive TC from MQTT,
forward to ScienceNet
connecting
udp tm_fsm_ops.py 1.) via OpenVPN to
(UDP) Receive TM from ScienceNet, MCC
forward to MQTT 2.) via direct
connection to mobile
I ssc_rtc_multicast. I mMcc
Clock Receive Countdown Er):)m J

1 6

(UDP)

SclenceNet forward to MQTT

mobile MCC
\ _/  viadirect connection

f apex-video (RPi 4) Hardware
f Firewall
Vide OBS Studio RTMP——————>|
__BNCPAL Video Video handllng -manual reconfiguration - -, |OPeNVPN
(Video) Grabber needed

Groundstation

1B

mobile MCC
via direct connection

Figure 4. Detailed overview of selected data communications in the OPS segment. The mobile MCC
is detailed in Section 2.4.

Looking at the system for data handling, referred to as the apex-node, this system
runs Debian and a local Mosquitto broker that connects to the main broker within the MCC.
There are multiple services running on this node, all programmed in Python and run as
Docker containers to allow for quick restarts in case of issues and provide greater flexibility.

The first set of services considers the TM/TC handling. Incoming raw TM packets are
received by the CCSDS space packet Finite State Machine (FSM). Because all payload TM
data is forwarded by the MAPHEUS service module to the ground via a protocol-agnostic
serial multiplexer, it is common for TM packets to be fragmented and arrive as data chunks
on the ground. The FSM receives these chunks, reassembles them into correct CCSDS space
packets, and validates their integrity via a Cyclic Redundancy Check (CRC). Then, the
reconstructed packets are transmitted to the local Mosquitto broker, which is bridged via a
firewall and a VPN to the main broker at the MCC.

In parallel to the TM handling, there is a second service that receives TCs from the
MCC via the reverse connection, transforms them into UDP packets, and transmits them to
the correct receiver in ScienceNet for uploading to the rocket in flight.

The last data service is the countdown clock receiver, which, in this case, receives the
countdown clock provided by the SSC, parses its data, and transmits it in the same way as
the TM data to the MCC for use in the MCS.

As the bridging between the brokers works transparently, it is also possible to con-
nect a local copy of the MCC to the apex-node to maintain operations during lights-out
scenarios where connectivity to the real MCC at the MUSC is lost. This approach enhances
operational resiliency.

The analog video is converted via the second RPi and is referred to as apex-video.
This system runs Debian and uses Open Broadcaster Software (OBS) Studio to convert the
analog video to a digital video stream that is forwarded via a firewall and a VPN to the
MCC as a directed data stream using the Real-Time Messaging Protocol (RTMP).

2.3. LAB Segment

The laboratory segment (see Figure 5, with more detailed communication services
shown in Figure 6) allows the payload to work without the service module and can be used
for checkout, testing procedures, and ground experiments. This is done via the MAPHEUS



Eng 2025, 6, 246

9of21

service module simulator (MSMS), which simulates power, signals, and TM/TC capabilities
for experiments. The MSMS consists of a hardware simulator, an RPi 4, and a video grabber.
The RPi 4 runs Debian, uses Docker for its services, and connects via its own Mosquitto
broker, firewall, and VPN to the MCC. All data transferred is designated to its own MQTT
topics to allow the MCS to distinguish data from flight and laboratory segments. This
applies to both the payload TM/TC and the MSMS control messages (TSE stream), which
allow remote control of the simulator through the MCS, as well as the reading of system
telemetry, such as payload power consumption or potential errors.

Figure 5. LAB segment at the SSC Esrange in Kiruna: The payload and monitor are in the center.
The MAPHEUS service module simulator and remote Yamcs console are located to the left but are
not shown.

RPi 4 Hardware
Firewall
L vide OBS Studio
. ) . RTMI
BNC PAL Video ‘ Video handling

[ (video) | Grabber

\ J Docker

udp_tc_lab.py

Receive TC from MQTT,
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IAPHEUS f.‘onnecting
Service udp_tm_fsm_lab.py 1.) via OpenVPN to

Module Receive TM from Payload, MCC
Simulator forward to MQTT 2) via direct .
connection to mobile

‘Q)
Power Signal tse_tm_tc_recv.py MccC
[€ Power TSE communication
Control | between MSMS and MQTT
\ J mobile MCC

l€«—Signals—

via direct connection

Figure 6. Detailed overview of selected data communications in the LAB segment.

The system also includes a countdown clock simulator and an additional network
interface that mimics ScienceNet for a specialized checkout of the apex-node and MCC.
Within this checkout mode, the MSMS can simulate the complete signal chain between
the payload and endpoint in the ScienceNet/apex-node and becomes indistinguishable
from the real setup. To create a flight-like simulation, TM/TC data can also be synthetically
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malformed or fragmented in the same way the service module does during flight, along
with the use of a video grabber to simulate the video downlink.

Since the MSMS is described in a dedicated study [12], it is not described here. Please
note that the MSMS employed here was part of the second-generation apex family. The
MSMS has since been improved as part of its third-generation upgrades and is now known
as the multiple service module simulator, emphasizing its ability to simulate not only
MAPHEUS but also the Rocket Experiments for University Students (REXUS), Astrobotic
Peregrine, and SSC Orbital Express service modules. The MSMSv3 has also been integrated
into the Multi-Role Mission Support System (MRMSS), which allows it to function as a
mobile control center.

2.4. Mission Control Center

The mission control center at DLR in Cologne, MUSC, hosts the different systems
needed to calibrate, visualize, and control payload data (see Figure 7, with more detailed
communication services shown in Figure 8). Although hosted in this center, it can also be
offloaded onto a single laptop for independent use in the field. Scientists can also use the
MCC via a VPN to control experiments remotely if local attendance is not possible or if
additional experts need to be given command capabilities in contingency operations.

Connectivity to internal services is provided by a firewall system via a 2FA-secured
VPN. After this connection has been successfully established, different virtual machines
(VMs) become available.

The apex-head system is the main server VM of the network, running Debian, Docker,
the main Mosquitto broker, and an RTMP proxy-enabled nginx instance. All systems from
the OPS and LAB segments deliver their data to the apex-head either via the broker or, in
the case of video, via an RTMP stream to the nginx instance.

Depending on the type of data delivered to the broker, different services are used to
forward it to their target systems. TM/TC data is subjected to a TM and TC flight recorder
for central archiving. The data is then forwarded (TM) or received (TC) to/from MCSs via
UDP network sockets. Countdown clock data is calibrated and directly injected into the
Yamcs MCS via its Python API in the same way that the TSE stream to and from the MSMS
is handled.

Video data arriving at the nginx instance can be individually recorded for archiving.
The nginx instance also routes video to different systems and other VMs, e.g., apex-obs.

Regarding the MCSs used, apex employed two different solutions. As part of the
open-source ground segment, Yamcs by SAS was used, which was extended for testing
purposes by the closed-source solution SpaceMaster by SEA Datentechnik Troisdorf. Both
systems were implemented independently of each other, shared the same MDB, received
the same TM data, and could command via the apex-head.

The SpaceMaster server in this scenario was installed on the apex-spama VM, running
Debian. As already described, it received data and sent commands through its own
network sockets on the apex-head system. The client components were located in the
MUSC control room in the form of a Windows computer running the SpaceMaster client.
As SpaceMaster is closed-source software, it is not part of the described open-source ground
segment; however, it is mentioned here because it was used during operations to validate
SpaceMaster TC components and capabilities for small-scale missions.

The primary MCS, Yamcs, was installed on the Debian-backed apex-yamcs VM.
TM/TC connectivity was accomplished via the apex-head using the same method as
with SpaceMaster. Specialized subsystem data, like the countdown clock or the MSMS,
were introduced via the apex-head and then ingested using the Yamcs Python API to allow
for seamless integration. Yamcs supports the use of different server instances, allowing the
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separation of data from different environments, such as OPS and LAB data. Due to the
direct integration of the countdown clock and automated commanding within Yamcs in
reaction to observed parameters, it enabled fully automated tests and flight simulations
within the LAB environment. Real-time command and control during flight were achieved
using the Yamcs Studio desktop client installed on the laptop within the SSC Kiruna control
room/OPS segment, which was connected via a firewall and a VPN.

CONTROI
CENTER

Figure 7. MUSC mission control center at DLR in Cologne. The local laptop serves as a redundant
system to allow direct control of the payload from the MCC; apex is located at the center front console.
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Figure 8. Detailed overview of selected data communications in the MCC.

As Yamcs itself is protocol-agnostic, a small plugin was written to allow the server to
correctly identify timestamps and compute the CRC checksum of the employed CCSDS
space packets [1] for the TM data, as well as include TC sequence counters and compute
CRC checksums for the outgoing TC space packets to Mk.2/Mk.3.

The implementation of the apex MDB was done in XML Telemetric and Command
Exchange (XTCE) format, since it is another recommended CCSDS standard [14] and is
natively supported by Yamcs.

An additional method for visualizing TM data was implemented by the apex-yamcs-
grafana, a Debian VM that provided the visualization framework Grafana. This framework
was directly connected to apex-yamcs to allow graphing of all required data during OPS and
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LAB checkouts using the SAS-provided Grafana (Grafana Labs, New York, NY, USA) Yamcs
plugin. These visualizations also proved extremely useful for the Go/NoGo decisions
during the challenging MAPHEUS-10 campaign, as discussed in the first study [11].

With the routing of TM/TC data covered, we now examine video data distribution. In
addition to the live video provided from the apex-video system in the OPS environment,
there was also the apex-yamcs-display VM. This Ubuntu VM ran the Yamcs Studio desktop
client and ffmpeg to produce a video stream of the visualized payload TM and synoptic
displays. The video data was sent to the apex-head to be received and retransmitted by
another system, the apex-obs.

The apex-obs, also operating on Ubuntu, was a physical machine with a dedicated
graphics card located in the MUSC and running OBS Studio (OBS Project, open-source
software) . With this software, it was possible to generate a complex video-mixer studio
setup that enabled processing multiple sources, including pregenerated presentation slides,
real-time information, short-text updates, different video channels (e.g., live video and
Yamcs Studio displays), and music into a single video stream, which was then forwarded
via the apex-video-web proxy service VM located in a Demilitarized Zone (DMZ) to the
streaming services Twitch and YouTube for real-time viewing around the world.

OBS Studio was controlled by the laptop at Kiruna via a VPN and remote desktop. A
local setup was available as part of the mobile control center, tested and ready for use in
contingency operations.

2.5. Flight Operations

As already mentioned, flight operations took place locally at the SSC Esrange in
Kiruna, with all data being received in ScienceNet, sent to the MCC for processing, and
finally controlled via three VPN-connected laptops at the local OPS segment in Esrange.

The main data handling and TM/TC operations were achieved via the remote Yamcs
OPS console. This system had access to the synoptic displays via Yamcs Studio, data export
and archive capabilities via Yamcs Web, real-time packet analysis at the hex level via Yamcs
Packet Viewer, and additional visualization via Grafana and its Yamcs plugin. Also, debug
data from the apex-node showed the real-time operations of the CCSDS space packet FSM
and data ingestion.

The second console was the remote science console. The apex Mk.2 Science Camera
Platform (SCP) served as an instrumented high-definition science camera to capture the
first microgravity flight and behavior of Trichoplax adhaerens—the simplest organized meta-
zoan [11]. The behavioral patterns were studied through observation, and the scientists
involved agreed to support the public relations campaign on Twitch and YouTube by
supplying still frames generated from the analog video downlink sent by Mk.2 during
flight. The remote science console accessed the Mk.2 live stream, which was captured
by apex-video and sent to the apex-head via a VPN using a Video LAN Client (VLC).
This allowed the scientist to monitor the organism in real time. If an opportune point
in the stream was found, the scientist could save this point as a still frame, which was
then automatically uploaded by a local Python script to the apex-obs and inserted into the
running Twitch and YouTube streams. If, for any reason, the test subject showed abnormal
behavior, this display could be blocked and publication stopped.

The third and last console was the remote video console, which allowed for control of
the apex-obs computer running at the MCC and also controlled the live stream to Twitch
and YouTube.

The remote Yamcs OPS console could also be used in the LAB segment during ground
tests, launch preparation, and after successful recovery of the payload to extract all captured
internal high-quality camera data and environmental data from both Mk.2 and Mk.3.
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2.6. Security Assessment

While the presented blueprint allows for additional capabilities not available in tradi-
tional ground segments, e.g., remote access to TM/TC capabilities and multi-site commu-
nication, it is important to highlight the impact on security and assess the steps taken to
allow for secure use of the newly developed capabilities.

Starting with the baseline of using a non-MCS system or a directly attached LabVIEW
instance in ScienceNet to control an experiment, the user receives and sends data according
to the experiment’s needs via UDP to and from a specific IP and port, which represents
the experiment’s gateway. Access to this network is highly controlled, allowing only local,
well-known users to connect in order to avoid posing a risk to the mission. The most
important security requirements are as follows: (1) No unauthorized user is allowed access
to this network, and the newly added functionalities are not allowed to impact security.
(2) Experimental data (TM and video) are treated as confidential and must not be leaked to
unauthorized third parties. (3) TCs are only allowed to be sent from authorized sources to
their own experiment.

To reach these goals, multiple precautions are in place. Starting within ScienceNet,
the only component directly connected to this secure network is the apex-node, which is
responsible for receiving TM and countdown clock data and forwarding TC to the gateway
for transmission to the payload. The data entering this system is directly unpacked from its
UDP structure by a Python script and transferred to an internal Mosquitto broker. While the
connection between the script and broker is internal and not exposed to a network, it still
uses Access Control Lists (ACLs) and username/password authentication on an individual
script basis to restrict the script to reading/writing the required topics. The apex-node is
then attached via a second Ethernet interface to a firewall that only allows the apex-node to
reach the VPN gateway in the MUSC at DLR and, at the same time, blocks any incoming
traffic not associated with this VPN connection. This is an additional layer of security, as the
SSC firewall already implements Network Address Translation (NAT) and does not allow a
system from the internet to directly attack the internal systems, e.g., the firewall used by
the apex-node. With this communication path established, the apex-node can connect to
the MUSC VPN server via its own certificate pair and username/password, which then
allows the internal Mosquitto broker to connect to the apex-head server in the MUSC using
its own certificate. With this, we have the following security profile: (1) Data is securely
ingested into the apex-node, which forwards it internally to its own local Mosquitto broker.
(2) The apex-node connects via a 2FA-secured VPN to the MUSC. (3) The Mosquitto broker
opens another secure tunnel within the secure VPN tunnel, which does not terminate at the
MUSC VPN or firewall appliance but within the isolated apex network at the MUSC, which
means data is encrypted twice over the internet and once from endpoint to endpoint.

Within the isolated network, data (TM and countdown clock data) is decrypted on the
apex-head and sent to the Yamcs MCS as if it were directly connected within ScienceNet
using UDP.

TCs are sent the same way back from Yamcs via UDP to the appropriate ingestion
script on apex-head, sent securely via this script to the internal apex-head Mosquitto broker,
and then via the existing, broker-to-broker bridge and VPN connection back to the apex-
node in Kiruna, describing the complete round-trip of data from ScienceNet to the isolated
apex network at the MUSC.

As video data are captured via an analog video capture card, this interface is less
sensitive and is decoupled from ScienceNet. Nevertheless, to allow for confidential video
transfer, the apex-video system is also connected to a protective firewall that only allows
the RPi to connect to the MUSC VPN gateway. Once this connection is established, the
video stream is transferred using unencrypted RTMP to the appropriate video proxy on
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the apex-head VM for consumption and use on the apex-obs or apex video consoles, or
forwarded publicly using the apex-webcast in a DMZ.

The same connectivity described for the apex-node is also used by the MAPHEUS
service module simulator. As it is directly attached to the payload—and not ScienceNet—it
does not require a second network interface and can directly interface with its local firewall
to connect to the MUSC VPN server to provide its TM/TC interfaces via the apex-head to
the Yamcs MCS, as well as its video via the apex-head to the apex-obs system.

The last three missing operations concern access to the internal video stream, a scientist
to capture still images for the live stream, and the connection of an operator to the Yamcs
MCS during operations.

The internal video stream can be accessed via a dedicated VPN profile and a user-
specific account that can only access the video proxy on the apex-head system. As this
proxy uses multiple ports for the different video streams available, the user can only access
the video data intended for him /her. The same applies to PI use for capturing still images:
their ruleset is only extended by allowing them to upload images to the apex-obs via Secure
Shell (SSH), authenticated with a certificate on the apex-obs. The final access to Yamcs
is given via another VPN profile, which only allows a connection to the Yamcs interface
(using HTTPS), which is also protected by a username and password and sophisticated
Role-Based Access Control (RBAC).

To summarize, access to ScienceNet is severely limited and controlled, and all data
is either single- or double-encrypted using independent systems based on TLS 1.2 and
appropriate key lengths (4096 bits). Direct access to the TM/TC interfaces in ScienceNet is
denied by design for all systems except the Yamcs MCS. The only access to the user-facing
facilities is given to the experiment’s operator and scientist.

We acknowledge that an additional proxy outside of the secured apex network to
shield the Yamcs MCS would be appropriate to increase security in a future implementation,
as it would block direct malicious attacks against the underlying MCS by a malicious user;
however, having access to an appropriate 2FA-secured VPN account with access rights to
this MCS would have similar implications to having a malicious user on site at Kiruna.
The only redeeming factor would be that a successfully attacked or compromised network
at the MUSC could only be used to disrupt the services for apex or spam commands to
the payload. Other payloads could not be attacked, as the connections allowed on the
apex-node within ScienceNet are hardcoded.

We declare that a formal internal security assessment was conducted in cooperation
with the Mobile Rocket Base (MORABA) and SSC to allow for installation and use of the
described system before the MAPHEUS-10 mission. This assessment found the precautions
taken to be appropriate and authorized the system’s use.

3. Results

The showcased ground segment was successfully used during the MAPHEUS-10 cam-
paign to support all operations for the apex Mk.2 SCP and apex Mk.3 Student Experiment
Sensorboard (SES) experiments. Among these operations were the pre-tests during devel-
opment, the bench test, the environmental test, and the flight campaign. As the bench test
started at the beginning of the COVID-19 pandemic, the remote-control capabilities proved
to be invaluable. The environmental test was completed without physical attendance, as all
checkouts could be observed remotely due to the apex-node and apex-video used within
this scenario. During the bench test, additional personnel remotely monitored the payload
from the MUSC MCC to support the engineers at the test site in Munich. During both tests,
all MAPHEUS-10 payloads were combined into their final configuration and connected to
the service module. Due to this, the OPS segment tools were used on site to support the
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flight-like evaluation. While the purpose of these tests was to validate the MAPHEUS-10
payload stack, they also served as an informal check of the apex MCC. During these early
tests, the necessity for a CCSDS space packet FSM became apparent, which was introduced
to increase the robustness of TM calibration in the MCS.

The validation of these changes was performed during the on-site preparation for the
flight campaign at the SSC Esrange. The focus of this preparation was on confirming that
all hardware arrived at the launch site in flight-worthy condition. Additionally, countdown
rehearsals and comparison experiments with Trichoplax adhaerens were undertaken. The first
two preparations were conducted with a flight-like configuration using the OPS segment
while the hardware was still on the test benches or already in the launch tower on top of the
sounding rocket. The last one was achieved using the LAB segment, since the mounting
plate holding the apex experiments could be removed from the payload container.

Comparison experiments within the LAB instance concentrated on gathering scientific
data on the organism in question using the apex Mk.2 SCP microscope (Trichoscope) under
resting /Earth gravity conditions of 1 g (see Figure 5). This data was later compared with
the Trichoscope recordings during flight to analyze the changes in behavior of the organism
under microgravity. The LAB experiments followed a specific procedure, which started
with the biologists of our interdisciplinary workgroup cultivating specimens in a laboratory,
selecting them for diversity and use in the experiments, and inserting them into a stainless
steel cuvette. After this, the cuvette was installed in the Trichoscope, and the apex Mk.2
was connected to the MSMS. The apex engineering team then powered up the experiment
via the MCS using the remote Yamcs console in the LAB instance and started recording
Trichoscope videos via TC. During the experiment, video recordings of the organism, as
well as environmental and performance telemetry from the apex Mk.2, were monitored by
biological and engineering personnel. After the conclusion of the experiment, recording
was stopped using a TC, and the systems were powered down using the MSMS. The LAB
segment was also used for extracting recorded data, deleting old data from the internal
memory, and adjusting camera focus, relying on the MSMS and apex MCC setup.

The flight-like tests consisted of either full-length test countdowns or shortened ver-
sions and focused on training personnel and checking systems to prepare for the hot
countdown and subsequent flight. As mentioned, these were done in the OPS segment
and included the preparation of the organisms in the LAB instance, insertion into the Tri-
choscope, installation of the mounting plate within the payload container, and subsequent
payload checkouts. During this time, the experiments were powered up by the MAPHEUS
service module, and the subsequent boot-up TM was supervised by apex engineering using
the remote Yamcs console in the OPS instance. The countdown was then rehearsed as
planned, checking that the payload reacted correctly to signals given by the service module
using the received TM data. Telecommands were also sent from both the OPS segment
and the MUSC MCC to validate correct functioning. Additionally, the countdown clock
and video-streaming capabilities were tested, and personnel were trained on their use to
ensure a smooth hot countdown. This also included testing contingency operations in
scenarios such as the payload needing to record for longer durations, there were issues
with the service module’s signaling, or other unexpected problems. During this time, the
distributed ground segment and its systems performed according to plan, especially in
terms of the hot countdown.

The flight campaign was the strongest proof of the newly acquired capabilities, cul-
minating in a successful flight, a public relations event in the form of the live video
streams [15-17], and an accompanying Twitter campaign.

While the first apex [18] was flown without live TM/TC during the mild MAPHEUS-8
summer campaign, the flight carrying living Trichoplax during the unfavorable weather con-
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ditions of MAPHEUS-10 (down to —38 °C in the launch area) and the necessary Go/NoGo
decisions would not have been possible without live TM. Due to these capabilities, temper-
ature issues could already be identified during the initial test countdowns, and mitigations
could be planned in a timely manner. This resulted in a successful exposure of well-
tempered organisms to microgravity conditions and the recording of their behavior in
that environment.

During the flight campaign, no service or connection outages were registered, and
the mission was flown as described via the MCC at the MUSC. As part of initial checkout,
the mobile MCC was verified to demonstrate that the required flexibility was successfully
achieved and that the engineered solution could be used without any external dependencies
in a local setup.

Additional experiments included the measurement of round-trip times for the com-
plete signal chain. This was conducted during a static test countdown (TCD) on the
launch pad (2021-12-01 16:11:31 UTC-2021-12-01 16:16:55 UTC) and during the suborbital
flight (HCD, 2021-12-06 08:08:41 UTC-2021-12-06 08:13:33 UTC). For both flights, three
phases were defined: pre-apogee (preA/~150 km height), apogee (A /259 km height),
and post-apogee (postA/~150 km height). Within each of these phases, a sequence of
10 measurements was performed, recording the time from remotely sending a TC until the
corresponding TM was received, in milliseconds. For each phase within a flight, each flight,
and both flights combined, the mean values and standard deviations were calculated, as
shown in Figure 9.

Comparing the mean values of both flights showed only slight deviations, while
the individual ones within the flights were quite high. This needs to be explained in
the context of the overall data system and its bottlenecks. While the operation of the
TM/TC microcontroller unit on apex Mk.2 could explain the variances in the round-trip
time, environmental data acquisition was stopped during the benchmarks so as not to
interfere with the measurements. The apex MCC systems were also sized accordingly so as
not to be overwhelmed by the apex Mk.2 science TM (4 Hz, 82 bytes per packet). There
were, however, two bottlenecks that could have contributed to these results, considering
that each variation added up. First, the internet is an unreliable medium, especially in
terms of consistent latency. The measurements shown include two data transfers between
Sweden and Cologne: (1) Cologne sends the TC for uplink to Sweden. (2) Sweden sends
the downlinked TM to Cologne. The latencies observed can fluctuate, as the apex MCC
uses the default internet connection at the SSC Esrange. With that, sudden downloads by
other guests or streaming of high-resolution video may interfere with the local connection,
as with Cologne at the MUSC at DLR. Additionally, sudden spikes in bandwidth demand
along the complete path may also interfere with the measured standard deviation. The
second bottleneck is the available bandwidth between the rocket and ground, as well
as the data handling within the service module. Space-to-ground bandwidth is a scarce
resource, and the service module and its data handling systems need to send and receive
data according to available buffers for the most efficient use of this bandwidth. This means
that the defined round-trip times cannot be guaranteed in all scenarios. This becomes
apparent when thinking about the fact that the service module needs its own share of
bandwidth for housekeeping reasons, as well as the other six experiments with different
needs in addition to apex [10].

The combined values show a mean round-trip time of 557.42 ms and a standard
deviation of 119.41. These values represent complete end-to-end testing times and could
be improved by using a direct fiber connection between both centers or a virtual one with
guaranteed response times (e.g., Multiprotocol Label Switching). Another option for future
operation would be to initially use the mobile MCC as the primary system and allow
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external parties to join the operations using an internal VPN server and firewall system.
This would decrease the latency measured during flight for on-site operators and eliminate
the varying latency induced by using an internet connection.

Finally, the results need to be compared with the requirements set by the experiments
to determine whether performance is appropriate. While biological samples can endure
high latencies, experiments in material sciences, e.g., molten metal, require stricter regula-
tion, as in the case of the Electromagnetic Levitator (EML). The EML requires a “turnaround
time of 5 s between telemetry and video reception [...] and a command reception by the
EML” [19]. This means that only the TC needs to be transferred within 5 s, representing
only half a round trip. Evaluating apex MCC performance at 557.42 ms shows that it is
well within acceptable limits, even for material sciences experiments.

ID Flight Phase Seq ms ID Flight Phase Seq ms ID Flight Phase Seq ms
1 TCD preA 1 495 11 TCD A 1 520 21 TCD postA 1 697
2 TCD preA 2 429 12 TCD A 2 769 22 TCD postA 2 663
3 TCD preA 3 496 13 TCD A 3 539 23 TCD postA 3 722
4 TCD preA 4 614 14 TCD A 4 657 24 TCD postA 4 477
5 TCD preA 5 688 15 TCD A 5 510 25 TCD postA 5 633
6 TCD preA 6 570 16 TCD A 6 540 26 TCD postA 6 533
7 TCD preA 7 486 17 TCD A 7 523 27 TCD postA 7 521
8 TCD preA 8 645 18 TCD A 8 773 28 TCD postA 8 439
9 TCD preA 9 535 19 TCD A 9 410 29 TCD postA 9 602
10 TCD preA 10 554 20 TCD A 10 446 30 TCD postA 10 463
X Phase in ms 551.2 568.7 575
o Phase 79.91 124.5 102.01
X Flight in ms 564.97
o Flight 100.63
ID Flight Phase Seq ms ID Flight Phase Seq ms ID Flight Phase Seq ms
31 HCD preA 1 521 41 HCD A 1 379 51 HCD postA 1 542
32 HCD preA 2 630 42 HCD A 2 434 52 HCD postA 2 599
33 HCD preA 3 520 43 HCD A 3 581 53 HCD postA 3 480
34 HCD preA 4 1010 44 HCD A 4 463 54 HCD postA 4 289
35 HCD preA 5 683 45 HCD A 5 524 55 HCD postA 5 545
36 HCD preA 6 547 46 HCD A 6 460 56 HCD postA 6 622
37 HCD preA 7 485 47 HCD A 7 564 57 HCD postA 7 367
38 HCD preA 8 523 48 HCD A 8 815 58 HCD postA 8 455
39 HCD preA 9 471 49 HCD A 9 723 59 HCD postA 9 530
40 HCD preA 10 594 50 HCD A 10 659 60 HCD postA 10 481
X Phase in ms 598.4 560.2 491
o Phase 158.9 138 101.96
X Flight in ms 549.87
o Flight 137.86
X combined in ms 557.42
o combined 119.91

Figure 9. End-to-end latency measurements from the remote Yamcs console to apex Mk.2 and back
during a static test countdown (TCD) and a suborbital flight (HCD), showing the mean value and
standard deviation of both.

While the setup worked very well, an internet outage at short notice would have
caused issues, as reconnecting the remote consoles to the mobile MCC would have taken
several seconds for the MCS and longer for the video streams. This would not have
impacted the science conducted by apex but would have disrupted the public relations
event and the scientists observing their specimens. The reason for these different impacts is
that, due to the Mosquitto broker setup, both MCSs (at Cologne and local) could be active
at the same time, and the only change would be the reconnection of the console from the
remote MCS to the local one. As the video was transferred as direct RTMP transmission,
a restart of the processes on the apex-video with a different target to the mobile MCC
and the start of streaming from Sweden would have been necessary. A better solution,
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as described above, would be to initially use the mobile MCC as the primary system and
include external scientists to expand its capabilities.

Regarding system performance and scalability, apex Mk.2 transmitted TM data at 4 Hz,
82 bytes per packet, with 40 TM parameters per packet. The resulting system load was
so negligible that even the Yamcs MCS would not have necessitated a virtualized server
but could have run on an RPi. Regardless, this was not done in favor of the backup and
high-availability capabilities of the MUSC VMware vSphere environment, which added
operational security. Due to the flexibility of the Mosquitto broker, it would also be possible
to connect multiple payloads at the same time to different Yamcs instances running on the
same—or multiple—servers, allowing the showcased MCC to operate as a multi-client-
capable system and managed service. For further missions, extended benchmarking should
be considered to provide a more comprehensive overview of each system’s performance.

To test adaptability to other payloads, a functional replica of the DLR M-42 radiation
experiment, flown on Astrobotic’s Peregrine moon lander [20] in 2024, was built and tested
with the setup. As Astrobotic uses a different approach than MAPHEUS to connect TM/TC
(RS-422 via Serial-Line Internet Protocol (SLIP) in UDP [21]), it was necessary to adapt the
MAPHEUS service module simulator to accept this new interface. As the M-42 functional
replica used CCSDS-space-packet-compliant TM/TC data, it was only necessary to change
the Yamcs MDB to correctly calibrate the new TM and TC parameters.

Beyond the MAPHEUS-10 use case, the architecture can be generalized to other mis-
sion types. Elements that are mission-independent include the containerized Yamcs MCS,
the broker-bridged communication backbone, the VPN security layer, and the portable
MCC. Mission-specific adaptations are limited to the MDB reflecting payload parameters,
the interfacing scripts at the link layer (e.g., UDP vs. RS-422/SLIP), and operational proce-
dures. This separation makes the blueprint readily transferable to other sounding rockets,
CubeSats, or small landers with only modest adaptation effort.

Discussing the limitations of the adaptability in more detail, as long as the interface
remains the same and the system is CCSDS-space-packet-compliant, only the MDB at the
Yamcs MCS needs to be changed. If, however, the interface changes, the incoming (TM)
and outgoing (TC) scripts on the apex-node need to be adapted. This could be the case if,
e.g., data is no longer transferred via UDP. Also, the interface takes into consideration the
fragmented nature of TM data transmitted by the MAPHEUS service module by employing
a CCSDS space packet FSM. This system would also need to be changed to reflect the
changed Application Process Identifier (APID) of the packets. Still, these are changes that
would be necessary regardless of whether Yamcs or another MCS were used without the
proposed MCC.

Although the proposed setup has not been used with CubeSat hardware, we success-
fully tested these systems directly connected to Yamcs. The reason for not deploying the
new MCC in this case was the limited use by a single developer in a directly connected
scenario, which did not necessitate advanced networking capabilities.

4. Conclusions

The overall ground segment was tested successfully during the campaign and, since
then, has been constantly evolving as part of the MRMSS—the support system for the
MSMSv3 and new ground segments.

The use of open-source tools allowed the development of a secure, flexible, and
maintainable MCC, which has since been expanded to additional experiments, gained new
features, and been deployed to newer operating systems (OSs) without considerable effort.

Additionally, the remote video-streaming system developed was retrofitted in early
2020 to allow for the continuation of the EML experiments onboard the ISS without the
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physical attendance of scientists at the MUSC. The system allows for remote viewing of
video and TM data via a 2FA-secured VPN. Due to its ease of use and popularity among
the science community, the system is still in use today as part of routine operations.

Another system that was retrofitted for the EML use was the TSE system, which
transferred MSMS data during the apex mission and was redesigned to bind the High-Rate
Data Processor (HRDP)/science video system into Yamcs to make the aforementioned tools
directly controllable via the MCS.

While the presented blueprint was successfully validated during the MAPHEUS-10
campaign, several limitations must be acknowledged. First, the benchmarking focused
exclusively on end-to-end latency measurements; extended evaluation of throughput, scal-
ability under high load, and systematic fault-injection tests remain for future work. Second,
no external penetration testing of the security architecture has been conducted, although
an internal review by the MUSC, MORABA, and SSC has been completed. Third, interoper-
ability with proprietary mission control systems could not be systematically assessed due
to confidentiality constraints. Addressing these aspects in future campaigns will further
strengthen the generality and robustness of the proposed open-source ground segment.
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Abbreviations

The following abbreviations are used in this manuscript:

2FA Two-Factor Authentication

ACL Access Control List

apex advanced processors, encryption, and security experiment
APID Application Process Identifier

ASCII American Standard Code for Information Interchange
BNC Bayonet Neill-Concelman

CCSDS Consultative Committee for Space Data Systems



Eng 2025, 6, 246 20 of 21

CD-MCS Columbus Distributed Mission Control System

CLPS Commercial Lunar Payload Services

CRC Cyclic Redundancy Check

DLR German Aerospace Center

DMZ Demilitarized Zone

EML Electromagnetic Levitator

ESA European Space Agency

FSM Finite State Machine

HRDP High-Rate Data Processor

P Internet Protocol

ISS International Space Station

MAPHEUS  Material Physics Experiments Under Microgravity

MCC Mission Control Center

MCS Mission Control System

MDB Mission Database

MORABA Mobile Rocket Base

MRMSS Multi-Role Mission Support System

MSMS Multiple Service Module Simulator

MUSC Microgravity User Support Center

MQTT Message-Queueing Telemetry Transport

NASA National Aeronautics and Space Administration

NAT Network Address Translation

OBS Open Broadcaster Software

oS Operating System

PAL Phase Alternating Line

RBAC Role-Based Access Control

REXUS Rocket Experiments for University Students

RPi Raspberry Pi

RTMP Real-Time Messaging Protocol

SAS Space Applications Services

SCP Science Camera Platform

SES Student Experiment Sensorboard

SLIP Serial-Line Internet Protocol

SSC Swedish Space Corporation

SSH Secure Shell

TC Telecommand

TReK Telescience Resource Kit

TRL Technology Readiness Level

™ Telemetry

TSE Test Support Equipment

ubDpr User Datagram Protocol

VLC Video LAN Client

VM Virtual Machine

VPN Virtual Private Network

XTCE XML Telemetric and Command Exchange
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