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ABSTRACT Autonomous vehicles have to interact with their environment with the goal to fulfill their
tasks while respecting all desired constraints such as not causing dangerous situations, driving comfortable
maneuvers, enabling a smooth traffic flow, or avoiding overly polluting driving behavior. All steps require
a suitable perception of the environment conditions, such as the estimation of the own position, a prediction
of the trajectories of other traffic participants, or the assessment of parameters corresponding to vehicle
dynamics. However, classical estimation algorithms are known to be easily distorted by outliers in the data. In
addition, apart from rule-based systems, it becomes more convenient to train autonomous agents by machine
learning algorithms. Again, such algorithms need to be robust in order to cope with model misspecification
or outliers in the data. Robust Statistics is a discipline of statistics which exactly addresses these challenges.
This paper provides an extensive and systematic overview of current applications of Robust Statistics in
autonomous driving in a unified notation, discusses different notions of the term “robustness” and identifies

directions for future work.

INDEX TERMS Autonomous Driving, Contaminated Data, Outliers, Robust Statistics

I. INTRODUCTION

Autonomous vehicles in operation have to interact with their
environment by repeatedly successfully performing three
tasks: Perceiving the current environment state, predicting the
future states of all relevant traffic participants up to some
prediction horizon, and planning their own maneuvers and
therefore necessary control actions. Apart from rule-based
systems, which operate according to a deterministic plan,
works such as [19]] have demonstrated that an autonomous
agent can also be trained via machine learning (ML), here
Imitation Learning (IL).

A major drawback of IL is the necessity to provide expert
trajectories according to which the agent is trained. An alter-
native class of algorithms is given by Reinforcement Learning
(RL), where no training data are required but where the agent
learns by trial-and-error. However, while knowledge about
correct maneuvers is implicitly encoded in the expert trajecto-
ries in IL training, and while traffic rules can be implemented
in rule-based systems, RL agents learn according to a reward
function which assigns a real value to a state-action pair, so
that the agent learns by experience which actions were useful
(i.e., resulted in higher rewards) for which states. Projects
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such as KI Wisserﬂconsider the formalization of prior knowl-
edge and their integration into Artificial Intelligence (AI)
training for autonomous driving, see [331]] for an extensive
overview of knowledge integration into Al

The perception, the prediction and, for an agent trained by
machine learning, even the training is based on statistical es-
timation, which is well-known to be vulnerable to contamina-
tion of the data in the sense that the true model differs from the
assumed model, the “ideal model”, so that observations from
the real distribution may appear as outliers (w.r.t. the “ideal
model”), with the potential to severely distort a statistical
estimator (see, e.g., [153], [121]], [213]]). Robust Statistics has
provided numerous techniques in order to safeguard against
such perturbations in the sense that the estimator still works
reasonably well, even in the presence of a certain fraction of
contaminated data.

Due to the rising interest in autonomous systems and
the constant progress made in robustifying estimation and
machine learning algorithms, this paper aims at systemat-
ically collecting concrete applications of Robust Statistics
in autonomous driving, to formalize these approaches in a

Uhttps://www.kiwissen.de/
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consistent mathematical notation, and to identify possible
extensions and directions for further research.

This paper is organized as follows. Sec. |lI] provides a
description of each tasks considered in this paper, a place-
ment into the “sense, plan, act” workflow, and a roadmap
across the different application areas considered in this paper.
Moreover, potential sources of contamination are identified
and how such contamination appears in the data. Sec. [II]|
collects the necessary concepts from Robust Statistics and
relates them to other notions of robustness that one encounters
in the autonomous driving literature. Sec. [[V]is devoted to
approaches from Robust Statistics in perception tasks such
as tracking, point cloud detection, or state estimation. Sec.
[V] reviews robustifications for planning/prediction tasks, in
particular for RL, IL, and model-predictive control (MPC)
algorithms. In Sec. [VI] potential topics for future work are
discussed.

Il. OVERVIEW
A. GENERAL TASKS
An autonomous vehicle has to continuously observe its sur-
roundings (perception, “sense”). This is realized in practice
by potentially multiple types of sensors such as cameras,
LiDAR or radar sensors. The collected information is used in
order to predict the movements of the surrounding traffic par-
ticipants, such as other vehicles or pedestrians, which is nec-
essary in order to plan its own maneuvers (‘“plan”/“think”).
The planning outcomes are finally used in order to perform
the correct actions so that the planned next state is reached
(“act”). An graphical illustration, including selected tasks
corresponding to each of these phases, is provided in Fig. [T}
In the following subsections, we briefly describe each task
which has already been addressed by techniques from Robust
Statistics that we review in greater detail later. They should
provide a quick overview for the reader and already collect the
main challenges corresponding to the respective task concern-
ing sources of contamination and the impact of contamination
on inference and optimization. Mathematical formulations of
the respective optimization problems and the methodology
are postponed to the main sections Sec.[[V]and Sec. [V}

B. SIMULTANEOUS LOCATION AND MAPPING
Simultaneous location and mapping (SLAM) consists of two
main tasks: Tracking the position of the robot (strictly speak-
ing, the sensor) and estimating its ego-motion; and comput-
ing the map of the unknown surrounding environment (e.g.,
[T68]]). The robot may use different types of sensors such as
camera, LiDAR, sonar or infrared. Camera-based SLAM is
referred to as visual SLAM (e.g., [353]).

In odometry, the goal is to estimate the ego-motion of the
robot. In contrast to SLAM, which requires global consis-
tency of the estimated trajectory in regard of a localization
of the agent within its environment, odometry considers local
consistency and incrementally estimates the robot’s trajec-
tory. Odometry can be considered as part of SLAM, e.g.,
[128]].

2

In particular, one has to distinguish between different types
of sensors that are used for odometry, e.g., wheel odometry,
GNSS/INS, GPS, sonar, LiDAR or camera (e.g., ). Using
camera data corresponds to visual odometry (VO), using
LiDAR data to LiDAR odometry (e.g., [177]).

Depending on the used sensor type and the actual task,
one may find different types of contamination in the collected
data, which we specify in the following subsections.

1) Visual odometry

As for camera models in VO, the most common is the per-
spective camera model (e.g., [353])). All camera models map
the 3D world into an 2D image plane. In the perspective
model, more distant objects appear smaller. For 2D image
coordinates (u, v) and 3D coordinates (x, y, z), the perspective
model is given by

u fi 0 ¢ X
AMv] =10 f ¢ v,
1 0 0 1 z

where A is a depth factor and where the matrix is referred to as
the intrinsic calibration matrix, with the focal lengths f; and
fy and the projection center (c, ¢y).

In general, cameras are vulnerable to illumination changes
(e.g., [@]). Other sources of contamination can be self-
shadowing, camera saturation, camera shaking or rotation,
motion blur or defocus ( [219])).

In direct odometry, the image data are used as they are and
a projection of the images on reference images is computed.
The quality is then quantified via the photometric errors
[125]). Alternatively, [62]] use brightness intensities at the po-
sitions instead of the position coordinates themselves. In the
sample consisting of the collected 2D points, contamination
manifests itself in points that are not in accordance with the
rest of the sample, resulting in high photometric and/or ge-
ometric errors when comparing the source and the reference
image. A robust approach allows to cover situations (regard-
less whether photometric or geometric errors are quantified)
where the image taken by the camera is contaminated, but in
principle, it would also allow for the usage of contaminated
reference images or reference intensities.

mention that a stereo camera pair increases the
robustness for the cost of slightly increases computational
complexity.

Optical flow estimation slightly differs from VO since the
only goal is to estimate the optical flow, i.e., the velocity
between subsequent images, but not necessarily the camera
position itself. According to [[I55], the optical flow can be
related to the position, translational and rotational velocity
of the camera. Therefore, one can extract the positions and
velocities by regression from the sample. Contamination in
the sample is induced by measurement errors of the optical
flow, maybe due to the lack of a visible ground surface.
133], elucidate that optical flow estimation is usually
accompanied by assumptions such as the brightness con-
stancy assumption which indicates that the brightness only
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FIGURE 1. Overview of perception, planning, and control tasks as well as corresponding sources of contamination.

outliers in the data in the sense that they violate these assump-
tions. In other words, outliers are likely to produce large loss
values and therefore capable to let the estimation break down.
Therefore, robust approaches are required.

varies smoothly (w.r.t. to both position and time), or a spatial
coherence assumption that indicates that neighboring pixels
are likely to be part of the same object, and hence change simi-
larly. Those assumptions however are violated in the presence
of reflections, shadows, or motion boundaries, which imply
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2) LiDAR odometry / point cloud registration

LiDAR data are usually point clouds. In contrast to cameras,
LiDAR has the advantage to be immune to light variations
[[177]], but the analysis of 3D data may cause high compu-
tational costs [[13[]. When using LiDAR data, contamination
may result from occlusions [381]], moving objects [|62]], [|63]],
perspective and perceptual aliasing, i.e., different but similar
places cannot be distinguished [210]], or from environments
with self-similar structures where false associations are gen-
erated that appear as outliers [4]]. [245] argue that outliers not
only occur due to measurement errors but also due to changes
in the object itself or overlapping point clouds in the sense
that they represent overlapping but not the same details of an
object. [330]] point out that moving objects appear as dynamic
obstacles and hence occlude the static environment from the
sensors of an autonomous vehicle, inducing outliers. See
[[187] for an overview of potential sources of contamination
in point cloud data.

Point cloud registration addresses the registration of sets of
2D or 3D points in computer vision. One of the best known
algorithms for this problem is the iterative closest point algo-
rithm (ICP). Here, one has some reference surface (a “model”
point cloud), with which the observed point cloud, the “data”
point cloud, has to be aligned. To this end, the goal is to find
a parametric transformation between the points of both point
clouds. In the simplest form, this is done iteratively by finding
the closest model point for each data point, respectively,
for the current parameter, and to update the transformation
parameter by minimizing the sum of squared distances over
all data points (e.g., [93]]). Note the similarity of this approach
to transform data points in order to match model points and
the transformation of 2D positions or brightness values in
order to match their reference counterparts in VO.

Such outliers potentially induce large values of the loss
function that is to be minimized, in particular, when using
the squared loss as in the standard ICP algorithm. A typical
robustification is to use a robust loss function that allows for
a certain fraction of such erroneous points without significant
distortion of the matching procedure.

3) Navigation
For satellite data, contamination may occur due to occlusion,
i.e., where the line-of-sight between emitter and receiver is
blocked [237], [231]], [269]. [9] argue that a common source
of contamination in GNSS data is the multi-path effect, i.e.,
the signals from satellites in a low orbit can reach the re-
ceiving antenna by multiple paths due to reflection on the
ground or on surrounding objects. [65]] additionally mention
partial sky visibility and non-line-sight as sources of contam-
ination. Another source of contamination can be electromag-
netic propagation in the sensors [334]]. Radar data may be
contaminated due to the multi-path effect and interference (
[192]).

In odometry, although the models may receive sequential
data, they usually do not include a time component in the form
of a time series or state space model. All navigation or track-
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ing approaches where time series data are used are discussed
separately and are therefore contained in the individual sec-
tion Sec.[TV-A3] The often used filtering approaches assume a
state space model where the observations at time ¢ depend on
the current system state, and the current system state depends
recursively on the system state at time (¢ — 1). In contrast
to localization problems that are solved via regression or
image translation where contamination appears statically in
the responses, regressor matrices, or point clouds/images,
contamination can propagate through the recursive state space
model, and the error distribution may be non-stationary.

Usually, one assumes outliers that only affect the observa-
tions, indicating that the observations can be drawn from a
different than the assumed ideal distribution with a certain
probability (cf. [269]). However, contamination may also
appear in the state equation, indicating that the state at time
(t+1) is drawn from a different than the assumed conditional
distribution w.r.t. the current state at time ¢. This phenomenon
is referred to as innovation outliers (cf. [269])), and results, due
to the recursivity of the state equation, also in contamination
in the subsequent states.

Filtering approaches mostly amount to the application of
the standard or an extended Kalman filter (which covers non-
linear state and observation equations), or by noise modeling,
usually by variational inference. Inference in Kalman filtering
is often done via least squares regression, opening the path for
robust approaches by performing robust regression instead. In
variational inference, assumptions on the measurement and
process noise distributions are required. By using a heavy-
tailed distribution for each type of noise, both additive and
innovation outliers can be adequately captured when comput-
ing the posterior state distributions.

[343]] point out that many approaches try to achieve ro-
bustness by focusing on high-level features such as lines and
edges, however, the computational burden can hinder real-
time performance. [211]] point out that robust features (e.g.,
[203], [27]) that are constructed in order to be less invariant
towards illumination changes are not suitable for realistic
situations where the spectrum and the direction of the light
can change.

In SLAM, the data may consist of relative information such
as (pseudo)range measurements, i.e., distances between the
receiver and the emitter, collected from GPS or radar. By a
regression model, one can infer the vehicle (i.e., receiver)
location from the range data. Since the measurement function
that quantifies the relative information is usually non-linear, a
good initial guess for the true positions is required in order to
find the global optimum (cf. [[141]]). Contamination appears
not only from measurement errors but is also implied by
bad initial guesses, and their location may be random or
grouped (e.g., [4]). Contamination in the sense of measure-
ment errors of the ranges appear as outliers in the responses.
A robust (regression) approach therefore not only safeguards
against measurement errors but also against bad initializations
(maybe resulting from measurement errors in the data) and
allows for contamination in the regressor matrix, maybe due

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3614064

IEEE Access

to erroneous receiver coordinates or clock offsets.

C. BOUNDING BOX ESTIMATION

Bounding box estimation is crucial in object detection and
tracking. The goal is to find a box which completely sur-
rounds the desired object and which is as tightly as possible.
Typical approaches for bounding box detection invoke both
a classification loss, because the object corresponding to the
box needs to be identified, as well as a regression loss that
quantifies the quality of the bounding box coordinates (e.g.,
[[1O8]).

A source of contamination could be errors made by the
annotators, which is a known problem and has been studied
for example in [306] and [224]. Suppose that an annotator
provided a bounding box that is much wider or narrower
than it should be. This could induce wrong patterns during
training, maybe when there are many similar objects in the
data, so that the NN learns to fit reliable bounding boxes for
the similar objects and, therefore, also for the object with
the wrong bounding box, which implies a large regression
loss for this particular bounding box. However, if for some
reason a reference bounding box immensely differs from the
optimal one, it could have a leverage effect, similarly as one
large outlier in least-squares regression, and distort the whole
model. Having already annotated data, is seems implausible
that they would be checked again by the data scientist, so
in this case, one could find contamination by inspecting the
losses during NN training or during testing, and may identify
such “outliers”. By a robust approach, even large outliers may
not result in a distorted model. [[154]] provided another argu-
mentation why contamination may appear, namely that object
detection is accompanied with an uncertainty that grows as
a function of time, i.e., when performing tracking and iter-
atively predicting a bounding box for a future time step. In
this sense, the true bounding box coordinates could appear as
outliers under the assumption of the current predictive model
for the coordinates.

D. ESTIMATION OF VEHICLE PARAMETERS
Vehicle parameters need to be inferred in order to operate
a vehicle safely. Such parameters can correspond to vehicle
dynamics like longitudinal and lateral velocities, moments of
inertia, or tractive forces, or be related to electric vehicles
only, which are voltages or the state of charge of batteries.
Contamination appears once measurement errors occur,
either in the training data for the parameters of interest, re-
sulting in errors in the response variables, or for the regressor
variables, which leads to contamination in the features. Out-
liers in the responses or regressors can be identified individu-
ally by outlier detection procedures, applied onto the response
column or the regressor matrix, however, in a regression
setting, both procedures alone would not find outliers that are
inconsistent with the regression model. In other words, if for
example a response variable has been measured wrongly but
still lies within the range of the majority of response values,
it would not appear as outlier when considering the response
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column alone. However, if the contamination is inconsistent
with an assumed underlying regression model, it is detected
when computing the residuals. Robust procedures hence al-
low to deal with even large measurement errors, which may
never be completely avoidable, and can provide models that
only marginally suffer from contamination.

E. DETECTION OF ROAD FEATURES

Road feature detection includes to find the position of road
features such as road markings or to even extract road sur-
faces from measured 3D point clouds. This is achieved by a
regression approach.

A typical source of contamination are measurement errors
and false positives of the tracker (e.g., [302]). In road surface
detection, contamination may arise from non-surface points
in the point cloud [234]], which would imply large residuals.

F. PREDICTION AND PLANNING

Apart from the applications of Robust Statistics in perception
tasks as illustrated in the previous subsections, robust pro-
cedures also entered approaches for prediction and planning,
i.e., RL, IL, and MPC.

In most of these approaches, one either considers adver-
sarial robustness or robustness against noise induced by mea-
surement errors, where either the observed state is perturbed
(e.g., [282])) or even the true state [316]]. Robust approaches
usually amount to a minimax game, where one does not
optimize the expected future reward, but a worst-case future
reward under unfavorable transitions [[131], maybe induced
by adversarial agents that are trained in order to hinder the
ego-agent to reach its goal (e.g., [256]). Even perturbations
of the ego-actions have been considered [29§]].

However, as RL does not need data but uses the data
generated during training, finding a reasonable amount of
contamination is more difficult than in settings where one can
just use contaminated real-world data. One challenge, when
training adversarial agents, is to ensure that these agents at
least behave plausibly, i.e., that the ego-agent is not trained
solely on extreme edge cases that are very unlikely to be
encountered in the real world.

In IL, reference trajectories are given, where contamination
can appear by random perturbations [19]. With annotation er-
rors from bounding box estimation in mind, one can interpret
such perturbations as a manifestation of a non-perfect human
driver, similarly to annotation errors due to non-perfect hu-
man annotators. Alternatively, single state-action pairs may
be contaminated [[198]], a fraction of transitions [366] or even
a fraction of transitions and rewards [|365]].

Ill. KEY CONCEPTS OF ROBUST STATISTICS
This section provides the necessary notions and concepts of
Robust Statistics.

A. CONTAMINATION MODELS
Contamination models formalize mismatches of the assumed
(“ideal”) and the real distribution. They are given by sets of
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probability distributions whose distance, quantified in some

metric, to the ideal distribution is bounded by some constant.
Before we start with formal definitions, we provide small

examples in order to illustrate how the contamination models

have to be understood and how they deviate from adversarial

attacks.

Example 3.1: Consider the regressor matrix X =

2 0 3
-1 1 2 . .
9 1 0 and the following perturbed versions:
4 -1 3
1 -1 2
-2 0 1
(1) — (2) —
X 3 0 1| X
3 -2 2
8 —4 6 2 0 3
-1 1 2 x®) _ 8 9 8
-2 1 01’ -2 1 0
4 -1 3 9 8 11

Let us start with adversarial attacks. Here, we interpret the
perturbed matrices as sums of the form X®*) = X 4 v*),
k = 1,2, 3, for perturbation matrices vV *) | These matrices
are therefore given by

-1 -1 -1
-1 -1 -1

(1) — @ —

v 1 -1 1|V
-1 -1 -1

6 —4 3 00 0

0.0 0| y@_|9 86

0 0 0 00 0

0 0 0 5 9 8

Can these perturbation matrices stem from an adversarial
attack scheme? It depends on the budget, usually quantified
in the Frobenius norm. The Frobenius norm of a mat&ix
M € R™" is defined as [|M||; = (2;’;12;;1 \m,-,-|2) .
Therefore, we have |[VV|[r = V12, [[VP|r = V61,
| |V(3) ||F = v/351. In other words, with a perturbation budget
of 7 for an adversarial attack scheme on X, it is possible to
generate X (1) but it is impossible to generate X2 or X3,
With a budget of 20, it is possible to generate each of the
perturbed matrices.

Now, consider a probabilistic contamination model in the
sense that with a certain probability, 1 — r, a row of X stems
from its original distribution, and with probability r, from
some other distribution G. The first consequence is that the
V®) are no longer needed here, as there is no additive pertur-
bation matrix. We assume for simplicity in this example that
when a row of X(¥) equals the respective row of X, it stems
from the original distribution. We start with X(?). Only the
first row differs from X. In this simplified example, it follows
that for r = 0.1, the probability that only one row stems from
another than the original distributionis 4-0.1- 0.9%. However,
whether realizing X is possible and its likelihood also
depends on the distribution G. If G is a N3((6,—4,3),%)-
distribution for some positive semi-definite matrix X, the
realization of X(?) is certainly possible and its likelihood is

6

given by the density of G at (6, —4, 3). However, if G has zero
density at (6, —4, 3), realizing X (>) under this contamination
scheme is impossible. A similar argumentation can be done
for X, As for X(), under our simplifying assumptions,
having four rows realized from G is very improbable for a
low r, but not impossible.

This example should emphasize that the main difference
in the geometric distances used in adversarial attacks and the
probabilistic distances that are encountered in contamination
settings from Robust Statistics is that the former are deter-
ministic in the sense that a certain adversarial contamination
is either possible or impossible, while distributional contami-
nation is more subtle and allows for a large variety of possible
realized perturbations.

For the following definition, see [259, Sec. 4.2].

Def 3.1: Let (Q, A) be a measurable space. Let P :=
{Pg | 0 € O} be a family of parametric distributions Pg € Py
on (£, A), where Pg, denotes the “ideal distribution”. Let
© C R be a parameter space. A contamination model is
given by the set U, (0y) := {U.(6o,r) | r € [0,00[} of con-
tamination balls U, (6y,r) = {Q € M1(A) | d.(Pg,, Q) <
r}, where M (A) denotes the set of probability distributions
on A. One refers to r also as the “contamination radius”.

One can consider the “ideal distribution” to be the distribu-
tion that one assumes for the underlying data, often idealized,
e.g., Gaussian.

Example 3.2: The convex contamination model U, (6) con-
siders a convex combination of distributions, leading to con-
vex contamination balls of the form

Ue(0o,r) ={(1 = r)1Pg, + min(1,r)0 | Q € Mi1(A)}.

The convex contamination model is intuitive in the sense
that with a probability of min(1,r), an instance in a data
set, a gradient in neural network training, an action of an
agent, or whatever the data consist of, is contaminated, i.e.,
in expectation, a min(1, r)-fraction of the considered objects
is not generated from the ideal distribution. In Ex.[3.T] convex
contamination has been considered.

B. BREAKDOWN POINT

The breakdown point (BDP), roughly speaking, quantifies the
amount of contamination that is necessary in order to achieve
a breakdown of the estimator in the sense that the estimator
may output unreasonable values. For a given data set, the so-
called finite-sample BDP [78] is the relative fraction of in-
stances that have to be contaminated in order to achieve such a
breakdown. For regression, let the data set consist of instances
(X;,Y;) € RPT! and assume the model E[Y;] = h(X;)3 for
some unknown coefficient vector 3 € R”. The BDP is then
defined as follows.

Def 3.2: Let Z, = {(X1,Y1),...,(Xn,Y,)} for instances
(X;,Y;). The case-wise finite-sample breakdown point of
an estimator B for the regression parameter 3 is defined by

* (A _ . m
e*(B,Z,) = mm{n

Sélmp(HB(ZZn)H) :00}~ (D
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Here, the set Z]" denotes any sample that has exactly (n — m)
instances in common with Z,,. The coefficient B(Z,,) denotes
the estimated parameter on Z".

Note that the fraction given by the BDP is deterministic in
the sense that, for example, in federated learning, one assumes
that exactly m out of n gradients can be intercepted and manip-
ulated by an attacker. In contrast, the convex contamination
balls are stochastic in the sense that even if the contamination
radius 7 is fixed, the number of contaminated objects follows
an B(n, min(1, r))-distribution.

We continue the Ex.[3.]in order to illustrate the contami-

nations that are covered in BDP examinations.
Example 3.3: Consider the matrices X, XD, x@) and x®
from Ex.[3.1] In contrast to the modeling approach with ideal
and contaminating distributions as in Ex. [3.1] we inspect
the situation where a breakdown point of some algorithm
operating on X should be discussed. For comparison, we first
consider adversarial attacks. Here, the question is whether
some adversarial attack that can be crafted using the allowed
budget can lead to a large deviation in the output of a trained
model. Usually, one has a classification model and tries to
find adversarial perturbations that cause the model to predict
a different label for the perturbed input than for X (e.g., [111]],
(42]).

When dealing with poisoning attacks, one does not assume
an already trained model as when considering adversarial at-
tacks, but examines the impact of an adversarial perturbation
w.r.t. some budget on the trained model itself, i.e., whether
adversarial perturbations can distort the model during train-
ing.

For BDP inspections, the goal is similar as when con-
sidering poisoning attacks. Here, one is also interested in
the impact of perturbations on the training process, but the
contamination is injected differently. While poisoning attacks
consider perturbations that are bounded by a geometric ar-
gument, e.g., the Frobenius norm, BDP discussions consider
the fraction of perturbed observations only. In this sense,
the perturbed matrices X ®) can appear in poisoning attack
settings provided that the budget is sufficiently high. For
BDP discussions however, the set Z)" is considered. In this
example, the set Z" consists of all 4 x 3—matrices for which
exactly (n — m) rows are identical with the respective rows
of X. In this sense, the matrix X () lies in the set Z" for all
m = 1,...,4, while the matrix X® can only be considered
for m > 1. The matrix X(*) would correspond only to
m = 4, however, in nearly all settings, one would not allow
form > n/2 = 2, so one can assume that X® would not
appear in BDP discussions.

The BDP concept has also been formulated, e.g., for classi-
fication (rotation of decision boundaries; [370]), ranking (or-
der inversion; [325])), and clustering (dissolution of clusters;
[136]).

In particular, in the context of high-dimensional data, [10]
propose to consider the contamination of single cells. As one
contaminated cell already contaminates the corresponding
instance, in high-dimensional settings, one can easily contam-
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inate each instance with a few outlying cells. One can nev-
ertheless consider the relative fraction of contaminated cells
as (cell-wise) BDP concept, see, e.g., [310], when analyzing
cell-wise robust algorithms that are tailored to this setting.

C. INFLUENCE CURVE

Robust Statistics interprets estimators as statistical function-
als, i.e., functionals which take a distribution as input. For
example, the expected value of some distribution P can be
denoted by the mean functional 7™*"(P) = [ xP(dx). The
influence curve goes back to [[123]]. The goal is to determine
the local behavior of an estimator in a neighborhood around
the ideal distribution by a suitable linearization of the under-
lying functional. Given such a linearization, i.e., a van-Mises
expansion ( [311]]) of the statistical functional in the sense

T(Q)—-T(P) = /T’(P)d(Q — P)(x) + rem

for some stochastic remainder term rem, the (Gateaux-) deri-
tative can be identified with the influence curve, i.e., T'(P) =
IC(x,T,P).

Formally, the influence function is defined as follows (e.g.,
[259]).
Def 3.3: Let Z be a normed function space. Let further the
parameter space © be a normed real vector space and let T :
Z — O be a statistical functional. The influence curve of T
at x for a distribution P on Z is given by

IC(x, T, P) = lim <T((1 —r)P+rdy) — T(P))

r—0 r
O [T((1=7r)P+rdy)] ‘

for the Dirac measure J, at x.

The influence curve determines the infinitesimal impact
of a single observation on the estimator. Robustness of the
estimator in the sense of the influence curve requires that
[IC(x,T,P)] < oo for all x. This property is called B-
robustness.

=0

D. ROBUST LOSSES AND AGGREGATION METHODS
Let a general M-estimator be given by

" = agming (15" oiri0))

for a loss function p : R — R and residuals r;(0). If p is dif-
ferentiable, one can equivalently consider the corresponding

Z-estimator
zerog (rll Z; w(ri((?))>

for 1) = p’. The influence function of an M-estimator is (e.g.,

(121])
 Yx)
Epg, [V (X)]
Therefore, a robustification of an M-estimator can be done by

bounding the derivative 1 of the loss function, which leads to
“robust loss functions”. A popular example is the Huber loss

IC(x, 0" Pg,) = )
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r2, || <k
pH<r>{ d

2k|r| — k2, |r| >k

for a hyperparameter k. One can interpret location M-
estimators as weighted means of the form (e.g., [213]])

2iwiXi

Y wXi-0)Xi—6)=0, 6= S

W(Xi - é)

w; =

In the case the Huber loss, the weight function w is given by

wn(r) = min (1, 5.

A disadvantage of the Huber loss is that the loss function
is still unbounded, which makes Huberized M-estimators
vulnerable against large outliers or heavy-tailed distributions.
In order to cope with such situations, one uses loss functions
which are bounded, implying that their derivatives v tend to
zero again in the sense lim|,| o (¢/(r)) = 0. Therefore, such
derivatives are sometimes called “redescenders”. A popular
loss function of this type is the Tukey-biweight loss, given by

- [ (-G s
1, |r| >k

pr

Further losses with redescending derivative are the Welsch

loss
pw(r) =1 —exp (—; (2)2) :

the Geman-McClure loss

}"2

pem(r) = 72 4 K2
and the Cauchy loss

pelr) = gln (1 + (]:)2) .

Another technique, which still allows for using standard
loss functions such as the squared loss, is to robustify the
aggregation of the losses corresponding to the individual
instances. This is done by trimming, leading to approaches
such as the least median of squares [262]

argming (med(r;(6))).

Due to a slow convergence rate, [262] proposed the least
trimmed squares (LTS) estimator

h

argming (37, (%(6)) ).

where z;., denotes the smallest element of a vector z € R”,
Z2., the second smallest element and so forth. In other words,
the LTS estimator intends to minimize the sum of squares for
the &7 < n observations with the smallest squared residuals
(the set of these instances is sometimes called “clean subset™).
Due to the computational complexity of LTS, [264], [265]]
proposed an iterative algorithm that starts with an initial
subset / h(o) of size h so that the parameters of the model are

8

computed solely using the instances on 1}50). Then, the resid-
uals for all instances are computed, leading to the next iterate
I;fl) that consists of the / instances with the smallest residuals.
Due to only attaining a local minimum, this algorithm is
repeated for several initial sets, so that the final h-set with
the smallest sum of residuals (over this A-set) is taken. This
technique has been extended to high-dimensional models by
the Sparse LTS (SLTS) method [7]] where Lasso models are
computed in each iteration.

In regression, one may have to estimate both the regression
parameter B and a scale . This can be done by first estimat-
ing & and by solving

o (1)

for a bounded loss function p. The idea of MM-estimators is
to first compute a consistent and highly robust estimator B(O),
to compute a robust scale estimator & and to find a solution
of the problem above, allowing for both robustness and high
efficiency.

E. OTHER NOTIONS OF ROBUSTNESS IN AUTONOMOUS
DRIVING

The term ‘“robustness” is often used in the AI literature,
including that on autonomous driving, in a dictionary-sense
such as robustness against error propagation by the sim-
plification of computation steps or against hyperparameter
settings of a certain algorithm. Robustness can also be un-
derstood as a better accessibility of model parameters (e.g.,
(8.

The closest understanding of robustness to that from Ro-
bust Statistics is the consideration of challenging environment
conditions such as GPS in the presence of tunnels and canyons
[219], sensor fusion in “hostile environments” [[339]] or rain
[360], or in general the gap between a simulation and the real
world, e.g., [8]l, [11]]. Sensors such as LiDAR or Radar that
can cope with varying lightning or weather conditions are also
called “robust” [[89].

In deep learning in general, the term “robustness” is often
understood as adversarial robustness (e.g., [156]; see, e.g.,
[24], [266] for details on adversarial robustness), which is
not the core understanding of robustness in the sense of
Robust Statistics, because the perturbation occurs after model
training, while Robust Statistics considers the effect of con-
tamination onto the estimator, i.e., the contamination appears
before training and therefore potentially affects the trained
model. [104]] point out that there are different understandings
of the term “robustness” and focus themselves on the classical
robustness in terms of the breakdown point. Moreover, they
correctly emphasize that robustness in the sense of the BDP
does not guarantee adversarial robustness.

At least two measures for adversarial robustness have been
proposed in the literature, the error-rate-based measure [212]]
where adversarial samples are generated given a certain per-
turbation radius and the relative number of errors is investi-
gated, or the radius-based measure [296] where one searches
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for the minimum perturbation radius in order to generate a
misclassification. In the adversarial setting, one uses the term
“certified robustness” which indicates some guarantee that an
adversary does not have success provided that the perturba-
tion norm is smaller than some threshold. The counterpart
from Robust Statistics is the property of a non-zero BDP in
order to guarantee global robustness here.

Sometimes even the convex contamination setting is inter-
preted as adversarial setting [[371]. [382]] use the terminology
“robust loss” for a worst-case loss in adversarial training.
[338]] call the property that machine learning models perform
well even in the presence of adversarial attacks as “robust
accuracy” or “robust generalization”. [112] define “over-
robustness” (for Graphical Neural Networks (GNNs)) as un-
wanted robustness in the sense that even the semantic context
has changed due to the perturbations, the robust classifier
does not react, which they call “robust beyond the point of se-
mantic change”. The term “trigger/backdoor robustness” has
been coined in [[118]] who consider backdoor and poisoning
attacks.

[[135]] speak of “common corruptions” of images such as
blur, Gaussian noise or due to certain weather conditions such
as fog. They propose not to only consider the worst-case situ-
ation when assessing robustness as in adversarial attacks (and,
notably, also in BDP computations) but to also take these
common corruptions into account. They introduce the term
“corruption robustness” which does not refer to the minimum
probability that the classifier predicts the correct class over a
perturbation ball as in adversarial robustness but which refers
to the expectation over a set of corruptions. Note that this idea
is similar to the expected finite-sample BDP from [268]] where
one abstains from considering the worst-case contamination
in the context of heavy-tailed distributions.

F. RANSAC

A popular algorithm that entered autonomous driving appli-
cation is RANSAC (random sample consensus), going back
to [92]. The idea of RANSAC is to iteratively identify the
worst points (usually time points) and to remove them from
the data. More precisely, RANSAC samples m < n instances,
computes a model f3 and determines the consensus set, which
is given by the instances for which the loss is smaller than
some threshold. If the size of this set is larger than / for some
h, one uses this set to re-compute the model, otherwise, one
samples another random subset of size m and repeats the pro-
cedure. At the end, the largest consensus set (which one may
again interpret as “clean” subset) observed is reported. The
elements of this consensus set are interpreted as inliers here.
This procedure can be interpreted as a brute-force counterpart
of the iterative algorithm for the computation of the LTS.

For example, [349] use the RANSAC algorithm in order
to address ego-motion estimation, segmentation, and moving
object detection. They point out that RANSAC is tailored to
environments with rapid changes. [[178]] apply RANSAC for
robust pose estimation of vehicles.
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[291] point out that on data corresponding to rotation
search or point cloud registration, one can even have more
than 95% outliers, see also [239]], and work with up to 99%
outliers in their experiments. The reason is that for two
point clouds P = (P;),, P* = (P})~,, P;,P} € R3,
mismatched keypoints or localization errors can result in a
lot of false correspondences (P;, P}) [291]], [[178]]. From the
perspective of Robust Statistics, such a high contamination
radius is uncommon, and most concepts can at most deal with
contamination radii of 0.5 because the BDP of an equivariant
estimator cannot exceed 0.5 asymptotically [71]. There are
however at least two cases where the number of outlying
instances is allowed to be higher. First, when aggregating
models, e.g., [326] proposed a trimmed Stability Selection
where only the models corresponding to the smallest out-of-
sample losses are considered for aggregation, theoretically
allowing for a higher rate of outliers in the data set than 0.5
because resampling can result in sufficiently clean training
batches (where the outlier ratio is at most 0.5). On the other
hand, an instance is considered to be outlying if at least one
cell is contaminated [[10f]. In such situations, cell-wise robust
algorithms provide an alternative to classical robust algo-
rithms as they can deal with the situation that each instance
is contaminated, provided that the cell-wise contamination
rate is lower than their cell-wise BDP. However, this requires
sufficiently many predictor variables, e.g., in the setting of
point cloud registration, the data set only consists of the
pair-wise point correspondences, making the notion cell-wise
robustness obsolete.

RANSAC has disadvantages, such as the long computation
time, the dependence on the minimum number of instances
that is required for defining a model [254]], the problem to
apply it to data with only a few samples due to sparse mea-
surements or many dropouts [210], the increased complexity
for large outlier fractions [283]], the sensitivity to the out-
lier threshold [210], its non-deterministic nature (e.g., [239],
[280]), and the difficulty to apply it to high-dimensional prob-
lems [280]. RANSAC clearly depends on the error threshold,
which leads to the problem that, in contrast to trimming
approaches such as LTS where the trimming rate (i.e., o such
that h = [(1 — «a)n]) is fixed, defining a threshold does
not provide ex ante information to how many non-trimmed
instances it corresponds. According to [341], RANSAC can
deal with 80% outliers but becomes very expensive due to re-
adaptations when the outlier rate is higher than 90%.

[210] experimentally compare different M-estimators with
the squared, absolute, Huber, Cauchy, Geman-McClure, the
dynamically scaled covariance loss [4] and a clipped squared
loss on a dataset for visual localization, with the result that
the Geman-McClure loss, optionally combined with clip-
ping in the sense that the last iterations are done w.r.t. the
clipped squared loss as loss function instead of the Geman-
McClure loss, lead to the best results in the presence of
large contamination radii. RANSAC cannot be applied due
to the large contamination radius, resulting in too few correct
correspondences in each images. [225]] showed that RANSAC
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in combination with robust base estimators such as LTS or
LMS performs better in the presence of contamination than
RANSAC with standard least squares. The methods were
evaluated by the number of inliers they identified on simu-
lated data where this number is known. [182] point out that
the iterative closest point algorithm (ICP), which is the stan-
dard tool for point cloud registration, heavily depends on the
initializations of the transformations and that it cannot deal
with cross-source point clouds, for example, from multiview
stereo. They combine RANSAC with the Tukey biweight in
order to overcome the problem of a very high required number
of trials of RANSAC.

[140] propose VODRAC (voting-based double-point ran-
dom sampling with compatibility weighting). The idea is to
overcome to computational complexity of RANSAC by using
the pairwise compatibility constraint. That is, for the model
p; = Rp, + + € for p, and p; from point clouds P, P*,
respectively, a rotation operator R € SO(3) and a translation
f € R3, the constraint is

ri = Ip; —pj |l = P — Il < 2n

for the inlier threshold 7. This norm difference equals 2||€; —
€;|| under the model above. This allows for checking whether
two correspondences are compatible, then, one can check
whether a third correspondence is compatible with each of
these two correspondences and so forth, facilitating the search
of the inlier set. This technique is referred to a double-
point random sampling. In addition, they aim at putting more
weight onto clear inliers, i.e., for which r;; is small, by invok-
ing Tukey’s biweight loss function, leading to the weights

’,? 2 2 2
Wy = (1-goe) -« m<n)
0, ri>(2n)?
which allows a sorting of the correspondence set in the sense

that the minimal subset is formed by the correspondences
with the highest weights.

)

IV. APPLICATIONS IN AUTONOMOUS DRIVING:
PERCEPTION

This section collects approaches based on Robust Statistics in
perception tasks for autonomous driving. In each subsection,
we address one of the sub-tasks that we already listed in
Fig. [T} Robust perception refers to strategies that allow for
corrupted data, such as outliers in camera or LiDAR data, that
may result from challenging weather conditions, light reflec-
tions, occlusions, or just measurement errors. The extraction
of realiable state information from those data is vital in order
to suitably predict the maneuvers of other traffic participants
and to plan own maneuvers.

A. SLAM

[[141]] propose to use the Cauchy loss for a robust graph-based
SLAM for the model

zij = hij(p;,p;) + €

for a non-linear measurement function h;;, positions p;, errors
€;; and measurements z;; from p; to p;. The goal is to estimate
the true locations p;, so the residuals that enter the Cauchy
loss function are

1/2
ry = 1135 (25 — hy(r.p))ll2

for the covariance matrix X ' of the ideal model €; ~
N(0, Zi;l). The objective is then

i,y (3, 0e()

for the edge set E of the corresponding SLAM graph.
[4] also consider a graph-based approach of the SLAM
model which aims to minimize

Zt ||hz,t+1(P;7Pt+1) —Zz,;+1”221 + Z[ Zt’ Hf(pi?pt’) -

Ze| \?\

1,17

where the indices ¢ and ¢’ correspond to time steps. The co-
variance matrices of the odometry and sensor measurements
are given by X, and A, ., respectively. The goal is to find
the positions p, that minimize the loss. They propose the
dynamically scaled covariance loss,

Zl Hht,tJrl(pan-l) _Zt,t+1||§}, +
Zl Zf’ ||\II(<[’I/)h’)" (ptvpt’) - Zt,r’H?\,,r/ +
Zl Zt/ ||1 o Ctal/||%r,r/a

where the ¢, » € [0, 1] are switching variables, ¥ : [0,1] —
[0, 1] is a scaling function and where Z, - is a switching prior.
This loss is minimizes w.r.t. both the p, and the (; ,». They
show that the solution is given by

2=,
G = min (17 e Py —z,,,'|%,,,,> .
=t

[3], [210] show that, inserting the unconstrained solution
for the ;41 (so that they are not upper bounded by 1) for
dynamically scaled covariance, into the loss function, one
replicates the Geman-McClure loss function, up to a constant
factor. [210]] identify the dynamically scaled covariance loss
therefore with a variant of the Huber loss where the squared
loss is used for small residuals, and the Geman-McClure loss
for large residuals.

[3] propose a Bayesian approach for estimating the poste-
rior of the state (position) variables, so that robust loss func-
tions can be implicitly encoded via corresponding distribu-
tions such as corrupted Gaussian in a mixture approach. They
test their procedure using real data from Google StreetView
maps from which the necessary poses and 3D points are
extracted.

[303]] use the truncated least squares loss for location
estimation, i.e.,

DD P plr) = {22
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for the geodesic distances r,-jz between the average poses and
the measured poses.

[202]] consider multimodal motion prediction and propose
aloss function composed by several losses, one is a regression
loss w.r.t. the coordinate offsets for which they use the Huber
loss. The goal is to predict trajectories until a given horizon.

Many SLAM approaches consider GPS or GNSS data,
where one usually has the (pseudo)range as response variable.

[96] compare several robust regression by applying non-
robust and robust estimation methods for positioning esti-
mation in challenging areas such as urban canyons or city
centers. Their model is given by

Yi=X:B+¢ €))

where the Y; are the differences between measured and pre-
dicted pseudoranges, the X; are the geometry matrices and 3
is a vector consisting of the receiver coordinates and the clock
offset of the receiver and the satellite, scaled with the speed of
light. As for the robust methods, LTS and M-estimation with
the Huber loss and the IGGIII weight function

L rl<k
N2

wicen () = ‘kﬁ (l,z%lkll‘) s k<l <ke
0, [r| >k

respectively, are applied.

Another comparison has been made in [[173]] who compare
several robust regression and outlier detection methods, in-
cluding LTS, LMS, robust M-estimators, S-estimators, and
MM-estimators, on simulated GPS data where the response
variable is the pseudorange. The goal of [[173] was to study
how many outliers were correctly detected by the individual
methods. They point out that the robust methods are time-
consuming and may hinder real-time performance.

[O] apply robust regression methods on GNSS data, where
they consider the linear model Eq.[3|where X, at least contains
information about the satellite ID, the epoch and the elevation
and where Y; are the pre-fit pseudo-ranges. They apply LTS,
LMS and a forward search, where one starts searching for a
clean subset of size p and increases this number iteratively.
They achieve real-time capability and propose to not analyze
large chunks of data at once but to use a sliding-window
approach. [6]] consider MM-regression.

[12] propose to apply the Huber M-estimator for GPS
position estimation. The underlying model is given by

Y; :Xl(d) +Xl(b) + €,

where Y is a pseudorange measurement, X () is the geometric
distance from satellite to receiver and X (%) is a receiver clock
offset. In the linear model Eq. [3| the parameter vector 3
contains the incremental corrections to the unknown variables
(receiver coordinates and clock offsets). Due to linear rela-
tionships of the residuals and measurement errors, they com-
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pute the redundancy matrix which is used to modify the resid-
uals. See also [64] for an application of robust M-estimators
for GNSS in urban scenarios, where a three-satellite constel-
lation is considered, which is reflected by three clock offsets
in the features. [217], [218]], [216] consider the regression
problem from [12] with the tropospheric and ionospheric
corrections as additional features in the model above and also
use S- and MM-estimators. [40] also integrate ionospheric
and tropospheric corrections and replace the WLS estimation
by an estimation based on the Huber loss. [361] additionally
include multi-path delays and ionospheric and tropospheric
corrections in the pseudo-range model. Using real-world data
from open-sky, semi-urban and dense-urban environments,
they apply different robust loss functions, including the Hu-
ber, Tukey, Cauchy, Geman-McClure and Welsch loss.

[114] propose to adapt the threshold of Tukey’s biweight
loss for GNSS position estimation. This is done in depen-
dence of the detected fraction of multipaths in the data
when applying a CNN. The higher this fraction, the lower
the threshold, which is chosen in order to maintain a given
efficiency or BDP. Alternatively, they propose a robust M-
estimator, which is computed via IRWLS.

[358] aim at discarding pseudorange and Doppler mea-
surements in GNSS. They point out that Doppler measure-
ments are also affected by reflections from buildings or trees,
although to a smaller extent than pseudorange measurements.
Based on the NFA (number of false alarms) criterion, i.e.,

(D) = e D|/2-1
NFA(D :177/ e 't dt,
L(ID|/2) Jo

for the set D of observations, a normalization constant 7, the
variance o2 of the underlying assumed normal distribution
of the measurement noise, and the sum of squares 612) of the
standardized residuals, they propose an iterative algorithm in
order to find a “clean subset” of the data that minimizes this
criterion.

[320] propose a cross-view localization based on both
satellite and ground views. Given feature maps extracted
by a CNN from the satellite and ground-view images, the
residuals r; between the components of these feature maps are
computed. Then, the individual points are weighted according
to weights that are proportional to the derivative of some
robust loss function so that points with large residuals are
downweighted.

[237]] consider robust range estimation and propose to use
a tanh-type robust loss function of the form

oy 1 B (Y, — Y)?
p(Yi,Yi):Btanh (2( o2 ) >’

where the Y; are the measured ranges, Y; their predicted
counterparts, and where o > 0 is a scale parameter. The
parameter [ is estimated by LMS, o by the MAD. They also
propose a robust Bayesian algorithm, which is initiated by the
weights,
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computed from the M-estimation.
[323]] propose the GNSS measurement model

Yi = 1Xi —ajl| + c(6] = &) + Lij + Tij + bij + €

for the pseudorange between vehicle i and satellite n, where
a; is the position of satellite j, where J; and ¢; are the clock
offset of vehicle i and satellite j to the satellite system s,
respectively, and where ¢;; is the measurement noise. Fur-
thermore, ¢ denotes the speed of light and /;; and 7;; denote
measurement errors that are induced by the ionosphere and
the troposphere, respectively. Lastly, b;; are latent variables
for modeling unknown measurement biases. As for vehicle to
vehicle measurements, they use the model

Y = h(Xi, X)) + by + €,

for latent variables b;;, measurement noise ¢; and the states
X, and X; of vehicle i and vehicle j, respectively. Assuming
that the measurement noise is Gaussian, any contamination
is modelled by the latent variables. To this end, Gaussian-
Gamma prior distributions are assumed, and the joint distri-
bution of the states and latent variables are approximated via
variational inference. They apply their method on a real-world
data set with three vehicles. [40]] consider the same GNSS
model, but without latent variables. In a differential GNSS
approach, the differences

p’ =h(X)—h(X®) +¢€

are modelled, where X” denotes the position of the base
station. First-order linearization leads to

P’ ~ h(Xo) + H,6 — h(X") + €,

for 8 = Xy — X and geometry matrix H,. The residuals are
given by ¥’ ~ H,6 + €” and modelled by a Gaussian distri-
bution. In the collaborative localization setting, the measure-
ments of all individual vehicles are concatenated. Denoting
the concatenated counterparts of the quantities above by r, H,
and 9, the Gaussian assumption allows for a WLS formulation
of the form

0 = argming ((F —H.8) W (i — I:I,S)) ,

where the weight matrix is the inverse joint covariance matrix.
[[LO7]] propose a baro-radar odometry approach based on

barometry and radar and use robust loss functions for the

barometry and Doppler residuals. Radar data are also con-

sidered in [[192] who propose to use a truncated least squares

loss function.

1) Visual odometry/ego-motion estimation
Many approaches intend to find a linear transformation
that relates the 2D images collected from the camera and 2D
reference images.
[62], [[63]] consider dense visual tracking under large il-
lumination changes. Given a stereo camera pair, making n

12

intensity measurements each, these observations are stored
into two sets 7 and I’. Let Z = (I,I')T be the current
view pair, let Z* be the reference view pair, and let P* =
{p,p’} be a set of stereo image correspondences (the pixel
locations) from a pair of reference templates from the set
Pr = {dp*,0")*}1, ., {p*, P')*}n}. Let f be the motion
model, which is quadrifocal warping in [62], represented by a
transformation T € SE(3).If T is the true transformation, and
if T is the estimated transformation until time step (1 — 1), the
tracking problem then amounts to estimating the incremental
transformation 7'(£) at the current time step f, under the
assumption that there exists &y such that T'(£,)T = T Then,
the standard criterion based on the least-squares cost is

D pep UG (PTET) =T (P))?,

where the quadratic loss is replaced by the Huber loss in
[62], [63]. Experiments on real-world data show that their
approach allows for real-time performance. They also make
suggestions for further improvement.

[219] propose a hybrid approach between model-based
optimization, where the error between the current model and
the transformed current image is minimized, and VO, which
minimizes the distance between the previous and current
transformed image. More precisely, for model-based track-
ing, they assume the relation

i*(P*) = ai,(f(P*,T) — B8
between the reference image intensities, i*, and the current

image intensities i, at time ¢, leading to the Huberized objec-
tive

D ey, PP T(OT) = 8 =i (P")).

In the VO approach, they consider augmented reference im-
ages that include the warped image i’t:l from the previous
time step, where

i (P*) = i1 (f (P, Tio1)),

leading to a similar objective as above but where i*(P*) is
replaced by {71(P*). As the model-based approach suffers
from illumination changes (apart from the fact that it requires
an a priori model, which may be very difficult to obtain, as
pointed out in [[63]]), and the VO approach is prone to drift
due to the accumulation of errors during feature extraction
and matching [|63]], [219] combine both approaches, the robust
loss functions corresponding to both approaches are stacked
so that a joint optimization is performed. [219]] achieve
near real-time performance on real-world data with a stereo
camera pair.

[229] propose a Huberized approach in model-based vi-
sual tracking by downweighting the contribution of all pixels
whose photometric error is higher than some iteratively de-
creasing threshold. The standard average photometric error is
given by

1
Crlp,d) = 7 > ey I )]s,
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ron(l,p,d) =1"(p) — I(n(KT7 " (p,d))

for inverse depth d, a set J* of indices of reference im-
ages from the set Z*, I* € I*, pixelp = (x,»)I, T €
SE(3), a camera-intrinsic transformation matrix K, and back-
projection 7! (p, d) of the inverse depth value to a 3D point.
The robustification now invokes the Huber norm

2
il = § 52 Il <
-
Il —

=5 il >

which enters the energy functional
Ey = /W(u)||vz~z(u)||5 +AC(u, R(u))du

for the map N that assigns a depth value to a pixel, and a pixel
weight function w. Similar approaches based on robust loss
functions can be found in [238]], where the Huber function
is directly applied to the rp;, and [110], [172], who consider
the IRWLS formulation of the minimization problem w.r.t.
the photometric error, where they use robust weight functions
such as the Huber of Tukey weight function. Experiments on
real-world data sets confirm real-time capability. [[171]], [169]]
consider the photometric residuals r,;, and formulate the MAP
estimation problem

argmaxg(P(T(S)Krph(la uad))léj*))v

searching for the transformation 7(£) that maximizes the
posterior probability of the residuals. Here, they allow for
heavy-tailed distributions such a ¢-distribution. [171] apply
their approach on data from an autonomous flight experiment
and achieve real-time performance.

[343]] propose to minimize the geometric projection error
instead of the photometric error due to a higher resistance
against illumination changes. The idea is to find a distance
transform map D, that computes the Euclidean distance to
the closest edge for each pixel. For an edge pixel e; from the
current frame I, it should therefore hold that D..(e;) = 0. Let
the reprojection residual for an edge pixel e; from a reference
image [* be

r(e;) = De(&)

1

for the reprojection position &; computed by the underlying
rotation and translation model. The objective is

*
> e eIl

for the Huber norm ||| | and the set £* of all edges in I *. Real-
time performance has been shown on real-world data sets.
[17] consider dense VO [[169], which does not only use
matched features as sparse VO does, i.e., dense VO uses all
pixels, resulting usually in a higher precision but at higher
computational costs. They point out that using a 7-distribution
for both geometric and photometric errors ignores the phys-
ical process, resulting in photometric errors not being well-
represented by such a noise model. Therefore, they propose to
use a t-distribution for photometric errors but a probabilistic
sensor noise model for geometric errors (which in turn is not

VOLUME 11, 2023

suitable for photometric errors), and estimate the transforma-
tion between the 3D camera coordinates and 2D image points.

[381] argue that photo bundle adjustment (PBA), which
estimates scene geometry and camera motion in VO, is usu-
ally done by minimizing the photometric error. Motivated by
works such as [[169], they point out that PBA must be robus-
tified against outliers that may arise due to widely separated
active key frames so that the photo-consistency assumption
may be violated by occlusions and reflections. In [381]], their
PBA error function for the total photometric error has the

form
DD D wlrri(e)

for the parameters &, the squared residuals r and weights
w(r;), where the quadruple sum goes over all pixels in all
points corresponding to the active keyframes. The problem
is that the usually used Levenberg-Marquardt algorithm in
order to optimize this objective picks keyframes according
to photometric consistency, so that frames with occlusions
or reflections are prone to be ignored here. Although [381]]
consider sparse VO, they conclude that a 7-distribution is also
suitable for the photometric errors as in dense VO considered
in [[17]]. They first derive that the approach based on the ¢-
distribution is also suitable here, and also make experiments
with the Huber weights

w(ri) = o2, |nl <k
! ka72|r|7t, |r| >k

where o2 is the variance of the ideal Gaussian distribution
of the photometric errors. Experiments reveal that the 7-
distribution leads to even better performance because the
weights drop even faster at the tails. In their experiments,
they also flag points as outliers if the number of outlying
pixels (flagged as such if the photometric error exceeds the
95%—quantile of the error in the respective keyframe) ex-
ceeds some threshold and delete them from the set of ob-
servations. The Huber loss is also used in [94] and [221].
Experiments on KITTI and other data sets confirm real-time
performance.

[[155]] consider the problem of camera ego-motion estima-
tion and propose a robust ego-motion estimation procedure.
They argue that the noise in real-time flow data is often non-
Gaussian and that violations of the scene-rigidity assumption
due to objects moving independently result in outliers. The
underlying model is

u(p;) = 0(p;)Ap;)v: + B(p,)v,

for the optical flow u(p,) at image position p; € R?, the trans-
lational velocity v, € R3, the rotational velocity v, € R3, the
inverse & of the scene depth and linear transformations A and
B. Motivated by [363]], who already proposed a robust ego-
motion estimation procedure based on IRWLS, they write the
problem as a regression problem as [363], i.e.,

)

min (||Av,8 + Bv, —ul||?),

VsVt
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with the linear transformations Av; and B in matrix notation,
but they allow for confidence weights for each individual
flow vector. For a least-squares estimate ¥, of v, and a re-
formulation that allows to drop 9, this leads to

min(||v, o AL ()" (BY, (v) —w)[[3).

In an expected residual likelihood approach, they directly
estimate these confidence weights, based on an assumed
Laplacian distribution of the residuals.

[251] first derive a model for a monocular visual-inertial
system and aim at making robust state estimations, where
the states consist of positions and depths. To this end, the
residuals for the visual measurement are minimized, but they
are robustified in advance by the function p(r) = I(r >
1)+(2v/r—1)I(r < 1).On areal-world data set, they achieve
real-time performance. See [272] for a similar robustness
approach. [372] include 3D to 2D reprojection errors, which
enter via the Huber norm.

The Huber loss is also used in [51] where the reprojection
error of the estimated trajectory from a linear projection of
feature points w.r.t. the estimated trajectory from tracking key
points.

[133]], [34] use robust loss functions for optical flow estima-
tion. Let (X,,y,) be an image point at time ¢ and let v, € R?
be the vector containing the horizontal and vertical image
velocity. For the image intensity I = I(x,y,7) of pixel (x,y)
at time ¢, the objective suggested by [33] is

ZS:(x ) ZR pl(axlvl + 8y1v2 + 811, 0'1)
+A Zie,/\f (020 = v, 02) + pa () =5, 02)]

where A; containts all neighboring pixels of pixel s, where Ry
is some local neighborhood of s, for o1, 02, A > 0, and where
p1, p2 are loss functions. The objective has to be optimized
w.rt. vy, v(ls) and v(;). The first summand encourages the data
conservation constraint that the intensity structure of small
regions should persist over time, while the second summand
encourages the local optical flow of a pixel to be close to
that of neighboring pixels. Alternatively, they consider a line-
process approach where discontinuities between pixels are
modelled separately by binary variables, which leads to a
similar objective, and also consider a robust alternative where
the truncated squared loss is taken as loss function.

2) LiDAR odometry / point cloud registration

[93] robustify ICP by using the Huber loss function, aiming
to minimize the distance

> wimin(pq ([1B7 = T (€)@,

where the w; are just indicator variables that take the value

one if there is a match between reference and data points.
Welsch’s loss function has been applied as a robust error

metric for ICP in point cloud registration in [[73]] in order to

14

quantify the distance between a set of intersection points on
the source surface and the target surface, respectively, i.e.,

D(x,y) = pw(|lx = yI[3).

[31]] consider the objective
min (3 p(|IRp; +7 - P|))

for a rotation matrix R € R3*3 and a translation vectorf € R?
for point cloud registration and use IRWLS with the Huber,
the Tukey or the Cauchy function as robust loss functions p.

The Huber loss is applied in [[333]] for motion-prediction
from point clouds, where it is used as motion-prediction loss,
spatial and temporal consistency loss.

[125] propose a LiDAR-based direct odometry method
with the goal to efficiently find the matching points for the
point clouds extracted from the LiDAR data. Direct odometry
methods usually compare 2D images, therefore, they first
project the 3D LiDAR point to a 2D sphere. As a re-projection
of the entire projected 2D image would be time-consuming so
that this re-projection is only done on selected key points. Let
p* € R? be the 2D image coordinates of the reference data
and let f be a parametric conversion function between sensor
and reference data so that f = f(T(§),F) for a parameter
£ that encodes rotation and translation, a frame F, and a
translation 7' (&) from the Lie group SE(3). Let the residuals
from the 2D image coordinate map be r(F,, F*,T(£)) for a
sensor frame F, and a reference frame F*. Then, let a new
frame F be given with the goal to adjust the corresponding
T (&), which is done by minimizing

Zj ZF pi (r(Fs, F*, To(&)T; )

at the key points, where the T}, j = 1, ..., n, are frame-specific
transformations. Afterwards, the 7; are updated similarly, but
where Tukey’s biweight loss is used. Experiments on KITTI
data and real-world data with an autonomous vehicle confirm
real-time performance.

[[144] use the Huber loss function when computing func-
tional map matrices that parameterize pairwise correspon-
dences of point clouds in order to better deal with occlusions
or deformations. The objectives

I
> eu(llef) —aiPcl)

have to be minimized w.r.t. the map C for all (k,[), which
represent the edges in the point cloud graph, and where @,Ekl)
are the matrices that represent the matched points from point
cloud P to point cloud P, for the number I;; of matches.

The squared loss in the ICP algorithm has been replaced
with the LMS criterion in [375]] and [214]], and with the LTS
criterion for example in [59]] and [243]]. [245]] proposed the
so-called fractional root mean squared distance as distance
measure for ICP, which is essentially an LTS criterion, up
to taking the square root. [[145] consider a truncated absolute
loss. [115]] propose a differentiable variant of the Huber loss.
[68] use the family of parametrized robust loss functions
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from [23]] and propose an algorithm where one alternatingly
optimizes for the parameters of this loss function and the
actual regression parameter. [346] propose a graduated non-
convexity approach where a non-convex robust loss is op-
timized by iteratively optimizing a sequence of surrogates,
which are initially convex but gradually become non-convex.
This method is applied to point cloud registration with the
Geman-McClure and the truncated least squares criterion.

[193]] consider matching a data and a reference point cloud,
resulting in the objective

ArgMingcgp (3) 7ers (Zl Zj p(r(p; — Rp; — 5))

for a robust loss function p. Experiments on different data sets
confirm a total computational time of less than one second,
confirming real-time performance.

A similar approach has been used in [335] for point-to-
plane matching, where the distance between a point from the
point cloud and the nearest point from a local plane on the
map. They use the Huber loss function. In [376]], the truncated
least squares loss is used in order to find a transformation
that aligns points from a LiDAR frame with points from a
local map for ego-motion estimation. Experiments on KITTI
data and real-world data collected from a robot confirm real-
time performance of their overall LIDAR-only odometry and
mapping pipeline.

[143] propose a loss function that can be interpreted as
a soft counterpart of a truncated least squares loss, namely
p(r, k,w) = w?||r||?>+ (1—w)2k?. In other words, each resid-
ual is accompanied with a weight which decides the trade-
off between the squared loss and a constant loss. This loss
function is not used directly as objective for the estimation of
the optimal transformation 7 € SE(3) but as a penalty term,
i.e., the objective is

> @)+ Zj P, [Ir[2),

where (r())* denotes the residuals w.r.t. a reference point
cloud and where rU) denotes residuals from the LiDAR
point cloud. The objective is optimized w.r.t. the weights and
the transformation alternatingly. The optimization w.r.t. the
weights leads to the closed-form solution w = k(| r0)2 +
k?)~1, implying the loss p(|[r?(|?, k,w;) = k2|[r?||?(k? +
|[F||?). This is just a scaled Geman-McClure loss. They
achieve real-time performance on different real data sets. A
similar objective function has been proposed in [373]. On
real-world data from urban areas in Hong Kong, they achieve
real-time performance.

[330] use the Huber kernel loss as loss function in laser
localization. The objective is then

> wien(r(T(€)@,).P)),
where w; an indicator which is zero if p; is considered to be an
outlier, which is done by comparing the median of the error
of the posterior predictive corresponding to this point with the
population median of the error.
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3) Navigation/tracking via filtering

An important class of state estimation techniques are Kalman
filters (KF). The linear KF assumes a state space model of the
form (e.g., [269])

X, =FX,_1+v, Y, =ZX, +¢,

with transition matrices F;, € RP*?, Z, € R?*P and noise
variables €, ~ N,(0,4,V;), v, ~ N,(0,,0Q,). The first equa-
tion is the state equation, describing the evolution of the states
of the system, while the second equation is the measurement
equation that describes the generation of noisy measurement
outputs from the underlying true states. In control theory, one
would also include a controller input in the state equation
(see Sec.[V-C). The state space model described here is time-
discrete and time-variant. In the less general time-invariant
settings, one has static transition matrices F and Z. The goal
in Kalman filtering is to estimate the true states X, when
measuring the Y,. There are several ways how to robustify
the KF, for example, by robustifying the loss function is the
least-squares interpretation of the KF, by assuming a different
noise distribution that is capable to model large errors which
would appear as outliers under the Gaussian assumption, or
outlier detection. In this paper, since we are not aware of any
robust approach for autonomous driving in a continuous-time
setting, we always have a discrete-time setting.

[269] distinguish between additive outliers (AOs), which
affect the observations, i.e.,

€ ~(1— rAO)E(eid) + raoL(€"),
and innovation outliers (I0), which affect the innovations,
i.e.,

Ve~ (1= ri0) L(v)) + rioL(v]"),
where L(€9), L(e"), L(v19), L(v™) denote the distributions
of the ideal and contaminated noise terms, respectively, and
where a0, 1o € [0,1] are the respective contamination
radii. The main difference is that IOs affect subsequent states,
covering level shifts or linear trends, so that not only the
current observation is affected. One can also define substitu-

tive outliers (SO), which directly manipulate the observation
distribution and not the noise distribution, i.e.,

Y& ~ (1= rg0) LYY + reoL(YT™).

The Kalman filtering algorithm, going back to [[164], is
given by the following recursive scheme (here, in the notation
of [269]): Initialization

Xojo =ao, o0 = Qo, 4)
prediction
X1 =FX,—1p—1, i1 =FS 11 F/ + 01, (5)
and correction
X =Xy +KAY,, X =, — KZ)E -1, (6)
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for

AX, =X, —Xr|t—1a AY, =Y, _ZtXt|t—1 =ZIAX, te,
(N

and

A = thz\z—lz;T +V, K= Et\z—lz;TAt_- 3

Here, the quantity K; is referred to as the Kalman gain.
This recursive scheme can also be interpreted as a least-
squares approach (e.g., [288]]). In the notation of [65]], denot-

ing
Y, Z; €;
(Xml) (1> ' (’r)

rr=X,-1—-Xy,

for

one can compactly write
Y, = ZzX t + T,

where 7, has a block diagonal covariance matrix I~€t. The
estimation of the states via a squared loss leads to a least-
squares solution with prediction

tht - (ZZTR;lzt)_lthRt_li[. (9)
In non-linear dynamics, suitable versions of the linear KF

have been proposed in the literature, where the state-space
model is given by

X, :f<Xzfl) + vy,

for differentiable functions f and h. In the recursive KF
scheme however, the quantities F, and Z, are required. For
the EKF, a first-order linearization of f is done at X, _y},_1,
while a linearization of 4 is done at X, _;.

The unscented Kalman filter (UKF) also allows for non-
linear transformations but does not perform a linear approxi-
mation as the EKF. Instead, a so-called unscented transforma-
tion [162]], [312] in order to approximate the posterior mean
and variance of the underlying function is computed.

The cubature Kalman filter (CKF) uses the radial-
spherical cubature rule [14] instead of the unscented trans-
formation as in the UKF in order to estimate the posterior
mean and variance.

Y, =h(X,)+ e,

The following approaches consider robust loss functions.

[49] propose to replace the squared loss of the linear KF by
the maximum correntropy (MMC) criterion, which is a local
similarity measure and therefore insensitive to large outliers.
The MMC criterion is given by

[ rxdr )

for a shift-invariant Mercer kernel «, e.g., the Gaussian kernel
k(x,y) = G4 (r) = exp(—r?/(202)). Given residuals r;, one
can therefore estimate the correntropy by the arithmetic mean
of the G, (r;). In the KF context, they define the errors

16

G ((X, 6)‘(”_1))

and denote E[€,€]] = B;B! with a matrix B, that can be
computed by a Cholesky decomposition of IE[€,€] ]. It follows
that D, = W, X, + r, for

1% a1 1~
D, =B ' (X,,.,Y,), W,=B" (H) , r =B &,
t
(10)
where r; is white noise. Now, the correntropy objective leads
to

Rs = argma, 5G9 - (W)

p+q i=1
They derive an iterative fixed-point algorithm in order to
find the optimal solution and prove a sufficient condition for
convergence.

A CKEF based on the MMC criterion has been applied for
cooperative localization of underwater vehicles. [378] apply
an MCC-based cubature information filter for tracking aerial
unmanned vehicles. In their numerical simulations with a step
size of 1s, their filter requires a computation time of around
0.2s. [293]] propose to combine a UKF with the MCC criterion
based on the 7-kernel with an additional weighting scheme
in order to safeguard the estimation against extreme outliers.
As weight function, applied to the individual components
of the states, they consider the biweight, Huber, Hampel
and Andrews function. On real-world data collected from
an autonomous underwater vehicle, their algorithm achieves
real-time performance. [[195] use a KF with the MCC cri-
terion for pseudorange estimation. They consider localizing
and tracking in real-world experiments and achieve similar
computational efficiency than the standard KF.

[[185] consider collaborative localization and propose an
EKF updating scheme with the MCC. Here, as for the re-
quired Mercer kernel, they consider a Cauchy kernel. [88]]
consider a Laplacian kernel and apply the resulting MCC-
based EKF for cooperative localization of autonomous un-
derwater vehicles. In their simulations, the computation time
was around twice as much as for the standard EKF.

An alternative loss function for robust state estimation with
the KF has been proposed by [72] who consider the residual
least entropy-like loss function

Hk(Dk7qla --~7Qk)

_1 X

=1I(Dx #0) - (k) Zi:l q:In(g:),
k

Dy = Zi:l Il

||| |?

k b
2= Il 2

for the residuals r;. This loss function is used as a penalty term
for the weighted least-squares objective which encourages a
large entropy of the residuals and hence many small and a few
large residuals.

P =
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[65] consider GNSS/INS integration (global navigation
satellite system/ intertial navigation system) and propose a ro-
bust KF by robustifying the update step with an M-estimator.
They point out that robust methods require a larger number
of measurements than classical ones (which is a consequence
of the efficiency loss, since the least-squares estimator is
the maximum likelihood estimator under Gaussian noise and
hence achieves maximum efficiency) but that GNSS appli-
cations usually do not have many satellites in view. They
consider the standardized version W, of R;"! from Eq. |§| by
standardizing the measurements first. Then, W, is updated
using IRWLS, which is robustified by the Huber estimation

(Wy)is = wr ([Y, — er(z\;]ii)

for the respective standardized measurements Y, and Z,. In
their experiments, they consider different types of contami-
nation, which are single biases, multiple biases, and ramps.

[97] consider, in addition to innovation and observation
outliers, so-called structural outliers, i.e., where the linear
mapping Z, resp. F; in the state space model may be misspec-
ified. They assume that the observations are synchronized,
otherwise, delayed observations may be treated as outlying
data. First, they aim at robustly estimating the covariance
matrix in the least-squares interpretation of the KF. To this
end, they consider the Stahel-Donoho estimator

| u — medj(thu)|
sup 7
[luf|=1 MAD;(h; u)

for the data points 4, which are here the matrices (Z,1)7.
However, they argue that applying the estimator in each
time step would detect only structural outliers and therefore
propose to use the vector ¥, = (Y7 X tT|,71)T instead of
the h, as it already captures the effects of all three types of
outliers. Points whose value s of the Stahel-Donoho estimator
is larger than some threshold 7 are downweighted in the sense
that their new weight is 72/52, where 7 = 1.5 in [97].
As structural outliers appear as leverage points in the least-
squares interpretation of the KF, a GM-estimator with the
Huber loss function and the weights arising from the Stahel-
Donoho estimator is applied, i.e., one minimizes

Zi wipr (Fi),

with the residuals ;, = risflwi_ ! with the MAD s of the
vector of residuals r;. Due to non-linearity, this problem is
solved using IRWLS. Finally, the update filter error has to be
adapted. They therefore compute the IC of the GM-estimator,

given by

P(x)
Ep[y' (x)]
for ¥ = xs~'w~!, which enables to compute the asymptotic
covariance matrix 3, = Ep[IC(x, X, P)(IC(x,X,P))"].

[364] propose distributionally robust filtering, where a
minimax problem s solved. LetZ;, = (X;,Y,)andlet Fz y,_,

IC(x,X,P) = (ATA) " 1xw

1

VOLUME 11, 2023

denote the conditional joint state-measurement distribution at
time step . The new state is estimated by

(B[(X; —s)(X: —5)"])),

Xit1 mvln(peu%2§,_1>
for an uncertainty set U (Fg,y,_,) around Fz,y,_,. In their
algorithm, they construct this set by mean and covariance
constraints around a nominal distribution. The problem can
be re-written as a nonlinear semi-definite program. In their
experiments, they consider tracking a hypersonic vehicle.

[284] replace the least-squares regression problem arising
in the KF by a minimax problem. In particular, they propose to
minimize the worst-case expected squared residuals over an
uncertainty set. As for this uncertainty set, they either use all
normal distributions with the same mean as the ideal distribu-
tion but whose covariance lies within a certain radius around
the ideal covariance, or a Wasserstein-based contamination
ball containing all normal distributions whose Wj-distance
from the ideal distribution is bounded by the contamination
radius. On real-world data, the performance of their algorithm
is comparable to that of the standard EKF, thus allowing for
real-time performance.

[74]] consider aircraft ground inspection, which is vulner-
able to large positioning errors of GNSS. They consider a ro-
bust EKF based on M-estimation. They essentially robustify
the KF in the same manner as [49]], but where the r; from Eq.
[I0]do not enter the correntropy criterion but a weighted least
squares objective, i.e.,

rr;in(r,T(x)Wrr(x)%

for the weight matrix W = diag(wg(r,;)) with the Huber
weight function wy. [75] propose a grid search in order to
select the hyperparameter K of the Huber function in a data-
driven way, according to the horizontal accuracy. More pre-
cisely, the hyperparameter is chosen according to a difficulty
level of the scenario, and this level is predicted using a NN. In
order to make the predictions more interpretable, [76]] replace
the NN by a SVM.

[28]] propose a robustification of the EKF by downweight-
ing measurement outliers. They use the formulation

X, = argminy, (||X, —f(X,—0)5, + 1Y, = h(X,)[3)

for 0, = O*W~=10!/?. Here, 0}/* is the Cholesky fac-
torization of Q,. The weight matrix W is given by W =
diag(w( ,1/2(Yt — h(X,)))) for a weight function w cor-
responding to a robust loss function. In their experiments,
they use the Huber weight function. [270] integrate feature
maps into the EKF for GNSS positioning. Those feature maps
contain information about, for example, satellite visibility
or spatio-temporal features, allowing for a prior distribu-
tion of the pseudorange residuals. In the EKF, observations
whose pseudorange residual deviates considerably from the
expected ones are downweighted. This is done by applying
the weight function corresponding to a robust loss function,
for which the Huber, Tukey and Geman-McClure loss func-
tion are considered, to the predicted pseudorange residuals.
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[L19] apply parallel robust EKFs for a Bayesian ap-
proach for robust localization from GNSS data. Instead of
the Gaussian likelihood, they consider densities of the form
p(Y,|X,) o exp(—p(r,)) for the residual r, = ¥, — h(X,)
and where p is the Huber or the Tukey loss function. The
covariance matrix V; of the measurement equation is updated
via R, = (¢(r;)) 'R, for i(r,) = 8pp(r)|s—r,. However,
due to multi-modal uncertainties in the measurements, single
Gaussian distributions are not suitable. To this end, they
replace the standard posterior,

p(Xt|Y1:t) &

p(Yt|Xt) /P(Xt ‘thl)p(thl|Y1:t71)dXt717

with
p(X XY,

p(Y,[X! X,) / XX X, )p(X, 1| X!, Y1y )dX, .y,

for linearization points X' at which the EKF transition and the
robust loss p are linearized. As the selection of linearization

points is accompanied by uncertainties itself, [[119] propose
the update rule

p(X£7 Yl:t) &

p(¥,[X") / P(XX! (X! ¥y, )dX! .

In their algorithm, one starts with an initial set of linearization
points and iteratively updates this whole set and correspond-
. . . . 1
ing weights that are computed via the posterior p(Y,|X}), so
that the distribution p(X,|Y1.,) can finally be estimated using
Rao-Blackwellization.

The UKF has been robustified by Huberization in [337].
Given the non-linear dynamics

X1 :f(Xz) + vy,
one can write

(i) = () (s
Xt+1\z Xz+1 AX:+1\:

~

for the predicted state X, |, at time (¢ + 1) and its error
AX, ;. For the covariance V; of €, and the covariance
Y41y of X;4 1), one computes

= 172 ( Y1 Vi 0 )
Yii1=S8 5 , S = ,
o rl (Xt+1|t> o (0 Et-i-l\z
_ h(X
gXiq1) = St+11/2 ( g(:rll)) , &1 =
S71/2 ( & )
t+1 AXt+1|t ’

so that f’,+1 = g(lel) + &,41 holds. The objective for
finding the prediction X, | is then

min (3 pr (@) )

Yt = h(Xt) + 6[,

i=1

where the residuals are given by r,41(X,41) = f’t+1 -
8(X;41)- [337] use this Huberized UKF for underwater ter-
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rain matching, where X, represents the 2D coordinates of the
vehicle. [[46] apply it to tracking.

[322]] propose an adaptive variant of the robust UKF
with an application in vehicle tracking. They consider the
dynamics model error and the measurement model error si-
multaneously by treating the respective residuals separately,
ie.,

mxin(A,HX, _f(t|t71‘|%,‘,_1 +[|FX; — Y,||‘2/1,1)
with a fading factor A\, which is computed by

N 7 XXyl
A PN N ST

Y |
|AX,| tr—1

for some threshold 7 > 0.

[21]] alternatingly use the Huber and the loss corresponding
to the dynamically scaled covariance approach from [3]] in the
EKF and consider the navigation of unmanned underwater
vehicles. On real-world data, the computation time is close to
that of the standard KF, with at most around 25% overhead.
[22] modify the EKF by alternatingly optimizing the MSE
and the Huber loss in the sense that in a first iteration, X e
is estimated using the updating steps corresponding to the
Huber loss. Then, X +|+ €nters as prior X +jr—1 in the updating
steps corresponding to the MSE. The average runtime on real-
world data is around 75% higher than for the standard KF.

See further applications of Huberized Kalman Filters for
spacecraft attitude estimation (linear KF; [[160]), elliptical or-
bit rendezvous and docking (EKF; [167]]), navigation (UKF;
[47], [250], CKF; [307]), vehicle tracking (CKF; [124],
[197]), underwater tracking (EKF; [82]), and collaborative
localization (EKF; [[129]]).

In contrast to loss-based filters where a robustification of
the loss function is done, noise modeling and covariance
scaling approaches consider heavy-tailed distributions, as-
suming that the measurements can be contaminated by heavy-
tailed noise, in contrast to the standard KF that assumes
Gaussian noise. This idea essentially goes back to [328]]. It
has been shown in [267]] that in the ideal, i.e., Gaussian,
model, the usage of a r-distribution with small degrees of
freedom leads to a high efficiency loss. In particular, using
variational approximation allows for learning the real noise
distribution in an online manner, even allowing for non-
stationary (e.g., due to changing environments as argued in
[[152]) loss distributions.

[2] propose a structured variational approach where they
assume an inverse Wishart distribution of the covariance
matrix V. As they assume that Y,|X,, R, ~ N(FX;,R,),
marginalizing out R, leads to a ¢-distribution as the condi-
tional distribution of Y, |X,. They derive that the marginal log-
likelihood of the Y, can be expressed as the sum of a lower
bound of the marginal likelihood of the data and the KL-
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divergence between the true and the approximate posterior
distribution of (X,,R,) given Y,. For iid. noise and for a
slowly-drifting noise model, where the two parameters of the
inverse Wishart distribution of R; themselves obey a first-
order model, they derive an algorithm in order to compute
an approximate posterior. They apply their method for GPS
position estimation of a car. assume

Xz‘Xr—l NN(FTXz—l +b7 Q)y Yt|X17Vr ~
N((Z'X, +d,V,)

where the observations noise V, ' is assumed to follow
a Wishart distribution, again leading to a ¢-distribution of
Y,|X;. The posterior p(X;|Y1,..,Y,) is approximated by
structured variational filtering. They apply their method for
position estimation from GPS data.

The approach from [1]] has been extended to the nonlinear
case in [246]], [273]. [150] argue that these such variational
Bayes approaches as in can handle slowly time-varying
measurement noise covariance matrices V;, but that they as-
sume accurate estimation of the process noise covariance ma-
trices Q,, otherwise, their performance decreases. Therefore,
they propose to assume inverse Wishart priors for both V;,
and the prediction error covariance matrix P;, which, by the
prediction step X, ;1 = F;—1X; 1,1, satisfies

Pz\z—l = thlpt—l\z—lFTfl + 01

The new states are then inferred jointly with P, _; and V; via
variational approximation. Their method is applied to target
tracking.

[233] assume that the measurement noise is skewed 7-
distributed and approximate the posterior observation distri-
bution with variational inference. They apply their filter for
GNNS position estimation. In their experiments, they report
that the computational time of their filter exceeds that of
the standard KF by a factor of around 5 to 10. con-
sider GNSS positioning and assume ¢-distributed measure-
ment noise. They propose to estimate the degrees of freedom
outside the variational Bayes iteration via inversely scaling
a baseline degree of freedom with the Mahalanobis distance
of the current innovation to a Gaussian distribution with the
current innovation covariance matrix. The method is applied
in a field test for position estimation of a vehicle in Beijing.
assume ¢-distributed process noise, while the measure-
ment noise is assumed to be Gaussian. They consider SINS
navigation in a real-world car-mounted experiment.
model the measurement noise by a convex contamination
model, where the ideal Gaussian distribution is contaminated
with a Gaussian distribution with a different covariance ma-
trix. They allow the contamination radius to vary in time.
As they consider a situation where the states are observed
by multiple agents, they have an observation equation for
each agent j with individual transition matrices Z! and noises
€,. In a sliding window approach, the joint posterior of the
states, the process covariance matrices, the agent-specific
measurement covariance matrices and contamination radii
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is approximated via variational inference. They apply their
method in a target tracking simulation with multiple sensors.
argue that a robust filter is less efficient than a filter with
the Gaussian assumption and propose to use two models, one
with Gaussian and one with z-distributed measurement noise,
and to combine them using Bayesian model averaging. They
use their method for target tracking. In their simulations, they
observe a computational time of their filter of around twice
as high as for the standard CKF, while only requiring around
40% of the time of the CKF where iterative variational Bayes
approximations are used. propose to use a-stable sub-
Gaussian distributions for the measurement noise in the linear
KF, and compare noise modeling with low- and heavy-tailed
noise distributions, such as a-stable sub-Gaussians, Gaussian
mixtures or 7-distributions. [336] a mixture of a Gaussian
and a Gaussian inverse-Gamma distribution for the measure-
ment noise and apply their algorithm to the navigation of
an underwater vehicle. invoke a Gaussian-exponential
distribution for the measurement noise.

propose a Gaussian-inverse-Wishart mixture distri-
bution for the state transition. They argue that such a mixture
has the advantage over a single Gaussian-inverse-Wishart dis-
tribution when only inaccurate prior information is available.
As for the prior, they assume a Dirichlet distribution. The
conditional observation distribution, they assume a Gaussian-
inverse-Wishart distribution and derive a variational approx-
imation algorithm of the joint posterior of the current and
previous state, the measurement and the state covariance ma-
trices and the mixing parameters. They apply their algorithm
to target tracking. [86]] track an unmanned surface vehicle by
assuming an inverse Wishart distribution for the measurement
covariance matrix and computing the posterior distribution
of the states and covariances by variational inference. [207]
first scale the measurement covariance matrix with IGGIII
weights, and propose to model the covariance matrix with
variational Bayes and an inverse Wishart distribution as prior.

[T46] argue that the estimation accuracy of the prediction
error covariance matrix, Y;;_1, depends on the state noise
covariance matrix, Q,. Therefore, if only inaccurate prior
information about the latter is available, they propose to not
use the one-step prediction-error covariance matrix directly
in their variational Bayesian adaptive KF algorithm, but esti-
mate a prior scale matrix via the EM algorithm. They apply
their strategy for collaborative localization with two surface
vehicles and one autonomous underwater vehicle.

[66] use the CKF with a sigma-point update rule for
GNSS/INS estimation. In order to deal with measurement
outliers, they propose to include switching variables which
are Bernoulli-distributed, where the presence of an outlier
would correspond to the value 0, with Beta prior. The mea-
surement covariance matrix is scaled with the inverse of the
expectation of the switching variable in the respective time
step. The joint posterior of the states, switching variables and
their priors are updated via variational inference. They apply
their method in a real-world experiment with car-mounted
GNSS/INS.
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assume that both the process and measurement noise
are t-distributed. In a smoothing approach with nonlinear
dynamics, they infer the trajectory in a fixed time window
via variational inference of the joint posterior, and apply
their technique to target tracking. consider car track-
ing and assume ¢-distributed process noise and a Gaussian-
generalized hyperbolic distribution for the measurement
noise in the EKF. The latter is a mixture of Gaussian distribu-
tions, where the mixture distribution is a generalized inverse
Gaussian distribution, thus a joint posterior of the states,
covariances, distribution and mixture parameters is computed
by variational approximation. consider target tracking
and assume a Gaussian-exponential-Gamma distribution for
both the process and the measurement noise.

[152] propose a Gaussian-Student’s ¢ mixture distribu-
tion (GSTM) in order to address non-stationary, heavy-tailed
noise distributions for both the states and the observations.
The GSTM distribution is of the form

p(x|m) = 7N (x, 1, ) + (1 — m)t(x, p, 2, v),

where 7 is the mixing parameter, which has to be inferred
and for which a Beta distribution is assumed as prior dis-
tribution. While the GSTM distribution has lighter tails than
the respective pure ¢-distribution, it has heavier tails than the
respective Gaussian distribution. argue, based on the
influence function of the GSTM distribution, which is close
to that of the Gaussian distribution in a vicinity of the mean
and tends to that of the 7-distribution outside, that the GSTM
distribution has the same efficiency as the Gaussian distribu-
tion on clean data and the same efficiency as the 7-distribution
on contaminated data. The joint posterior distribution of the
states, the mixing parameters and the degrees of freedom is
approximated via a variational Bayes approach.

[314]] assume time-varying skewness in the measurement
noise, which they argue to result from imperfect synchro-
nization and a variable nonline of sight. They propose a so-
called shape-parameter mixture distribution of the measure-
ment noise, which is a mixture of Gaussian scale mixture dis-
tributions w.r.t. the shape parameters, extending the work of
[149]] who initially proposed the pure Gaussian scale mixture
for the process and the measurement noise. As for the mixing
prior, they assume a Dirichlet distribution. They apply their
algorithm to robot tracking.

incorporate both heavy-tailed measurement noise
and inequality constraints in a variational Bayes algorithm.
First, they assume a skewed ¢-distribution for the measure-
ment noise and an inverse Wishart distribution for the pre-
dicted error covariance matrix. As for the inequality con-
straints, they consider linear constraints of the form a, <
D, X, < b,, for some constraint matrix D,. These constraints
are integrated into the variational approximation via trunca-
tion of one element of the predicted state, conditioning the
computed distribution onto the feasible set. In their experi-
ments, they track a mobile robot.

consider target tracking and extend the state-space
model by multiplicative noise in the measurement equation,

20

leading to the model

X =FX,_1+v, Y =mZX, +¢.

They motivate the multiplicative term m;, by the multipath
effect as well as fading and scattering when considering
underwater acoustics. The two additive and the multiplicative
noise are modelled as generalized ¢-distributions, and the
posteriors are approximated by variational inference.

There is further literature where variational filtering is
used in situations where multiple state-space models have to
be considered, for example, in sensor fusion, collaborative
navigation or centralized estimation settings.

[281]] consider state estimation of unmanned surface vehi-
cles and propose to perform the estimation remotely in order
to save onboard computational capacities. To this end, they
propose a stochastic event-triggered communication strategy.
Let Y be the most recent observation that the USV trans-
mitted to the remote station. For each following time step #,
one computes ¢, := exp(—0.5(Y, — Yo)TA, (Y, — Y°1I)),
for a symmetric positive-definite matrix A,, and triggers a
new transmission if U, ~ U(]0, 1]) realizes a value larger
than ¢,, making a new transmission more likely if the current
observation strongly deviates from the previously transmitted
observation. They assume the GSTM distribution from [152]]
for the state distribution p(X,|X;_1,80), where 6 represents
the USV model parameter vector. They use VB in order to
compute an approximate joint posterior for X, and 6. They
compare different adaptive and event-triggered UKF versions
and the standard UKF with their method, which outperforms
its competitors in terms of accuracy, both in a simulation as
well as on a real-world experiment. As for an adaptive KF, the
observation noise covariance parameters are stochastic, so a
joint posterior for the distribution of the states and parameters
must be found, which is done by an VB approximation in
[274].

consider multi-sensor fusion and propose to robus-
tify the single filters by assuming ¢-distributed noise. The
posterior state distribution for each filter is approximated
by variational inference. Assuming that each sensor operates
independently, they derive a weighting strategy which addi-
tionally neglects any dependence between the individual state
components, resulting in a diagonal weight matrix which can
be easily computed, as matrix inverses are avoided, for the
price of potentially reduced accuracy. They compare their
algorithm with competitor robust KF and sensor fusion algo-
rithms in a real-world experiment with an autonomous driving
platform, achieving better accuracy than its competitors. As
for the computational time, their algorithm requires around 4
times more time than the standard KF, but around half of the
time required for the federated KF.

[184] consider a leader-slave cooperative navigation set-
ting where a fleet of slave vehicles with cheap and low-
accuracy sensors is given, and one or multiple leader vehicles
with high-accuracy sensors. As for the observations, they
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consider the range between leaders and slaves. The states and
measurements are the concatenated state and measurement
vectors. In the resulting EKF, they model both the process
noise and the measurement noises by #-distributions. The joint
state and measurement posteriors are updated recursively via
linearization of the state and the measurement equation. They
apply their algorithm for underwater navigation in a real-
world experiment with one slave and one leader vehicle. [151]]
consider ¢-distributed measurement and process distributions
and use variational inference for approximating the posteri-
ors. They apply their method for collaborative localization
with two leader surface vehicles and one autonomous under-
water vehicle.

[297] argue that in collaborative localization with low
overlap between the local maps of the individual agents,
outlier data associations are likely, resulting in potentially
high outlier ratios. Therefore, they compute the spatial con-
sistency between each two matched point pairs {x(l)7 y(l)},
{x(®) y)}, considering them only as inliers if the difference
[l —x@) ||, — ||y —y3)||| is below some threshold. Local
maps with more inliers are associated with a higher overall
inlier probability in an EM algorithm where the positions are
updated. Their algorithm is applied to a KITTI dataset and a
real-world dataset with three robots.

[344] consider decentralized collaborative localization,
which, in contrast to centralized collaborative localization
where one central entity jointly estimates the states of all
robots based on the transmitted data, allows the robots to
share its own state estimates with each other. In addition to
a robot-individual state equation, [344] define observation
equations for the absolute range measurement y', between
robot i and landmark / at time ¢, given by /

yZ,l = h;(X;,Xﬁ) + Vtiv

and for the relative range measurements yij’, between robots i
and j at time ¢, given by
V= hi(X3,X]) + v,

While using Gaussian distributions for the state equations,
[344] allow for t-distributed noise in the absolute and rel-
ative range measurements and propose a variational Bayes
approach in order to update them for each robot. Due to shared
information, interdependences between each robot pair have
to be integrated into the algorithm, which themselves are

updated iteratively. They apply their method for collaborative
localization of 5 robots.

[200] propose to robustly estimate V; = Cov(e,) of the
KF by scaling the diagonal entries using different weight
functions such as the IGGIII weight function. A similar idea
has been proposed in [188|] who scale the covariance matrix of
the CKF using IGGIII weights. See also [294], [315], [318]].

[352] combine an adaptive KF and a robust KF. In the
adaptive KF, the gain and covariance are scaled with Huber
weights. In the robust KF, IGGIII weights are used in order
to scale the measurement covariance matrix. Finally, the esti-
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mated state vector and state covariance matrix is computed as
a convex combination of both predictions from the adaptive
KF and from the robust KF. Here, for small residuals, the
adaptive KF gets more weight, and vice versa for large resid-
uals. They apply their algorithm for land vehicle navigation.

[45]] assume a linear state-space model propose to compute
the standard Mahalanobis distance of the observations and to
scale the noise covariance matrix V; in the KF with a scalar if
the Mahalanobis distance exceeds some threshold, where the
scaling factor is chosen adaptively. They apply their algorithm
to a kinematic positioning problem where both position and
velocity have to estimated.

[304]], [305] consider the observation equation Y, =
Z, X, + € + u,, where u; follows a non-ideal distribution.
Note that this contamination scheme is not a convex contam-
ination, unless one would consider the distribution of €, + u;
as contaminating distribution and the contamination radius
as 1. In particular, they follow an unknown variance prior
approach where u, ~ N (0,%,) where %, itself follows some
prior distribution. The estimation of ¥, is done via the EM
algorithm. They apply their approach for the localization of
a marine vehicle and a quadrotor. The computation time was
around 6 times higher than that for the standard KF, but lower
than for the KF proposed in [2].

[231] consider object tracking by sequences of images and
propose to apply a Kalman smoother for each pixel in order
to deal with abrupt lightning changes and occlusions. They
propose to replace the square in the Gaussian distribution by
the Huber function, i.e., the observation model given some
template feature vector f, at time ¢ is given by

pYilf,) = RIT 2 exp(—pu (r(Y..f))))

for a normalizing constant c, a scale matrix R and the error

Y f) = /(00 —f)TRY, ).

They then approximate the posterior f,, which is no longer
analytically computable. In their workflow, they first match
templates. Given a set of predicted feature vectors f ;(x), they
match them to the current image in order to derive the errors
for the KF at the next time step. Considering translation,
rotation and scaling, they consider the transformation

T(€)x) = (1+&) (n(f)) fos?éf?)) (2) " @

with a parameter & € R* to be estimated, which is done by
robust regression w.r.t. the objective

Zx pH(r(It(P(x7£))aft(x)>)

for the feature vector I,(p(x,&)) observed at image point
p(x,&). The templates are updated using the robust KF and
lastly, the scale matrix R is updated.

[334] apply a robust particle filter on pedestrian tracking
using radar. They consider a non-linear state space model and
assume €, ~ N (0, W,” ' R) for a diagonal weight matrix W, =
(Wi m)m=1,... 4, with Gamma priors
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Wi m ~ Gamma(wy |0,,/2, 0,,/2),

m=1,..,q.

[29], [30] consider joint robust GNSS position and attitude
estimation with the EKF. As the EKF can be interpreted as the
optimization problem

Xy, = argmin, (|l — X1 |3, + [[h(x) = Y.[I7,),

tlr—1
they point out that GM-estimators such as in [97]] do not allow
for redescending losses, hence they use robust information
filters where the optimization problem is re-formulated by

replacing V, by a weighted version V,l/ w1t V,T/ 2 for

W = diag(w(Vflm(Yk — h(X4))))

for a weight function w, which may be the Huber loss function
or the Tukey loss function. The solution to the optimization
problem above can then be approximated iteratively. They
further adapt this strategy to the situation where the data
points belong to a manifold, as in the joint position and atti-
tude estimation problem. Experiments are done on simulated
data with an outlier rate of 20% and 25% in [30] and [29]],
respectively.

Apart from approaches based on a robustification of the
loss function or modeling heavy-tailed noise, there are strate-
gies that invoke other techniques for robustification, such as
outlier detection or clipping.

If only AOs occur, [267] propose a Huberization of the
Kalman gain in order to robustify the correction step, i.e., the
Huberization of the Kalman gain is given by

b
H,(K,AY,) :=K,AY, mi 1, ——— .
b( t I) t tm1n< ’|K,AY;|)

The clipping height » may be determined so that a certain
Anscombe-efficiency level is attained or by a minimax cri-
terion w.r.t. a least favorable contamination radius. In the
case of SO-outliers, they assume a convex contamination
model around the true distribution F Ii,dr of the Y,, leading to
a distribution F' {,“; so that, assuming independence with the
distribution Fy, of the X/, the ball

UP(r)y = |J {LX, YO | Fy € Ue(Fy,9)}
0<s<r

is considered. They propose to either minimize the MSE on
150 or to minimize the MSE w.r.t. a bound on the bias on 2/5°.
In the case of 10s, they show that the correction step can be
written as

X =Xyp1 + ZzE(TAYTt — Ele|AY]), ZzE =
Eﬂt,th (Zt Zt|t71Zt)_a

so a robustification is done by Huberizing [E[¢,|AY ], which
equals (I — Z,K,)AY, in the ideal model, leading to the
Huberized correction step

X=Xy +Z7[AY, — Hy((I — Z,K,)AY,)].
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In [269], the same clipping strategy is performed for the EKF.
They apply their method to vehicle tracking with the goal
to estimate the change of altitude. Apart from measurement
errors and changes in the road surface, their data also consist
of missings due to signal loss, e.g., in tunnels, leading to
jumps in altitude or speed.

[359] propose an iterated EKF where the linearization is
considered at the updated state X, ;. Then, a Huberization
of the Kalman gain K; AY,, going back to [267], is performed.
They consider spacecraft navigation.

[91]] point out that robust KFs that allow for heavy-tailed
noise distributions and that approximate the posterior by
variational Bayes are only robust to additive outliers, while
a Huberization of the residuals such as done in [269]] also ro-
bustifies against IOs. Moreover, they point out that anomalies
are often multi-modal, which cannot be represented by ¢-type
distributions.

[38]] use a standard KF, but reduce the data set to inliers
using RANSAC before, for lane detection and tracking.

[I37]] consider measurement outliers in collaborative local-
ization and downweight them in an KF scheme where the
weights are computed via the Stahel-Donoho estimator.

[[196] consider additive outliers and propose to identify
them by computing the matrix

B, =Z,P\y1Z] +7,0,Z] +V,.

The i-th component of an observation is flagged as outlier if
the i-th diagonal element of (Y, —Z,X,,_1)(Y, — Z:X,;—1)"
is larger than B;;, multiplied with some weight. If an outlier
is detected, the corresponding predicted state and covari-
ance matrix are corrected via component-wise scaling. Their
method is applied to aircraft tracking. They argue that their
algorithm achieves real-time performance as the computation
time is lower than 100 ms per frame.

[380] integrate outlier detection and suppression into a
variational Bayes approach by using sliding windows. First,
they allow for heavy tails by using a z-distribution for both
the measurement and process noise. In their sliding window
approach, the posterior for each time step in the window are
updated by using a constant measurement and state covari-
ance matrix within each sliding window. In addition, in each
window, for each covariance matrix, an auxiliary variable is
considered which scales the covariance matrix, allowing for
outlier suppression in the respective window. The posterior
for the states, covariance matrices and auxiliary variables is
approximated jointly by variational inference. They apply
their method to tracking a car in a simulated and in a real-
world experiment.

[87]] point out that the EKF performs linear approximations
based on the estimations from the previous step, so that
errors may even increase. They also point out that the com-
putational complexity dramatically increases when trying to
robustify the EKF. They criticize the H .. -filtering approach
(e.g., [285]; see Sec. , which interprets outliers as bounded
uncertainty, to be too pessimistic. The idea in [87] is to detect
outliers in the innovations and to clip them, i.e.,
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max(—k, min(k,Y;, — (hi()?m—l))),

where the clipping height k is adaptively chosen.

B. ESTIMATION OF VEHICLE PARAMETERS

KFs intend to provide an estimation of the true underlying
state X, based on the observed noisy state Y ,. Of course, pro-
vided that an underlying state space model can be formulated,
one can estimate vehicle parameters by considering them to
be part of the underlying states X,.

A Huberized linear KF has been applied in for position
estimation of vehicles, in who estimate the position
error and mounting angles and yaws as well as lever-arm
residuals between data from the INS and a laser Doppler
velocimeter or VO, respectively.

A Huberized EKF is applied in for center of gravity
estimation, which is done by using a state space model that
relates the height of the center of gravity and its distance
to the front axis with the velocity, [@] consider estimating
the rotor angle and speed of a bus. apply robust KFs,
including a Huberized EKF and a covariance-scaled EKF,
for the estimation of attitude, position and velocity errors,
and acceleration and gyro biases of a rover. Several robust
KFs, including a Huberized KF, the KF from [45]] and several
variational filters, have been compared in , here with the
application to improve wheel-inertial odometry for planetary
rovers. The state represents the attitude, position and velocity
error, and the acceleration and gyro biases.

[292] use a Huberized UKF with adaptive covariance for
the navigation of coupled vehicles, [313]] consider vehicle
state estimation, such as longitudinal and lateral velocities,
yaw rate, mass, center of gravity, and moment of inertia.

use a Huberized CKF for rotor angle and speed esti-
mation and confirm real-time performance as their algorithm
only leads to a slight overhead in the computation time com-
pared to the standard CKF. apply a Huberized CKF to
an INS where the state consists of attitude, latitude, longitude,
height and velocity errors, gyroscopic drifts, accelerometer
biases, and a scale factor error of the Doppler velocity log. A
numerically more stable version of the CKF, the square-root
CKEF, has been Huberized in [[139], who use it for state-of-
charge (SoC) estimation for lithium-ion batteries. Here, the
state represents the SoC and the polarization voltage.

The variational filter from [2] has been applied in for
the estimation of the internal resistance in the battery system
of electric vehicles. apply an EKF with 7-distributed
observation noise for ship position estimation. use an
adaptive KF with the MCC and allow for a time-varying
noise covariance via variational Bayes in order to estimate
the tire-road forces and the sideslip angle of a vehicle. In
numerical simulations, their algorithm only requires slightly
more computation time than the standard CKF.

use the correntropy criterion for the linear KF for the
navigation of vehicles in an urban environment. combine
the CKF with maximum correntropy for spacecraft attitude
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estimation, consider the estimation of the yaw rate, the
lateral and the longitudinal velocity of a vehicle, consider
car mass estimation. use the MCC for the square-root
CKF in order to estimate velocities, the yaw rate, and wheel
rotation of electric vehicles, []ﬂ_Tl'[] consider estimating the
yaw rate, side slip angle and the longitudinal velocity.

[249] scale the covariance matrix corresponding to the
measurement noise of the KF via IGGIII weights and estimate
the SoC of lithium-ion batteries of electric vehicles.

consider, under a static environment assumption, a
linear relation between Doppler velocities (based on radar
measurements) and the ego-velocity. Due to dynamic fea-
tures, outliers are generated, which are first filtered using a
sliding window approach where instances where the velocity
of two subsequent measurements differs too much or where
the velocity differs too much from the average in the window
are discarded. With the filtered data, robust regression using
truncated least squares and the Cauchy loss is performed.

Robust regression can also be used for velocity estimation,
see, e.g., [300], who consider the objective

mﬁin (Zl pu (vi — Xi,@)) )

for the measured velocities v; and variables such as the mean
traffic speed or the road curvature, that are represented by the
X;.

[258]] apply robust M-estimators such as LTS and LMS,
but also consider robustifications of recursive least squares,
for vehicle parameter estimation. Such recursive objective
are important when considering time-varying systems so that
for each time step ¢, a solution can be efficiently computed,
which is in particular important for real-time applications.
The objective is

i (S50, X0t x,9))

for some forgetting parameter A €]0, 1]. also propose
to additionally regularize recursive least squares. They apply
these algorithms to mass estimation and tractive force pre-
diction of vehicles in grey-box models. They use the model
X3 =Y for

4
X = (g cos(6), gsin() +v',v?, v) . B=

2
4rg

2

(mfro,m7 %Acx, m) ,

CyW

for the gravitational constant, g, the gradient angle, 6, the
path radius, rp, the rolling resistance coefficient, f,,, the
mass, m, the vehicle cross-sectional area, A, the longitudinal
drag coefficient, c,, the air density, p,, the wheel-concerning
stiffness, cyw, and the velocity, v. X takes the role of the
measured input and Y represents the tractive force, which
takes the role of the measured output in mass estimation. Note
that a robust estimation of 3 allows for extracting the desired
vehicle parameters, here the mass, from the estimate ,5' In
[258], Y itself is computed by the model
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T — Iy}

)

rw

for the rim torque, Ty, the wheel moment of inertia, Iy,
the dynamic wheel radius, ry, and the second derivative,
W of the wheel rotation angle, . They also provide an
overview of variables that need to be estimated as they cannot
be directly measured. In the above model, the engine torque
and the reduced moment of inertia can be assessed by look-up
tables, while the velocity, the path angle, and the path radius
can be estimated by simple models. They also point out that
in the presence of outliers, the MSE is not the correct criterion

for validation.
Mass estimation has also been considered in [60]]. Under
the assumption of a nearly flat road, the model ¥ = X3 for
the longitudinal acceleration Y is approximately valid, where

Teigismr chpav2
X = < &7 - y—8 > ﬂ =
r'w 2

T

(et )
where T, is the engine torque, i, the transmission gear, iy the
final drive ratio, ny the driveline mechanical efficiency, and
where F,, represents the error of a physical model of the
driving force. They consider recursive regression where the
objective consists of two parts, one for each component of
B. The squared loss is replaced by the three-part redescender
going back to [123]] for the first part of the objective. In
their simulations, they confirm real-time capabilities of their
algorithm.

[67] consider the estimation of running resistances of a
train. To this end, they invoke the differential equation

Orv(t) = u(t) = r(v(r)) —w(s(1)), wis(t)) =

£ p(s(e) + s

on’ purr (1))’
where u(t) is the tractive and brake effort, r (v(¢)) the running
resistance corresponding to the velocity, at time ¢, respec-
tively, and where p,, is the rotational mass factor, p(s()) the
gradient of the track at s(¢), rr(s(¢)) is the radius of the track
at s(r), and where k is a gauge factor corresponding to the
impact of a curve on the train. For the resistance, they use the
model

r(v(t)) = ro + riv(t) + rv? (1),

for rolling resistance parameters rg, r1, r2. Using time dis-
cretization with time step size Az, one gets the regression
model Y = X3, for

V(fet1) — v(k)
At ’
ﬁ = (r()7r17r2)T7 Xk = (17Vkvvl%)7

with the respective quantities at time step k. They consider
a plethora of non-robust and robust loss functions, including
the Huber, Tukey, Cauchy, and Welsch loss.

[32]] consider robust parameter estimation for electric ve-
hicles, including mass, braking parameters, drag and resis-

Yk = Uk — W(Sk) — Qk, ap =

24

tance, electric parameters of asynchronous machines (such
as resistances, inductivities), and parameters of lithium-ion
cells (voltage, SoC, State of Health (SoH)). They point out
that contamination may arise from wrong measurements,
disturbed transfer, phases with low system stimulation (when
driving with constant speed), wrongly modelled system dy-
namics, or wrong input parameters such as wheel radii, ve-
locity, driving torque, air density, or acceleration. As for
the longitudinal vehicle dynamics, they consider the model
Y =F, =Xg for
X = (ay, g, gvs, gvi, 0.5p02,a2)

X7y

2
m
B = ((m mc, o, MCy 1, MCr 4, CAF,g >
’ ’ ’ ’ & (40"/Rad)T ’

for the longitudinal velocity, v, the longitudinal acceleration,
ay, the lateral acceleration, a,, the rolling drag forces, c, j, the
air drag force, c,,, the projected surface area projected on the
y-z-axis, Ap,,, and the curve drag force, m*/(4c.,,,). Apart
from outlier detection, which has disadvantages when being
applied to embedded systems due to a large memory and
computational burden due to the recursive estimations, [32]]
propose a robust version of recursive least squares, including
exponential forgetting, regularization and parameter range
constraints, see [32, Alg. 3.8], which is solved by an IRWLS
procedure. As for the robustness aspect, the weighted RLS
objective

min (5 320, X wtrE(s)))

is considered, where w is a weight function such as the Huber
weight function. As for electric parameters, they consider the
model

_ 90 Y
Y = Ohug + npwpug =

O2i§ + Oy (nywmiy) opLs
ohig LSILLZ
—u = | =x8
O + npwmiy Rg
i Rs%f

for currents, i, voltages, u, electric resistances, R, and induc-
tivities, L, where the subscripts S and R refer to the stator and
the rotor, respectively, and where superscripts « and y refer to
the coordinate system of the asynchronous machine. w,, is the
mechanical rotor drive, n, the number of pole pairs, and o
the scattering coefficient. Although they do not apply their
robust RLS procedure here, they analyze problems that arise
when applying the non-robust variant and propose a Savitzy-
Golay smoothing of the signal in order to compute 9?i§'. In
lithium-ion cells, the model

Y = o) = (0,0 8

for 8 = ((1 — a1Uoc,a1,asz,as) is assumed, for voltage
Uk, current I and open circuit voltage Upc of the cell,
and quantities ayp, as, a3 that are given in terms of the time
step size, inner resistance Ry, and resistance R; and capacity
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C; of the RC branch, respectively. They apply their robust
RLS variant here.

C. BOUNDING BOX ESTIMATION

[154] propose a robust estimation of future bounding boxes,
including their uncertainty. Given an anchor box By, let
T(t) = [To(t), Ty(t), T (1), Ta(?)] : R — R* be the transfor-
mation at time step ¢ from By to the ground-truth prediction
box B*(t) where the indices represent the x- and y-position
of the center, the width and the height of the bounding box,
respectively. Then, the proposed confidence-weighted Huber
loss is

Hi(u,u',0) =
In(c) + {(” ;”/)2/(202)’ | <k :
ko 2|u—u'| —k?/(20%), |lu—u'|>k

for a normalizing constant ¢ and a scale parameter o > 0.
They propose to set k to the estimated uncertainty &, scaled
by some constant factor. As for the objective, they consider
minimizing the discrepancies of the dimension-individual
means, i.e.,

i (32, Ha(T7 1), Ta(0,08),6(1,67)))
where fd and &, are estimators for the transformation and the
uncertainty by a neural network, with individual parameters
Gg and 0%, respectively. Experiments were performed on the
KITTT “raw” dataset. The first 20 frames of a tracklet serve
as training sample, the prediction horizon consists of the
following 10 frames.

The Huber loss is also referred to as “smooth /;-loss”, only
up to a scaling, in the deep learning literature. For example,
[[53[] use this loss function as orientation loss and bounding
box offset loss, [54]] for the 3D box regression loss, [[175] use
it for all regression losses in 3D object detection, or in 2D
object detection algorithms such as Fast R-CNN [108]. [[15]
propose to use a convex combination of the IoU loss and the
Huber loss.

D. DETECTION OF ROAD FEATURES

[302] consider the detector YARF (yet another road fol-
lower), which uses Robust Statistics in order to detect road
features. They propose the model

Y; = Bo — B + B1X; + 0.58:X7,

where ) is the offset from the road spine, 3 the Y-intercept
of the spine arc, (3 the heading w.r.t. the tangent of the spine
arc at By and where (3 is the curvature of the spine arc,
where the positions are given by (X, ¥;). The coefficients are
estimated using LMS.

[234]], [235]] consider the problem of road surface ex-
traction from 3D point clouds and apply a robust variant of
locally weighted regression based on the Tukey loss, i.e., they
minimize

Zi pr(F)w(X:)(Yi — fa(X1))?,
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where 7; = r;/6 for & being the MAD of (|r1], ..., |r,|), where
the weight function w is the tri-cube weight function

[1Xi=X;||2

3 3
|:1 — (max,'e/v(x,.)(HXi*XjHZ)) :| , J€ N(x)
07 ] ¢ N(x)

for a local neighborhood N(X;) of X;, and for some po-
tentially non-linear function fg. The residuals after the fit
indicate whether the individual points belong to the road
surface or whether they are non-ground/3D surface points.

w(X;) =

)

E. OTHER APPROACHES
Outlier detection is a popular topic in data analysis. It is
therefore out of scope for this paper to list all the literature
where some kind of outlier detection has been performed
in the context of autonomous driving. Just as an example,
consider the work of [|345]] who have data from n microphone
arrays which are located as known 2D-positions p;, i =
1, ..., n, which measure angles of arrival from an object with
the goal to determine its position p. In an iterative manner,
first the m microphone arrays with the smallest distance to a
particular object are identified based on an initial estimate p,
of the object’s position, which form a reference set. Then, the
matrices P; = (B;)j=m+1,....n» i = 1, ..., m, are formed, where
P is the estimated position of the object when replacing p;
with p;. Using the robust Mahalanobis distance where the
mean and covariance of the P; are estimated robustly in the
spirit of the Gnanadesikan-Kettenring estimator [[109], some
instances are flagged as “outliers”. Finally, the position of the
object is estimated using weighted least squares where the
outlying instances are downweighted accordingly.

[36] use median regression for trend estimation in GPS
time series based on the Theil-Sen estimator

N % —Zi
v = med,; ( )
i =1t

for the velocity, where each z; represents the coordinate at
time #;. As a pre-processing step, outlier detection is done
where the slope is computed for each data pairs, removing all
pairs for which the slope has a distance larger than 2 MADs
from the median.

[204] estimate the orientation changes of a vehicle based
on radar images. After an MAD-based outlier removal, the
surviving pairs of reference and data images are considered
and the rotation and scale is estimated using Tukey’s biweight
function. At the end, the estimation is refined by minimizing
the Cauchy loss, evaluated at Mahalanobis-type residuals
arising from the previous estimation step.

[23]] propose a whole family of loss functions, including
robust ones as special cases, given by

2 a/2
= T +1 —1
p(r,a,T) |O[ 2| 3

(07
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with a scale parameter 7 > 0 and a shape parameter «. The
special cases @ = —o0, @ = —2, a = 0, @ = 2 correspond
to the Welsch loss, the Geman-McClure loss, a smoothed
version of the /;-loss and the squared loss, respectively. They
apply several particular loss functions from this family to
tasks such as monocular depth estimation and fast global
registration.

[347] consider the truncated least squares (TLS) problem

)

1
for the inlier standard deviation o; corresponding to Y;. They
show that general geometric perception problems such as
pose, rotation or 3D structure estimation can be formulated
as TLS problem. They solve it by a convex relaxation. Their
relaxation is extended in [348]] to robust loss functions such as
the Huber loss or Tukey’s biweight loss where it is applied to,
for example, point cloud registration, pose estimation, shape
estimation, and rotation averaging.
[241] propose the version

. [Yi—vi|, [YVi—Y|<k

S U R TEL,
of the Huber loss function for depth estimation, where the
Y; are the pixel values in the ground truth depth-map, the Y;
their predictions, and where the threshold k is given by k =
0.2max;(|¥; — Y;|). This loss is one component of an overall
loss that is composed by this pixel loss and a loss function
for structural similarity and for the intensity gradients of the
pixels, respectively. Contamination may arise from inherent
blurs in images.

As for graphical neural networks (GNNs), which are a
backbone of many computer vision methods, [[105]] consider
a robust aggregation of the embedded features of neighbor-
ing points in GNNs. They replace the usual sum or mean
aggregation, which opens the door for distorted aggregated
embeddings due to single perturbed points (as the BDP of an
arithmetic mean is zero), by a smoothed medoid aggregation,

which is computed by
exp (—871 3, 11%; - Xill)
> wiXi, wi=
' Seexp (=071 X, 11K — Xl

for some parameter J that controls the approximation to the
original solution

argmin, (Zl || X i —)’||) .

The solution to the smoothed medoid problem approaches
the arithmetic mean for § — oo and the exact medoid for
0 — 0. They show that the soft medoid procedure has a BDP
of 0.5. As for contamination, they assume that an adversary
can perturb a fraction of the aggregation points. [[104] propose
the Soft Median aggregation which requires less memory ca-
pacities than the Soft Medoid aggregation while maintaining
the BDP of 0.5. It is given by

26

softmax(—cd~1p~ /%)X

for the vector ¢ consisting of components ¢; = ||X — X/|| and
for the node attributes X € R"*? of the graph to which the
GNN is applied.

Deep fundamental matrix estimation has applications in
3D perception, for example, for the projected retinal image
coordinates p corresponding to 3D coordinates of the corre-
sponding point, a fundamental matrix F satisfies p? Fp = 0.
Having an initial estimate for F, [367] propose to refine F'
by computing the signed distances r? and flagging all points
for which r? is larger than a certain multiple of a robust
scale estimate as outliers and then consider an LTS approach
where only the residuals from the non-flagged instances enter.
[254] propose to estimate the inlier distribution during the
optimization. In their context, the optimization problem is

i ApoII?) st |6l =1
min (37 |l4p012) st [[6]] =1,

for some matrix A. This problem can approximately be solved
by solving iteratively

X1 = argmin | _, (|[W/(6)Ax||?)

for a weight matrix W (8). They propose to learn the weights
by a deep neural network, so that they essentially have a meta-
algorithm of IRWLS. Identifying the solution in one step of
the IRWLS problem as a right singular vector of W (8)A for
the weight matrix W (@), they show that 6 can be learned
by backpropagation through an SVD layer. This technique
is applied to fundamental matrix estimation.

V. APPLICATIONS IN AUTONOMOUS DRIVING:
PREDICTION AND PLANNING

In this section, we collect robust approaches for prediction
and planning. The first two subsections are devoted to re-
inforcement learning and imitation learning. Here, the ego-
vehicle has to learn by experience (typically, via simulations)
how to behave in which situations, so the own actions and,
implicitly, the evolution of the states of surrounding vehicles,
are learned. The third subsection considers model-predictive
control, where models for vehicle dynamics are used in order
to predict the state evolution for the surrounding traffic par-
ticipants and the ego-vehicle based on the observed current
state. In all cases, reliable perception is important (see Fig.
[[). Nevertheless, robust planning approaches may safeguard
partially against misperception, and can, in addition, also
cope with other types of peculiarities such as adversarial
driving behaviors of the surrounding traffic participants. The
fourth subsection addresses Byzantine robustness, which be-
comes important when performing federated or distributed
RL training.

A. REINFORCEMENT LEARNING

Reinforcement learning (RL) considers a Markov decision
process (S,.A,3,v,R) for a state space S, an action space
A, a set 3 of transitions, a discount factor v €]0,1], and a
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reward function R : § x A x & — R that assigns a real-
valued reward to a state-action-state triple (s;, a;, 5,11 ), where
s;+1 is the state into which the system is translated in the
next time step after action a, was executed in state s;. The
transition model may either be deterministic, so that J € J
is a mapping (s,a) — I(s,a) € S, or stochastic, so that
a density value P5(s’|s,a) is assigned to (s,a). The goal is
to learn a policy 7 which is either deterministic, i.e., a map
m : § — A so that w(s) is the action taken when being
in state s, or stochastic, i.e., 7 : S x A — [0,00[ so that
7(s,a) assigns a density value to the state-action pair (s, a).
We abbreviate R(s;,a,,s;4+1) =: R,. The value function for
a given state s is the expected future reward that the agent
receives when following policy 7, i.e.,
5 = s} .

vr (S) =E, |:Zt’—t 'Ytlith

The Q-function similarly assigns a value to a state-action pair
(s,a) in the sense that, starting with s, = s, one does not let
the policy choose the initial action a, but starts with a given
action a at the initial state s.

In RL or MPC, the term “robustness” is often understood
as adversarial robustness, hence many robust RL algorithms
perform adversarial training. However, in contrast to adver-
sarial attacks in classical machine learning where a model
is trained on a static data set and where adversarial attacks
are computed after model training, decoupling them from
the training procedure, adversarial attacks in RL are used
for adversarial training where an adversarial agent challenges
the ego-agent, indeed affecting the training procedure. This
makes the notion of adversarial robustness in RL inherently
close to Robust Statistics.

For example, adversarial RL approaches have been applied
to train an agent for autonomous driving, see [256], who pro-
pose a minimax game where the adversarial agent minimizes
the objective that the ego agent aims at maximizing (up to
a different regularization parameter). [247], [257] suggest
similar minimax games. [256], [257] apply their method
to a scenario where the ego vehicle aims at crossing a 4-
way intersection, where adversarial vehicles drive on the
lanes the ego vehicle has to cross. [[134]] consider adversarial
attacks against the agent’s observations in highway scenar-
ios, which is trained according to maximizing the Jensen-
Shannon divergence between the 7 (s, -) and « (5, -), for the
perturbed state 5 of s. In [133]], the worst-case observational
perturbations are computed by an adversary using the FGSM
scheme. They consider highway, intersection, and on-ramp
scenarios with episode lengths of 300, 30 and 30 time steps,
respectively. They observe much higher computational costs
than for standard RL algorithms, which is a consequence
of the approximation of the worst-case perturbations by a
Bayesian approach. In [[130], the management of a fleet of
electric vehicles is considered, where one has one agent
for each region of the map who can displace vehicles into
adjacent regions or to charging stations. Here, the adversarial
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agent is a perturbation of the observed states of the region’s
agents, which consist of the number of vacant and low-battery
vehicles, information about charging spots, and demand. The
objective is a minimax game, and both the region’s and the
adversary’s policies are updated iteratively. [84] propose to
discount the adversary’s reward and to constrain the number
of attacks by an upper bound, encouraging to only attack in
critical situations. Their method is applied for left-turn in
an intersection and on-ramp merging. [[117] consider state
attacks and optimize the worst-case discounted reward, while
the adversarial agents aim at performing the action that
minimizes the victim’s reward. In a simulation framework,
they consider driving scenarios with an obstacle.

In addition, many approaches concerning robust control are
given in the literature. One can distinguish between minimax
games where one searches for the policy the maximizes the
cumulated reward/minimizes the cumulated cost given the
worst-case trajectory or worst-case transition model (simi-
larly as above in the adversarial RL approaches, but with
the difference that the adversarial agents trained in these
approaches do not necessarily reflect worst-case situations),
risk-sensitive criteria where an individual risk measure is used
as objective, and constrained criteria where the reward should
be maximized subject to several constraints, see [99].

More formally, the worst-case criterion under parameter
uncertainty corresponds to the objective

in (E * 4R
max [ min
well \ Ped ( P [tho v t} ) ’
for a set J of transition matrices, and a set IT of policies, while
the worst-case criterion under inherent uncertainty is given by

i (Beo [0, 7R ])
e (pmin (Be [S57,2R]) ).

for a set Q™ of trajectories that are allowed under policy
7 [[101]. E.g., [232] consider the worst-case criterion under
parameter uncertainty for finite state-action spaces and apply
the method to aircraft routing.

Another example of a minimax criterion is the robust Bell-
man TD operator introduced in [279]. The objective is the
expected squared temporal difference

1

5 ]EO; ~Po [(6nominal (Wt ,0; ) ) 2]

tw’
for

ai™ (wi, 00) = Y (00) — Qu (1. a)

for the weights w’ of the target network, the current parameter
w; of the approximation Q,, (s, a) of the true Q-function, the
distribution Py of the observations, and the nominal targets

Y:Svr’mnal(ot) = Rz + Y HL?JX(QW’ (SI+1’ Cl/))

for observation o, = (s;,a,,R;, s,+1) at time ¢. In the robust
Bellman TD formulation, one still considers the squared TD
error but a robust minimax target label
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Y (0,) =

. / / /
Rt rin (X2, o) T a) max(@u 5. ).

for the set S(s;, a,) of all possible states at time (¢ + 1) given
s; and a, under the uncertainty set /.

[44] consider policy gradient descent and replace the
squared differences of the predicted Q-values for given state-
action pairs and the observations by the absolute differ-
ences and the Huber losses. They apply their algorithm for
autonomous parking and consider scenarios with 100 time
steps. In their experiments, the Huber loss allows for quicker
convergence, finally resulting in an even decreased training
time in comparison with training according to the MSE
and the MAE. Other occurences of the Huber loss in RL
include the training of ecological behavior in front of red
traffic lights [223]], vehicle control (left/right turn, acceler-
ation/deceleration, [354]]), and in (simulated) environments
for a mountain car and a lunar lander [43]].

In contrast to the minimax approach where the adversarial
realization is considered to be the worst from a given un-
certainty set, distributionally robust optimization optimizes
an expectation which is not computed w.r.t. the ideal dis-
tribution but w.r.t. a set of distributions that contains the
ideal distribution. In light of Sec. one can interpret this
as an optimization of an expectation w.r.t. a contamination
ball (although, in the literature, one not necessarily uses
the classical contamination balls from Robust Statistics). In
[132] (although actually not an RL approach, as there is
no learned policy but the optimization problem is solved
periodically with new data), the goal is to manage a fleet
of electric vehicles according to the mobility demand and
charging requirements. Here, the worst-case expected cost
(w.r.t. sets of distributions that model the demand and the sup-
ply, respectively) is minimized over the number of dispatched
vehicles across the regions. Here, the sets of distributions are
confidence sets, estimated from historical data.

[282]] consider state measurement errors and formulate the
idea of smoothness regularizers that should encourage the
differences between my(s) and 7y (5) to be small if the dif-
ference of s and § is small. Assuming s € R”, the smoothness
regularizer has the form

Ry(mg) = ]ESNP:@ [ max (D(mg(s), mo(5))]

SEB(s,€)

for the state visitation distribution P§ induced by a policy 7
an the /,-ball B(s, €) around s with radius e. For the distance
D, they use the Jeffrey’s divergence

1 1
= 5DKL(P||Q) + §DKL(QHP)

for stochastic policies and the Euclidean norm for determin-
istic policies. The agent is then trained w.r.t. the objective
to maximize the Q-function, penalized by the smoothness
regularizer.

D,(PllQ) =

28

[131] consider multi-agent RL with electric vehicles and
argue that the individual charging patterns lead to additional
model uncertainties with the goal to distribute the electric
vehicles fairly among different regions while allocating low-
battery vehicles to charging stations, minimizing the overall
costs. For a cost function ¢, denote the worst-case state value

function by
P9 = min (Be D07 o elsan)
v (s) = _ min c(si,a)|s1=s
jEUc(Jo,r) s 121’7 ty Ut 1
for the uncertainty set U,(Jo,7) = @eg.qea J(5,a) where
each J(s,a) is a convex contamination ball around the true

transition distribution Jo(s,a) with contamination radius r,
i.e.,

Is,a) = {(1-r)3Jo(s,a)+min(1,r)Q| @ € My (Sx A)}.
The objective for finding the optimal policy is then

max(v] (Ps)) st Vi(s)>71Vse€S,

=)

for some threshold 7 and

7T

- . |
vi(s)=, min | (E [Z 7R,

and vT (Ps) = Egp, [vT (s)] for x € {c, r}.

B. IMITATION LEARNING
Robust approaches for RL also carry over to IL.

Random perturbations of trajectories, which can be under-
stood as an untargeted adversarial training, have been consid-
ered for IL in [[19]] who trained an autonomous driving agent
based on expert trajectories. In [298]], one perturbs the action
selected by the agent by an adversarial action that should drag
the vehicle from the intended path. In their setting, one is
provided with future states by an expert. An inverse dynamics
model (IDM) is applied to find suitable actions that allow the
vehicle to attain these states. The policy is trained according
to the reward function

—lam — (g +a.)|?,
for the policy’s action @y and the adversarial action a,, so the
agent should learn to imitate the optimal action by adjusting
for the adversarial action. In order to decourage too harsh
adversarial actions, they only inject an adversarial action with
a certain probability and further restrict the adversarial action
to a certain interval.

[[183] consider a minimax criterion where an uncertainty
set around the true observation is considered. This uncertainty
set is given by coordinate-wise /;-balls around the true state
component. They consider simulated driving scenarios with
traffic lights and intersections.

[[138]] introduce an IL algorithm based on GANs. They start
with a regularized form of inverse RL with the objective

argmax, (—J () +min(—H (m)+ Ex[e(s, a))) ~ Ex, [c(s, ).

where ¢ denotes a cost function, H the y-discounted causal
entropy and 7g the expert policy. In order to prevent overfit-
ting, they propose to regularize this objective with a convex
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regularizer J, inducing the additional term —J (c¢). Denoting
this regularized objective by IL, (g ), and considering the RL
objective

RL(c¢) = argmin, (H (7) + Ex[c(s,a)]),
[138] Prop. 3.2] shows that
RL o IL;(7g) = argmin_(—H (7) + J*(OM,; — OM,,)),

for the occupancy measure
(o)
OM, (s, a) = w(als) leo ~'P(s; = s|m).

Now, [138] connect GANs with RL with the choice
J(e) = {IEWE [glc(s,a))], ¢<O

oo, ¢>0

_)Jx—In(l—¢€"), x<0
g(X){OO’ x>0

for which

J*(OM7r — OMWE) =
max(Ex [D(s. )] + Ex, [n(1 — D(s.a))]).

where D is taken from the set of all discriminative classifiers
on S x A. This leads to the task of finding a saddle point of

E,[In(D(s,a))] + E,,[In(1 — D(s,a))] — AH ().

With parametrizations D,, and 7y, this task can be solved in
a GAN-style by alternatingly updating the parameters for the
discriminator and the policy, respectively.

[220]] propose to induce a Lipschitzness of both the dis-
criminator and the policy by replacing the entropy regularizer
H () with the regularizer

1
R(D) = ﬁ Z(s,a)eD D, (s + 5s7aa) — D (s,a)|,
05,0 = argmax| s, <, (|Dw(s + 8,a) — Dy (s,a)]),

for training data D and discriminator network D,,. The moti-
vation is to better cope with observation noise. Their method
is applied to robot locomotion.

[176] train an adversarially robust IL agent via a minimax
game where the adversary aims at minimizing the objective
the agent aims at maximizing (the entropy-regularized ad-
vantage function). In order to stabilize training, they suggest
regularizing the objective of the ego-agent by a distillation
loss term.

Similarly, [316] propose to alternatingly train an IL agent
and an adversary where the latter learns to perturb the states
in order to let the agent fail. Let the attack policy m,qy assign
a density 7,y (+|$) to a state s in order to produce some adver-
sarial state s". They then distinguish between sensory attacks,
where the observed states are perturbed, or physical attacks,
where the state itself is perturbed, resulting in a perturbation
of the observed state and letting the transition model produce
the next state based on the perturbed state. The objective is
then to learn a policy under all possible attacks, i.e.,

VOLUME 11, 2023

min(max(J (7, ma)))
for
J (7, Tagy) =
E [ZI p(at,ﬂ'E(s,))’a, ~ T (Taav (1)), S141 ~ J(-s,,a,)}
in the case of sensory attacks, or
J (7, TTagy) =

E |5, plar me(s)

in the case of physical attacks, respectively, for some loss
function p that penalizes the discrepancy between two ac-
tions.

ag ~ W(Wadv(st))aswrl ~ j('|7radv(st)>at)]

A typical approach from Robust Statistics, namely a robus-
tification of the objective, is done in [240] who consider value
function estimation and who point out that this is usually done
by minimizing the squared Bellman error, i.e., for Bellman
operator

(TV)(s) = E[Ri1 + 7V (sr41)ls: = 5],

this objective is given by

min (Y- Ps()((TVa)(s) = Va(s))?)

0

for some distribution Ps on S and an approximation Vg of the
true function V7 for which (7V™) = V7 holds. [240] pro-
pose to replace the squared loss by the absolute or the Huber
loss and show how these new objectives can be minimized.

[198] consider IL if contamination in the classical Tukey-
Huber sense are allowed, i.e., in the pool of offline demonstra-
tion data, a fraction of € of the instances (state-action pairs)
can be arbitrarily corrupted (note that this fraction is deter-
ministic as in the BDP context, not stochastic as in convex
contamination settings). They propose to randomly partition
the data into B batches and to use the mean of the likelihoods
in each batch as the objective, so the overall objective is the
median of the means for which they propose a gradient-based
optimization algorithm. This contamination model has also be
considered in [363]], [366] for RL with policy gradient. More
precisely, in [366]], an e-fraction of transitions can be modified
arbitrarily while in [365]], both an e-fraction of rewards and
transitions can be perturbed arbitrarily, therefore, they call
this contamination scheme “‘strong data corruption”.

[366]] point out that many of the existing robust RL
methods consider offline RL, where they distinguish between
online RL, i.e., an adversary can adapt their perturbation in
each iteration, and offline RL, where the contamination must
be generated prior to training. In [365], in contrast, the e-
contamination scheme is designed for online learning in the
sense that the adversary can decide in each iteration whether
to replace the current reward and the new state with arbitrary
values, with the restriction that this can only be done in at
most ey, training iterations if mj, is the maximum number
of iterations.
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[70] assume that reference trajectories or parts of reference
trajectories are adversarial in the sense that they accomplish
the task with illegal means. Having a small initial set of guar-
anteed benign trajectories, they detect adversarial trajectories
by a divergence measure. To this end, they partition trajecto-
ries during training into parts corresponding to sub-tasks and
learn sub-policies (options, see [295]], [18]) for each sub-task.
In order to be able to detect adversarial trajectories that only
differ from benign ones in some time steps, they propose to
use the occupancy measure w.r.t. the clean trajectories, i.e.,

clean _
OM7T (S7 a) o Z(‘Yha[)eTclean
Zt 'VIP(St = Si‘ﬂ—clean)

for a clean trajectory 7 jean generated by a clean policy 7ciean
and for the optimal policy 7*. Because this measure is zero
if two trajectories are very close without overlapping, [70]
combine it with the Fréchet distance

FD(r) = min( m[gbf](llf(a(t)) — Tetean (B(1))]]2))

5 s

7 (ailsi)

for functions «,: [0,1] — {0,1,...,|7|}, B,: [0,1] —
{0,1, ..., |7ciean|}. Then, a classifier is trained on the two
scores in order to decide whether the trajectory part is adver-
sarial or benign.

C. MODEL-PREDICTIVE CONTROL
In MPC, one assumes a model for the system dynamics, i.e.,

Si1 = [ (8, U, 1),
where u, are the control inputs to the system, which are con-
tained in some space U, and control noise v;. In its simplest
form, an MPC problem is given by
min (Zt p(rt)) st osip1 = f (s, uy),

ucU

for the control errors r, = d(s;*,s,(u,)) where s;° is the
set-point that the agent should follow at time ¢ and where
d is some distance measure. The objective is potentially
conditioned on other constraints such as that the states and
control inputs should, at least with a certain probability, be
contained in some subspace of & and U, respectively, that
correspond to safe or comfortable behavior, or penalized by
a term that discourages the control inputs to vary too much
over time.

Similar approaches as for RL and IL have also been in-
troduced for MPC, e.g., replacing the quadratic loss for the
control errors by the absolute loss as in [[79] and [227], by the
Cauchy loss [77] or the dynamically scaled covariance loss
introduced in [4]], which has been used in [77]] as loss function
for MPC.

A minimax formulation of an MPC in order to deal with
worst-case uncertainties goes back to [41]. [[362] propose
another minimax formulization where the objective contains
worst-case losses w.r.t. an uncertainty set on the (discrete)

30

behavior of surrounding vehicles, given as a probability sim-
plex. Experiments on simulated data with a time step of 0.1s
and a planning horizon of 5s confirm real-time capability.
[226] consider the control of maritime vessels and aim at
avoiding collisions. Here, the obstacles are overapproximated
by balls, and due to tidal effects, their radius changes, i.e.,
they are modelled as random variables. Assuming that an
empirical distribution for each radius exists, their robust MPC
approach considers an uncertainty set in the form of contam-
ination balls around each empirical distribution, based on the
p-th order Wasserstein distance.

[228]] point out that robust control approaches often in-
clude robust optimization where the constraints are only
known up to some noise term with the goal to keep the
constraints satisfied for all possible noise terms for a given
uncertainty set, i.e., g(x,£) < 0 for all £ € U for some
uncertainty set {/ and some function g, making the approach
rather conservative. The other approach is distributionally
robust optimization where the supremal expectation of the
constraints have to be satisfied w.r.t. a given set of distribu-
tions w.r.t. which the expectation is computed, i.e.,

sup(Ep[g(x,€)]) <0
pPed

for some set 3 of distributions. Motivated by the functional
view from Robust Statistics, [228]] consider the supremum
bias due to the decomposition

ilelg(lEp[g(x, §)]) = Eplg(x,&)] + Ib}elg(BiaS(P, g P))
with
Bias(P, g, P) = /gd(P —P).

They compute the supremum bias for the commonly used 1-th
order Wasserstein and MMD metric, resulting in

sup (Bias(P,g,P)) = €L,
W1 (P,P)<e
for Lipschitz constant Ly of g w.r.t. the first argument, and

sup  (Bias(P,g, P)) = ellglla,
MMD(H,,P.P)<e
for the RKHS H, of g, respectively. Due to L, and ||g||#,
being unknown in practice, they propose to control the dis-
tributional robustness for the 1-th order Wasserstein distance
by

emljcxx(||ng(Xi;')|D»

motivated by L, > sup,(||V.g(x,-)||), and for the MMD
distance, they prove that the original inequality w.r.t. the
supremal expectation is satisfied if there exists » € H for
some RKHS H such that

max(h(§)) + el [hll2) < 0and g(x, &) < h(&) V€ € U.
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Another common robust MPC strategy is tube-based MPC
where one assumes that there is a function g : 2° x U x 2%’
such that g(s;, u,,v,) € g(S,u,,N), where v, € R?. Further-
more, if S C Ss, it holds that g(Sy,u,R?) C g(S2,u,RY)
for all u € U (e.g., [287]). In other words, the set of all
possible forward reachable states is over-approximated by a
tube.

[287] enhance tube-based robust MPC with collision
avoidance constraints and train an autonomous agent for a
car. [26] apply robust tube-based MPC to the training of
an autonomous driving agent in order to avoid collisions
with pedestrians, both uncertain static and uncertain dynamic
pedestrians. [25] consider MPC that satisfies safety con-
straints such as collision avoidance or terminal conditions like
a full stop or parking, and allow for the state and controller
inputs being as close as possible to a reference input. In
simulations with a time step size of 0.05s and a prediction
horizon of 20s, they confirm real-time performance of their
controller. [230] consider a robust tube-based MPC for lane
keeping of an autonomous vehicle, [[142], [215], [157], [[179],
[350]] (experiencing quicker convergence than standard MPC
in their simulations), [20], [S7]] apply it to path tracking, and
[340]] to overtaking. [98] consider obstacle avoidance using
tube-based MPC on icy and snowy roads and confirm real-
time capability in their experiments. [290] use tube-based
MPC for collision avoidance with moving obstacles. [222]
use tube-based MPC in order to let multiple agents satisfy pla-
tooning requirements, i.e., maintaining the same speed. [244]]
combine /;-adaptive control, which lets the system behave as
a linear model, disregarding uncertainties and perturbations,
with tube-based MPC. Delay (even time-varying) as an addi-
tional source of uncertainty is also considered, for example
in [199], who use tube-based MPC apply it to steering, and
[163]], who consider uncertainties in timing due to multiple
sources simultaneously, formulate the problem as tube-based
MPC, and perform experiments concerning static collision
avoidance and overtaking. [329]] consider tube-based robust
MPC for autonomous racing.

H_-control considers the H,,-norm of the transfer func-
tion G of a linear state space model, i.e.,

|Gloo = Sgp(gmaX(G(iw)))

for the maximum singular value oy,,,. Optimal H.,-control
considers minimizing ||T;y||c Where T, denotes the upper
left block of the transfer matrix G, however, as the solution
is often not unique and difficult to compute, one relaxes the
problem often to satisfying ||, (s)||oo < 7y for some v > 0.
[275]] use H,-control for adaptive cruise control and lane
change in queues, [116] path tracking, cruise control and lane
change of electric vehicles, [[159] consider double lane change
and serpentine maneuvers for electric vehicles, [342], [253]]
steering while driving at constant speed, [[160] path following
and lateral stability of autonomous electric vehicles, [165]]
path following and lateral stability of autonomous vehicles,

VOLUME 11, 2023

[236] speed and current control for electric vehicles, [242]
collision avoidance, [261]] lane-keeping, [95] lateral control,
and [137], [377] path-tracking.

[278]] consider lane change on highways and model
the lane switching behavior of the surrounding vehicles as
Markov jump process. Let w be a set of parameters that model
the uncertainty of the system. Then, for a sample {&;}, they
compute the empirical distribution P, and let the ambiguity
set be the contamination ball around f’,, w.r.t. the TV distance.
The robust MPC approach then solves a minimax problem,
i.e., finding the control sequence that minimizes that maxi-
mum cost over all such distributions.

See also [355]] for further references on robust MPC ap-
proaches for autonomous driving.

D. BYZANTINE ROBUSTNESS

Federated and distributed (reinforcement) learning is done
for a lot of recent autonomous driving models, see [319]
and references therein. Therefore, it is important to ensure
Byzantine-robustness of those approaches. [319]] themselves
craft poisoning attacks against federated learning in a non-
linear, autonomous steering control scenario, [[102] propose
attacks against trajectory prediction via federated learning.

As for distributed RL, e.g., [85] consider Byzantine-
robustness and suggest classical outlier detection in each
learning round by computing the mean of the medians of
the estimated policy gradients of each agent and neglecting
those which differ by a least two standard deviations from
this estimate. [80] consider a general bandit algorithm and
allow for a constant e-fraction of agents to be byzantine, and
propose to compute the shortest interval containing a fixed
fraction of rewards so that the mean reward is then given
by the mean of the rewards contained in this interval. [5§]]
consider also a trimmed mean in order to estimate the value
function in online and offline distributed RL. [208]] propose
a poisoning scheme for federated RL and assume that the
attacker can perturb the observations of some of the trained
RL agents, but has no information about the underlying MPC.
They also consider corrupted critic networks in actor-critic
RL. Note that in these settings, the individual distributed
agents themselves take the role of the instances in the original
understanding of case-wise contamination.

Further approaches for Byzantine-robustness that are not
directly tailored to federated RL are given in the literature. For
example, [35] show that no linear aggregation is Byzantine-
robust if one single local model is poisoned. Note that analogy
to the non-robustness of the mean or the non-robustness of
Bagging. They propose Krum, a technique where essentially a
variant of the geometric median is computed, more precisely,
the local model with the smallest distance to its nearest neigh-
bors. They show that Krum guarantees Byzantine robustness
if the fraction of malicious models is smaller than (n/2 — 1),
so one could interpret the fraction of 0.5 of malicious models
as “Byzantine-BDP” here. The notion of such a BDP has
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recently been introduced in [113]. Variants of the geometric
median have also been considered for example in [186],
[321]], [286], or in [56] and [271] where a geometric median
of means of gradients is proposed. [351]] consider median and
trimmed-mean aggregation of the coordinate-wise gradients
reported back from the local learners and analyze statistical
error rates. [|379]] improve their work as the bounds in [351]]
depend on the dimensionality so that the rates may be sub-
optimal in high dimensions and also interpret the minimum
fraction of Byzantine models that lead to unreliability of the
federated learning procedure as BDP.

See [309]] for a recent overview of robust federated learn-

ing.

VI. OUTLOOK AND FUTURE WORK

In this section, we outline some ideas of robust strategies
that were not yet fully applied to autonomous driving tasks.
Moreover, we provide suggestions for benchmarking studies,
where different robust algorithms for each of the individ-
ual application areas could be compared in order to assess
whether some classes of robust algorithms are better suited
than other, and to get an intuition about the amount of con-
tamination in typical data sets from the respective area.

A. FURTHER STRATEGIES FROM ROBUST STATISTICS

The concept of influence functions is rarely seen in the con-
text of autonomous driving in the sense of Robust Statistics,
however, the term “influence function” is often used in a phys-
ical sense, i.e., quantifying the impact of one physical variable
to some property. Influence functions are used as diagnostic
tools in deep learning in general, for example, in [174]], and
they are one of many approaches of XAl (e.g., [16]). [[106]]
propose adversarial attack against influence functions and
show that the interpretation of a NN based on the influence
function is also fragile and highly vulnerable to adversarial
attacks.

A particular application in autonomous driving is given in
[301]] where influence functions are used in order to predict
the impact of a data point on pedestrian detection. More
precisely, the influence function is used as proxy in order to
predict the differences between the test losses for a model
trained on the original data and a model trained on data where
one instance has been deleted.

Apart from the quantification of the impact of an observa-
tion on the estimator, diagnostics based on influence curves
can be used to generally strengthen the understanding of the
data, for example, whether there are clusters of points with
high impact or by trying to find particular properties that
make data points influential. This strategy may not only be
applied for perception but also for planning in the sense that
certain actions or whole trajectories of adversarial agents are
identified as influential on the RL training result.

Nevertheless, apart from diagnostic purposes, the influence
curve can also be used in order to robustify an estimator di-
rectly through the perspective of local robustness. The “robust
losses” introduced in Sec. themselves induce bounded
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influence curves of the corresponding M-estimator by Eq. 2]
however, it is also possible to directly robustify the influence
curves. To this end, a so-called asymptotic linear expansion
of the estimator in the form

~ ~ 1 n
0, =60+~ Z,-zl IC(X;,T,P) + rem

must be valid, for some consistent initial estimator éo and a
remainder term rem (see, e.g., [259]]). This property holds,
for example, for asymptotically normal M-estimators [259],
SVMs [120], or regularized M-estimators [324]]. Given an
influence curve, one can formulate different optimization
problems in order to robustify the underlying estimator, for
example, minimizing the covariance of the influence curve
subject to a bound on the bias, minimizing the MSE [259]],
or finding the estimator the achieves maximum asymptotic
relative efficiency even under the worst-case contamination
radius [260]. Such “optimally-robust” estimators do not seem
to have been considered so far for applications in autonomous
driving, but would potentially increase the performance of the
trained models compared to those trained according to the
classical robust losses.

Another topic, which becomes increasingly important
when dealing with high-dimensional data, is variable se-
lection. Robust variable selection algorithms already have
been proposed in the literature, for example, the sparse LTS
[7]], robust Boosting variants [206], [[161]], or a trimmed
Stability Selection [[326]. Such techniques could be applied
in situations with high-dimensional state spaces in order to
identify relevant variables.

In the reviewed literature, except for those considering
Kalman filters where contamination in the innovations has
already been regarded, one does not distinguish between
contamination in the responses and contamination in the re-
gressor variables. This distinction is important because one
can argue that outliers in the responses, given clean predic-
tor columns, may naturally be bounded or that large errors
may be detectable in advance, implying that unbounded loss
functions with a bounded gradient such as the Huber loss
function are not problematic here. However, outliers in the
predictor columns are known to be more challenging. This
situation would even be natural, as the predictor variables
are also measurements in some applications such as location
estimation via GPS data, where coordinates or clock offsets
enter as predictor variables, or vehicle parameter estimation
such as tractive forces or electric parameters, where variables
such as velocity or voltages are used as predictor variables.
Moreover, contamination in the predictor variables occurs
when one cannot assume perfect reference data. For example,
bounding box estimation is often accompanied with ground
truth coordinates, which may be imperfect due to errors done
by human annotators, or the reference trajectories in imitation
learning are corrupted. Here, robust estimation techniques
that allow for this type of contamination, which is more chal-
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lenging than just considering contamination in the responses,
allow for addressing such situations.

Large measurement errors that are a source of contamina-
tion in the data are especially problematic in data with a high
number of variables and a rather low number of observations.
Here, the fraction of contaminated instances can quickly
become very large, as a single contaminated cell already
makes an instance an outlier (e.g., ). Therefore, cell-
wise robust approaches have recently been proposed in the
literature, i.e., algorithms that can cope with a certain fraction
of contaminated cells, even if all instances would be contami-
nated. For example, there are cell-wise robust counterparts of
location and scatter matrix estimation algorithms [3]], [180],
regression [39], [181]], [90], and clustering [[100]. In high-
dimensional data with an admissible cell-wise contamination
scheme (which could be a random selection of perturbed
cells as, e.g., having contamination on the response column
only would not allow for any advantage of cell-wise robust
over case-wise robust algorithms, see [326]), the application
of cell-wise robust procedures could improve the robustness
against large case-wise contamination rates, even potentially
becoming an alternative to RANSAC and its variants.

Outlier detection algorithms have been applied in advance
to the data in many references. Unless one faces univariate
samples, one should be aware of several pitfalls when trying
to detect outliers in multivariate data (see, e.g., [121]). A
single large outlier in a multivariate sample can make other
outliers invisible, essentially due to deforming the confidence
region in a way that other outliers fall within this region,
which is referred to as “masking effect”. Similarly, non-
contaminated observations can, due to the same reason, be
located outside the confidence region so that they are incor-
rectly flagged as outliers, which is referred to as “swamping
effect”. Therefore, one should not apply a classical outlier
detection algorithm on the data set once and consider the non-
flagged observations as clean. In addition, when assuming an
underlying model, as in regression, simply detecting outliers
in a model-agnostic way is unlikely to find instances whose
entries are insuspicious but which appear as outliers w.r.t.
the assumed model. In such settings, model-based outlier
detection, which is essentially done in the iterations of LTS, is
necessary. As for cell-wise contamination, some strategies for
detecting and imputing cell-wise outliers have been proposed,

e.g., [263]. [255].

B. SUGGESTIONS FOR BENCHMARK STUDIES AND
FUTURE RESEARCH
This survey paper has provided an overview of robust meth-
ods in autonomous driving in a comprehensive way and in
a unified notation. It should not only serve as a detailed
overview for researchers and practitioners, but also pave the
way for organizing and conducting benchmarking studies,
which are of interest on their own, but beyond the scope of
this work.

For nearly each application area, there are already sev-
eral robust strategies in the literature. Of course, in the re-
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spective papers, comparisons already have been made, but
often with some selected comptetitors from the literature.
The comparison of a large number of algorithms for one
specific problem would be desirable. In particular, the nav-
igation section contains a plethora of robust algorithms that
follow different strategies: robust criteria, noise modeling or
clipping. While robust criteria and clipping follow a similar
idea as robust regression approaches, namely downweighting
or even neglecting outlying instances during optimization,
noise modeling learns the noise distribution and integrates
it into the computation of the posterior distribution for the
next state. Both strategies are accompanied with advantages
and disadvantages. Noise modeling, in particular when us-
ing online algorithms such as variational inference, allow
for non-stationary noise distributions and have already been
successfully applied in real-world settings where both the
measurement and the process noise were heavy-tailed, i.e.,
both additive and innovation outliers occurred. The compu-
tation of the posterior distribution allows for the quantifi-
cation of estimation uncertainty. On the other hand, noise
modeling requires assumptions about the noise distributions,
while robust optimization criteria are usually applicable under
milder assumptions. Therefore, algorithms from each type
should be compared on data with both additive and innovation
outliers and where the noise distributions are non-stationary.
The iterative nature of both variational inference and the
optimization of robust criteria usually induces computational
overheads compared to a non-robust algorithm. It should be
investigated how this overhead scales on real-world data and
in dependence of the amount of contamination.

Benchmarking studies could be both based on simulations
and real data. As for simulations, the advantage is that via data
generation, one can directly control the type and the amount
of contamination, for example, case-wise contamination with
outliers only in the responses, only in the regressors, or both,
or cell-wise contamination. This would enable to validate
different robust algorithms concerning breakdown. Although
one can compute theoretical breakdown points, one should
be aware of the facts that on the one hand, the breakdown
point corresponds to a worst-case scenario, indicating that
an estimator does not necessarily break down once the cor-
responding fraction of instances or cells is contaminated. On
the other hand, the algorithm with which the estimator is com-
puted usually is not regarded when computing a breakdown
point, therefore, due to numerical pitfalls such as vanishing
gradients, it is possible to have an earlier breakdown than
expected. Such an effect has been observed in for neural
network training.

As for real data, any type of data base with real data and a
benchmarking study on such data is of course also of interest
on its own. A future benchmarking study should focus on
the comparison of the performance of robust algorithms from
each individual subsection in this review paper, including
non-robust competitors. In particular, on real data, one cannot
determine the true underlying contamination model nor the
contamination radius. Therefore, one usually applies both a
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robust and a non-robust method and decides to use the non-
robust estimator henceforth if their performance does not
differ much or if the classical estimator performs better. In
a more granular approach, for any algorithm whose robust-
ness can be controlled, e.g., by the trimming parameter that
decides on the size of the clean subset used for fitting, one
should apply the respective algorithm with different robust-
ness properties in order to get a better understanding of the
amount of contamination of the data in the real world.

The same argumentation holds for adversarial and Byzan-
tine robustness. In particular, for Byzantine robustness, each
contaminated gradient/model/input from an adversarial ma-
chine takes the role of one contaminated instance in a standard
data set. As for adversarial robustness, from the perspective
of Robust Statistics, one could ask whether a worst-case
analysis is possible, and how the amount of contamination
could be quantified. Both questions should be addressed in
future research.

If a worst-case perspective, without any restrictions, would
be pursued, one would likely consider adversarial actions
from an adversarial agent where the worst case would cor-
respond to the maximum acceleration or jaw. However, in
particular for planning algorithms, there is one crucial aspect
when it comes to perturbations/adversarial actions: Realism.
This property has already been identified as important in the
literature on adversarial attacks on images, e.g., [308]. It is
well-known that training strategies such as RL fail if the
environment is too challenging, e.g., [298]]. Although such
edge cases are important for the safety assessment of an
autonomous driving system, focusing on them appears not to
be the correct way to assess the robustness of the learning
algorithm itself in the context of breakdown. Moreover, one
could ask how the amount of contamination should be quan-
tified here, i.e., whether one should count each adversarial
action or each adversarial trajectory.

In order to define a breakdown for learned policies, one
should check whether the existing definitions of a breakdown
from Robust Statistics can be translated. In Robust Statistics,
when learning a parametrized model, a breakdown indicates
that the learned parameters can be arbitrarily close to the
borders of the underlying parameter set, or made arbitrarily
large. It should be assessed whether this is possible for the
parameters learned when training a parametrized policy, or
the control inputs learned in MPC, as well as the implications
on the behavior of the agent. Moreover, robustness should
not be confused with safety here. For example, consider an
autonomous car and a distribution that is learned on its action
space. If the environment is extremely challenging, it can
learn just not to move. From the perspective of safety, such a
behavior could be interpreted as excellent, but from the per-
spective of Robust Statistics, it could be interpreted as break-
down since it would correspond to (or be close to, depending
on the algorithm) a Dirac distribution on a particular value
(zero acceleration). Apart from the quantitative robustness
that corresponds to the influence curve and the breakdown
point, propose a notion of qualitative robustness of an
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estimator, which indicates that small changes in the underly-
ing distribution (usually measured in the Prokhorov distance)
imply only small changes in the estimates. Regularity of the
trained policy has already been considered in [220], [282],
where one focuses on the regularity w.r.t. state perturbations.
A unified approach would consider a joint distribution on the
observed states (e.g., due to measurement errors or in partially
observable settings) and the transitions. An approach in order
to assess qualitative robustness, in a simulated setting, could
be to identify realistic but challenging scenarios, such as com-
plex urban environments or severe weather conditions, and to
gradually change the underlying distribution to increase the
mass of such challenging situations, or, in other words, to
contaminate an “ideal distribution”, which should reflect the
real world as much as possible, resulting in a contaminated
distribution, similarly as in [I31]], who concentrated on the
transition distribution. One may be able to identify when
the trained policy starts to deteriorate in the sense that a
certain regularity property of the underlying policy no longer
holds once the distribution favors challenging situations too
strongly. This amount of contamination could then be inter-
preted as the BDP.

In the reviewed literature, a robust method for either a
particular perception or planning area has been presented.
A complete autonomous system however is composed by
several modules, at least multiple perception modules and a
planning module. It is vital to consider the robustness of the
whole system. Usually, one may argue that the whole system
is not robust if at least one module is not robust. On the other
hand, applying robust methods for each subsystem may have
the disadvantage of a low overall efficiency, as a consequence
from the robustification. For example, consider a state-
space model in order to incorporate observation noise. This
observation noise itself depends on the perception module.
Therefore, one should examine to what extend a certain non-
robustness in the perception modules could be compensated
during the training of a driving policy.

Once an algorithm has proven to be competitive in terms
of its generalization performance, accuracy, or security, a cru-
cial question is whether the running time is sufficiently low
in order to be applicable in real-world autonomous driving
scenarios. In particular, many of the individual tasks require
real-time performance. While robust algorithms tolerate con-
tamination which may let non-robust algorithms break down,
they are less efficient than non-robust algorithms, so that more
training data are required for convergence. The major draw-
back however is that the optimization of a non-convex loss
function, a minimax loss, or, for adversarial training, the op-
timization of an adversary, may be required, usually resulting
in a considerably higher computation time, which could be
the main hindrance for real-world applications, regardless of
their performance in terms of safety or security. Several of the
reviewed papers already confirm in their experiments, some
even on real-world data, that their robust algorithm has real-
time performance. Nevertheless, research on the real-time
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capabilities of robust algorithms is necessary, in particular
when considering the whole autonomous system with many
individual modules.

As for the whole system itself, an even broader research
question is the interaction between different properties that
a system should satisfy, in particular, safety and security. As
for security, the reviewed robust approaches for planning as
well as for Byzantine robustness already allow for training
with adversarial attacks, directly corresponding to security.
For perception where training data are given, adversarial
robustness does not fall within the scope of Robust Statis-
tics as adversarial attacks are crafted after model training,
while Robust Statistics considers the training procedure itself.
As explained in Sec. [T} poisoning attacks in contrast are
crafted before model training. However, as poisoning attacks
are usually restricted by a geometric bound, methods from
Robust Statistics can be assumed to fail if the majority of
the instances is perturbed. Nevertheless, a potential topic for
future research could be the interaction between adversarial
robustness (including poisoning attacks) and robustness in
the sense of Robust Statistics, i.e., whether methods from
Robust Statistics already increase adversarial robustness or
how models that are both robust in the sense of Robust
Statistics and adversarially robust can be trained. A combi-
nation with Byzantine robustness, i.e., training a federated
RL model with both Byzantine and adversarial attacks, could
also be considered. As for safety in autonomous driving,
the goal is to assess whether an autonomous system can
perform undesired actions or with which probability such
behavior occurs. Although, in particular for deep-learning-
based systems, reasoning whether an outlier in the training
data of some perception module caused an undesired action
may not be possible, one could at least train robust and non-
robust subsystems and evaluate whether the robustness of
these subsystems affects the safety of the combined system.

While the overall system in the previous paragraphs corre-
sponds to a single autonomous agent, another topic of interest
is collborative navigation. If the individual agents commu-
nicate, there are multiple state measurements, depending on
whether an individual is inside the lane of sight or at least
sufficiently close to another agent. As each agent has a dif-
ferent location, it can happen that the perception for some
agents suffers from anomalies such as lightning variations.
Therefore, regarding the joint information, one has a similar
setting as in federated RL. One may consider the corrupted
measurements of one agent as Byzantine information. Of
course, computing an average or distance-weighted average
of the information would lead to corrupted joint information.
Here, one may consider integrating a robust aggregation pro-
cedure, such as a trimmed mean, into the algorithm that infers
the next states. Nevertheless, in this context, other problems
additionally need to be solved, such as communication delays
or data loss, as argued in , or correlated observations
among the individual agents (e.g., [48]], [205])). On top of
that, consider adversarial interference in the inter-agent
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