
IEEE/ASME TRANSACTIONS ON MECHATRONICS. PREPRINT VERSION. ACCEPTED JANUARY, 2025 1

Unified Control of an Orbital Manipulator for the

Approach and Grasping of a Free-floating Satellite
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Abstract—In robotic on-orbit servicing missions, an orbital
manipulator approaches and grasps a faulty client satellite. The
approach phase and post-grasp phase pose different challenges
and hence impose different requirements on the design of a
controller for the orbital manipulator. In the approach phase, the
foremost requirement is to track the client satellite with the end-
effector in Cartesian space. Additionally, it is desirable to have
the servicing satellite and arm in a suitable safe configuration
during grasp and stabilization. In the post-grasp phase, a crucial
requirement is to limit the interaction forces at the manipulator’s
end-effector. This is to ensure that the grasping interface is not
damaged during stabilization. In this paper, we develop a unified
control framework for an orbital manipulator in the approach
phase and post-grasp phase. The controller hierarchically fulfills
various requirements of each phase. In the approach phase, the
proposed controller tracks the Cartesian pose of the grasp point
on the client. It also simultaneously tracks a joint-space trajectory
in the nullspace to achieve a suitable servicer pose for grasping.
The proposed post-grasp controller stabilizes the client with
limited interaction forces while bringing the servicer to a safe
configuration with respect to the client. Furthermore, the unified
controller redistributes torques between thrusters and reaction
wheels so as to save thruster energy in the approach phase and
reduce external momentum in the post-grasp phase. Results of
simulation and experiments performed on the hardware-in-the-
loop facility OOS-Sim at DLR validate the proposed method.

Index Terms—On orbit servicing, post-grasp, orbital robotic
manipulator, reaction wheels, hierarchical control.

I. INTRODUCTION

THE use of a robotic manipulator offers a promising

alternative to the cost, risk, and limited reach of sending

humans into space for on-orbit servicing (OOS) missions. In

the context of OOS, we consider a spacecraft equipped with a

manipulator arm, the servicer, which approaches and grasps a

client satellite to perform servicing tasks such as maintenance

or repair in orbit. The client is a free-floating uncooperative

satellite in the sense that it features no functioning guidance,

navigation, and control capabilities. We define the approach

phase when the motion towards capture/grasp is initiated with

the client in the close vicinity of the servicing manipulator’s

workspace (as in Fig. 1). Following the capture we enter the

post-grasp stabilization phase. By stabilization, we refer to the

damping of the client’s momentum post-capture.

Robotic solutions for OOS tasks were demonstrated in

recent mission studies, see e.g. the e.Deorbit or DEOS mission
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Fig. 1: Simulation (SIM) and hardware-in-the-loop (HIL) setup with
relevant frames (RGB≡XYZ) used for the analysis/experiments.
Both setups show a servicer satellite equipped with a manipulator
(CAESAR/LWR) and a client satellite with a grasping interface.

[1], [2], the COMRADE project [3] or the survey on robotics

in space in [4]. Since defunct satellites usually still have a

residual spin velocity, e.g. 1 deg/s as reported in [5], the

capture of such a spinning client will inevitably transfer

momentum to the servicer. Thus, a post-grasp stabilization

strategy is required before performing servicing tasks [3].

The advantages of using coordinated control (control of

manipulator and base motion) of a space robot for the approach

phase have already been demonstrated e.g. in [6]–[8] (for

further reading see surveys [4], [9], [10]). In [11], the reaction

null space is used to transfer the impact momentum from the

base to the manipulator. In [12], a virtual-mass for impedance

matching control was introduced to maintain contact with the

client. Impact minimization during capture was analyzed in

[13] using the center of percussion concept. In [14] a strategy

to remove the accumulated momentum from contacts during

the capture phase is presented. In [15], the approach of a

servicer tangential to the grasping point trajectory is analyzed.

A challenge in the post-grasp phase is to limit the interaction

forces at the grasping interface of the manipulator’s end-

effector. This is required to gently transfer momentum [4], [16]

and avoid mechanical damage during stabilization [17]–[19].

Approaches [17], [19], [20] rely on force/torque measurements

for direct force control. In [21] this was done without force

feedback, considering 6 degrees-of-freedom (DoF) external

actuation on the servicer, e.g. thrusters. In [22] we designed

a controller for initializing berthing using reaction wheels,

considering the post-stabilization phase with zero momen-

tum. Therefore, a unified control strategy that complements

thrusters with reaction wheels presents a pragmatic solution to

minimize thrust utilization in the approach phase and partially

dump and transfer momentum incurred during the grasp phase.
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In this paper, we propose a unified coordinated control

strategy for the approach-to-grasp and post-grasp phases using

a hierarchical control based on nullspace projections. In [21],

[22] we focused only on the post-grasp phase with a regulation

controller. Here we unify the control from the approach phase

to post-grasp phase, including contact phase, while designing

a tracking controller. In [21] we designed a controller for the

post-grasp phase using only thrusters to dump momentum

while limiting forces. Here we exploit the redundant DoF

provided by the reaction wheels of a servicer to save thruster

energy during the approach phase and complement thruster

limits in the post-grasp phase. This is done by adapting the

optimization-based algorithm in [23] to perform the torque

redistribution in nullspace coordinates instead of generalized

coordinates. Beneficially, this reduces the dimension of the

optimization to only the redundant DoF. The task of post-

grasp stabilization of the servicer is designed to not influence

the interaction forces by exploiting end-effector’s nullspace.

The contributions of this work are summarized as follows:

• A control framework which allows the inclusion of

constraints through quadratic-programming (QP) based

adaptations within the nullspace projection-based control

paradigm.

• A unified controller using the above framework, for

the approach phase and post-grasp phase, that respects

multiple space mission constraints. In addition to limiting

the interaction forces at the manipulator’s end-effector,

thruster limits are tackled through redistribution of reac-

tion wheel torques within the nullspace.

• Experimental validation on a hardware-in-the-loop

robotic facility (see accompanying video1).

The structure of the paper is as follows. Sec. II presents

the motivation, objectives, and preliminaries on the dynamic

modeling for the approach phase and post-grasp phase. Sec. III

presents the design of the unified controller for the proposed

strategies in the approach phase and post-grasp phase. Sec. IV

presents the results of simulation and experiment performed

on the HIL facility, OOS-Sim, at DLR [24] (see Fig. 1). Sec. V

concludes the work.

II. OBJECTIVES & PRELIMINARIES

The scenario of interest is the approach and capture of a

client satellite, which spins along its major axis, using an

orbital manipulator. In this situation, joint limits, singularity of

the manipulator, and/or undesirable displacement of the base

[25], [26], can result in compromising the approach-to-grasp

and post-grasp stabilization, thus, leading to mission failure.

This problem can be observed in a simulation and hardware

analysis shown in Fig. 2. Using a free-floating (unactuated

base) strategy with a spinning satellite could result in the arm

losing its manipulability (Fig. 2 left, approach phase) and the

base colliding with the client (Fig. 2 right, post-grasp phase).

Therefore, a free-flying (actuated base) control strategy for

the approach phase with two Cartesian tasks – one at the

end-effector for grasping and one at the base for configu-

ration safety, may be employed. For a redundant arm using

1A supplementary video of the experiments accompanies this manuscript..
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Fig. 2: Problem statement. Left: arm with low manipulability before
approaching grasp. Right: servicer and client in an unsafe configura-
tion during post-grasp stabilzation.

nullspace-based potentials, this strategy may not always lead

to a desirable manipulator configuration. We propose instead

to have one Cartesian task at the end-effector and a secondary

task on the joint pose in the nullspace. This desirable joint pose

can further be chosen such as to ensure better manipulability

and workspace constraints like joint limits and self-collisions

[27], [28].

The challenge of configuration safety also applies to the

post-grasp phase. To avoid the risk of collision highlighted in

Fig. 2 right, simply applying a potential on the joints (or base)

in parallel with the Cartesian potential at the end-effector,

leads to higher interaction forces at the grasp interface of

the captured client. High interaction forces must be avoided

at the grasp interface [17], [19]. We propose to avoid this

by applying the secondary potential in the nullspace of the

end-effector, thus, beneficially isolating the interaction forces

from the configuration task. Demanding a certain manipulator

configuration in the nullspace has the implication of keeping

the servicer’s base at a safe distance from the client. Further,

the interaction forces from the Cartesian stabilization task at

the end-effector shall be limited explicitly by augmenting the

controller with a QP-based algorithm.

In addition, accounting for thruster limits represents a key

requirement for a space mission. This is proposed to be dealt

with by using reaction wheels to complement thrusters, and

designing a QP-based optimal torque distribution strategy for

each of the phases.

Against this background, we define a set of tasks summa-

rized in Table I as the proposed objectives to be fulfilled by

the controller in the approach and post-grasp phases. The tasks

defined in Table I will then allow a safe approach and capture

of a spinning satellite while tackling the problems in Fig. 2.

Preliminaries

We consider a servicer consisting of a base spacecraft

equipped with r reaction wheels and an n-DoF manipulator.

The client is an unactuated floating satellite. At the start of

the approach phase, we consider the servicer’s initial velocity

to be zero. The servicer and client dynamics are given by

Ms(q)v̇s +Cs(q, q̇)vs = Γ+ JT
e (q)Fc (1)

Mcv̇c +Cc(vc)vc = −JT
c Fc, (2)
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TABLE I: Proposed control objectives for the approach phase and post-grasp phase in decreasing order of priority.

Task (subsystem) Approach-to-grasp phase Post-grasp phase

T1 (end-effector) Track client grasping point with end-effector Stabilize client while limiting interaction forces at end-effector
T2 (manipulator joints) Follow joint trajectory for desirable pose at grasp Damp out joint velocities and reach a safe configuration
T3 (reaction wheels) Use reaction wheels to minimize thruster actuation Dissipate gained external momentum with thruster actuation

where, Ms,Cs ∈ R
(6+n)×(6+n+r) and Mc,Cc ∈ R

6×6, are

the inertia and Coriolis/centrifugal matrices of the ser-

vicer and client, respectively. The client dynamic pa-

rameters here are assumed to be known. The ser-

vicer velocity is vs =
[
vT
b q̇T

n q̇T
r

]T
∈ R

6+n+r, with

the Cartesian velocity (linear and angular) of the base

vb ∈ R
6, manipulator joint rates q̇n ∈ R

n, and reac-

tion wheel rates q̇r ∈ R
r. The actuation on the ser-

vicer Γ =
[
F T
b τT

n τT
r

]T
∈ R

6+n+r includes the base

thruster force and torque (Fb =
[
fT
b τT

b

]T
∈ R

6), ma-

nipulator torques (τn ∈ R
n), and reaction wheels torques

(τr ∈ R
r). The end-effector Jacobian of the servicer

Je =
[
Jb Jm 0

]
∈ R

6×(6+n+r) maps vs to the end-

effector Cartesian velocity ve ∈ R
6. The base Jacobian

Jb ∈ R
6×6 is an invertible adjoint transformation, and

Jm ∈ R
6×(n+r) is the manipulator Jacobian. The client Ja-

cobian Jc ∈ R
6×6, is also an invertible adjoint transformation

that maps the Cartesian velocity vc ∈ R
6 at the client center-

of-mass (CoM) to its grasping frame (see Fig. 1). Lastly,

Fc ∈ R
6 is the external wrench acting at the end-effector,

which equals the constraint interaction force in the capture

phase. For the controller in the approach phase, the dynamics

in (1) will be used with Fc = 0.

The servicer’s inertia in (1) has sub-elements of the form

Ms=





Mbb Mbm Mbr

MT
bm Mmm 0

MT
br 0 Mrr



,
Mbb ∈ R

6×6 :base

Mmm ∈ R
n×n :manipulator

Mrr ∈ R
r×r :wheels

(3)

and Mbm ∈ R
6×n,Mbr ∈ R

6×r are the inertia couplings. The

structure of (3) will be exploited in the analysis in Sec. III-C2

for redistributing thruster and reaction wheels torques.

Considering a rigid grasp in the post-grasp phase between

the servicer’s end-effector and the client’s grasping interface,

the resulting velocity constraint is given by

ve = Jevs = Jcvc. (4)

Reformulating the velocity constraint in (4) as

A
[
vT
s vT

c

]T
= 0, with A =

[
−Je Jc

]
and using

its derivative, we can solve for the constraint forces Fc in (1)

and (2) as

Fc=
(
AM−1AT

)−1
[

AM−1

([
Γ

0

]

−C

[
vs

vc

])

+Ȧ

[
vs

vc

]]

(5)

where, M = diag(Ms,Mc) and C = diag(Cs,Cc). Note

that the term AM−1AT is invertible since A has full rank as

both Je (due to the Jb) and Jc have full row rank. The client

velocity in (5) is computed as vc = J−1
c Jevs from (4).

Finally, using (4) we also obtain the dynamics of the

combined servicer-client system, see [29], by eliminating Fc

from (1) and (2) as

Msc(q)v̇s +Csc(q, q̇)vs = Γ , (6)

with, Msc = Ms + JT
e J−T

c McJ
−1
c Je ,

Csc = Cs + JT
e J−T

c CcJ
−1
c Je + JT

e J−T
c Mc

d

dt
(J−1

c Je) .

Notice that Fc is eliminated in (6) in the post-grasp phase as

it only appears as an internal wrench at the grasp point of

the combined servicer-client system [30]. For the post-grasp

controller, the dynamics in (6) will be used.

It is worth mentioning here that the structure of the inertia

matrix presented in (3) also holds for the dynamics in the post-

grasp phase in (6), for the combined servicer-client system.

III. UNIFIED CONTROL FRAMEWORK FOR APPROACH

PHASE AND POST-GRASP PHASE

In this section, we present the detailed design of the unified

control framework in terms of the tasks to be performed to

achieve the objectives of the approach and post-grasp phases.

(see Table I). We first design a nominal controller, meaning,

without constraints. Then we analyze its convergence before

finally adapting the nominal controller to include constraints.

The objectives of both the approach phase and post-grasp

phase are characterized by a primary task and other subtasks

(see Table I). Thus, a hierarchical2 task-based controller can

be used. To this end, the control strategy considers a dynamic

decoupling through nullspace projections. The control design

is unified for both the phases with a primary Cartesian task

allocated at the end-effector for client tracking and later,

stabilization. The secondary task is unified as a joint-level

task on the manipulator to fulfill manipulability and later,

configuration safety of the base. Note that the Cartesian and

joint task are not in conflict for a floating robot, in contrast

with a fixed base robot, as the actuation on the base allows the

simultaneous positioning of the end-effector and joint angles.

A third task exploits the redundancy in the base actuation to

redistribute the control between thrusters and reaction wheels.

In summary, the dimension of overall tasks listed in Table I

equals the number of DoF of the actuators.

The steps ahead for designing the unified controller for the

approach phase and post-grasp phase are summarized below:

i Define task coordinates, followed by nullspace-projected

coordinates required to design the decoupled controller.

ii Hierarchically decouple dynamics in nullspace-projected

task coordinates to design a nominal impedance controller.

iii Adapt the nominal control inputs in the nullspace-

projected task coordinates to account for constraints.

2This does not imply sequential but a simultaneous fulfillment of the tasks.
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A. Definition of coordinates

The objectives of the approach phase and post-grasp phase

are summarized in Table I as tasks to be achieved hierarchi-

cally. These can be defined by their task coordinates vT , and

corresponding task Jacobian matrices JT as

T1:

T2:

T3:





ve

q̇n
q̇r





︸ ︷︷ ︸

vT

=





Je

Jn

Jr





︸ ︷︷ ︸

JT

vs with





Je

Jn

Jr





︸ ︷︷ ︸

JT

=





Jb Jm 0

0 In 0

0 0 Ir



 , (7)

where, I• is an identity matrix of dimension (• × •). The

nullspace bases N• can be deduced from observing the

structure in (7) as

T2: NT
e =

[
−JT

mJ−T
b In 0

0 0 Ir

]

T3: NT
en =

[
0 0 Ir

]
s.t.

JeNe = 0
[
Je

Jn

]

Nen = 0.
(8)

The matrix Ne is the nullspace basis for the end-effector Jaco-

bian, and Nen for the end-effector and joints’ task Jacobians

combined. Note that all nullspaces NT
•

defined in (8) have

full row-rank, evident from the identity matrices therein. This

means they are well-defined and independent of kinematic

singularities of the manipulator related to Jm appearing in

(8). Now we redefine the task coordinates vT in (7) using

(8), as projected coordinates vN with the extended Jacobian

matrix JN (see [31], [32] for details) as




ve

vn

vr





︸ ︷︷ ︸

vN

=





Je

J̄n

J̄r





︸ ︷︷ ︸

JN

vs where,

[
J̄n

J̄r

]

=

[

JnNeN
Ms+

e

JrNenN
Ms+

en

]

J−1
N =

[

J
Ms+

e J̄
Ms+

n J̄
Ms+

r

]

.

(9)

It is worth mentioning that N•N
Ms+

• = I − J
Ms+

• J•, which

is a common form of the nullspace projection [33], where,

N
Ms+

• = (NT
•
MsN•)

−1NT
•
Ms,

J
Ms+

• = M−1
s JT

•
(J•M

−1
s JT

•
)−1. (10)

Notice here that regardless of the approach phase or post-

grasp phase, the dynamically consistent nullspaces depend

only on Ms, and not on Mc. This can be shown since

NT
•
Msc = NT

•
Ms in (6) using the property NT

•
JT
e = 0.

This is consistent with the load-independence property of

nullspaces [34]. Thus, (9) implies that vn for task T2 is

defined in the nullspace of ve, while vr for task T3 is in

the nullspace of ve and vn.

B. Dynamic decoupling and nominal control design

Designing the control inputs in the nullspace-projected

coordinates in (9) will ensure the desired prioritization. In

order to do this, we transform (1) for approach phase (or (6)

for post-grasp), using (9) to get




Λee 0 0

0 Λnn 0

0 0 Λrr





︸ ︷︷ ︸

Λ





v̇e

v̇n

v̇r





︸ ︷︷ ︸

v̇N

+





µee µen µer

µne µnn µnr

µre µrn µrr





︸ ︷︷ ︸

µ





ve

vn

vr





︸ ︷︷ ︸

vN

=





Fe

Fn

Fr





︸ ︷︷ ︸

F

,

Λ = J−T
N M•J

−1
N , F = J−T

N Γ

µ = J−T
N M•

d

dt
(J−1

N ) + J−T
N C•J

−1
N . (11)

Here • adapts to the dynamic parameters of the approach

phase and post-grasp phase in (1) and (6), respectively. We see

that the dynamics in nullspace-projected coordinates in (11),

although inertially decoupled, still have Coriolis couplings. To

ensure the decoupling of tasks we first compensate for the

Coriolis couplings by choosing

F = F ′ + (µ− µ̄)vN , (12)

with, µ̄ = diag(µee,µnn,µrr). The remaining control input

to be designed is F ′. Then (12) in closed loop with (11) results

in the following dynamics:

Λv̇N + µ̄vN = F ′ . (13)

Note that, compensating purely the Coriolis cross-coupling

terms as in (12) is a power-preserving action [35].

To design a control input for tracking a desired time-

dependent task trajectory in the nullspace, the projected veloc-

ities, vN are substituted by task velocities, vT in (13) using

the relation vN = JNJ−1
T vT . This results in the following

dynamics:




Λee 0 0

Λne Λnn 0

Λre Λrn Λrr





︸ ︷︷ ︸

Λ
′





v̇e

q̈n
q̈r





︸ ︷︷ ︸

v̇T

+





µee 0 0

µ′

ne µnn 0

µ′

re µ′

rn µrr





︸ ︷︷ ︸

µ′





ve

q̇n
q̇r





︸ ︷︷ ︸

vT

=





F ′

e

F ′

n

F ′

r





︸ ︷︷ ︸

F ′

,

Λ
′ = ΛJNJ−1

T , µ′ = µ̄JNJ−1
T +Λ

d

dt
(JNJ−1

T ). (14)

The sequential transformation to projected task coordinates

vN in (11), followed by the substitution with original task

coordinates vT in (14), reveals how the original task velocities

influence the nullspace-projected dynamics [32]. Although the

dynamics in projected coordinates vN in (13) are inertially

decoupled, the dynamics viewed from the task coordinates

vT in (14) have a top-down coupling. This is observed from

the lower-triangular form of the dynamics in (14). Thus, we

see that the lower-priority tasks do not influence the higher-

priority ones. This is exploited in the proposed control design

to achieve the objectives listed in Table I.

The dynamics in (14) can be used to design a tracking

controller for the desired task trajectories in the nullspace.

We design a nominal control F ′ in nullspace-projected task

coordinates as follows,




F ′

e

F ′

n

F ′

r





︸ ︷︷ ︸

F ′

= Λ
′





v̇d
e

q̈d
n

0



+ µ′





vd
e

q̇d
n

0



+





EKPe∆xe +KDe∆ve

KPn∆qn +KDn∆q̇n
0



(15)

Here vd
e is the desired Cartesian end-effector velocity and

∆ve = vd
e − ve is the velocity error. The end-effector’s pose

error is ∆xe=
[
∆xT ∆ǫT

]T
∈ R

6 with position error, ∆x

and the vector part of the quaternion error, ∆ǫ. The matrix

E = diag(I3,∆ηI3 + S(∆ǫ)), where, ∆η is the scalar part

of the quaternion error and S(·) is the skew-symmetric cross-

product operator [36]. Further, qd
n, q̇

d
n are the desired joint



VIJAYAN et al.: UNIFIED CONTROL OF AN ORBITAL MANIPULATOR FOR THE APPROACH AND GRASPING OF A FREE-FLOATING SATELLITE 5

Compute       

in nullspace
coordinates

Compute feedforward control
in nullspace-projected task 

coordinates

Compute Coriolis-coupling 
compensation in nullspace 

coordinates

Compute feedback 
control

in task coordinates

and

(decoupling)

(feedback)

(feedforward)

Compute

and

nullspace-projected

in

coordinates

where,

(9) & (11)
(14)

(15)

(15)

(12)

(16)

+

+

++
Γ

ΓT1+ΓT2+ΓT3

Γµ

F ′

M•

C•

Λ

Λ

Λ
′

Λ
′

Λ
′

KP

KD

µ′

µ′ µ′

µ

µ

µ− µ̄

JN (9)

JN

JN (9)

JT
N

JT
N

vT
s =

[
vT
b q̇T

n q̇T
r

]
vs vN

vd
T

v̇d
T

∆vT

∆xT

KP = diag(KPe,KPn,0),
KD = diag(KDe,KDn,0),

∆xT = [∆xT
e ∆qT

n 0]T .

vd
T = [vdT

e q̇dT

n 0]T ,

∆vT = [∆vT
e ∆q̇T

n 0]T ,

∆ve

∆xe

∆qn

∆q̇n

v̇d
e q̈d

n

Fig. 3: Block diagram showing the sequence of computations for
dynamic decoupling, to arrive at the hierarchical controller in (16).

position and velocity, ∆qn = qd
n−qn and ∆q̇n = q̇d

n−q̇n. The

proportional-derivative gains for the end-effector and joints are

KPe,KDe ∈ R
6×6 and KPn,KDn ∈ R

n×n, respectively.

Thus, the control F ′

e in (16) tracks an end-effector trajectory,

while F ′

n tracks a joint-level trajectory in accordance with

the objectives defined in Table I for T1 and T2. Notice

that for the nominal control in (15), F ′

r does not track an

explicit trajectory because the desired task (T3 in Table I)

does not have position tracking requirements. The convergence

implications are discussed in the section ahead.

The corresponding nominal control Γ input to the servicer

in (1) and (6) is obtained from the Jacobian-transpose relation

in (11), expanded using (9) as

Γ = JT
e F ′

e
︸ ︷︷ ︸

ΓT1

+ J̄T
n F ′

n
︸ ︷︷ ︸

ΓT2

+ J̄T
r F ′

r
︸ ︷︷ ︸

ΓT3

+Γµ, (16)

where, Γµ = JT
N (µ − µ̄)vN is the Coriolis decoupling term

and ΓT• are related to the three tasks. This concludes the

design of the nominal controller (i.e. excluding constraints)

for the approach phase and post-grasp phase.

The block diagram in Fig. 3 summarizes the sequence of

computations for dynamic decoupling starting from (7) to

obtain the final control input to the system in (16). Finally,

Fig. 4 gives a broader overview of the control (16) in closed

loop with the dynamics (1) and (6) of the servicer-client

system, along with the measured states and desired trajectories.

Sec. III-C will address the interaction force limit in T1 and

actuator limits in T3.

Convergence of the controller: We see from (15) that for

tasks T1 and T2, the reaction wheels are redundant DoF, i.e.

T1 and T2 can be fulfilled even without reaction wheels.

Therefore, the convergence analysis is split into two parts.

First we analyse the convergence of the tracking controller for

tasks T1 and T2 under the condition that the reaction wheels

are not used, i.e., they are locked and task T3 can be omitted.

Second, we extend the analysis considering the use of reaction

wheels including task T3, for the regulation case, in which

regime the controller is operated for the final stabilization

phase. The analysis is based on stability theorems for time-

varying systems using semi-definite Lyapunov functions [37].

Reference 

trajectory

Measure 

servicer & client 

states

Controller

Compute

Inertia, Coriolis matrices & Jacobians

Compute

pose & velocity

 errors

SIM/HIL

Compute

Compute

(servicer states)

(client states)

(servicer 

trajectory)

Γ

(16)

(1) or (6)

M•,C•, JT

F ′

e, F
′

n, F
′

r

Λ
′, µ′, JN

v̇d
e , q̈d

n

vd
e , q̇d

n

xd
e , qd

n

∆ve, ∆q̇n

∆xe, ∆qn

xc, vc

vbq̇n, q̇r,xe, qn,

Fig. 4: Overview of the controller (16), detailed in Fig. 3, in closed
loop with the dynamics (1) and (6) of the servicer-client system.

We assume the desired trajectories for all tasks are bounded,

and, for the first stage of the analysis, the reaction wheels are

locked. The stability analysis is done in a bottom-up approach

similar to [32]. Consider the semi-definite Lyapunov function

V2 for task T2 in the set where the errors of states of T1 are

zero (∆ve,∆xe = 0):

V2 =
1

2

[
∆q̇n
∆qn

]T [
Λnn εnΛ

T
nn

εnΛnn KPn

] [
∆q̇n
∆qn

]

. (17)

where, εn is a small non-negative scalar. With F ′

n in (15) and

εn = 0, V̇2 = −∆q̇T
nKDn∆q̇n. This shows boundedness of

involved states in the considered set. Given this boundedness,

for εn > 0, V̇2 results as follows:

−

[
∆q̇n
∆qn

]T[
KDn − εnΛnn

1
2εn(KDn − µT

nn)
T

1
2εn(KDn − µT

nn) εnKPn

][
∆q̇n
∆qn

]

.

This can further be shown to be negative-definite, for a

sufficiently small εn > 0. This implies the states of T2 are

uniformly asymptotically stable in the set where errors of

states of T1 are zero.

Further, consider the following semi-definite Lyapunov

function V1 for task T1:

V1 =
1

2

[
∆ve

∆xe

]T [
Λee εeΛ

T
ee

εeΛee KPe

] [
∆ve

∆xe

]

. (18)

where, εe is a small non-negative scalar. With F ′

e in (15) and

εe = 0, V̇1 = −∆vT
e KDe∆ve. This shows boundedness of

all involved states, cascaded with the boundedness of states

in the set where T1 errors are zero. Given boundedness,

for a sufficiently small εe > 0, V̇1 can be shown to be

negative-definite similar to the line of argumentation for V̇2

above. Invoking the stability theorem for time-varying systems

using semi-definite Lyapunov functions [37], the negative-

definiteness of V̇1 and V̇2 allows to conclude the equilibrium

(∆ve,∆xe,∆q̇n,∆qn = 0) to be uniformly asymptotically

stable. Note that the convergence of joint errors in task

T2 (in the nullspace of the end-effector) is independent of

manipulator singularities. This is due to the nullspaces in (8)

being well-defined for the fully-actuated (6-DoF) base that

compensates for any loss of DoF due to singularities (see

[21] for details). The proof of stability here does not imply

sequential convergence, rather it is a simultaneous convergence

of hierarchical tasks.
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For the second stage of the analysis, we assume the reaction

wheels are unlocked and include the task T3. As task T3 is

the lowest in the hierarchy, consider the candidate Lyapunov

function V3 = q̇T
r Λrq̇r in the set where errors of states of

T1 and T2 are zero (∆ve,∆xe,∆qn,∆q̇n = 0). Note here

that qr is not a relevant state of the system since the angular

position of the rotationally symmetric reaction wheels does

not influence the inertia in (1) or (6). Under the regulation

case for tasks T1 and T2, the nominal F ′

r in (15) leads to

V̇3 = 0 in the considered set. This shows that the reaction

wheels converge to a constant residual velocity in the nullspace

at the end of the stabilization phase. This is desired by

design as, the reaction wheels, unlike a manipulator link, are

actuators that work on the principle of exchanging momentum

between the base to produce torques. The wheel velocities are

not damped, as this would result in the use of thrusters for

damping the wheels in order to balance the control torque

requirements of tasks T1 and T2. This defeats the purpose of

using reaction wheels. For the tracking case in the approach

phase, trajectories with bounded velocities for tasks T1 and

T2 ensure bounded velocities of the reaction wheels.

C. Adapting nominal controller to include constraints

The nominal controller in (16) does not guarantee respecting

interaction force limits or thruster limits, dictated by space

mission requirements. In the following we see how the nom-

inal controller can be adapted to meet these requirements.

1) Optimizing F ′

e for interaction force limits in the post-

grasp phase: Analysing the influence of the control effort Γ

from (16), on the interaction forces Fc at the end-effector in

(5), we observe the terms ΓT2 and ΓT3 have zero influence

on Fc. This can be proven by plugging in ΓT2,ΓT3 in (5) and

using the property of dynamic consistency, JeM
−1
sc NT+

•
= 0.

This is because they lie in the dynamically consistent nullspace

of the end-effector task. This also demonstrates the advantage

of designing the secondary tasks such as the joint reconfigura-

tion in the nullspace, as it has no influence on the interaction

forces during stabilization. Finally, substituting Γ from (16)

into (5) gives us the relation between F ′

e and Fc as

Fc = (I +ΛeeΛ
−1
cc )

−1F ′

e + f(vs,vc), (19)

where, Λcc = (JcM
−1
c JT

c )−1, Λee = (JeM
−1
s JT

e )−1.

The quantities Λcc,Λee ∈ R
6×6 describe the Cartesian inertia

of the client and servicer at the end-effector, respectively.

For brevity, the remaining terms in (5) arising from Corio-

lis/centrifugal effects are depicted as f(vs,vc) in (19). Thus,

(19) shows us that the interaction force Fc is dominated by

F ′

e scaled by the ratio of the Cartesian inertia of the servicer

and client at the end-effector. Typically Λcc ≫ Λee, which

is counter-intuitive since the client satellite is lighter than the

servicer (base plus arm). The right intuition lies in observing

that Λee, is dictated by the manipulability of the arm (i.e. the

inertia of the arm rather than the base). On the contrary, Λcc is

a large inertia at the end-effector, due to the client’s rigid-body

mass, which is typically heavier than the manipulator arm.

This leads to a first-order approximation of (19) as Fc ≈ F ′

e

while also neglecting f(vs,vc) for slow motions.

Further, stabilization is to be performed as a regulation task

to remove the spin of the combined servicer-client system,

which implies vd
e = 0. Thus, to limit the interaction forces the

optimization of F ′

e is formulated as the following QP problem:

min
F ∗

e

1

2
(F ∗

e − F ′

e)
TQc(F

∗

e − F ′

e) (20)

s.t. |Fc|i ≤ Fc,max
i

(21)

vT
e (F

∗

e −EKPe∆xe)< 0, (22)

with, the weighting matrix, Qc ∈ R
6×6, and F ∗

e is the opti-

mized control wrench.

The constraint (21) limits the interaction forces, according to

space mission requirements, where, Fc,max
i

is the component-

wise threshold of the allowable maximum interaction wrench.

The constraint (22) ensures that the stability requirements are

met by the optimized wrench. Taking the time-derivative of

the candidate Lyapunov function V1 in (18) with εe = 0 for

the regulation case, the constraint is obtained by imposing

that V̇1 is negative-definite to ensure boundedness. Finally, F ∗

e

replaces F ′

e in (16) and Fig. 4.

2) Optimizing F ′

r for thruster capacity limits: We know

that F ′

r maps to the actuation ΓT3 on the servicer through

the Jacobian-transpose J̄T
r as seen in (16). A closer look at

J̄r using the definition in (9) and the structure of the inertia

matrix in (3) reveals

J̄r =
[
M−1

rr MT
br 0 Ir

]
(23)

with, MT
br =

[
0 MT

ωr

]
. Here Mωr is the inertia coupling of

reaction wheels to the base’s angular velocity. From (23) and

through ΓT3 = J̄T
r F ′

r we observe that F ′

r cannot influence the

linear force on the base or the manipulator torques. However,

the base torques can be modified by redesigning F ′

r. The

optimization of F ′

r [23] is formulated as a QP problem:

min
F ∗

r

1

2
(Γ̄ + J̄T

r F ∗

r )
TQΓ(Γ̄+ J̄T

r F ∗

r ) (24)

s.t. |τb|i ≤ τb,max
i
. (25)

In the approach phase, Γ̄ = ΓT1 + ΓT2 + Γµ from (16).

In the post-grasp phase, Γ̄ = Γ
∗

T1 + ΓT2 + Γµ, which

includes the optimized end-effector wrench from (20) for

limiting interaction forces with Γ
∗

T1 = JT
e F ∗

e . Notice how

the formulation in (24) limits the dimension of optimization

to the redundant DoFs as compared to all system DoFs in [23].

The cost function in (24) penalizes the actuation according

to the weighting matrix QΓ ∈ R
(6+n+r)×(6+n+r). The con-

straint (25) limits the final torques distributed to thrusters,

τb. Here τb,max
i

is the component-wise, threshold of the

allowable maximum thruster torque, dictated by thruster limits.

The term F ∗

r is the optimized variable that reallocates torques

between the thrusters and reaction wheels. Hence, F ∗

r replaces

F ′

r in (16) and Fig. 4. By tuning the weights appropriately, the

torque distribution can be adapted to the requirements of the

phase of operation. The optimized result does not alter the

convergence analysis since, in the set where tasks T1 and T2

is converged, F ∗

r = 0 for the regulation case at the end of the

post-grasp phase.

Finally, the algorithm ahead, to compute the unified control

law, complements the block diagrams in Fig. 3 and Fig. 4.
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Algorithm Computing Unified Control Law

Require: Kinematics (Je,Jc) and dynamics (M•,C•) from

(1),(6) in generalized coordinates

1: Compute kinematics (JN from (9)) and dynamics (Λ,µ
from (11)) in nullspace coordinates

2: Compute Coriolis decoupling (µ− µ̄)vN from (12)

3: Compute dynamics (Λ′,µ′ from (14)) in nullspace-

projected task coordinates

4: Compute nominal control law F ′, Γ from (15), (16)

5: if phase = post-grasp then

6: Optimize end-effector wrench (F ∗

e from (20)-(22)) for

limiting interaction forces

7: end if

8: Optimize torque distribution between reaction wheels and

thrusters (F ∗

r from (24)-(25))

9: Compute optimized control law in actuator coordinates

(replace F ′

e,F
′

r with F ∗

e ,F
∗

r in (16))

IV. VALIDATION

This section presents the validation of the proposed control

strategy using two setups – i) simulation (SIM) using the

EROSS IOD [40] mission setup and, ii) hardware-in-the-loop

(HIL) experiments using the COMRADE [3] mission setup on

the OOS-Sim at DLR [24]. Both setups are shown in Fig. 1.

The dynamic, kinematic and control parameters for the SIM

and HIL setups are summarized in Table II.

The controller gains are adapted to the desired performance

in tracking (for approach phase) and compliance (for post-

grasp phase). Initial estimates of the gains are obtained from

a frequency-domain analysis using the linearized closed-loop

dynamics about the initial and final configurations of the

servicer3. The controller gains from the approach to grasp

phase are updated to be more compliant to impact, yet more

dissipative for stabilization.

The SIM setup uses the Open Dynamics Engine [41] in

CoppeliaSim for simulating the servicer and client dynamics.

The manipulator used in simulation is the CAESAR space

robot [39], a 7-DoF redundant robot. The grasping dynamics

between manipulator’s end-effector and capture point is mod-

eled as a plastic contact. A force-torque sensor at the end-

effector measures the interaction forces as ground truth.

The HIL setup uses the OOS-Sim facility – a platform for

6-DoF zero-gravity dynamics validation. It uses two industrial

robots to emulate the motion of the floating servicer and client

satellites, computed using a model-based floating-dynamics

[42]. The servicer satellite is equipped with a 7-DoF redundant

Light-Weight-Robot (LWR) that is torque-controlled at 1kHz.

A force-torque sensor on the client is used to measure and

transmit the real contact dynamics on the servicer during the

post-grasp phase. This is also used as ground truth, for validat-

ing the interaction force limitation. The torque distribution to

reaction wheels is simulated while considering its dynamics

parameters. The first-order approximation of the interaction

force in (5) is used to limit post-grasp forces in the experiment.

3As the impedance gains are only relevant to tasks T1 and T2, the
linearization for the sake of gain tuning can be simplified by eliminating
task T3 on the redundant reaction wheels. The initial gains can thus be tuned
against step responses for tracking performance, and against impulse responses
for compliance performance. These estimates form the basis for further tuning
and validation in a nonlinear dynamic environment.

TABLE II: SIM and HIL setup parameters. *Principal Moment of Inertia (MOI), **Orientation as Euler angles in XYZ convention,
†Double-Diagonalization (DD) [38] with damping ratio 0.7, ††QΓ=diag(03, Qτb , 0n, Qτr ),

#Order of magnitudes as in [17].

DYNAMIC/KINEMATIC PARAMETERS

Parameter SIM HIL

Client mass & MOI* 350kg, (58.33, 58.33, 58.33)kgm2 400kg, (360, 362.95, 264.94)kg m2

Servicer mass & MOI* 360kg, (210.9, 77.9, 212.1)kgm2 1000kg, (700, 600, 500)kg m2

Number of reaction wheels 4 3
Manipulator arm 7-DoF CAESAR robot [39] 7-DoF Light Weight Robot (LWR)
Initial joint angles (90, 60, 0, 132, 90,−90, 50)deg (−6.64, 13.26, 3.75, 90.56, 2.35,−54.18,−3.39)deg
Initial end-effector pose** (0.84,−0.30, 1.65)m, (62, 0, 90)deg (1.27,−0.01, 0.89)m, (−173, 53,−175)deg
Initial client grasp pose** (0.95,−0.91, 2.16)m, (90, 5, 90)deg (1.33,−0.41, 0.47)m, (−136, 47,−178)deg
Initial client velocity norm 2.865deg s−1 0.5deg s−1

CONTROLLER PARAMETERS

Setup Task
Gains/
Weights

Approach phase Post-Grasp phase

SIM

T1 KPe diag([250, 250, 250]N m−1, [50, 50, 50]N m rad−1) diag([10, 10, 10]N m−1, [5, 5, 5]N m rad−1)
KDe diag([200, 200, 200]N m−1s, [125, 125, 125]N m rad−1s) diag([400, 400, 400]N m−1s, [250, 250, 250]N m rad−1s)

Qc - diag(1/F 2
c,maxi

), F#
c,maxi

=([10, 10, 10]N, [7, 7, 7]N m)
T2 KPq diag(120, 120, 100, 100, 50, 40, 40)N m rad−1 diag(120, 120, 100, 100, 50, 40, 40)N m rad−1

KDq variable damping using DD † DD † scaled by diag(5, 5, 5, 10, 25, 12.5, 22.5)

T3 Q
††
Γ

Qτb=I3, Qτr=0r , τb,maxi
=15N m Qτb=03, Qτr=Ir , τb,maxi

=15N m

HIL

T1 KPe diag([700, 500, 500]N m−1, [40, 60, 40]N m rad−1) diag([50, 50, 50]N m−1, [30, 30, 30]N m rad−1)
KDe diag([100, 100, 100]N m−1s, [24, 24, 24]N m rad−1s) diag([100, 100, 100]N m−1s, [24, 24, 24]N m rad−1s)

Qc - diag(1/F 2
c,maxi

), F#
c,maxi

=([12, 12, 12]N, [8, 8, 8]N m)
T2 KPq diag(60, 60, 60, 40, 35, 25, 30)N m rad−1 diag(2, 30, 1, 10, 1, 10, 0.5)N m rad−1

KDq variable damping using DD † diag(20, 60, 10, 60, 10, 60, 7)N m rad−1s

T3 Q
††
Γ

Qτb=I3, Qτr=0r , τb,maxi
=15N m Qτb=03, Qτr=Ir , τb,maxi

=15N m



8 IEEE/ASME TRANSACTIONS ON MECHATRONICS. PREPRINT VERSION. ACCEPTED JANUARY, 2025

The SIM and HIL results are summarized graphically in

Fig. 5 and quantitatively in Table III, validating the proposed

control objectives in Table I. Snapshots visualizing the SIM

and HIL scenarios at different stages of the approach and

post-grasp stabilization are also provided in Fig. 5. The

graphical results in Fig. 5 show the most relevant states,

control, and forces recorded for the SIM and HIL experiments.

The columns a and b in Fig. 5 show the results of the

SIM experiment for the approach and post-grasp phases,

respectively, while the columns c and d show the results of

the HIL experiment for the approach and post-grasp phases,

respectively. The moment of grasp (contact) in SIM and HIL

results can be recognized from the characteristic spike at the

beginning of the graphs presented for the post-grasp phase.

A. Simulation (SIM) results

The snapshots of the SIM analysis in Fig. 5 (left), show

the start of the approach phase, grasp instant, and the end

of the post-grasp stabilization. Unlike the problem seen in

Fig. 2, here the proposed control strategy is able to approach

the spinning client with a safe pose and better manipulability

while the end-effector reaches the client grasp. This results in

the base sychronizing its spin along with the client, all the

while maintaining a safe relative pose. This can be seen by

comparing the orientation of the base in the SIM snapshots

of the grasp instant versus the approach start in Fig. 5 (left).

The post-grasp phase further dissipates the spin of the client

with more compliance, yet achieves a safe desirable pose (of

manipulator and thus base). This can be seen in the SIM

snapshot of the post-grasp end in Fig. 5 (left), where, the

servicer reaches a desired pose suited for later manipulation

of the stabilized client.

Fig. 5 a.i and a.ii show the end-effector tracking a smooth

trajectory to align with the client grasp pose at the end of

the approach phase, shown in a.iii and a.iv and highlighted

in blue. Fig. 5 b.i and b.ii show the effect of constraints

that limit the interaction forces and torques in the post-grasp

phase to their respective thresholds. Fig. 5 b.iii and b.iv show

the resulting stabilization of the spinning client (initial spin

of 2.86deg/s) as the linear and angular body velocities get

damped. A comparison of the performance of the controller

was performed without the QP optimization for interaction

forces and it was found that the threshold was violated by

93.8% in force and 65.87% in torque in this scenario.

Fig. 5 a.v shows the tracking of a joint pose in the nullspace

to arrive at a manipulable configuration at the end of the

approach phase. It is this simultaneous tracking of a joint

trajectory in addition to the end-effector pose that results in

the base synchronizing its spin to that of the client before

capture. Fig. 5 b.v shows the arm stabilizing during the post-

grasp phase as the joint velocities get damped.

Fig. 5 a.vi shows the complete redistribution of base torques

to the four reaction wheels in the approach phase. On the other

hand, Fig. 5 b.vi shows the torque distribution to the thrusters

being maximized for damping the acquired momentum in

the grasp phase. As shown in Fig. 6, the residual angular

momentum corresponds to that stored in the wheels from the

approach phase to stabilization under thruster torque limits.

TABLE III: Quantitative metrics for SIM and HIL performance.
†Euclidean norm, *Absolute error along any axes, **Time for abso-
lute joint velocity to reach below 0.1deg/s along all axes after grasp.

Performance metric SIM HIL

Maximum end-effector position error † (m) 1.9e−5 1.1e−2
Maximum end-effector orientation error † (deg) 2.3e−2 1.5
Maximum joint tracking error* (deg) 6.7e−2 2.95
Settling time for post-grasp stabilization** (s) 45 43

B. Experimental (HIL) results

Similar to SIM results, the snapshots of the HIL experiments

in Fig. 5 (right) show the start of the approach phase, grasp

instant, and the end of the post-grasp stabilization. Here again

the proposed method leads to the base synchronizing its spin

to that of the client in the approach phase, thus bringing the

manipulator into a desirable pose for capture. This can be seen

by comparing the orientation of the base and the manipulator

pose in the HIL snapshots of the grasp instant versus the

approach start in Fig. 5 (right).

In particular, unlike the problem seen in Fig. 2, the proposed

control strategy is able to safely stabilize the client through the

nullspace potential on the manipulator joints, thus avoiding

collision between the base and client. This can be seen in the

HIL snapshot for the post-grasp end in Fig. 5 (right).

The HIL results in Fig. 5 can be correlated with the SIM

results described in Sec. IV-A. Fig. 5 c.i and c.ii show the end-

effector tracking and Fig. 5 d.i and d.ii show the interaction

forces and torques being limited in the post-grasp phase, while

the spinning client (initial spin of 0.5deg/s) stabilizes, seen

from the body velocities being damped in Fig. 5 d.iii and d.iv.

Fig. 5 c.v. shows the nullspace joint tracking in the approach

phase and the joints stabilize in the post-grasp phase, see

Fig. 5 d.v. For faster energy dissipation within the workspace

limits of the HIL facility, stabilization is performed with an

additional damping gain on the base velocity applied in the

nullspace of the end-effector task. Further, the stiffness in

the post-grasp phase is emphasized on the joints that ensure

the safe relative configuration between servicer and client,

while the remaining are relaxed to increase compliance during

stabilization (see Table II).

Similar to SIM results, Fig. 5 c.vi shows the redistribution

of base torques to the three reaction wheels in the approach

phase whereas Fig. 5 d.vi shows the maximization of thruster

utilization in the post-grasp phase. The activation of the limit

on the base thrust can be seen resulting in the co-utilization

of reaction wheels. The control input demanded from the

servicer in the grasp phase is greater than the approach phase,

as expected due to the momentum injected during the grasp of

the client satellite. For more tests, see accompanying video4.

C. Further results and discussion

To analyze the robustness of the controller, we study the

sensitivity of the controller to gain variation and to client

parameter uncertainties, respectively in simulation. The gain

sensitivity analysis is performed by varying the gains from

4A supplementary video of the experiments accompanies this manuscript.
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Fig. 5: SIM and HIL results showing fulfillment of proposed control objectives in Table I. Results divided as per tasks T1, T2, T3 (rows)
for the approach and post-grasp phases (columns). For ease of presentation, Euler angles (φ, θ, ψ in the XYZ convention) are reported here.
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Fig. 7: Parameter sensitivity to control performance.

30% to 120% of the nominal gains (100%) in Table II. Across

the gain variations in the approach phase (see Fig. 7 a), we

observe that the maximum Euclidean error in end-effector

tracking is below 1e-4 m and 1e-2 deg in position and ori-

entation, respectively. Further, the manipulator tracking error

about any joint, is below 1e-2 deg. For the post-grasp phase

(see Fig. 7 b), the percentage of settling time for stabilization

increases (or decreases) with decrease (or increase) in gains.

Robustness is further analyzed considering client parameter

uncertainties in the mass, inertia and center-of-mass up to

20% simultaneously. We observe that the violation in the

threshold of interaction forces does not exceed 3% (see Fig. 7

c) for the 30 simulations with uniformly distributed samples

of client parameter uncertainties. The forces are limited to a

higher (or lower) threshold as the optimizer under- (or over-

) compensates for the dynamics of the client. Therefore, we

evaluated the overall robustness to a wide range of gains and

client parameter uncertainties.

The robustness of the controller to client parameter uncer-

tainties is in fact due to the terms ΓT1,ΓT2,ΓT3 in (16) being

independent of the inertia parameters of the client in the post-

grasp phase. This is due to the regulation scheme for T1 and

the load-independence of the nullspaces tasks T2 and T3. The

only dependency on client parameters is through the Coriolis

coupling Γµ and the optimized F ∗

e via the interaction force

limitation with (19).

Further, we emphasize the configuration safety achieved

in the post-grasp phase evidenced by the result of the HIL

experiment in Fig. 5 (right) which mitigated the collision risk

shown in Fig. 2 (right). The nullspace potential on the joints

responsible for this, not only achieved safety, but also did so

while staying decoupled from the interaction forces (see (19)).

This highlights the advantage of the hierarchical controller.

Lastly, the unified impedance control allows for continuous

operation (approach to stabilization) in compliant mode while

only updating the gains for effective stabilization. Further, a

unified control simplifies hardware implementation, validation,

traceability and troubleshooting.

V. CONCLUSIONS

In this paper we proposed a unified control framework

for tackling the mission requirements in the approach and

grasp/post-grasp phase. The presented method is a hierarchical

nullspace projection-based controller that prioritizes the end-

effector task of the servicer for tracking and stabilizing the

client satellite in the approach and grasp/post-grasp phases,

respectively. In the nullspace of the end-effector, a planned

joint trajectory is tracked with the support of the base actua-

tion. The method also allowed the modification of terms within

the nullspace projection-based control scheme to incorporate

mission constraints on interaction forces during the stabiliza-

tion phase, and thruster torque limits using reaction wheels.

The controller is shown to be convergent for the tasks

designed in the three hierarchy levels considering the end-

effector, manipulator, and reaction wheels of the servicer. The

results of the designed control strategy are presented as both

simulation and hardware-in-the-loop experiments. Extension

of the method to discretized thrust control on the servicer base

may be the scope of future work.
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