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Abstract
The modeling and simulation of multidisciplinary, physical systems present several
fascinating practical applications. One complex example of such applications is
collision handling. Real-world phenomena are approximated to prevent, to reduce,
or to analyze collision situations. For example, space robots capture, manipulate
and position spacecraft modules. While doing so, several problems can emerge.
To address these, two methods of collision handling with variable-step solvers are
considered in this thesis:

1. Distance and force computation.
2. A novel approach to variable structure systems.

The first method consists of four collision handling steps using distance and force
computation. One of these steps computes point contact details and a penetration
depth or the Euclidean distance between two potentially-colliding objects. If these
objects penetrate, the resulting force is determined using elastic material laws based
on the theory of Hertz for elastic shapes. This method will most likely only work
reliably for continuously varying point contacts and penetration depths. Hence,
each collision handling step must ensure this condition is met.
The second method uses a novel approach to variable structure systems to

minimize or completely eliminate time-consuming distance calculations. Systems
with variable structure are a hypernym for models in which the number of equations
vary during simulation. Current state-of-the-art publications for variable structure
systems require prior knowledge of all occurring models to switch between them or to
reprocess and recompile the entire model. The new general approach allows a varying
number of equations, which leads to so-called segments, without having to recompile
the code. The user needs to be sufficiently familiar with the multidisciplinary system
and its required conditions to interact via certain (user-defined) commands to
trigger new segments. These segments need not be known in advance. This new
method is validated and seems very promising for future applications. Moreover, it
allows the combination of both collision handling methods to achieve the optimal
benefits of each. This opens up a wide range of exciting new possibilities.
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1 Introduction
Modeling and simulation are powerful tools for understanding and predicting real-
world phenomena. In science and engineering, it is crucial to test hypotheses, to
experiment, to explore, to analyze, and to gain insights without the need for physical
experiments. Thus, physical systems are approximated, resulting in corresponding
mathematical models. Approximation focuses only on the essential aspects and
neglects the less important ones. The model’s accuracy depends on the underlying
assumptions, simplifications and available data.

At present, there is no suitable simulation tool to adequately simulate multidis-
ciplinary systems with collision handling and variable structure systems with a
varying number of degrees of freedom. With existing simulation tools, these prob-
lems (e.g., space applications like a two-stage rocket or a relocatable space robot in
Figure 1.1) can only be simulated by experts with a lot of know-how. To overcome
this limitation, Modia (Elmqvist, Henningsson, and Otter, 2017) a modeling and
simulation environment is used. Modia is inspired by the equation-based modeling
language Modelica (Modelica Association, 2021) for which several open-source and
commercial tools are available. Modia is a domain-specific extension of the Julia
programming language (Bezanson et al., 2017). Thus, Modia benefits from the
fast-growing, feature-rich Julia ecosystem.
In both simulation environments, Modia and Modelica, physical systems are

mathematically described by Differential Algebraic Equations (DAEs) that are

Figure 1.1: Relocatable space robot as part of the MOSAR space project (Letier
et al., 2019). This space application highlights variable structure systems in Sec-
tion 12.3.

1



2 1 Introduction

automatically transformed to Ordinary Differential Equations (ODEs). This conver-
sion occurs only once, and before the simulation is executed. The resulting ODEs
are retained and solved during the simulation. If the structure of the model changes
– known as a variable structure system – so does its underlying mathematical
description with DAEs.

Collision handling is a modeling and simulation application. It is used to prevent
collisions (e.g., autonomously driving cars), to reduce collisions (e.g., robotics
applications), or to analyze collisions (e.g., gripping processes). Collision handling
is a complex task during which several problems can arise. To address these, two
methods of collision handling are considered in this thesis:

1. Distance and force computation with variable-step solvers.
2. A novel approach to variable structure systems.

The latter minimizes or completely eliminates the need for time-consuming collision
calculations. In order to gain a better understanding of these two methods, short
introductions to collision handling and variable structure systems follow.

Introduction to Collision Handling with Variable-Step Solvers
One constraint of the real world is that two solid objects cannot occupy the same
point in space at the same time. In simulation environments, this condition is
generally not imposed and a collision occurs if two objects have at least one point in
common. Collision handling consists of two aspects: collision detection and collision
response. Collision detection is the mathematical problem of determining whether
and where two geometric objects are intersecting (Bergen, 2003; Ericson, 2004).
Collision response is a kinetic problem involving the motion of two or more objects
during a collision (Bourg and Bywalec, 2013).

Collision handling is widely researched with extensive literature available, espe-
cially in the field of game physics and virtual reality (e.g., Bergen and Gregorius,
2010; Millington, 2010; Bourg and Bywalec, 2013; Szauer, 2017). However, in the
real world, collision avoidance is needed for autonomously driving cars and in
robotics applications. Modeling and simulating the collisions between geometrical
objects is complex and there are many methods and algorithms dedicated to par-
ticular purposes. A survey of collision detection methods for convex and concave
rigid bodies, as well as for deformable shapes, is given in e.g., Avril, Gouranton,
and Arnaldi (2009) and Mainzer (2015). In computer games, it is important that
collisions of many objects are supported in real-time and that the resulting simula-
tion appears reasonably realistic. Game engines, like Bullet Physics SDK (Bullet,
online; Coumans, online), Unity (Unity Technologies, online), and Unreal Engine
(Epic Games, online) usually make tradeoffs in terms of physics. Erez, Tassa, and
Todorov (2015) point out that PhysX (PhysX, online) and Havok (Havok, online)
neglect Coriolis forces. They also compare a number of physics engines and identify
that each of these performs best for the case it is designed for.
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When simulating real-world problems, in contrast, it is important that collision
models reflect the actual physical behavior and are validated using data from real
experiments. Therefore, the simulation results must be closer to reality than in a
game.
Regardless of the procedure used, there are nC objects in a collision set C that

could potentially collide. A distance calculation of all potential collision pairs would
result in nC(nC−1)

2 collision tests. For reducing O(n2
C) complexity, collision handling

is performed in four steps1:
1. Preprocessing (see Chapter 5)

The mechanical structure is mapped onto an internal tree structure by a
once-off additional preprocessing step. This reduces the number of potential
collision pairs (Neumayr and Otter, 2018).

2. Broad Phase (see Chapter 5)
An efficient and simple selection procedure is performed. Therefore, all
objects are approximated by simple bounding volumes. Cheap intersection
tests check if those bounding volumes overlap or not (e.g., Bergen, 2003).
There are several different possible bounding volumes. In this thesis, Axis-
Aligned Bounding Boxes (AABBs) are used.

3. Narrow Phase (see Chapter 6)
An exact and computationally expensive intersection test is performed only
for objects whose bounding volumes intersect. Depending on the approach,
there are several different algorithms. In this thesis, an enhanced version
of the Minkowski Portal Refinement (MPR) algorithm is used to calculate
the signed distance, contact normal and contact points: It is based on
previous publications to the MPR algorithm (Snethen, 2008; Olvång, 2010;
Kenwright, 2015; Neumayr and Otter, 2017).

4. Response Calculation (see Chapter 7)
The collision response depends on the chosen collision approach. For a
comparison of these approaches see Otter, Elmqvist, and López (2005) and
Hofmann et al. (2014). In this thesis, the collision behavior is calculated using
elastic material laws, based on the penetration depth and the contact points
of two penetrating objects. It is possible to apply a force and/or torque at
the contact point, such as a spring-damper force element (e.g., Neumayr and
Otter, 2017). Furthermore, Neumayr and Otter (2019b) propose a different
approach. A normal and a tangential force are applied at the contact point as
function of the penetration depth and its derivative, such as a spring-damper
force element. This leads to a novel elastic-response characteristic.

Step 1 is executed only once. The three remaining collision handling steps must
be executed each time the underlying mathematical formulation – a hybrid DAE
system – is solved. The time of a collision, i.e., touching time, is not known in
1This is an overview, details, definitions and explanations are given in the referred chapters.
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advance, but the model behavior and the resulting forces change drastically when
a collision occurs or ends. In order to obtain an accurate physical simulation,
variable-step solvers are used to determine the exact start and end time of a
collision. This means that each collision handling step needs to guarantee to be
usable with variable-step solvers. If there are many collisions, the use of Quantized
State Systems (QSS) solvers (Cellier and Kofman, 2006; Floros et al., 2011) might
be more appropriate.

Introduction to Variable Structure Systems
Variable structure systems are very common in physical modeling. The dynamic
structural changes of physical systems are caused e.g., by mechanical elements
that break apart, systems with clutches, or the reconfiguration of robot models.
Variable structure systems can be used to minimize or to eliminate collision
calculations, as shown in Chapter 12. In the context of object-oriented and equation-
based modeling structural changes result in a varying number of variables (both
algebraic variables and states) and also a varying number of equations during
simulation. The underlying mathematical description represented by DAEs changes
if the structure of the model is changed. DAEs are symbolically transformed to
ODEs, by structural-analysis methods like the Pantelides algorithm (Pantelides,
1988) or Pryce’s Σ-method (Pryce, 2001). The resulting ODEs are retained and
solved during the simulation with standard numerical methods. It is difficult to
handle dynamic changes of the structure properly and efficiently without having
to reanalyze the equations and recompile the code, or to manually initialize a new
model.

In the literature, variable structure systems are also known as multi-mode models.
Multi-mode modeling defines model components with state machines, where the
number of component equations change whenever a transition to another state
occurs (see e.g., Elmqvist, Matsson, and Otter, 2014). Nytsch-Geusen et al. (2006)
expand the Modelica language to allow structural changes during simulation to
activate and deactivate different parts of the model. Therefore, the entire model
is decomposed into a finite set of modes. This is only a viable solution if the
structural changes are modeled at the top-level, but not if they are triggered by
single components.
A transition of structure can lead to Dirac impulses. Benveniste et al. (2019),

Caillaud, Malandain, and Thibault (2020) and Benveniste et al. (2022) extend the
structural analysis with Pantelides algorithm and Pryce’s Σ-method for multi-mode
models. In Benveniste et al. (2019) it is demonstrated how a multi-mode Modia
model is treated. For a particular model, the code is regenerated and recompiled
on-the-fly with a special prototype during a state transition. It is then initialized
in the new states, even if Dirac impulses occur.
Höger (2014) also works on Pryce’s Σ-method for variable structure modeling.

Zimmer (2010) uses a runtime interpreter to transform the DAE equations at
runtime, when the structure changes. Limitations of this approach are that im-
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pulsive behavior is not supported and simulation time is one or more orders of
magnitude greater than when compiled code is used. Pepper et al. (2011) describe
the semantics of variable structure modeling with state machines. Mehlhase (2014)
provides a Python-based approach during which transitions can be made between
predefined models. Elmqvist, Matsson, and Otter (2014) and Mattsson, Otter, and
Elmqvist (2015) propose a high-level description of multi-mode models in Modelica
by extending the clocked synchronous state machines to continuous-time state
machines.
Tinnerholm, Pop, and Sjölund (2022) provide a Julia-based implementation

of Modelica called OpenModelica.jl which supports variable structure systems.
A distinction is made between explicit and implicit variable structure systems.
For explicit variable structure systems, the transition between states is explicitly
encoded by the user. Thus, all equations and variables are known beforehand. Both
the compiler and the simulation runtime need to process the whole model at once.
For implicit variable structure systems, predefined events trigger a recompiling of
the model on-the-fly during simulation.

All current proposals for variable structure systems require prior knowledge of all
models – for all modes – to switch between these models during simulation. If this
knowledge is not available, and whenever the equation structure changes, the entire
model is reprocessed and its code is regenerated and recompiled (or interpreted).
In this thesis, a new general approach for dealing with variable structure systems is
introduced, in which variables can appear and disappear during simulation. There
is no need for regenerating and recompiling code when the number of equations and
states are varying at events. The method is presented in a generic, mathematical
way and can be applied to declarative, equation-based modeling languages, such as
Modia and Modelica. The transition between the modes, referred to as segments,
is triggered by specific commands. Both the number of variables and equations can
vary from segment to segment. Several novel features are introduced to overcome
current limitations for variable structure systems.

• The sizes of array equations can be changed after code generation and before
simulation starts. A simple example is given in Chapter 9.

• For dynamically varying the number of states during simulation, the new
concept of predefined acausal components is introduced in Chapter 10. The
automated procedure of analyzing the structure of DAEs, and transforming
them to ODEs, results in causal equations (assigned equations) and acausal
equations (not assigned equations). The same procedure can be applied to
acausal components as well. Furthermore, the component equations are also
split into causal and acausal equations. The causal equations of the acausal
components become pre-translated functions. The states computed by these
pre-translated functions are hidden in memory and are directly passed to
the solver. However, the acausal equations of components must be solved as
part of the entire model.
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In this new approach, predefined acausal components cannot be designed for
arbitrary (useful) connection scenarios. This means, they cannot be used if one
or more of their pre-translated functions need to be differentiated and not all
equations of an entire model are reprocessed when the model structure changes.
Yet, a considerable number of systems can still be practically handled. However,
users must be acquainted with the system and its required conditions, and provide
significant information about the model in advance, in order to trigger a new
segment. Interaction with the model is achieved using specific commands that are
tailored to the predefined acausal components. This allows great flexibility when
creating customized interactions for the component and the model. The use of
predefined acausal components scales well for large systems and leads to efficient
simulations because code is not regenerated and recompiled on-the-fly.

1.1 Contributions
Notable contributions are made to collision handling with variable-step solvers
with distance and force computation, to variable structure systems, and to the
modeling and simulation environment Modia and multibody module Modia3D.

These contributions pertain to collision handling with variable-step solvers and
are preliminarily published in Neumayr and Otter (2017), Neumayr and Otter
(2018), Neumayr and Otter (2019b) and Neumayr and Otter (2020). A once-off
additional preprocessing step that analyzes the mechanical structure is invented to
reduce the number of potential collision pairs. Several considerable enhancements to
the MPR algorithm, which is used in the narrow phase are introduced and discussed
in detail. The novel concept of the signed distance is crucial for collision handling
with variable-step solvers. The signed distance is the Euclidean distance (when both
objects are separated) or the penetration depth (when both objects are penetrating).
In addition, to ensure the existence of a Euclidean distance between separated pairs,
the Euclidean distance between their AABBs in the broad phase is used. Moreover,
to avoid unnoticeable penetrations of shapes, loose-fitting AABBs are proposed.
It is also proven that the signed distance is suitable as a zero-crossing function
that is used to detect the transition between penetration and non-penetration,
and vice-versa by variable-step solvers. The zero crossing itself corresponds to the
touching time. An associated zero-crossing function exists for each collision pair.
Regardless of how many potential collision pairs actually exist, a new method
is proposed to reduce the number of zero-crossing functions to two. To avoid
unphysical behavior in the response calculation, several restrictions are introduced
to ensure a continuous penetration depth. A novel force and torque formulation is
developed by combining and enhancing existing response formulations.
The most noteworthy contribution is a significant new approach to variable

structure systems. This is preliminarily published by Neumayr and Otter (2023a).
It is a general approach that is discussed from the mathematical- and from the
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algorithmic side. It further allows a varying number of states before simulation
starts, as well as during simulation. In doing so, customized action commands
interact with special components. These commands trigger the addition or removal
of the components’ states during simulation, without having to recompile the
model’s code. Moreover, benchmarks are established for a transportation scenario.
These are preliminarily published by Neumayr and Otter (2023b). They show that
time-consuming collision handling can be eliminated or reduced to a minimum.
Furthermore, it is possible to combine both collision handling and segmented
simulations. This allows collision handling to be turned on for segments of particular
interest and turned off for segments that are of no interest. As a proof of concept
for variable structure systems, the flipping of a kinematic chain (and vice-versa)
during simulation is realized by Neumayr and Otter (2024). This opens up a wide
range of exciting new applications in space robotics, industrial and scientific areas.
Furthermore, other contributions relevant to the modeling environment Modia

and Modia3D are highlighted. These are preliminarily published by Neumayr
and Otter (2018), Neumayr and Otter (2019a), Elmqvist, Otter, Neumayr, and
Hippmann (2021) and Neumayr and Otter (2024). The open-source multibody
module Modia3D is modular and has a customizable component-based design
pattern. Algorithms are introduced to group objects according to their properties
and to analyze them efficiently. These algorithms are inspired by the new additional
preprocessing step of collision handling. Among others, the combination and
symbolic transformations of Modia and Modia3D represent crucial developments
for variable structure systems.

1.2 Outline

This thesis is devoted to collision handling and two different approaches are
discussed: one with distance and force computations and the other with variable
structure systems. It is divided into three parts:

Part I – Fundamentals. Basic concepts of equation-based modeling with DAEs,
multibody equations, and variable structure systems are explained in Chapter 2.
An overview about the open-source modeling and simulation environment Modia,
which describes physical systems by DAEs, is presented in Chapter 3. The open-
source multibody module Modia3D, for mechanical systems, is closely integrated
with Modia and is symbolically transformed. Modia3D is a predefined acausal
component.
Part II – Collision Handling with Variable-Step Solvers. Three state-of-the-art

collision handling steps, as well as a once-off additional preprocessing step, are
used. Basic concepts needed for these steps are introduced in Chapter 4. Each
step is exhaustively debated in Chapters 5 to 7. Each step is further developed so
that it can be used with variable-step solvers. The adaptation of Modia3D and
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critical considerations concerning collision handling with variable-step solvers are
discussed in Chapter 8.

Part III – Variable Structure Systems. The possibility of varying the number of
states before simulation is shown in Chapter 9. A new general approach that allows
the varying of the number of states during simulation is introduced in Chapter 10.
The adaptation of Modia3D to variable structure systems is discussed in Chapter 11.
In contrast to the theoretical concepts mentioned in this thesis, detailed overviews of
selected practical sample applications are presented in Chapter 12. Several critical
deliberations are made and inherent issues of the two approaches are elaborated.
Based on that, as well as the questions arising from it, specific areas that require
further research are identified in Chapter 13. Appendix A supplies the interested
reader with some mathematical definitions. The MPR algorithm is examined with
several selected collision models. These illustrative models are explained briefly in
Appendix B.
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Fundamentals
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2 Equation-Based Modeling

In equation-based modeling, a physical system is described with Differential Al-
gebraic Equations (DAEs). The whole model or its individual components are
represented by a set of equations and associated variables. All equations from
all components are collected in one set when the whole model is compiled. A
prerequisite for any object-oriented modeling approach is that the behavior of
the whole system can be derived from the behavior of its components. General
laws for the connections between the components make the equations of each
component applicable and reusable. Thus, pairs of flow and potential variables
are introduced by adding equations to the system that represent the connections
between components.

• Flow variable: The sum of the inflowing inputs and the outflowing outputs
must equal 0 at a connection point.

• Potential variable: The values of all inputs and outputs at a connection
point are equal.

Depending on the domain, there are specific flow and potential pairs, e.g., voltage
and current in electricity, force and velocity in translational mechanics, torque and
angular velocity in rotational mechanics (see e.g., Zimmer, 2010). The final system
contains a mixture of purely algebraic equations and differential equations. Thus,
it is called a DAE system.
This chapter outlines the main concepts of equation-based and object-oriented

modeling languages, like Modelica and Modia. The Modelica language is stan-
dardized, declarative, and equation-based (Modelica Association, 2021). There
are open-source and commercial tools supporting Modelica (Modelica Associa-
tion, online). The Modelica language is widely used in scientific and industrial
applications for modeling, simulation, and design of physical systems. Modelica
defines large sets of differential, algebraic, and discrete equations in a standardized,
user-friendly manner. Based on Modelica, Modia is a revised approach towards
equation-based modeling. Modia3D is a multibody module for mechanical systems
and belongs to the Modia modeling environment. Modia3D serves as a testbed for
collision handling with variable-step solvers and variable structure systems. For
both approaches, state events are crucial.

11
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2.1 Differential Algebraic Equations
Physical systems are mathematically described by Differential Algebraic Equations
(DAEs). DAEs occur in the mathematical modeling of a wide variety of problems in
engineering and science such as in multibody and flexible body mechanics, electrical
circuit designs, optimal control, compressible and incompressible fluid dynamics,
molecular dynamics, chemical kinetics, and chemical process control.
The general representation of a DAE is given by

F (ẋDAE,xDAE,u, t) = 0, (2.1)

where xDAE(t) are the unknown variables and u(t) is the input vector. Both are
dependent on time t ∈ R. F represents the equations of the system. (See e.g.,
Brenan, Campbell, and Petzold, 1996; Cellier and Kofman, 2006)
There are two standard ways of solving general DAEs (2.1): First, a system of

DAEs (2.1) can be solved numerically with DAE solvers such as DASSL (Brenan,
Campbell, and Petzold, 1996) or IDA from the Sundials suite (Hindmarsh et al.,
2005; Hindmarsh, Serban, and Collier, 2015). This approach has some limitations.
For this reason, there are solvers for DAEs with a particular structure (Arnold,
2017).

Second, a system of DAEs F (2.1) can be transformed into Ordinary Differential
Equations (ODEs) in explicit state-space form

ẋODE = f(xODE,u, t), (2.2)

and solved with ODE solvers. xODE are the states of the system. Typically, xODE
is a subset of xDAE. The non-trivial transformation from an implicit DAE system
to an explicit ODE system can be performed symbolically and automated by any
compiler of equation-based modeling languages. If the structure of the physical
system changes during simulation – known as a variable structure system – so does
its underlying mathematical description represented by DAEs and its corresponding
ODEs. Therefore, it would be required to execute the computationally expensive
transformation and compilation from DAEs to ODEs again.
Of course, for simple DAE systems one could transform a DAE into an ODE

manually, by using substitution and Gaussian elimination until all unknowns are
assigned and inserted to compute the states of the ODE.
Since this is not feasible for larger systems, this procedure must be automated

and generalized for compilers to analyze the structure of DAEs. There are several
steps which need to be performed by the compiler, each can be solved by various
algorithms. The symbolic transformation steps are outlined briefly below; for an
extended description with some examples see Cellier and Kofman (2006).

1. Causalization (Sorting): Initially, starting from the DAE, all equations are
acausal. This means, the equal sign has to be interpreted in the sense of an
equality, rather than in the sense of an assignment (Cellier and Kofman,
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2006).1 An algorithm is needed to assign equations and unknowns. This
means finding causal equations where its unknown can be evaluated directly
from its assigned equation. If an unknown appears in more than one equation,
there must be rules to decide which variable to solve for. Equations are
causal if they have been sorted horizontally. If the equations have been sorted
vertically, they are in an executable sequence. This executable sequence is
referred to as sort order. The set of equations and its unknowns can be
regarded as a bipartite graph2, where each equation and each unknown
are represented as nodes. The node of an equation and an unknown is
connected via an edge, if the unknown appears in the equation. The idea
is finding a matching and thus making the equations causal. Pantelides
(1988) proposed the most popular causalization algorithm. The procedure
creates an overdetermined equation system, by differentiating equations and
variables and adding them to the system. During the process, it selects the
equations to be solved (Cellier and Kofman, 2006).

2. Algebraic Loops (System of Algebraic Equations): Causalizing DAE systems
is not always straight forward because there might be equations left, which
need to be solved together. These remaining acausal equations are called
algebraic loops or system of algebraic equations. DAEs with algebraic loops
often appear e.g., in multibody systems containing closed kinematic loops.
The algebraic loop equations need to be solved together. If all algebraic
loop equations are linear, the unknowns can be solved for by Gaussian
elimination. If they are nonlinear, Newton iteration is needed to solve them.
The DAE translator needs to extract such loops and generate code for a
numerical solution.

3. Tearing Algorithm: It is a symbolic algorithm for general algebraic loops to
reduce the size of an equation system. The set of equations is torn apart by
assuming that one variable or potentially several variables are known. These
variables are called tearing variables. The equations from which the tearing
variables are to be computed are called residual equations. The selection of
tearing variables is not arbitrary. Finding the minimum number of tearing
variables for an algebraic loop is an np-complete problem. Still, there are
heuristic procedures for finding a small number of tearing variables (Cellier
and Kofman, 2006).

4. Structural Singularities: Structural singularities occur when so-called DAE
constraint equations are present in the system. This means that some
state variables depend algebraically on each other. In other words, their

1In a physical sense, causal means that: The present states are dependent from the states
of the past, but are independent from the states of the future. Causality in the context of
modeling describes the computational flow.

2In other words, a bipartite graph is a graph with two disjoint sets of nodes. The nodes within
one set are not connected via edges.
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initial conditions cannot be chosen independently. To tackle this issue, the
constraint equations are symbolically differentiated (Pantelides, 1988), and
added to the equation set. In the process of differentiation so-called pseudo-
derivatives also known as dummy-derivatives are introduced (Mattsson and
Söderlind, 1993). This procedure is explained at the basis of some examples
by Cellier and Kofman (2006).

After these symbolic transformations, the last step is to generate code, e.g., Julia
or C. Subsequently, the code is compiled.

2.2 Multibody Equations
Multibody systems are mechanical systems consisting of several linked rigid or
flexible bodies that can be displaced in translation and rotation. The connections
between these bodies allow complex motions and interactions. In this thesis,
only rigid bodies are considered. Multibody systems with kinematic loops are
mathematically described by the equations of motion (see e.g., Arnold, 2017):

q̇ = v

M(q, t)v̇ +GT (q, t)λ+ h(q, v, t) = τ

0 = g(q, t),
(2.3)

where q are the generalized coordinates of the joints of the spanning tree (e.g., the
angle of a revolute joint), v are the derivatives of q, τ are the generalized forces
in the joints of the spanning tree (e.g., the driving torque of a revolute joint), λ
are the generalized forces/torques in the cut-joints3, M = MT is the positive
definite mass matrix, g are the kinematic constraint equations of the cut-joints
on position level, G = ∂g

∂q
are the partial derivatives of the constraint equations

with respect to q and has full row rank, and h are applied generalized forces. This
DAE (2.3) gives rise to numerical problems when integrating it directly. Instead,
the method of Gear, Leimkuhler, and Gupta (1985) and Gear (1988) can be used
to transform it to a DAE (2.4) (see Otter and Elmqvist, 2017; Neumayr and Otter,
2019a; Neumayr and Otter, 2024)

0 = q̇ − v +GT (q, t)µ̇int
0 = M(q, t)v̇ +GT (q, t)λ̇int + h(q, v, t)− τ
0 = g(q, t)

0 = G(q, t)v + g(1)(q, t),

(2.4)

with much more beneficial numerical properties, where:
3In multibody modeling, a cut-joint is a specialized joint designed to handle kinematic loops
in mechanical systems. Otherwise, the system might become over-constrained due to the
closed kinematic loop.
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1. The derivative of the constraint equations 0 = g(q, t) are added as new
equations.

2. New unknowns µ̇int are introduced to stabilize the DAE.
3. The generalized constraint forces λ are replaced by λ̇int the derivatives of

its integral.
In this thesis, the focus is on the special case of tree-structured multibody

systems where (2.3) and (2.4) simplify to the DAE

q̇ = v

M(q, t)v̇ + h(q, v, t) = τ .
(2.5)

These equations can be transformed into the ODE

q̇ = v

v̇ = M−1(q, t) (τ − h(q, v, t))
= fmbs(q, v, τ , t).

(2.6)

These ODEs (2.6) are built up by the multibody module Modia3D, are symbolically
transformed by Modia, and are essential for variable structure systems.

2.3 Variable Structure Systems
A model with different structural properties which change during simulation, such
as a varying number of differential equations, are referred to as variable structure
systems. Variable structure systems are very common in engineering problems.

• The structural changes are triggered by ideal switching processes, e.g.,
ideal diodes in electric circuits, rigid mechanical elements that break apart,
systems with clutches, or the reconfiguration of robot models.

• The model has a variable number of variables, e.g., social or traffic simula-
tions with a variable number of agents or entities.

• For efficiency reasons a variable structure is used, e.g., a more detailed
model of a curved beam at the buckling point and less detailed elsewhere.

• User interaction creates variability in the structure, e.g., the user is allowed
to create or connect certain components during simulation.

A variable structure system is a fairly general term that applies to a number
of different modeling designs, e.g., adaptive meshes in finite elements, or discrete
communication models for flexible computer networks. In the sense of equation-
based modeling, a structural change means a change in the set of variables and
a change in the equations between those variables during the simulation. These
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changes can lead to significant changes in the structure of the model and are
triggered by state events.
As the structure of the model changes, so does its underlying mathematical

description with DAEs. In solvers for equation-based languages like Modelica and
Modia it is difficult to deal with these changes because DAEs are automatically
transformed to ODEs once at the beginning of the simulation. The resulting ODEs
are solved during the simulation. In Part III of this thesis, one approach is presented
to overcome this limitation.

2.4 State Events
Generally, events cannot only happen at predefined time points, but also when
functions of continuously varying state variables meet certain conditions. For
example, state events occur when a contact from a collision starts and ends or
a structural change is triggered when dealing with variable structure systems.
Event conditions are usually given implicitly, i.e., as zero-crossing functions. A
state event occurs when an associated variable passes through zero. More than
one zero-crossing function can be associated with a single event type. During the
simulation, the zero-crossing functions must be checked continuously. For this
purpose, many numerical ODE solvers provide a so-called root option. A vector
contains the variables to be tested. These variables are constantly monitored
during the simulation. If one of them passes through zero, an iteration is started to
determine the zero-crossing time with a prespecified accuracy. Since it is not known
when the event conditions will become true, the step size to hit them accurately
cannot be reduced. Instead, some sort of iteration (or interpolation) mechanism is
required to locate the event time. Thus, when an event condition is triggered during
the execution of an integration step, it affects the step size control mechanism of
the integration algorithm. Therefore, a variable-step solver is used, i.e., the step size
of the solver is varying. The step size is smaller when an event occurs and larger
when it does not. The continuous simulation is forced to iterate (or interpolate)
to the earliest zero crossing within the current integration step, with e.g., Regula
Falsi, or the Golden Section. One problem occurring with solvers is the so-called
ghosting effect. That is, an object moves through another object during a time
step (see Hofmann et al., 2014). One solution is to reduce the maximum step size
of the solver in such a case.

State events are not considered in physics engines of computer games. The reason
is, those engines are intended for real-time interactive simulations. Thus, they use
fixed-step size solvers. This means that the step size is fixed during the simulation
and events are not detected precisely. State events are vital for collision handling
with variable-step solvers and variable structure systems.



3 Overview of Modia and Modia3D
An overview of the equation-based modeling language Modia (see Section 3.1), and
the multibody module Modia3D (see Section 3.2) is provided. A general approach
is applied that symbolically transformes and solves the occuring systems of linear
and algebraic equations (see Section 3.3) when combining equation-based and
multibody modeling.

3.1 Modia
Modia (Elmqvist, Henningsson, and Otter, 2017; Elmqvist, Otter, Neumayr, and
Hippmann, 2021) is an open-source modeling and simulation environment for
declarative, equation-based models to simulate physical systems described by
DAEs. Based on Modelica, Modia is a new approach towards equation-based
modeling with a very similar semantics to Modelica. Modia is a domain-specific
extension of the Julia programming language (Bezanson et al., 2017). Modia
utilizes the advantages of Julia’s1 powerful language features such as multiple
dispatch, modern data structures with type inference, and a just-in-time-compiler.
Benchmarks with Julia demonstrate a similar performance like C.
Contrary to other modeling languages, Modia models are defined directly with

the Julia language, using some predefined helper functions to define the model’s
Abstract Syntax Tree (AST). So, no other language is needed to be parsed and
converted to Julia code. Therefore, the user can benefit of other packages of the
feature-rich Julia ecosystem. Modia consists of a set of Julia packages, most impor-
tantly of the packages Modia.jl (Elmqvist and Otter, online[b]) and Modia3D.jl
(Neumayr, Otter, and Hippmann, online[b]). Modia offers several interfaces to
Julia plot packages, like PyPlot.jl (JuliaPy, online) an interface to the Matplotlib
(Hunter, 2007) plotting library from Python and several plot packages of Makie.jl
(Danisch and Krumbiegel, 2021). Many more details on plotting and models are
given in the Modia documentation (Elmqvist and Otter, online[a]).
Modia’s very simple language semantics defines models with hierarchical col-

lections of name/value pairs. This unified scheme is used for models, variables,
equations, hierarchical modifiers, inheritance and replaceable components.

1Julia starts counting indices at 1 and brackets [] are used to get a specific entry of an
array or dictionary (firstEntry = myArray[1]). The :: operator is used to attach type
annotations (myVariable::Float = 42.0). The : operator indicates a symbol (:mySymbol).
The @ operator indicates a macro (@error). Unicode characters (e.g.,δ) are supported.

17
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This chapter is a concise introduction to the Modia language as needed to
understand the code snippets used in this thesis. This shortened and modified
overview of Modia is already published in Elmqvist, Otter, Neumayr, and Hippmann
(2021, Section 2) and Neumayr and Otter (2023a, Appendix A). It is about how to
define variables, models, connectors, and components and how to merge them and
define connections.

3.1.1 Variables and Models
Variables Var are implicitly defined by their references in equations and can have
attributes.

1 name = Var(attribute=value, ...)

Var is a function which takes name/value pairs and creates and returns a
corresponding dictionary. The currently introduced real attributes are: value,
min, max, init, and start. Boolean attributes are: parameter, constant, input,
output, potential and flow. Parameters are defined with Par. It is a shortcut for
Var(parameter=true). Thus, the definitions of T1 and T2 are equivalent (Lines 3
to 4)2.

2 # T1 and T2 are equivalent variable declarations
3 T1 = Var(parameter=true, value=0.2, min=0)
4 T2 = Par(value=0.2, min=0)

To create multiple expressions in Julia, without using the explicit constructor,
and unlike the other means of quoting, :( ) is used (Julia Documentation, online,
see quote). Thus, the expressions must be enclosed in so-called quotes :( ), if the
value contains references to other declared variables in the model. A parameter can
also be defined by name = literal-value. Moreover, there are reserved names
e.g., time for the independent variable with unit seconds.

A model is defined as a collection of name/value pairs with the constructor Model
(Lines 5 to 12). The equations have Julia expressions on both the left and right
sides of the equal sign. The entire set of equations is enclosed in :[ ]. Since an
AST is built instead of evaluating the expressions, later processing is possible, e.g.,
solving the equations symbolically. The Modia-specific operator der(v) defines the
time derivative v̇ = dv

dt
of variable v.

5 name = Model(
6 <variable-or-component-definition>,
7 ...,
8 equations = :[
9 <equation1>
10 <equation2>

2For better reference each code snippet is marked with a unique line number on the left-hand
side.
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11 ...]
12 )

Compare, e.g., a low pass filter defined as a Modia model (Lines 14 to 22), with
the corresponding Modelica model (Lines 24 to 32). The Julia package Unitful.jl
(Keller, online) defines units and manages unit inference and verification. The
definition of units is done with u"..." suffix, compare with Line 15 and Line 25.
13 # Modia model
14 LowPassFilter = Model(
15 T = 0.2u"s",
16 u = Var(input=true),
17 y = Var(output=true),
18 x = Var(init=0.0),
19 equations = :[
20 T * der(x) + x = u
21 y = x]
22 )

23 // Modelica model
24 block LowPassFilter
25 parameter SIunits.Time T = 0.2;
26 input Real u;
27 output Real y;
28 Real x(start=0.0, fixed=true);
29 equation
30 T * der(x) + x = u;
31 y = x;
32 end LowPassFilter;

3.1.2 Connectors and Components
Connectors are models that contain flow variables. A flow variable has the attribute
flow = true. A potential variable has the attribute potential = true. For a
specification of flow and potential variables see Chapter 2. Connectors must have
the same number of flow and potential variables and the same array size. Connectors
must not have any equations. Components are declared by using a model name as
a value in a name/value pair. An electrical connector with potential v and current
i is defined in Line 33.

33 Pin = Model(v = Var(potential=true), i = Var(flow=true))

pv
p
pi

v

C

nv
n

ni

Figure 3.1: Equation-based model of a capacitor with parameter C, state v,
connectors p, n with potential variables pv, nv (electrical potentials) and flow
variables pi, ni (electric currents).

An electrical capacitor with two Pins p and n corresponding to Figure 3.1 is
described in Lines 34 to 42. Furthermore, this capacitor is used to discuss a
predefined acausal component needed for variable structure systems in Part III,
(Section 10.1.4).
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34 Capacitor = Model(
35 C = 0.1u"F",
36 p = Pin,
37 n = Pin,
38 equations = :[
39 0 = p.i + n.i
40 v = p.v - n.v
41 C*der(v) = p.i]
42 )

3.1.3 Merging
Models and variables are defined using hierarchical collections of name/value
pairs. A constructor Map is used to set and modify parameters of components and
attributes of variables, which are also structured in hierarchical collections. For
example, the parameter T of the LowPassFilter model (Lines 14 to 22) is changed
in Line 43.

43 lowPassFilter = LowPassFilter | Map(T = Map(value=2u"s", min=1u"s"))

The merge operator | is an overloaded binary operator of bitwise or with recursive
merge semantics. The merging of equations is done particularly by concatenating
the equation vectors.

3.1.4 Connections
Connections are described as a special equation of the form:

44 connect = :[
45 (<connect-reference-1>, <connect-reference-2>),
46 (<connect-reference-3>, <connect-reference-4>),
47 ...]

A connect-reference is either a component-instance-name or a connect-in-
stance-name. To be more precise, a connect-instance-name is either a connector
instance, an input variable or an output variable. All corresponding potentials of
the connected connectors are set equal. The sum of all incoming corresponding
flows into the model is set equal to the sum of corresponding flows into the
sub-components, i.e., the same semantics as in Modelica.
In Lines 48 to 62, a filter with electrical component models3 is instantiated,

parameters are set and connections are defined, as Figure 3.2a depicts. The filter
model is instantiated, simulated, and the voltages of the resistor and of the capaci-
tor are plotted (Figure 3.2b). The Julia macro @instantiateModel symbolically
transforms the model, generates and compiles Julia code. Symbolic transformation
is done with standard algorithms of object-oriented modeling languages and with
3Modia.jl, v0.12.0, examples/FilterCircuit.jl
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Figure 3.2: Electric circuit consisting of a constant voltage, a resistor, and a
capacitor (Elmqvist and Otter, online[a]).

extensions as described by Otter and Elmqvist (2017). One simulation of the
instantiated model is performed with function simulate! using Modia’s default
solver CVODE_BDF. This is one solver from the Julia package DifferentialEquations.jl
(Rackauckas and Nie, 2017; SciML, online), which contains a large set of solvers.
CVODE_BDF utilizes the Backward Differentiation Formula (BDF) solver of package
CVODE from the Sundials suite (Hindmarsh et al., 2005; Hindmarsh, Serban, and
Collier, 2015). Various keyword arguments for the simulation run can be defined,
e.g., the stop time is set to 6 s. Parameters and initial values can be provided by a
hierarchical Map which is merged with the current values via the merge keyword.
The simulation results are stored within the instantiated model and are plotted with
function call plot depending on the selected plot package. More details about this
filter model are given in the Modia documentation (Elmqvist and Otter, online[a]).

48 using Modia
49 include("$(Modia.path)/models/Electric.jl") # include electrical components
50 Filter = Model(
51 R = Resistor | Map(R=0.5u"Ω"),,
52 C = Capacitor | Map(C=2.0u"F"),
53 V = ConstantVoltage | Map(V=10.0u"V"),
54 connect = :[
55 (V.p, R.p)
56 (R.n, C.p)
57 (C.n, V.n)]
58 )
59 filter = @instantiateModel(Filter)
60 simulate!(filter, stopTime=6.0u"s")
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61 @usingModiaPlot # use selected plot package
62 plot(filter, ("R.v", "C.v"))

Summarizing, the open-source modeling language Modia – the simulation envi-
ronment used in this thesis – is a domain-specific extension of the Julia language.
Modia benefits from the Julia ecosystem which is convenient for users too.

3.2 Modia3D
The open-source Julia package Modia3D.jl (Neumayr, Otter, and Hippmann,
online[b], v0.12.0) is a multibody module for 3-dimensional (3D) mechanical
systems. Modia3D belongs to the Modia modeling ecosystem. It is targeted for
solvers with adaptive step size control to compute results close to real physics.
Modia3D includes collision handling using the Minkowski Portal Refinement (MPR)
algorithm and collision response for elastic contacts (Part II, Section 8.1). Moreover,
Modia3D is designed as a predefined acausal component to support variable
structure systems (Part III, Chapter 11). Modia3D is inspired by the generic
component-based design pattern of modern game engines allowing modular and
customizable definitions of 3D systems: A coordinate system located in 3D is used
as a container, called Object3D, with optional components (geometry, solid and
collision properties, visualization data, light, camera, etc.), see e.g., Nystrom (2014),
Unity (Unity Technologies, online), Unreal Engine (Epic Games, online) three.js
(Three.js, online).

Neumayr and Otter (2018) describe the modular and customizable component-
based design pattern of Modia3D. To communicate with Modia, the user interface
has changed in the meantime, so that constructors and functions take keyword
arguments as inputs. The integration of Modia3D within Modia is described in
Elmqvist, Otter, Neumayr, and Hippmann (2021) and Neumayr and Otter (2024).
A Modia3D package documentation (Neumayr, Otter, and Hippmann, online[a])
and an installation guide (Neumayr, online) are publicly available on the web under
MIT licenses.

3.2.1 Modia3D Components
The core component of Modia3D is an Object3D. It is the basis for modular and
customizable 3D modeling. An Object3D is a coordinate system moving in 3D space
with associated optional features, see Figure 3.3 and Table 3.1. An Object3D’s
position and orientation is defined relative to an optional parent Object3D by
translation and rotation. An Object3D knows its parent and its optional children.
An exception of this is the Object3D with feature Scene. It has no parent and is
the root of all other Object3Ds in the multibody tree. For its uniqueness, only one
Object3D is allowed to have a Scene. It is called world Object3D. This root defines
a global inertial system. The feature Visual is for 3D animation only and defines
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parent Object3D

Object3D

rotation

translation

feature

feature

Scene

Visual
or
Solid

Figure 3.3: Object3D defined relative to its parent with translation and rotation.
An Object3D can have exactly one optional feature: Scene, Visual, or Solid.

Table 3.1: Shapes supported by Solid and Visual features, and by Visual feature
only.

Solid and Visual Shapes Visual Shapes
Box Sphere Ellipsoid Capsule Grid GearWheel Coordinate-

System

Cone Beam Cylinder FileMesh Spring TextShape Modelica-
Shape
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shapes (see Definition 4.1) such as box, sphere, cylinder, beam, and 3D mesh
with visualization properties. The feature Solid defines solid bodies. It has mass
properties and can be considered in collision situations if keyword collidable =
true is set. A Solid can have a shape and visualization properties.
For simplifying the user interface of Modia3D, the keyword shape is used for

Solid and Visual features. Thus, there exist shapes which are used as Visual and
Solid features, and shapes which are used as Visual feature only (Table 3.1). The
geometric form (Definition 4.1) coincides with the shapes used for Solid feature.
An Object3D is a collision object (Definition 4.4) if and only if (iff) it has a Solid
feature with a shape, material properties and the keyword collidable = true is
set. As an abbreviation Scene, Solid, or Visual stands for an Object3D with feature
Scene, Solid, or Visual. The description of all possible keywords of Object3D, Scene,
Visual and Solid can be found in the Modia3D documentation (Neumayr, Otter,
and Hippmann, online[a]).
The design of Modia3D is modular, customizable and reusable, due to the

modularity of feature combinations and of Object3Ds. Shapes are used as Solid
feature with mass properties which can be used in collision situations or just for
visualization purposes.

3.2.2 Modia Interface
This section outlines how the internal Modia3D structures and functions are
interfaced to Modia models. The following concept is generic and not specific to
Modia3D.
Multibody components are defined as very simple Modia components. These

Modia components are Julia functions with keyword arguments. All Modia3D
multibody components, except joints, are defined as Modia parameters Par (Line 4,
Page 18). This means, all keyword arguments are treated as parameters. In
Lines 63 to 65 a function Object3D with an arbitrary number of keyword argu-
ments kwargs... is defined. These arbitrary keyword arguments, special predefined
keywords4 such as _constructor = :(Modia3D.Composition.Object3D), and ad-
ditional predefined keywords are passed on to Par. A dictionary containing all kinds
of keywords is created. This can be regarded as a generalization of the concept of
External Objects in Modelica. It is a generic Modia approach and not specific to
multibody systems. All multibody components contain enough information to be
used for variable structure systems.

63 Object3D(; kwargs...) = Par(;
64 _constructor = :(Modia3D.Composition.Object3D{FloatType}),
65 _path = true, kwargs...)
66 Scene(; kwargs...) = Par(;
67 _constructor = :(Modia3D.Composition.Scene{FloatType}), kwargs...)
68 Visual(; kwargs...) = Par(;

4All special predefined keywords in Modia and Modia3D start with _.
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69 _constructor = :(Modia3D.Shapes.Visual), kwargs...)
70 Solid(; kwargs...) = Par(;
71 _constructor = :(Modia3D.Shapes.Solid{FloatType}), kwargs...)

During code generation, Modia processes certain keywords of a parameter e.g.,
to access the parameter value in the generated Julia function. Some keywords, such
as the Modia3D keywords, are ignored during code generation. Before simulation
starts, all parameters are evaluated. For this purpose, the hierarchical dictionary
of parameter definitions is recursively traversed to evaluate parameter expressions
and propagated parameters.
For example, in the upcoming pendulum model Lines 98 to 102 (Page 27)

the constructor of an Object3D is called. In a first step, Object3D(feature =
Solid()) is replaced by Modia3D.Object3D(feature = Modia3D.Solid()). In a
second step, this constructor is executed and returns a reference to a Julia object
that is associated with key obj1. After evaluating the parameters, the complete
Modia3D data structure of this model is instantiated and is available in the
dictionary of the evaluated parameters.

Modia3D is a predefined acausal component. This is essential to use Modia3D for
variable structure systems. To understand how Modia3D is implemented, the main
implementation concepts of predefined acausal components are already declared
below. All mathematical details and definitions of predefined acausal components
are explained in Chapter 10, as well as, a more detailed application. A predefined
acausal component is a Modia Model with two special predefined keywords: _build-
Function and _initSegmentFunction.

• _buildFunction: Before symbolic transformation, the hierarchical dictionary
of the model is run through. For each sub-model, the function defined by
_buildFunction is executed once. First, this function defines additional
model variables and equations which are merged with the corresponding
model. Second, it returns an instance of the Julia structure, which acts as
the internal memory of the component.

• _initSegmentFunction: This function is called by the simulation engine
before the model is initialized and before the model is re-initialized for
variable structure systems. In both cases, it is necessary to redefine all local
variables of the predefined acausal component, including states, zero-crossing
functions, and initial values for the newly defined states.

Only if these two keywords are set, it is a predefined acausal component. Otherwise,
it is an ordinary Modia model.
When dealing with 3D models the top-level Modia model must be a Model3D

(Lines 73 to 78). The special function buildModel3D! (Line 75) is called to add a
few equations to the models depending on the used multibody components e.g.,
different joints used in the actual 3D model. It recursively traverses the model,
i.e., a hierarchical dictionary, and collects all information about the joints used.
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Based on this information, initSegmentModel3D! (Line 77) builds, among others,
the internal tree structure of Modia3D with the so-called super-objects.

72 # predefined acausal component
73 Model3D(; kwargs...) = Model(;
74 # called once before symbolic transformation
75 _buildFunction = :(Modia3D.buildModel3D!),
76 # called before each new simulation segment
77 _initSegmentFunction = Par(functionName = :(Modia3D.initSegmentModel3D!)),
78 kwargs...)

3.2.3 Joints with Invariant Variables
Modia3D offers two types of joints:

1. Joints with Invariant Variables that cannot be changed during simulation.
This joint type is discussed in the upcoming section.

2. Joints with Variant Variables that can be changed during simulation. This
joint type is discussed in Section 11.1.

The first type of joints contains Modia equation sections with invariant variables,
including invariant states. These joints are visible for Modia and cannot be removed
or added during simulation. The interface to the Modia3D functionality is designed
to define differential equations only on the Modia side in Modia equation sections.

For example, the multibody component RevoluteWithFlange in Lines 79 to 92
is defined as a Modia Model. It is a revolute joint with a Modia 1-dimensional (1D)
rotational flange. Additionally, it consists of parameters obj1, obj2, axis and
local variables phi, w that are initialized with zero. To realize variable structure
systems, the two equations phi = flange.phi and w = der(phi) are the acausal
part of a revolute joint. The causal part is defined with parameter _constructor
together with all parameters defined with keyword Par. For further information to
causal and acausal equations see Chapter 10.

79 Flange = Model(phi=Var(potential=true), tau=Var(flow=true))

80 RevoluteWithFlange(; obj1, obj2, axis=3, phi=Var(init=0.0), w=Var(init=0.0)) =
81 Model(;
82 _constructor = Par(value=:(Modia3D.Revolute),
83 _jointType=:RevoluteWithFlange),
84 obj1 = Par(value = obj1),
85 obj2 = Par(value = obj2),
86 axis = Par(value = axis),
87 flange = Flange,
88 phi = phi,
89 w = w,
90 equations = :[
91 phi = flange.phi
92 w = der(phi)])
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Figure 3.4: Pendulum consists of a solid beam. A red cylinder visualizes the
revolute joint.

The model of a simple pendulum5 (Lines 93 to 112 and Figure 3.4) with damping
in its joint uses Modia3D components, especially Object3Ds with its different fea-
tures and combines equation-based components of Modia. The remaining elements
of the pendulum use predefined equation-based models of a small Modia library
which corresponds to the Modelica.Mechanics.Rotational library. To model the
damping in the joint, a rotational 1D damper is connected to a fixed point and the
flange of a revolute joint (Lines 79 to 92).
93 using Modia3D
94 include("$(Modia3D.modelsPath)/AllModels.jl") # Modia rotational library
95 Pendulum = Model3D(
96 # multibody components
97 world = Object3D(feature=Scene()),
98 obj1 = Object3D(feature=Solid(solidMaterial="Steel", collidable=true,
99 shape=Beam(length=1.0, width=0.2, thickness=0.2, ...))),
100 obj2 = Object3D(parent=:obj1, translation=[-0.5, 0, 0],
101 feature=Visual(shape=Cylinder(diameter=0.1, length=0.21),
102 visualMaterial = VisualMaterial(color="Red"))),
103 rev = RevoluteWithFlange(obj1=:world, obj2=:obj2),
104 # equation-based components
105 damper = Damper | Map(d=100.0),
106 fixed = Fixed,
107 connect = :[
108 (damper.flange_b, rev.flange),
109 (damper.flange_a, fixed.flange)]
110)
111pendulum = @instantiateModel(Pendulum, ...)
112simulate!(pendulum, stopTime=3.0)

During the parameter evaluation, a special action is taken for parameters with key
_constructor: A constructor call is assembled from the constructor name and any
defined parameters. For example, the RevoluteWithFlange definition of Lines 79
to 92 results in the constructor call of Line 113. This constructor is called on the
fly resulting in an instance of Julia struct Revolute. The call returns a reference
ref to the created instance. A statement such as rev = RevoluteWithFlange() in
Line 103 is a key/value pair. The key is rev and the value is an instance of a Model
dictionary. This value is replaced by an instance of a parameter dictionary. So, the
5Modia3D.jl, v0.12.0, test/Tutorial/Pendulum3.jl
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generated instance of the revolute joint is stored as a parameter. The evaluated
parameters are displayed with e.g.,simulate!(logEvaluatedParameters = true).

113rev = Modia3D.Joints.Revolute(obj1, obj2, axis=3)

The keys of other instances are referenced in the argument list, e.g.,RevoluteWith-
Flange(obj1 = :world). During parameter evaluation, symbols such as :world
are searched for on the left side of the equal signs. They are then replaced by
the corresponding value of this keyword. For example, :world is replaced by
the constructor call Modia3D.Object3D(feature = Modia3D.Scene()). Once all
parameters are evaluated, all keyword arguments of multibody components contain
a reference to the instantiated Julia objects.

The overall model is traversed when the model is instantiated. When traversing,
each predefined acausal component can inject equations into the model definition
which are used in symbolic transformation. Alias variables are eliminated. The set
of all equations is generated, as sketched in (Lines 116 to 126) for the pendulum
model (Lines 93 to 112).

Function openModel3D! creates an instance of the multibody system. It contains,
e.g., the generated instance of the revolute joint. The instantiated top-level model is
passed as an argument. So, the function openModel3D! has access to the complete
model definition. Function setStatesRevolute! stores the current values of the
angles and angular velocities of all revolute joints of the multibody model. These
variables are states in the Modia equations, due to their definition in Lines 79
to 92. Function setAccelerationsRevolute! stores the angular accelerations of all
revolute joints in the multibody model. Further function calls basically construct the
multibody equations (2.5) in residual form. So, fgen = M(q, t)v̇+h(q, v, t)−τ . The
set of equations is transformed symbolically, i.e., equations are differentiated, sorted
and simplified. The result is the Julia getDerivatives function. It is compiled
into code that is called by the simulate! function.
114# _x ... states vector from solver
115# model ... instantiated simulation model
116function getDerivatives(_x, model, time)
117 ...
118 rev.phi = _x[1]
119 rev.w = _x[2]
120 # Equations injected with buildModel3D!
121 _mbs1 = Modia3D.openModel3D!(model, _x, time)
122 _mbs2 = Modia3D.setStatesRevolute!(_mbs1, rev.phi, rev.w)
123 _mbs3 = Modia3D.setAccelerationsRevolute!(_mbs2, der(rev.w))
124 _genForces = Modia3D.computeGeneralizedForces(_mbs3)
125 ...
126end

To recap, the first type of joints with invariant variables containing Modia
equations are introduced once. They cannot be added or removed during simulation.
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The second type of joints with variant variables can be added or removed during
simulation. This type of joints is a crucial invention to support variable structure
systems, see Section 11.1.

3.2.4 Internal Tree Structure: Super-Objects
The objects of 3D models need to be handled efficiently during simulation. There-
fore, a preprocessing step for building up Modia3D’s internal execution scheme
(internal tree structure, data structure) based on the Modia3D’s model definitions is
introduced. All information about multibody system components (e.g., Object3Ds,
joints, solids, ...) and their functionality (e.g., collision properties) is sorted and
mapped to an internal tree structure. This resulting multibody tree is a directed
acyclic graph with a unique root. It can be efficiently evaluated during simulation
starting from its unique root and uses the parent-child relationship. Moreover, this
execution scheme includes definitions of the states of the multibody systems and of
their initial values which are deduced from the used joints. Object3Ds are grouped
into so-called super-objects (Neumayr and Otter, 2019a). Super-objects have the
following characteristics:

• Super-objects are disjunct via joints.
• A super-object consists of rigidly connected Object3Ds.
• The root of a super-object is an Object3D which is freely moving or which

has a joint.
• The super-object’s root is the parent of all other Object3Ds in a super-object.

To fulfill the above characteristics, all Object3Ds belonging to a super-object are
rigidly re-connected to its super-object’s root. Based on the features of Object3Ds
in super-objects, different actions are performed: For example, all Object3Ds in the
same super-object cannot collide with each other, but they can collide with all other
Object3Ds that are enabled for collision handling. A common mass, common inertia
tensor, and common center of mass are computed for a super-object considering
the mass properties of all Object3Ds inside this super-object. Two corresponding
examples of super-objects are given in Figures 3.5 and 3.6.
The algorithm for grouping the Object3Ds is based on the Depth-First Search

(DFS) by Tarjan (1972) and Hopcroft and Tarjan (1974). The DFS is extended
to the augmented DFS by Neumayr and Otter (2019a) leading to the internal
data structure with super-objects. The super-objects themselves are sorted in DFS
order. All rigidly connected Object3Ds belonging to a super-object are also sorted
in DFS order. Cut-joint and kinematic loops are not supported yet. Without any
further assumptions, the grouping of the 12 Object3Ds of Figure 3.6, leads to five
general super-objects in Figure 3.5. A pseudo code for grouping all Object3Ds of
the multibody tree into super-objects is given in Lines 127 to 151. This algorithm
needs two different arrays.
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Figure 3.5: Five general super-objects. The unique root of the multibody tree is
world. The roots of the super-objects are world, obj1, obj4, obj6, obj9.
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Figure 3.6: Internal execution scheme at initialization. 12 Object3Ds with different
properties are defined: They are allowed to collide, can have a mass, and are visible.
They are grouped into five super-objects, which are disjunct via joints.
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• actRootChildren: Starting from the root of the actual super-object all
rigidly attached children and rigidly attached children’s children and so on,
are traversed in DFS order. They are stored in actRootChildren and are
rigidly re-attached to the actual super-object’s root. If free moving children
or children with joints are encountered they are stored in roots.

• roots: Free moving Object3Ds and Object3Ds with joints are roots of
super-objects.

127function augmentedDFS!(world::Object3D)
128 push!(roots, world)
129 actPos = 1, nPos = 1
130 while actPos <= nPos
131 superObj = SuperObjs() # actual super-object
132 root = roots[actPos] # actual root
133 if root != world
134 # group root according to its features
135 group(superObj, root)
136 end
137 # store root's children in actRootChildren or roots
138 # re-attach root's children to if stored in actRootChildren
139 rootsOrActRootChildren!(superObj, root, root)
140 while length(actRootChildren) > 0
141 child = pop!(actRootChildren)
142 # group child according to its features
143 group(superObj, child)
144 # store child's children in actRootChildren or roots
145 # re-attach child's children to root if stored in actRootChildren
146 rootsOrActRootChildren!(superObj, root, child)
147 end
148 nPos = length(roots)
149 actPos += 1
150 ...
151end; end

To conclude, grouping Object3Ds into super-objects is a preprocessing step.
Super-objects are used for collision handling, e.g., to speed up the broad phase. For
more details see Section 8.1. This internal tree structure is extended in Chapter 11
to support variable structure systems.

3.2.5 Animation
Modia3D provides a generic interface to visualize simulation results with 3D
renderers. This supports the user in interpreting the simulation results through
visualization, besides plotting the results. For further details on animation see
Neumayr, Otter, and Hippmann (online[a]).

Both, the free Community and the Professional edition of the DLR visualization
library (Kümper, Hellerer, and Bellmann, 2021) are supported, allowing rendering
during simulation and the creation of videos in various formats.
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Another option is to automatically generate a JSON Object Scene format 4 file
when the simulation finishes (Three.js, online). This file can be imported into the
three.js editor, which allows adaptable inspection of the animation and provides
several options for rendering the scene with different cameras and lighting options.
In addition, the animation can be exported to the standard glTF file format or its
binary glb version, for which many viewers are available. The initial configuration
can also be exported in obj, ply or stl format.
Furthermore, an interesting feature of Microsoft Office 2019 (e.g., Word or

PowerPoint) is the importing and rendering of these file formats. While only a
static display is possible with Office 2019, the current Office 365 subscription also
supports the playback of the animation sequence.

3.3 Systems of Algebraic Equations
The equation-based modeling language Modia symbolically transforms DAEs (2.1)
to ODEs (2.2) with symbolic transformation algorithms. These algorithms are
already published by Otter and Elmqvist (2017), Elmqvist, Otter, Neumayr, and
Hippmann (2021) and Neumayr and Otter (2024). To start with, a general approach
that solves systems of linear equations together with systems of algebraic equations
is outlined. Then, this general approach is applied to a specific application to
demonstrate details. This application combines equation-based modeling and
multibody modeling.

After symbolic transformations a Julia function called getDerivatives is gener-
ated and compiled. This function calculates the derivatives ẋ. The getDerivatives
function is dependent from its application, see Lines 116 to 126 (Page 28), Lines 203
to 263 (Page 36), and Lines 576 to 586 (Page 113).
Physical models often lead to linear equation systems. Modia generates highly

efficient code to solve them numerically during execution of the model. Assume,
structural analysis identifies a nonlinear equation system

0 = g(w,u), (3.1)

with unknown local variables w and known variables u that are computed prior to
this statement. This equation system can be transformed to

w1 = g1(weq,u) (3.2)
0 = geq(w1,weq,u), (3.3)

with the tearing algorithm of Otter and Elmqvist (2017). In (3.2), (3.3) the
unknowns and equations are split into an explicitly evaluable part w1, and a
system of algebraic equations with unknowns weq. If g is linear in the unknowns
w, equation (3.3) can be (conceptually) rearranged into a linear equation system

0 = A(w1,u)weq − b(w1,u). (3.4)
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In (3.4), A, b are functions of the explicitly solved variables w1 and the known
variables u. The equation has to be solved for variables weq. In the worst case, A
has n2 elements (n = dim(weq)). Therefore, the rearranged code size is O(n2). If
the number of iteration variables n grows, the code size increases quadratically.

152# Initialize memory m (m.w_eq = 0, ...)
153while true
154 w_eq = m.w_eq
155 w_1 = g_1(w_eq, u)
156 m.r = g_eq(w_1, w_eq, u)
157 if lEqIteration(m); break; end
158end

Instead, another approach with code size O(n) is to generate the code in Lines 152
to 158 and Lines 159 to 186. Together they construct and solve the linear equation
system (3.4). Residuals r are computed and stored in the memory m. The linear
equation system is solved to compute weq and w1 from this solution.

159function lEqIteration(m)
160 n = length(m.w_eq)
161 if m.mode == QUIT
162 return true
163 elseif m.mode == COMPUTE_B
164 # compute b with w_eq = 0
165 # r = A*0 - b => b = -r
166 m.b = -copy(m.r)
167 m.j = 1
168 m.w_eq = e_1
169 m.mode = COMPUTE_A
170 else # m.mode == COMPUTE_A
171 # compute column j of A with w_eq = e_j
172 # r = A*e_j - b => A[:,j]
173 m.A[:,j] = m.r + m.b
174 if m.j != n
175 m.j += 1 # j+1
176 m.w_eq = e_j # j+1-th unit vector
177 else
178 # solve linear equation system
179 # A*w_eq = b
180 m.w_eq = m.A \ m.b
181 m.mode = QUIT
182 end
183 end
184 m.r = zeros(n)
185 return false
186end

The function lEqIteration in Lines 159 to 186 is called in a while loop from
Lines 152 to 158. It iteratively computes vector b, matrix A, and finally weq, de-
pending on the actual mode (COMPUTE_B, COMPUTE_A, QUIT). All vectors b, r,weq,
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matrix A, column counter j, and the actual mode are stored in a memory m, and
are updated when needed. To compute vector b, the first mode is COMPUTE_B. The
residuals r are computed with weq = 0. This allows to set b = −r. To compute ma-
trix A, the next mode is COMPUTE_A. To iteratively calculate the columns of A, the
residuals are computed with weq = ej that is the j-th unit vector from j = 1, . . . , n.
When the n-th column of A is computed, so A is known, the linear equation system
is solved for weq. One final iteration of the while loop is needed to evaluate w1.
To keep the description of lEqIteration in Lines 159 to 186 simple, two spe-

cial cases are not shown. Symbolic transformations analyze if A is a function
of parameters p, it remains unchanged after initialization. At initialization, the
LU-decomposition of A is computed once and stored in a memory m. During
simulation, only an inexpensive backwards solution is applied to calculate the
solution. If the residual equation’s size is one, a simple division is performed. A
linear equation solver is not required.

Modia utilizes the linear equation solver from the RecursiveFactorization.jl (Ju-
liaLinearAlgebra, online) package. This package employs a recursive left-looking
LU-algorithm for dimensions up to n = 500 by Toledo (1997). Performance tests
demonstrate a beneficial speed-up compared to the linear standard solver from Open-
BLAS (OpenBLAS, online) which is otherwise used. The DifferentialEquations.jl
(Rackauckas and Nie, 2017; SciML, online) package’s ODE and DAE solvers are
employed to handle the generated getDerivatives function. The getDerivatives
function is automatically called as required by the interface of the chosen solver.
One effective technique for DAE solvers significantly increases the simulation

speed. It is applicable when both the linear equation system’s size n exceeds a
certain limit (n ≥ 50) and the unknowns weq are a subset of the DAE states’
derivatives. The relevant DAE state derivatives are used as solutions weq of the
linear equation system. The residuals r are used for the DAE solver. For each
model evaluation, the linear equation system’s residuals are calculated only once
eliminating the need of solving a linear equation system. At events (including
initialization), the linear equation system is constructed and solved, providing
consistent initial conditions for the DAE solver.
An application of a one-arm robot6 with a drive train in Lines 187 to 202

demonstrates the proposed approach. Symbolic transformation of the model yields
the getDerivatives function in Lines 203 to 263. The one-arm robot model
comprising a motor, ideal gear, and a cascaded P-PI controller, actuates the
flange of a revolute joint. The corresponding Modelica object-diagram is illustrated
in Figure 3.7. Individual instances world, body, rev of multibody components
are specified and integrated with ramp, ppi, wSensor, motorInertia, gear of
equation-based Modia components.

187Servo = Model3D(
188 world = Object3D(feature=Scene()),

6Modia3D.jl, v0.12.2, test/Robot/ServoWithRampAndRevolute.jl
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Figure 3.7: A single revolute joint of a manipulator rotates around the z-axis and is driven by a servo motor via
an ideal gear. The revolute angle is controlled by a cascaded P-PI controller, that tracks the reference ramp.
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189 body = Object3D(feature=Solid(...)),
190 rev = RevoluteWithFlange(obj1=:world, obj2=:body, axis=3,
191 phi=Var(init=0.0), w=Var(init=0.0)),
192 ramp = Ramp,
193 ppi = Controller,
194 wSensor = UnitlessSpeedSensor,
195 motorInertia = Inertia,
196 gear = IdealGear,
197 connect = :[
198 (ramp.y, ppi.refGain)
199 (gear.flangeB, rev.flange)
200 ...])
201servo = @instantiateModel(Servo)
202simulate!(servo, stopTime=...)

All relevant parameters are queried in Line 206 of the generated getDerivatives
function. The states _x supplied by the solver are assigned to their respective
model variables in Lines 208 to 210. Subsequently, all explicitly solved equations
are present in Lines 213 to 2267. An algebraic loop is present since the motor
inertia is connected via an idealized gear model to the revolute joint. This algebraic
loop is between equations of the Modia components motorInertia and gear and
the Modia3D components world, body, and rev. To solve this algebraic loop
within the sorted equations, a new memory m is allocated in Line 236. The stored
data is initialized with zero values. Residuals are iteratively calculated in a while
loop (Lines 237 to 257), solving multibody equations (2.6), and the equations
of components motorInertia, gear with lEqIteration to determine iteration
variable weq.

203# _x ... states vector from solver
204# model ... instantiated simulation model
205function getDerivatives(_x, model, time)
206 < get parameters: startTime, duration, kRefGain, gearRatio, ...>
207 # states
208 rev.phi = _x[1]
209 rev.w = _x[2]
210 ppi.PI.x = _x[3]
211 # explicitly solved equations
212 # f1 from eq (2.6)
213 der(rev.phi) = rev.w
214 ppi.refGain.u = ramp(time, startTime, duration)
215 ppi.refGain.y = kRefGain * ppi.refGain.u
216 motorInertia.phi = gearRatio * rev.phi
217 wSensor.flange.phi = motorInertia.phi
218 ppi.P.u = ppi.refGain.y - wSensor.flange.phi
219 ppi.P.y = kP * ppi.P.u
220 der(motorInertia.phi) = gearRatio * der(rev.phi)

7Julia allows variable names such as der(rev.phi). So, the Modia variable names can be
directly used as variable names in the generated function.
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221 der(wSensor.flange.phi) = der(motorInertia.phi)
222 wSensor.w = der(wSensor.flange.phi)
223 ppi.PI.u = ppi.P.y - wSensor.w
224 der(ppi.PI.x) = ppi.PI.u / Tpi
225 motorInertia.flangeA.tau = kpi * (ppi.PI.x + ppi.PI.u)
226 motorInertia.w = der(motorInertia.phi)
227 # open 3D model
228 _mbs1 = openModel3D!(model, _x, time)
229 # set states in revolute joints
230 _mbs2 = setStatesRevolute!(_mbs1, rev.phi, rev.w)
231 begin
232 # new memory m: m.A=zeros(1,1),
233 # m.b=zeros(1), m.w_eq=zeros(1),
234 # m.r=zeros(1), m.j=0
235 # m.mode = COMPUTE_B
236 m = initlEqIteration(model)
237 while true
238 # explicitly solved equations
239 der(rev.w) = m.w_eq[1]
240 der(der(rev.phi)) = der(rev.w)
241 der(der(motorInertia.phi)) = gearRatio * der(der(rev.phi))
242 der(motorInertia.w) = der(der(motorInertia.phi))
243 motorInertia.a = der(motorInertia.w)
244 gear.flangeA.tau = -Jmotor * motorInertia.a + motorInertia.flangeA.tau
245 gear.flangeB.tau = -gearRatio * gear.flangeA.tau
246 # set acceleration in joints
247 _mbs3 = setAccelerationsRevolute!(_mbs2, der(rev.w))
248 # f2 from eq (2.6): compute generalized
249 # forces in joints from position,
250 # velocity, acceleration, collisions
251 _genForces = computeGeneralizedForces(_mbs3)
252 # compute residual vector
253 if m.mode != QUIT
254 m.r[1] = _genForces[1] + gear.flangeB.tau
255 end
256 if lEqIteration(m); break; end
257 end
258 # report derivatives to solver
259 model.der_x[1] = der(rev.phi)
260 model.der_x[2] = der(rev.w)
261 model.der_x[3] = der(ppi.PI.x)
262 return nothing
263end

In summary, the most fundamental concepts for equation-based modeling with the
modeling language Modia, the multibody package Modia3D, and how both are
symbolically transformed have been introduced. Especially, the Modia3D package
is a suitable testbed for collision handling with variable-step solvers (see Part II)
and variable structure systems (see Part III).





Part II

Collision Handling with
Variable-Step Solvers
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4 Basic Concepts for Collision
Handling

Collision handling is widespread, especially in the field of game physics and virtual
reality. In computer games, it is important that collisions of many objects are
detected in real-time and that the resulting simulation appears reasonably realistic.
Therefore, computer games use fixed-step size solvers that do not detect events
precisely.
When simulating real-world problems, in contrast, it is important that colli-

sion models reflect the actual physical behavior. The collision handling approach
discussed in this thesis is tailored to variable-step solvers to determine the exact
start and end time of a collision to obtain an accurate physical simulation. Fur-
thermore, it is not known in advance which objects could potentially collide with
each other. It is only known, that an object is a collision object and may collide. A
standard collision handling approach has three steps: broad phase, narrow phase,
and response calculation. An additional once-off preprocessing step that analyzes
the mechanical structure is invented to reduce the number of potential collision
pairs in the upcoming three steps. The algorithms and approaches of each collision
handling step are mindfully chosen. They are adapted, so that they synthesize
with each other and are applicable with variable-step solvers. The broad phase
is a simple selection procedure. All collision objects are approximated by simple
bounding volumes, e.g., Axis-Aligned Bounding Boxes (AABBs). Only, if those
bounding volumes overlap, the narrow phase is executed. The narrow phase is a
computationally expensive intersection test. In this thesis the Minkowski Portal
Refinement (MPR) algorithm is chosen to compute a (unique) contact point on
each object and a penetration depth (when both objects are penetrating). This
algorithm is enhanced to compute the Euclidean distance (when both objects
are separated). The novel concept of the signed distance (Euclidean distance or
penetration depth) is used as zero-crossing function and is crucial for collision
handling with variable-step solvers. The MPR algorithm is based on the Minkowski
Difference and on support mappings. The Minkowski Difference transforms a
shape-to-shape distance problem into a shape-to-point distance problem. Support
mappings are implicit representations of geometries. They are needed to find the
farthest vertex in a search direction. Moreover, support mappings are also applied
to create the bounding volumes (AABBs) in the broad phase. To avoid unphysical
behavior in the response calculation, several restrictions are introduced to ensure a
continuous penetration depth. A novel force and torque formulation is developed by
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combining and enhancing existing response formulations. In this thesis, the collision
response is calculated using elastic material laws, based on the penetration depth,
the contact points of the two penetrating objects, material data, and geometries.

Some basic concepts needed for the briefly introduced collision handling approach,
especially in the broad and narrow phase with the Minkowski Portal Refinement
(MPR) algorithm are discussed in the upcoming chapter.

The term geometric figure or shape is used inconsistently and often remains
undefined in the literature. Kendall (1984) says a shape is “what is left when the
effects of location, size, and rotation have been filtered out”. Bergen (2003) gives an
illustrative taxonomy of primitive shapes. Based on that, the following definitions
are used in this thesis.
Definition 4.1: (Geometric form, shape).
A geometric form or a shape is pure geometric information with a fixed scale.
Information about translation, rotation and material properties are filtered out.

Definition 4.2: (Object).
An object consists of a time invariant shape with time-dependent and continuous
translation and rotation. In addition, it has solid material properties e.g., mass,
Young’s modulus, Poisson’s ratio.

Remark 4.1: In other words, a time invariant shape is not deformable. Further-
more, the first part of Definition 4.2 corresponds to the definition given by Bergen
(2003): “An object is a closed bounded nonempty set of points in Euclidean space
R3.” For collision handling step 2 and step 3, the broad and narrow phase, it is
sufficient that an object consists of a shape with translation and rotation. Fur-
thermore, for collision handling step 4, the response calculation, solid material
properties are needed. Since in this thesis an object has solid material properties,
it is also referred to as Solid as in the literature.

The set of objects (Definition 4.2) is a compound of the set of (convex) polytopes,
where a 2-dimensional (2D) polytope is referred to as polygon and a 3D one as
polyhedron. A (convex) polytope S ⊂ Rn is defined as the convex hull S = conv(P )
of a finite subset P = {x1,x2, . . . ,xk} ⊂ Rn (Grünbaum, 2013). A polytope is
bounded and closed, and thus compact (Brondsted, 2012). A simplex is the convex
hull of an affinely independent set of points i.e., simplices of one, two, three and
four vertices are points, line segments, triangles, and tetrahedrons, respectively
(Bergen, 2003). The other part of convex object is the set of convex quadratics, like
spheres, cones and cylinders in R3. Those convex quadratics are again bounded
and closed.

An object can change over time. While in general, this might include deformation
of objects, this thesis is restricted to rigid motion. This means translations and
rotations are allowed but no deformations, reflections, or uniform/nonuniform
scalings.
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Definition 4.3: (Collision Set).
Let the collision set C be the set of all potentially-colliding convex or concave
time-dependent objects in a collision environment. Let nC be the cardinality of the
collision set C, in other words it corresponds to the number of potentially-colliding
objects in this set.

Definition 4.4: (Collision Object).
An object A ∈ C is called collision object. For time t ∈ R0, the translation and
rotation of A(t) changes continuously due to rigid motion.

Definition 4.5: (Collision Pair).
Two objects A,B ∈ C, A 6= B are a potentially-colliding pair or a collision pair.

4.1 Minkowski Difference
The collision detection algorithm is based on a mathematical concept called the
Minkowski Difference. To begin with, the Minkowski Sum is introduced.
Definition 4.6: (Minkowski Sum). (e.g., Bergen, 2003)
The Minkowski Sum A⊕B of two sets A and B is defined as the set of

A⊕B = {a+ b : a ∈ A, b ∈ B} . (4.1)

The set of Minkowski Sum is the addition of all points in A added to all points in
B.

However, for distance computation, the focus is on subtracting two sets. The
subtraction of the Minkowski Sum is referred to as the Minkowski Difference.
Definition 4.7: (Minkowski Difference). (e.g., Bergen, 2003)
The Minkowski Difference A�B of two sets A and B is defined as the set of

A�B = {a− b : a ∈ A, b ∈ B} . (4.2)

This is the set of all vectors from a point of B to a point of A.

Remark 4.2: Both sets must be defined relative to the same coordinate system.
Therefore, both, a and b are absolute translation vectors of points in A and B,
respectively (Bergen, 2003).

4.1.1 Properties of the Minkowski Difference
Some important properties of the Minkowski Difference and the Minkowski Sum,
which are also applicable to the Minkowski Difference, are considered below. The
proofs of the stated theorems are given in Bergen (2003).
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Theorem 4.1: (Bergen, 2003, Theorem 2.1) The Minkowski Sum of two convex
sets A and B is convex.

Theorem 4.2: (Bergen, 2003, Theorem 2.2) Let A and B be two polytopes. Then,
the Minkowski Sum of these two polytopes A and B is a convex polytope

A⊕B = conv {a+ b : a ∈ vertex(A), b ∈ vertex(B)} .

Where vertex(A) ⊆ A is the set of all vertices of A, the same holds true for
vertex(B) ⊆ B. This means A⊕B is the convex hull of all combinations of both
polytopes.

Remark 4.3: The statements of Theorems 4.1 and 4.2 can also be made for the
Minkowski Difference (Bergen, 2003).

Theorem 4.3: (Bergen, 2003, p. 36) For any pair of convex objects there exists a
unique point in A�B that is closest to the origin.

Theorem 4.4: (Bergen, 2003, p. 36) Two objects intersect iff Minkowski Difference
contains the origin

A ∩B 6= ∅ ≡ 0 ∈ A�B. (4.3)

Since two objects intersect they have a common point, and therefore the vector from
this common point to itself is contained in A�B, which is the zero vector or the
origin.

Definition 4.8: (Distance, Separation distance). (see e.g., Ong and Gilbert,
1996; Bergen, 2003)
The distance δd > 0 between two separated objects A,B ∈ C, A 6= B is most
naturally defined as the shortest Euclidean distance

δd(A,B) = min {‖a− b‖ : a ∈ A, b ∈ B} . (4.4)

Remark 4.4: The distance δd is commutative because δd(A,B) = δd(B,A). Other
synonyms for the distance between two separated objects are: they are disjunct, they
are not in contact, they do not overlap, two objects are separated or a Euclidean
distance can be found.

Definition 4.9: (Penetration depth). (Bergen, 2003)
The penetration depth of an intersecting pair A,B ∈ C, A 6= B is the length of the
shortest vector over which one of the objects needs to be translated in order to
bring the pair in touching contact

δp(A,B) = inf {‖r‖ : r /∈ A�B} . (4.5)
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Remark 4.5: The penetration depth δp is commutative because δp(A,B) =
δp(B,A). δp is the simplest definition that is based on pure geometric properties
at the actual time instant. With a significant increase in complexity, there are
several definitions of penetration depth which take object rotations (Ong, 1995) or
take movement of contact points Zhang, Kim, and Manocha (2014) into account.
Other synonyms for two penetrating objects are: overlapping objects, objects in
contact, and intersecting objects.

The definition of two touching objects (Definition 4.10) is a special case of
Theorem 4.4. This definition shows the relationship between the Euclidean distance
(Definition 4.8) and penetration depth (Definition 4.9). Both are translational
distances.
Definition 4.10: (Touching). (Ong and Gilbert, 1996)
Two objects are touching iff the origin is on the boundary of the Minkowski
Difference

A ∩B 6= ∅ ≡ 0 ∈ ∂(A�B). (4.6)

Two objects are touching iff the Euclidean distance (4.4) δd = 0 as well as the
penetration depth (4.5) δp = 0 are zero.

Remark 4.6: The definition of two touching objects (4.6) is a special case of two
intersecting objects (4.3) because ∂(A�B) ⊂ A�B.

Figure 4.1 shows two objects A,B which are not in contact, touching and
penetrating and their corresponding Euclidean distance and penetration depth and
their resulting Minkowski Difference A�B.

A B
δd

δd

A ⊖ B

a) No contact.

BA

A ⊖ B

b) Touching.

BA

δp

δp

A ⊖ B

c) Penetrating.

Figure 4.1: Two objects A,B in different contact situations (upper row) with
their corresponding Minkowski Difference A�B (lower row).
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The Minkowski Difference (Definition 4.7) is applicable if both objects are convex.
If not, the convex hull (see Section 4.3) of the concave object is taken. If two objects
intersect, there is at least one point in object A that coincides with at least one point
in object B. By subtracting these points from each other, the result will be the zero
vector (the origin). Remember: forming Minkowski Difference means subtracting
points (4.2). Both objects overlap if A�B contains the origin. Otherwise, if two
objects do not intersect, no point from object A will be equal to any point of object
B and A�B will not contain the origin (zero vector). Theorem 4.3 states, that
there exists exactly one unique point on the boundary of A�B with the shortest
distance to the origin (zero vector), if the origin is not contained. The uniqueness
of the point of A�B closest to the origin does not imply that the distance between
two convex objects is realized by a unique pair of points. In other words, there
may exist multiple contact points a ∈ A and b ∈ B so that (4.4) is minimal. If
both objects are penetrating, this shortest distance is equivalent to the penetration
depth (see Definition 4.9), otherwise, it is equivalent to the Euclidean distance (see
also Definition 4.8, Theorems 6.1 and 6.3). A similar discussion can be found in
(Bergen, 2003; Snethen, 2008; Kenwright, 2015).

The Minkowski Difference with its useful properties reduces complexity. Instead
of calculating the shortest distance between two convex objects or their convex
hulls, the Minkowski Difference transfers the determination of the shortest distance,
into the much simpler problem of determining the shortest distance between a
convex object A � B to the origin. This transforms a shape-to-shape distance
problem into a shape-to-point distance problem.

4.2 Support Mappings and Support Points
The calculation of the Minkowski Difference could become very time-consuming for
complex geometries. Hence, instead of calculating each point in A�B, only some
well-chosen points are subtracted. Therefore, support mappings are introduced.

4.2.1 Support Mappings
Support mapping fully describes the geometry of a polytope A and can be viewed
as the implicit representation of an object (Bergen, 2003; Snethen, 2008; Kenwright,
2015). It is a mathematical function that maps a vector n, which is the search
direction to a vertex on the boundary of polytope A that lies farthest in that
direction. If multiple vertices satisfy this requirement, any vertex can be chosen
as long as the same vertex is always mapped to a given search direction. Support
mapping does not necessarily return the closest vertex in the search direction if
it is not the farthest one (see Figure 4.2). It is worth mentioning that the search
direction does not need to be a unit vector. For support mappings, the focus is
only on the farthest vertex and not on the distance.
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The input arguments of function supportMapping (Line 264) are:
• A search direction n.
• A geometry obj. It is a polytope (a given collection of vertices) or a primitive

geometry.
The support point computation depends on the shape and it is transformed into
global coordinates with absolute translation vector r and absolute rotation matrix
R. The return value of function supportMapping is the vertex on the object that
lies farthest in that direction. This vertex is called support point.

264supportMapping(obj, n) = obj.r + obj.R'*supportPoint(obj, obj.R*n)

Several support point mappings for primitive shapes and polytopes are stated in
Bergen (2003), Snethen (2008) and Olvång (2010) and the concept of compound
support mappings is further introduced. For example, support point computation
for a box in Lines 266 to 271.
265# support point mapping for box
266function supportPoint(obj::Box, n)
267 x = 1/2*obj.lengthX
268 y = 1/2*obj.lengthY
269 z = 1/2*obj.lengthZ
270 return (sign(n[1])*x, sign(n[2])*y, sign(n[3])*z)
271end

Support mappings for compound shapes like capsule, cone, frustum of a cone,
and beam are not given in the common literature. As part of this thesis, support
mappings for these compound shapes have been derived. Their implementation can
be found online1. Moreover, for non-smooth shapes a newly invented smoothing
radius is considered, see Section 6.2.2.

support plane

support point

n ... search direction

Figure 4.2: Support mappings can be imagined as a normal plane (support plane)
to the search direction n. The support plane slides along the search direction
towards the object until they touch. This vertex is the support point.
1Modia3D.jl, v0.10.4, src/Shapes/boundingBoxes.jl
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4.2.2 Support Points
It is easier to call supportMapping twice and find a support point on object A
in search direction n (Line 273) as well as on object B in search direction −n
(Line 274) and subtract both, then to directly compute a support point p in the
Minkowski Difference A�B. The support point (Line 275) lies in the Minkowski
Difference p ∈ A�B because it is the difference of a− b where a ∈ A and b ∈ B
(see Definition 4.7).
272function support(A, B, n)
273 a = supportMapping(A, n) # farthest point on boundary A in direction n
274 b = supportMapping(B, -n) # farthest point on boundary B in direction -n
275 p = a - b # support point in Minkowski Difference
276 return SupportPoint(p, a, b, n)
277end

Function support (Lines 272 to 277) computes and creates a new SupportPoint
structure inspired by Kenwright (2015). A SupportPoint structure is specified by a
search direction n. All corresponding data to the search direction n, its belonging
support point p ∈ A�B, point a ∈ A in direction n, and point b ∈ B in direction
−n are stored in SupportPoint (Lines 278 to 283).
278struct SupportPoint{T}
279 p::SVector{3,T} # support point
280 a::SVector{3,T} # point on object A
281 b::SVector{3,T} # point on object B
282 n::SVector{3,T} # support normal vector
283end

If the distance between the support point on the boundary and the origin of the
Minkowski Difference is minimal in direction of unit vector n, the closest distance
between objects A and B is found.
Remark 4.7: In the pseudo code snippets, ri refers to a SupportPoint structure
(Lines 278 to 283). When referring to a support point in the code it is indicated by
ri.p or p. For simplicity ri also corresponds to the same support point in A�B.
284ri = support(A, B, n) # i = 1, 2, 3, 4

This is a preparation for the MPR algorithm used in the narrow phase (see
Chapter 6). This algorithm iteratively constructs up to four support points in a
given search direction.

4.3 Convex Hull
Another use case of support mappings is generating convex hulls of their responding
shapes, whether they are convex or concave shapes (see Bergen (2003) and Fig-
ure 4.3). For the mathematical description of a convex hull, see Appendix A. In this
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thesis, for a concave shape, the distance computation is performed in the narrow
phase with respect to its convex hull. One could think of another application: the
distance between the convex hulls of two concave objects can be useful for collision
avoidance algorithms, as well as for cheap, precise tests whether contact is possible
for deformable objects (see e.g., Pungotra, 2010).

a) 2D shape. b) 3D shape.

Figure 4.3: Convex hulls of a concave 2D and a concave 3D shape.

4.4 Approximate Convex Decomposition
Not only convex objects collide but also concave ones. For this purpose, convex
hulls are used for the decomposition of concave objects. An approximate convex
decomposition is the composition of convex hulls by decomposing a concave shape
into several concave shapes. In other words, a concave shape is divided into
multiple shapes with their convex hulls. An approximate convex decomposition is
the composition of these convex hulls (see Figure 4.4). Exact convex decomposition

a) 2D shape. b) 3D shape.

Figure 4.4: Approximate convex decompositions of a concave 2D and a concave
3D shape.
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algorithms are NP-hard2. This can be done with V-HACD (see Mamou, Lengyel,
and Peters, 2016; Mamou, online). In Modia3D the convex parts of one concave
shape are rigidly attached, so no collisions are possible between them. This reduces
the number of potential collision pairs (see Section 5.1). For a collision application
with convex decompositions see Appendix B.

In summary, the most important concept for collision handling is the Minkowski
Difference and it is introduced in Chapter 4. The Minkowski Difference and its
properties are used for describing the relationship between a potentially-colliding
pair. Those relationships are: objects are not in contact, objects are penetrating and
are touching. For efficiently computing some well-chosen points in the Minkowski
Difference and for generating convex hulls of their responding shapes support
mappings and support points are introduced. These basic collision concepts are
needed for the upcoming four collision handling steps, especially in the broad and
narrow phase.

2For a suitable approximation of e.g., a hollow sphere or pipe more granular convex decompo-
sitions are needed.



5 Preprocessing and Broad Phase
Collision handling is performed in four steps. This chapter discusses the first two
steps. The first step of collision handling – preprocessing – is executed only once
(see Section 5.1). In contrast, the second collision handling step – the broad phase
– is executed each time an update is requested by the solver (see Section 5.2).

5.1 Preprocessing
The preprocessing step, which is the first collision handling step, analyzes the
mechanical structure of the 3D-model by mapping its components to an internal
tree structure and reduces the number of collision pairs in the overall collision
configuration (Neumayr and Otter, 2018; Neumayr and Otter, 2019a). This once-off
additional preprocessing step reduces the number of potential collision pairs to npp
and speeds up the upcoming broad phase. This leads to npp ≤ nC(nC−1)

2 potential
collision pairs.
There are two preprocessing rules:
1. Rigidly attached objects cannot collide with each other.
2. Objects connected by a joint cannot collide with each other if the joint

specific option canCollide is set to false by the user (default setting).
Neumayr and Otter (2018) point out the two preprocessing rules and Neumayr
and Otter (2019a) show how to implement this preprocessing step.

A1

A2A

B

C

Figure 5.1: Preprocessing for rigidly attached objects and joints. The red circles
represent revolute joints. Objects A1, A2 are rigidly connected. If both preprocessing
rules are applied, two potential collision pairs {A1, C}, {A2, C} remain.

51



52 5 Preprocessing and Broad Phase

For example, in Figure 5.1 the objects A1, A2 are rigidly connected, so when the
first preprocessing rule is applied A1 cannot collide with A2, but both objects can
still collide with all other objects. Applying the second preprocessing rule, the red
cylinders denote revolute joints, instead of six, only two potential collision pairs
{A1, C}, {A2, C} remain and are checked in the broad phase.

5.2 Broad Phase
The broad phase, which is the second collision handling step, is an efficient and
simple selection procedure: complex objects are approximated by simple bounding
volumes, leading to O(n2

C) cheap intersection tests (e.g., Bergen, 2003), without
preprocessing. Only if the bounding volumes overlap the narrow phase is executed
(see Chapter 6).

For the following literature review, it is assumed that no additional preprocessing
step is performed that reduces the number of collision pairs. The use of bounding
volumes is a tradeoff between additional storage and computational overhead,
so performance is improved only when the bounding volumes are disjoint with
high probability. Different types of bounding volumes are: bounding spheres,
Axis-Aligned Bounding Boxes (AABBs), Oriented Bounding Boxes (OBBs), and
k-Discrete Orientation Polytopes (k-DOPs) (Bergen, 2003). Further variations are
bounding ellipsoids, bounding capsules, and bounding cylinders. Some bounding
volumes are displayed in Figure 5.2. Bounding spheres are the simplest and the
most commonly used, but often not the most tightly fitting bounding volumes.
AABBs need more storage than spheres, but their intersection tests are faster.
For an average object, the smallest AABB fits as badly as the smallest bounding
sphere (Bergen, 2003). AABBs are aligned along three coordinate axes. Support
mappings (Section 4.2) are used to easily create them (Bergen, 2003; Neumayr and
Otter, 2018). An OBB is a rectangular bounding box with an arbitrary rotation,
thus an AABB is a special case of an OBB (Gottschalk, Lin, and Manocha, 1996;
Bergen, 2003). An OBB needs more storage and intersection testing cost than an

a) Bounding sphere. b) AABB. c) OBB.

Figure 5.2: Bounding volumes.
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AABB, but for many objects it is the most tight-fitting approximation. A k-DOP
generalizes an AABB. It has k arbitrary directions. It creates a convex polytope
that generally better fits than an AABB (Bergen, 2003).
Furthermore, the approximated objects can be placed in a Bounding Volume

Hierarchy (BVH) so that all direct and indirect children of a node cannot penetrate,
if a collision is not possible for the node e.g., sphere trees (Hubbard, 1996), OBB
trees (Gottschalk, Lin, and Manocha, 1996), k-DOP trees (Zachmann, 1998) and
AABB trees (Bergen, 2003). Typically, O(nC log(nC)) collision tests are being
performed in this phase. Karras (2012) shows that the construction of BVHs can
be parallelized by processing all nodes simultaneously using octrees and k-d trees.
Extension of Morton codes (Vinkler, Bittner, and Havran, 2017) for 3D significantly
improve the quality of the fastest available BVH construction algorithms LBHV by
Karras (2012) and ATRBVH by Domingues and Pedrini (2015) while not increasing
the computation time.

If the bounding volumes overlap, the signed distance between these two potential-
ly-colliding objects is calculated in the narrow phase in Chapter 6. Otherwise, the
objects cannot penetrate and the Euclidean distance δbroad between two bounding
volumes is calculated instead (see Definition 5.1).
Definition 5.1: (δbroad). (Neumayr and Otter, 2019b)
Let A,B ∈ C, A 6= B be two objects. The Euclidean distance between two non-
overlapping bounding volumes is

δbroad(A,B) > 0 A,B ∈ C, A 6= B.

In this thesis, the broad phase is realized with AABBs, since their implementation
and intersection tests are simple, and they are extendable to BVH (which has not
been done yet). The determination of δbroad is just a simple geometric calculation,
between two axis aligned boxes. Figure 5.3 is a 2D representation of AABBs.

285supportMappingAABB(obj, axis, dir) =
286 obj.r[axis] + obj.R[:,axis]'*supportPoint(obj, dir*obj.R[:,axis]))

287function AABB(obj)
288 xmin = supportMappingAABB(obj, 1, -1)
289 xmax = supportMappingAABB(obj, 1, +1)
290 ymin = supportMappingAABB(obj, 2, -1)
291 ymax = supportMappingAABB(obj, 2, +1)
292 zmin = supportMappingAABB(obj, 3, -1)
293 zmax = supportMappingAABB(obj, 3, +1)
294end

Support mappings (see Section 4.2) are used for creating AABBs (Bergen, 2003;
Neumayr and Otter, 2018). Therefore, no object specific AABB function is needed.
An AABB of an object is calculated by calling the supportMappingAABB function
6 times (once per axis axis = 1, 2, 3 and direction dir = -1, 1) for computing
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a) Tight-fitting AABBs. b) Loose-fitting AABBs.

Figure 5.3: Loose-fitting AABBs are used to compute zero-crossing functions to
detect transitions with variable-step solvers.

a support point in the reference coordinate system of the object. Thus, the object’s
absolute translation and absolute rotation is needed.
Tight-fitting AABBs are not useful when zero-crossing functions shall be com-

puted because if some surfaces or edges of an object are also parallel to an axis, and
these objects would incidentally collide, they are already penetrating each other
(see Figure 5.3 and Neumayr and Otter (2018)). Therefore, it will not be possible
for the variable-step solver to detect the transition (see Section 6.3) between pene-
tration and non-penetration. Hence, to avoid such scenarios, loose-fitting AABBs
are introduced. Therefore, each edge length of the tight-fitting AABB gets enlarged
by a specific factor of the longest edge length, see Figure 5.3b.

A1

A2

joint

A

B1

B2

joint

B

δ

Figure 5.4: Preprocessing: The two preprocessing rules reduce the number of
potential collision pairs from six to four. Broad Phase: AABBs of A2 and B2 overlap
which leads to one potentially-colliding pair {A2, B2}. Narrow Phase: Perform a
computationally expensive intersection test for {A2, B2}, no collision is detected.

In Figure 5.4 there are four potentially-colliding objects A1, A2, B1, B2 and each
has its AABBs shown as a grey box. There are two rigidly attached objects: A
consists of A1 and A2, and B consists of B1 and B2. The joints (red cylinders)
connect A and B to the ground. The two preprocessing rules reduce the number
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of potential collision pairs from six to four. These four potential collision pairs
are examined in the broad phase to determine whether their AABBs overlap or
not. The AABBs of A2 and B2 overlap. Consequently, the narrow phase has to be
performed for one potentially-colliding pair {A2, B2}, no collision is detected.

To summarize, Chapter 5 discusses the first two steps needed for collision handling
with variable-step solvers. The additional first step – the preprocessing step – is
only performed once and makes use of the multibody setup. The second collision
handling step – the broad phase – is executed each time an update is requested by
the solver, regardless of changes in the objects’ translation and rotation. In this
thesis, the broad phase is based on AABBs. To avoid unnoticeable penetrations
loose-fitting AABBs are proposed. It is checked if the AABBs are overlapping. If
they do so, the narrow phase (see Chapter 6) is executed.





6 Narrow Phase
The narrow phase – the third collision handling step – is an exact and compu-
tationally expensive intersection test. The narrow phase is only executed if the
broad phase detects that two objects could potentially collide. Depending on the
approach, there are several different intersection tests, which could be performed
in the narrow phase.
There are low-level intersection tests.1 These basic intersection tests could be

used in the broad phase. But in the narrow phase they are not applicable because
too many object types combinations have to be implemented, like a sphere or
box against a plane or box. In this thesis, any collision between two arbitrary
geometries is considered.

Keeping this in mind, one could think of discretizing the volume of the geometries
involved using Finite Element Method (FEM) for analyzing any arbitrary collision
situation and the resulting deformation with best quality, but this results in
huge computational effort. An interesting approach that points in this direction
is discretizing the contact area for shapes consisting of triangles, the Polygonal
Contact Model (PCM) (Hippmann, 2004a; Hippmann, 2004b). Hippmann (2004b)
compares some of these approaches, like e.g., theory of elasticity, FEM, half space
approximation, and more, for their suitability in multibody programs, each tailored
to a specific application or which can only insufficiently represent the physical
processes.
A compromise between the greatest possible versatility in handling arbitrary

geometries and yet sufficient accuracy in dynamic simulation is computing pene-
tration depth between convex shapes or their convex hull. Based on the Minkowski
Difference A�B and support mappings, Snethen (2008) proposes the Minkowski
Portal Refinement (MPR) algorithm to detect whether two convex objects pene-
trate. If this is the case, he suggests computing an approximation of the penetration
1Some low-level intersection tests are mentioned in the following list (see e.g., O’Rourke, 1998;

Bergen, 2003; Ericson, 2004):
• Closest point computations, e.g.,: closest point on plane to point, closest point on

line segment to point, closest point on triangle to point, closest point on convex
polyhedron to point, and more.

• Testing primitives, e.g.,: separating-axis test, testing sphere or box or cone against
plane, testing sphere against triangle or polygon, and more.

• Intersecting lines, rays, and (directed) segments, e.g.,: intersecting ray or segment
against sphere or box or triangle, and more.

57
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depth. The MPR algorithm can be used to compute a lower and upper bound on
the closest Euclidean distance of two non-penetrating convex objects (Neumayr
and Otter, 2017). The MPR algorithm in 3D is much simpler than the often used
Gilbert-Johnson-Keerthi (GJK: Gilbert, Johnson, and Keerthi, 1988) and Expand-
ing Polytope algorithm (EPA: Bergen, 2003) because it operates with simpler
geometries. The drawback is that MPR may only compute an approximation of
the penetration depth in some situations.
For all three algorithms, the (unique) contact point found in the Minkowski

Difference is transformed back to the (potentially ambiguous) contact points on
shapes A and B using the barycentric coordinates of the contact point with respect
to the final simplex or polytope. For further information to barycentric coordinates
(see Bergen, 2003). In the following, these three algorithms are looked at in more
detail.

Gilbert-Johnson-Keerthi (GJK) Algorithm
The Gilbert-Johnson-Keerthi (GJK: Gilbert, Johnson, and Keerthi, 1988) algorithm
is used for intersection tests between two convex shapes. It computes the shortest
distance between Minkowski Difference A � B and the origin. The approach is
conceptually simple by using support mappings to construct appropriate simplices
consisting of one to four vertices on the boundary of the shape. In the 3D case a
simplex is a point, a line, a triangle, or a tetrahedron. The simplices are iteratively
updated to move closer and closer to the origin. For each iteration it is checked
if the simplex contains the origin. If so A � B must contain the origin, too. For
penetrating shapes, the GJK algorithm stops with a simplex that has the origin in
its interior. If the origin is outside the shape and no further progress is possible,
then the closest distance of the shape from the origin corresponds to the closest
distance of the final simplex from the origin. To summarize, for non-penetrating
shapes the GJK algorithm computes the closest distance. For penetrating shapes,
the algorithm detects that they do so and the Expanding Polytope algorithm (EPA)
computes the penetration depth.

Expanding Polytope Algorithm (EPA)
The Expanding Polytope algorithm (EPA: Bergen, 2003) computes the penetration
depth between two convex shapes, if the origin is in the interior of the resulting
A�B. The final simplex of the GJK algorithm is used as the initial simplex for
EPA. It expands the simplex to a polytope where in every iteration a new support
point vertex is added. If no further progress is possible, the penetration depth is
the closest distance of the final polytope from the origin.

The GJK and EPA algorithms are conceptually simple, but the implementation
is non-trivial and elaborate due to the many special cases (e.g., handling 1, 2, 3,
4-simplices in all situations) and due to various numerical problems, that might
occur when selecting the next simplex or computing a termination condition. This
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might be the reason why no robust open-source implementation with a permissive
free license seems to be available for the 3D-case.2

Minkowski Portal Refinement (MPR) Algorithm
Based on the Minkowski Difference, Snethen (2008) and Snethen (online[a]) propose
the Minkowski Portal Refinement (MPR) algorithm, also known as XenoCollide,
to detect whether two convex shapes intersect. If this is the case, an approximation
of the penetration depth is computed. The MPR algorithm in 3D is much simpler
than GJK with EPA because it uses a geometric approach and operates basically
with triangles. The drawback is that the MPR algorithm may only compute an
approximation of the penetration depth in some situations. Olvång (2010) compared
several millions randomized benchmarks of various object types for MPR, GJK and
EPA. These comparisons were not conclusive, which algorithm is the most suitable,
it depends on the context. Olvång (2010) recommends using the MPR algorithm
instead of GJK and EPA algorithms, since both are heuristic methods. Kenwright
(2015) offers a compact pseudo code for the MPR algorithm and shows that the
MPR algorithm can also be used to compute the closest distance of non-penetrating
convex shapes.
The BSD-licensed open-source C-library libccd (Fišer, online) provides an im-

plementation of the MPR algorithm. It is used for example in the open-source
zlib-licensed Bullet Physics SDK. However, libccd does not compute the Euclidean
distance of non-penetrating shapes and can therefore not be used as basis of the
investigation of this thesis.
In the narrow phase, the MPR algorithm is used to calculate the contact infor-

mation consisting of a (unique) contact point on each shape, a penetration depth or
Euclidean distance, and a contact normal between the two colliding convex shapes
or their convex hull. In this thesis, several improvements to the MPR algorithm are
made to apply it to collision handling with variable-step solvers, see Section 6.1.
The properties of the improved MPR algorithm are discussed in Section 6.2. So,
that the Euclidean distance or the penetration depth is appropriate as zero-crossing
function to detect collision events, see Section 6.3.

6.1 Improved MPR Algorithm in 3D
The Minkowski Portal Refinement (MPR) algorithm uses the Minkowski Difference
to transform a shape-to-shape distance problem into a shape-to-point distance
problem. In other words, to calculate the distance between two shapes, the distance
between the Minkowski Difference and the origin is calculated instead. As discussed
in Section 4.1, if the Minkowski Difference encloses the origin objects are penetrating,
if not, there is no contact, if the origin lies on the boundary of the Minkowski

2The GJK and EPA based software SOLID (Bergen, online) is available under GPL license
and accompanying Bergen (2003).



60 6 Narrow Phase

Difference objects are touching. The idea of the MPR algorithm is to construct
a tetrahedron that lies in the Minkowski Difference. If objects are penetrating,
this tetrahedron encloses the origin, otherwise objects are not penetrating, see
Figure 6.1. One point (r0) of the tetrahedron is in the interior of the Minkowski
Difference. Three points (r1, r2, r3) of the tetrahedron are on the boundary of the
Minkowski Difference and span up a portal. These portal points are iteratively
refined until no further progress is possible and the closest distance δ from the
portal to the origin is found.

The novel concept of the signed distance combines Definitions 4.8 to 4.10 and is
crucial for collision handling with variable-step solvers.
Definition 6.1: (Signed Distance).
Let A,B ∈ C, A 6= B be two potentially colliding convex objects, or their convex
hull. The signed distance δ is

δ =


δd Euclidean distance if A,B are disjunct,
0 if A,B are touching,
−δp penetration depth if A,B are penetrating.

(6.1)

The MPR algorithm in 3D is based on publications of Snethen (2008), Olvång
(2010) and Kenwright (2015). In this thesis several considerable enhancements to
the MPR algorithm are discussed exhaustively. To highlight these enhancements,
the unique line numbers of Julia like pseudo code snippets are marked in red.
The open-source implementation of the improved MPR algorithm can be found
in Modia3D.jl under an MIT (expat) license. Neumayr and Otter (2017) already
published parts of the improved version. In the meantime, further improvements

δ

r0

r1
r2

r3

portal

a) Objects are penetrating.

δ
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r1
r2

r3

portal

b) Objects are disjunct.

Figure 6.1: If the tetrahedron encloses the origin (visualized as coordinate system),
objects are penetrating, otherwise objects are disjunct. The origin ray, from the
interior point r0 to the origin intersects the valid portal (r1, r2, r3). The signed
distance δ is the length between the origin and the intersection point of the ray
with the portal.
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are made which are compared to common literature in Section 6.1.5. Additionally,
accuracy and termination tolerances are investigated in Section 6.1.4. The MPR
algorithm can be structured into three phases (see Olvång, 2010).

1. The first phase is constructing an initial portal (Section 6.1.1).
2. The second phase is finding a valid portal (Section 6.1.2).
3. The third phase is iteratively refining the portal (Section 6.1.3) until no

further progress is possible and the closest distance from the portal to the
origin is found.

The MPR algorithm in 3D provides contact information (e.g., contact points, the
shortest distance between objects and contact normal) for two potentially-colliding
objects. For getting started, Snethen (online[b]) gives a short and simple overview
of the MPR algorithm in 2D.

The improved MPR algorithm has the following interface, structure, and output
variables:3

295function mpr(A, B; mprTol = 1.0e-20, mprIterMax = 120)
296 # phase 1: construct interior and initial portal points
297 r0::SupportPoint = constructR0(A, B)
298 r1::SupportPoint = constructR1(A, B, r0)
299 (isTC1, n2) = checkTC1(A, B, r0, r1)
300 if isTC1
301 δ = -dot(r1.p, r1.n)
302 (a, b, n) = r1.a, r1.b, r1.n
303 return (δ, a, b, n)
304 end
305 r2::SupportPoint = constructR2(A, B, n2)
306 (r2, r3::SupportPoint) = constructR3(A, B, r0, r1, r2)
307 # phase 2: valid portal
308 (r1, r2, r3) = validPortal(A, B, r0, r1, r2, r3, mprIterMax)
309 # phase 3: portal refinement
310 (δ, a, b, n) = portalRefinement(A, B, r0, r1, r2, r3, mprTol, mprIterMax)
311 return (δ, a, b, n)
312end

Input Variables of mpr
Function mpr (Line 295) provides contact information of the input objects A and
B. Both objects are convex or concave objects with known geometries, absolute
translations, and centroids. For a concave shape its convex hull is taken (see
Section 4.3). To avoid infinite looping, the maximum number of iterations is
limited to mprIterMax. mprTol is the MPR termination tolerance for approximating
the distance and terminating the MPR algorithm. For a detailed discussion see
Section 6.1.4.

3The released and improved MPR algorithm is tuned for efficiency and avoids allocations
under Julia. In contrast, the MPR pseudo code in this thesis focuses on readability and
comprehensibility.
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Output Variables of mpr — Contact Information
The computed distance between objects A and B by mpr algorithm (Line 295) corre-
sponds to the signed distance δ, see Definition 6.1. The computed distance δ is com-
mutative because δd and δp are commutative. Thus, mpr(A,B) = mpr(B,A). Contact
points a, b are absolute translation vectors on the boundary of object A and on the
boundary of object B where the computed signed distance δ is minimal (see Fig-
ure 6.2). The unit vector n spans across both contact points b−a = δn. If the surface
around contact point a is differentiable, the contact normal n is perpendicular to ob-
ject A in point a. The same holds for a differentiable surface around contact point b.
In the following, the three phases of the MPR algorithm are looked at in more detail.

A Ba δ
b

Figure 6.2: Objects A,B are not in contact, but their loose-fitting AABBs overlap
(grey boxes, see Section 5.2). The computed signed distance δ > 0 is minimal
between contact points a, b.

6.1.1 Phase 1: Constructing an Initial Portal
The goal of the first phase is to construct an initial tetrahedron. The initial
tetrahedron has to fulfill the following properties:

• The tetrahedron lies in the Minkowski Difference A�B.
• The tetrahedron has a non-zero volume.
• The tetrahedron consists of support point r0 in the interior and three further

support points r1, r2, r3 on the boundary of A�B.
These properties must also be fulfilled by tetrahedrons in the upcoming phases.
For further information on support points see Section 4.2.
Definition 6.2: (Origin Ray). (e.g., Snethen, 2008)
The ray drawn from the interior point r0 through the origin (zero vector) of A�B
is the origin ray.

Definition 6.3: (Valid Portal). (e.g., Snethen, 2008)
A portal is a triangle spanned by three support points r1, r2, and r3 on the
boundary of A�B. Moreover, a portal is a valid portal if the origin ray intersects
the triangle spanned by three support points.
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If the origin of the Minkowski Difference A�B is enclosed by the tetrahedron,
objects A and B are penetrating. Otherwise, both objects are not penetrating each
other (see Theorem 4.1 - Theorem 4.4). Both situations are shown in Figure 6.1.
Furthermore, the origin ray from r0 through the origin of A � B must intersect
the portal, otherwise new support points must be constructed, until it is a valid
portal (Definition 6.3). The signed distance δ is the length between the origin
and the intersection point of the ray with the portal triangle. These principles are
illustrated in Figure 6.1, Page 60.

Constructing Interior Point r0
The support point r0 must be an arbitrary interior point of Minkowski Difference
A�B and it is stored with SupportPoint (Lines 278 to 283, Page 48). It would
be sufficient to take any two arbitrary points from the interior of object A as well
as from the interior of object B. A convenient choice is the geometric center or
center of mass (Snethen, 2008). To be more precise, the geometric center called
centroid of each object is used (Kenwright, 2015) in this thesis.
313# interior point r0
314function contructR0(A, B)
315 p = centroid(A) - centroid(B)
316 if norm(r0.p) < ε
317 @error "Centers are overlapping."
318 end
319 a = zeros(3), b = zeros(3) # default values, zero vector
320 r0 = SupportPoint(p, a, b, -p)
321 return r0
322end

If the two geometric centroids coincide, the constructed interior point is exactly
the origin of the Minkowski Difference. Therefore, ‖r0‖ = 0 and a division by zero
will occur by normalizing the first search direction in Line 325. In Lines 316 to 318
numerical inaccuracies are considered with ε see Section 6.1.4.

Constructing Initial Portal Points
Starting from the interior point, three linearly independent points are constructed
on the boundary of Minkowski Difference A � B, forming a triangular portal
through which the origin ray could pass. There are many ways of constructing
three linearly independent points. Here, the construction instruction by Snethen
(2008) and Kenwright (2015) is followed.

Constructing Initial Portal Point r1
The first portal point r1 is found by searching in the normalized direction of the
origin ray and by using function support (Lines 272 to 277, Page 48).
323# initial portal point r1
324function constructR1(A, B, r0)
325 e1 = -normalize(r0.p)
326 r1 = support(A, B, e1)



64 6 Narrow Phase

327 return (r1, e1)
328end

Constructing Initial Portal Point r2
The search direction for the second portal point r2 is orthogonal to the plane
containing the interior point r0 and first support point r1. To intercept a division
by zero, Termination Condition (TC1) is introduced and the MPR algorithm is
terminated. Otherwise, initial portal point r2 is constructed.
329# check if TC1 is valid
330function checkTC1(A, B, r0, r1)
331 n2 = cross(-r0.p, r1.p)
332 TC1 = norm(n2)
333 isTC1 = TC1 < ε # termination condition 1
334 return isTC1, n2
335end

336# initial portal point r2
337function constructR2(A, B, n2)
338 e2 = normalize(n2)
339 r2 = support(A, B, e2)
340 return r2
341end

Termination Condition (TC1)
To intercept a division by zero while normalizing the search direction (Line 338),
and to terminate the MPR algorithm (Lines 300 to 304, Page 61) the termination
condition (TC1) (Line 333)

‖r0 × r1‖ < ε (TC1)

is introduced.

e1

porta
l

δ

r0

r1

Figure 6.3: (TC1): r1 is on the ray from r0 through the origin. So, ‖r0 × r1‖ = 0.

The cross product of two vectors is the zero vector, iff both vectors are parallel
(Bronstein et al., 2001) or at least one vector is a zero vector. If the cross product
is zero, its norm is zero as well. This means r0 and r1 are not linearly independent.
Closer inspection shows, r1 is on the origin ray from r0 to the origin, as visualized
in Figure 6.3. Since r1 is already the closest point to the origin, the signed distance
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δ can be calculated directly and the distance calculation will be terminated by the
MPR algorithm (Lines 300 to 304, Page 61). This situation occurs whenever the
nearest points lie on the line passing through the centers of the two objects, e.g.,
two spheres are colliding.

Constructing Initial Portal Point r3
The search direction for the third portal point r3 is orthogonal to the plane
containing the interior point and the two support points already found. This means
that the search direction is orthogonal to the spanned plane r1−r0 and r2−r0 and
points to the origin. The following lines of code determine whether the resulting
collision situation has degenerated into a 2D Minkowski Difference. The distance
calculation would then have to be done with a 2D version of the MPR algorithm
using a line and not a triangle for the portal. However, computing penetration
depth in 3D of a zero volume object (2D object) would not make sense in the
context of this thesis.

342# initial portal point r3
343function constructR3(A, B, r0, r1, r2)
344 n3 = cross(r1.p - r0.p, r2.p - r0.p)
345 if norm(n3) < ε
346 r2 = support(A, B, -r2.n) # change search direction
347 n3 = cross(r1.p - r0.p, r2.p - r0.p)
348 if norm(n3) < ε
349 @error "Shapes are planar and MPR for 2D is not supported."
350 end
351 end
352 if dot(r0.p, n3) > 0
353 n3 = -n3
354 end
355 e3 = normalize(n3)
356 r3 = support(A, B, e3)
357 # check if portal triangle r1, r2, r3 has degenerated into a line segment
358 if norm(cross(r2.p - r1.p, r3.p - r1.p)) < ε
359 r3 = support(A, B, -e3) # change search direction
360 if norm(cross(r2.p - r1.p, r3.p - r1.p)) < ε
361 @error "Shapes are planar and MPR for 2D is not supported."
362 end
363 end
364 return (r2, r3)
365end

When normalizing the search direction n3 a division by zero is intercepted in
Line 345 if ‖n3‖ = 0. Closer inspection of Line 344 shows r1 − r0 is parallel to
r2 − r0 if ‖n3‖ = 0. This means that r2 is on the ray from r0 to r1. This situation
is depicted in Figure 6.4. In order to proceed, it is tried to find another portal point
r2 by searching in the opposite direction −e2 (Line 346). If the newly constructed
r2 also lies on the ray, the Minkowski Difference of the two objects is planar (or
very thin) (Line 348). Otherwise, the Minkowski Difference is not planar and
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porta
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Figure 6.4: r2 is on the ray from r0 through r1. So, ‖(r1 − r0)× (r2 − r0)‖ = 0.

normalizing n3 is allowed. If the newly found n3 points in the wrong direction, its
sign must be swapped.
To ensure the initial portal triangle (r1, r2, r3) has a non-zero area, the cross

product (r2−r1)×(r3−r1) is not allowed to be a zero vector (Line 358). Otherwise,
support points r1, r2 and r3 are on one line and the triangle of these three points
has a zero area. It helps to take an opposite search direction −e3 and newly
compute r3 (Line 359). The Minkowski Difference is planar or very thin, if the
cross product is zero again (Line 360). Thus, the 3D problem of finding a signed
distance has degenerated into a 2D problem and an error is triggered. Otherwise,
a valid initial portal triangle with a non-zero area consisting of (r1, r2, r3) was
found.

6.1.2 Phase 2: Constructing a Valid Portal
Departing from the initial portal points of phase 1 (see Section 6.1.1), the algo-
rithm repeats constructing new portal points until they span a valid portal (see
Definition 6.3). This is achieved if the origin ray intersects the portal triangle
(r1, r2, r3). It follows that the tetrahedron must contain the origin if the objects
overlap. Otherwise, new portal points must be constructed until this condition is
fulfilled (see Figure 6.1).

To avoid infinite looping, the for-loop iterates until the origin ray intersects the
portal or the maximum number of iterations is reached (see Section 6.1.4). For
each iteration a new support point is calculated and one of the previous support
points is replaced by a new one. When searching for the new support point r3
(Line 373 and Line 379), the normalization of n3 cannot lead to a division by zero
because this is calculated only if r0 · n3 > 0 is positive.
366# phase 2: valid portal
367function validPortal(A, B, r0, r1, r2, r3, mprIterMax)
368 success = false
369 for i=1:mprIterMax
370 n3 = cross(r1.p - r0.p, r3.p - r0.p)
371 if dot(r0.p, n3) > 0
372 r2 = r3
373 r3 = support(A, B, normalize(n3))



6.1 Improved MPR Algorithm in 3D 67

374 continue
375 end
376 n3 = cross(r3.p - r0.p, r2.p - r0.p)
377 if dot(r0.p, n3) > 0
378 r1 = r3
379 r3 = support(A, B, normalize(n3))
380 continue
381 end
382 success = true
383 break
384 end
385 if !success
386 @error "Phase 2 of MPR did not converge.
387 Please, consider to increase mprIterMax."
388 end
389 return (r1, r2, r3)
390end

6.1.3 Phase 3: Portal Refinement – Determining the Portal
Closest to the Origin and Terminating the Algorithm

In the third and final phase, the portal triangle is refined and positioned closer
to the origin until no further progress is possible and thus the closest distance to
the origin is found. In every iteration a new support point r4 is constructed by
searching in the orthonormal direction of the actual valid portal. If support point r4
is the closest point to the origin, the MPR algorithm is terminated with the newly
introduced termination condition (TC2). Alternatively, if it is in the plane of the
portal it is finished with termination condition (TC3). Otherwise, support point
r4 is taken as the vertex spanning three portal candidates (r1, r2, r4), (r2, r3, r4)

δ

r0

r1
r2

r3

r4

Figure 6.5: Support point r4 is taken as the vertex spanning three portal candi-
dates. The origin ray intersects the refined valid portal (r2, r3, r4).
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and (r3, r1, r4). The portal candidate intersected by the origin ray becomes the
new refined valid portal (see Definitions 6.2 and 6.3). In Figure 6.5, the triangle
(r2, r3, r4) is the new refined portal. If the refinement fails or the maximum number
of iterations is reached (Section 6.1.4), the MPR algorithm is terminated with the
best found tolerance so far.
391# portal refinement
392function portalRefinement(A, B, r0, r1, r2, r3, mprTol, mprIterMax)
393 newTol = 42.0 # initialized by an arbitrary positive value
394 for i=1:mprIterMax
395 (r3, r4, e4) = constructR4(A, B, r0, r1, r2, r3)
396 TC2 = norm(cross(r4.p, e4))
397 TC3 = abs(dot(r4.p - r1.p, e4))
398 if TC2 < mprTol # termination condition 2
399 return finalTC2(r1, r2, r3, r4)
400 elseif TC3 < mprTol # termination condition 3
401 return finalTC3(r0, r1, r2, r3, r4)
402 else
403 (r1_best, r2_best, r3_best, r4_best, isTC2, isTC3, newTol) =
404 storeSupportPointsBestTC(r1, r2, r3, r4, TC2, TC3, newTol)
405 end
406 (nextPortal, r1, r2, r3) = refinePortal(r0, r1, r2, r3, r4)
407 if !nextPortal # refinePortal failed, no better solution possible
408 @warn "MPR terminated with mprTol = $newTol."
409 return terminateMPR(r0, r1_best, r2_best, r3_best,
410 r4_best, isTC2, isTC3)
411 end
412 end
413 @warn "MPR terminated with mprTol = $newTol and mprIterMax = $mprIterMax.
414 Please, increase mprIterMax and/or mprTol."
415 return terminateMPR(r0, r1_best, r2_best, r3_best, r4_best, isTC2, isTC3)
416end

Constructing Portal Point r4
The specific goal of the refinement phase is determining the distance δ. The search
direction for the fourth portal point r4 is orthonormal to the currently valid portal
(r1, r2, r3).

With the procedure already known from Section 6.1.1 (Lines 343 to 365, Page 65),
it is checked whether the candidate portal triangle has degenerated into a line
segment or not and if normalizing n4 is allowed.
417# construct portal point r4
418function constructR4(A, B, r0, r1, r2, r3)
419 n4 = cross(r2.p - r1.p, r3.p - r1.p)
420 # check if portal triangle r1, r2, r3 has degenerated into a line segment
421 if norm(n4) < ε
422 r3 = support(A, B, -r3.n) # change search direction
423 n4 = cross(r2.p - r1.p, r3.p - r1.p)
424 if norm(n4) < ε
425 @error "Objects are purely planar. Implement 2D MPR algorithm."



6.1 Improved MPR Algorithm in 3D 69

426 end
427 end
428 if dot(r0.p, n4) > 0
429 n4 = -n4
430 end
431 e4 = normalize(n4)
432 r4 = support(A, B, e4)
433 return (r3, r4, e4)
434end

Termination Condition (TC2)
In case, the new support point r4 is parallel to e4. They are located on the same
ray, see Figure 6.6. No further progress is possible. r4 is the closest point to the
origin, so no better solution can be found. In order to terminate the third phase of
the MPR algorithm, the termination condition (TC2) (Line 398, Page 68)

‖r4 × e4‖ ≤ mprTol (TC2)

is introduced. In this particular case, the signed distance δ (Line 436) can be
calculated directly, it is negative if shapes are in contact, otherwise not.

e4

porta
l

δ

r1

r2

r4

Figure 6.6: (TC2): r4 is parallel to the search direction e4. They are located on
the same ray. So, ‖r4 × e4‖ = 0.

Finally, the support point r4.p is the closest point to the origin in the Minkowski
Difference. It is transformed to a contact point r4.a on object A and a contact
point r4.b on object B with barycentric coordinates (Line 437) and the distance
calculation will be terminated by the MPR algorithm. For more information on
barycentric coordinates see Bergen (2003).

435function finalTC2(r1, r2, r3, r4)
436 δ = -dot(r4.p, e4)
437 (r4.a, r4.b) = barycentric(r1, r2, r3, r4, e4)
438 return δ, r4.a, r4.b, r4.n
439end

Termination Condition (TC3)
In case, the new support point r4 is in the plane of the portal. The portal and
vector r4 are the closest to the origin, to which the ray passes. No further progress
is possible. In order to terminate the third phase of the MPR algorithm, the
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termination condition (TC3)4 (Line 400, Page 68)

|(r4 − r1) · e4| ≤ mprTol (TC3)

is used.

portal δ

r0
r1 r2

a) The closest point is in the interior
of the portal.

portal δ

r0
r1 r2

b) The closest point is on the boundary
of the portal.

Figure 6.7: (TC3): The closest point to the origin of the Minkowski Difference,
lies in the interior or on the boundary of the portal. The length of the dashed thick
line is the shortest distance δ from the portal to the origin.

As can be seen in Figure 6.7, the signed distance is then either the orthogonal
distance between the portal and the origin (see Figure 6.7a) or it is the smallest
distance between one of the vertices or one of the edges of the triangle (see
Figure 6.7b). The implementation of Line 441 can be found in Modia3D.jl.

Finally, r4.p is transformed with barycentric coordinates (Line 442) to contact
points r4.a, r4.b, and the distance calculation will be terminated by the MPR
algorithm.

440function finalTC3(r0, r1, r2, r3, r4)
441 (δ, r4.p, r4.n) = distanceToPortal(r0, r1, r2, r3, e4)
442 (r4.a, r4.b) = barycentric(r1, r2, r3, r4, e4)
443 return (δ, r4.a, r4.b, r4.n)
444end

Refining Portal
The new portal point r4 and two old portal points are used to build up a new
refined portal triangle which is closer to the origin and is passed by the ray from r0
to the origin (see Figure 6.5). Only, if the tested refined triangle is a valid portal –
which means the two tested parallelepipedial products are negative – the support
point r4 is replaced by an old portal point which is no longer used. Otherwise, if
no better portal can be found, the MPR algorithm terminates with the best fitting
solution (see Line 409, Page 68).

4Since r1 is the base of the portal triangle, it is also used in the termination condition. It
can be shown, that the here used termination condition is equivalent to |(r4 − r3) · e4| like
Snethen (2008) and Kenwright (2015) are using.
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445function refinePortal(r0, r1, r2, r3, r4)
446 nextPortal = true
447 if isNextPortal(r0, r1, r2, r4)
448 r3 = r4
449 elseif isNextPortal(r0, r2, r3, r4)
450 r1 = r4
451 elseif isNextPortal(r0, r3, r1, r4)
452 r2 = r4
453 else
454 # the signs of all tried combinations of
455 # parallelepipedial products are not negative
456 nextPortal = false
457 end
458 return (nextPortal, r1, r2, r3)
459end

460# computes twice a parallelepipedial product
461isNextPortal(r0,r1,r2,r4) =
462 dot(cross(r2.p - r0.p, r4.p - r0.p), r0.n) < 0 &&
463 dot(cross(r4.p - r0.p, r1.p - r0.p), r0.n) < 0

Terminating the MPR Algorithm
There are three reasons why the MPR algorithm terminates. First, in phase 1
the MPR algorithm detects if the centroids of both objects coincide. In some
collision cases e.g., two spheres are colliding, the signed distance can be computed
directly with termination condition (TC1). Second, in phase 3 the MPR algorithm
is terminated if the termination conditions (TC2) or (TC3) are fulfilled with the
required MPR termination tolerance. Third, the MPR algorithm is terminated
when it is impossible to further refine the portal (see Line 409, Page 68) or when
the maximum number of iterations is reached (see Line 415, Page 68). If the latter
occurs, the solution closest to the tolerance so far is stored and the respective
termination condition has to be defined.

464function terminateMPR(r0, r1_best, r2_best, r3_best, r4_best, isTC2, isTC3)
465 if isTC2
466 return finalTC2(r1_best, r2_best, r3_best, r4_best)
467 end
468 if isTC3
469 return finalTC3(r0, r1_best, r2_best, r3_best, r4_best)
470end; end

Remark 6.1: According to Snethen (2008), in the refinement steps of the algorithm,
the refined portal rapidly approaches the boundary of A�B . If A�B has a curved
boundary, the origin may lie infinitesimally close to this curved boundary. Thus,
the refined portals may take an arbitrary number of iterations to pass the origin.
The algorithm terminates under these conditions when the portals get sufficiently
close to the surface. If the distance between the portal and its parallel support
plane remains below a defined tolerance, the MPR algorithm terminates.
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6.1.4 Accuracy and MPR Termination Tolerances
When dealing with the MPR algorithm and variable-step solvers it turns out that
solvers fail for some complex collision models. In addition, some collision models
still require a lot of CPU time even if the MPR algorithm has been optimized for
efficiency. So, some of Modia3D’s collision models5 are analyzed in more detail on
a standard notebook6. These collision models are explained briefly in Appendix B.
A closer examination of two collision models (Model 17 (Figure B.7) and Model
28 (Figure B.8)) reveals that the MPR algorithm performs best with a MPR
termination tolerance of 10−20. This requires that the MPR algorithm must be
executed with quadruple precision. Moreover, to avoid infinite looping of the MPR
algorithm the iterations in each phase of the algorithm are limited. A sufficient
default value is chosen on the basis of this evaluation.

Accuracy
Since the MPR algorithm is numerical sensitive, it is performed with quadruple
precision (significant 106 bits), also known as Double64 from DoubleFloats.jl
package (JuliaMath, online), to increase robustness, reliability, and to guard
against overflow. In addition, it speeds up the algorithm. Therefore, for Double64
it is ε ≈ 10−30 in Line 471 (for Julia’s default Float64 it is ε ≈ 10−14).

471ε = 100.0 * eps(T) # precision depends on type of T, e.g., Double64

Maximum Iterations
To avoid infinite looping of phase 2 and phase 3 of the MPR algorithm the number
of iterations is limited. The limit is mprIterMax. To find a sufficient default value
for this limit, some of Modia3D’s collision models are analyzed with a MPR
termination tolerance mprTol = 10−20 in Table 6.1. It turns out that 120 iterations
for each phase and each MPR call are adequate. If fewer iterations are required
for these phases, they will be terminated earlier, otherwise a warning is displayed.
The maximum number of required iterations to quit phase 2 and phase 3 across all
MPR calls of a simulation is called i_max.

• Phase 2: It is completed after a maximum of 4− 7 iterations across all MPR
calls of the simulations.

• Phase 3: One half of the models quit phase 3 and therefore the MPR algo-
rithm after a maximum of 13− 17 iterations. The other half completes after
a maximum of 56 − 69 iterations. There are two upwards outlier models,
one with 87 and the other with 107 maximum iterations to quit.

To summarize, a suitable default value for the iteration limit that covers both
phases is mprIterMax = 120.
5Modia3D.jl, v0.10.2, test/Collision/
6Intel(R) Core(TM) i7-9850H CPU @ 2.6 GHz, RAM 32 GB
7Modia3D.jl, v0.10.2, test/Collision/BouncingSphereFreeMotion.jl
8Modia3D.jl, v0.10.2, test/Collision/BouncingEllipsoid.jl
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Table 6.1: Maximum number of iterations i_max required to complete phase 2
and 3 across all MPR calls of the simulations.

i_max
phase 2 phase 3

TwoCollidingBalls.jl Figure B.9 4 14
BouncingBeams.jl Figure B.2 5 15
BouncingCapsules.jl Figure B.1 4 16
Rattleback.jl Figure B.5 5 17
Billard4Balls.jl Figure B.10 4 56
BouncingEllipsoid.jl Figure B.8 5 57
BouncingFrustums.jl Figure B.4 4 61
BouncingSphereFreeMotion.jl Figure B.7 5 61
BouncingCones.jl Figure B.3 5 69
CollidingSphereWithBunnies.jl Figure B.11 7 87
BouncingEllipsoidOnSphere.jl Figure B.6 4 107

MPR Termination Tolerance
The MPR algorithm is terminated if (TC2) or (TC3) is less or equal than the
MPR termination tolerance mprTol. A closer examination of collision models shows
that the MPR termination tolerance has a high impact on the simulation time and
performs best with a MPR termination tolerance 10−20.
In Figure 6.8 two models are analyzed in more detail both with simulation

tolerance 10−8, without visualization and without plotting. The used solver is
CVODE_BDF (variable step, variable order, BDF method). For a brief explanation
of the models see Appendix B. For Model 1, CPU time (without initialization)
and number of solver iterations are at their minimum for mprTol = 10−20. Both
increase a bit for a decreasing MPR termination tolerance. The same behavior is
shown for values up to mprTol = 10−17. For MPR termination tolerance between
10−8 − 10−16 the CPU time and number of solver iterations increase significantly
(not shown in Figure 6.8, as the information for smaller tolerances is no longer
visible). The maximum number of iterations for phase 3 across all MPR calls
decrease for an increasing MPR termination tolerance. In general, Model 2 shows
the same behavior, except that for very small MPR termination tolerances, the
number of solver iterations decreases, and in return the CPU time increases. The
maximum number of required iterations increases as well. In other words, if the
MPR termination tolerances are too large, the contact detection becomes too
inaccurate and the solver needs more iterations that increases the CPU time. If
the MPR termination tolerances are too small, there is an unnecessarily high
computational effort in the MPR algorithm that increases the CPU time.
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Figure 6.8: Evaluation for different MPR termination tolerances. Model 1 and
Model 2 show a quite similar behavior for CPU time, number of solver iterations,
and the maximum number of required iterations across all MPR calls to quit
phase 3.

To sum up, the default value for the MPR termination tolerance mprTol = 10−20

seems to be a good trade-off between CPU time, number of solver iterations calls,
and maximum number of required iterations across all MPR calls of the simulations.
Executing the MPR algorithm with quadruple precision increases robustness, so
variable-step solvers are less likely to fail and it speeds up collision simulations.

6.1.5 Overview of Improvements to the MPR Algorithm
The enhancements of the MPR algorithm in 3D are already published in Neumayr
and Otter (2017) and are implemented in Modia3D.jl. In this thesis, the following
debate is more extended. The improvements to the discussed MPR algorithm in
3D are based on publications of Snethen (2008), Olvång (2010) and Kenwright
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(2015). Versions by Snethen (2008) and Olvång (2010) quit the algorithm when
they determine that two objects do not overlap and therefore do not collide. The
improved MPR algorithm as well as the version by Kenwright (2015) iterate until
the minimal Euclidean distance of shapes that are not in contact or minimal
penetration depth of shapes that are in contact is found.

Since the MPR algorithm is numerical sensitive it is performed with quadruple
precision (significant 106 bits) (JuliaMath, online) to increase robustness and
reliability. Therefore, a small tolerance mprTol, e.g., 10−20 for terminating the
algorithm is possible (see Section 6.1.4).
As mentioned in Section 4.2, the search direction does not need to be of unit

length, but in the improved MPR algorithm it does. Therefore, to avoid divisions
by zero, some new checks are introduced. These situations are considered in more
detail below.

The first check detects if the centroids of both objects coincide. In some collision
cases e.g., two spheres are colliding, the signed distance can be computed directly
because support point r1 and the interior point r0 are aligned on the origin ray.
Thus, termination condition (TC1) is introduced.

Furthermore, to avoid unphysical behavior, the improved MPR algorithm also
verifies whether both collision objects have degenerated to a 2D geometry or less e.g.,
2D surface, line, point or a very thin 3D geometry. Thus, the resulting Minkowski
Difference has also degenerated into a 2D geometry or less. To adequately address
such a situation, a 2D MPR algorithm (Snethen, online[b]) would be required.
However, due to the termination condition (TC1), there are cases that give a result
even in a 2D case. In the context of this thesis only penetration depths in 3D
models are regarded.
For terminating the third phase of the MPR algorithm, termination condi-

tion (TC2) is introduced if the new support point r4 is located on the same ray
as the search direction. So, no better point can be found for refining the portal.
Additionally, termination condition (TC3) is improved. Furthermore, it is checked
if support point r4 is located in the portal plane or on one of its edges. If the
refinement fails or, to avoid infinite looping and the maximum number of iterations
is reached, the MPR algorithm is terminated with the best found result so far.
Finally, all improvements of the MPR algorithm are discussed in detail.

6.2 Properties of Improved MPR Algorithm
This section discusses properties of the improved MPR algorithm. In Section 6.2.1,
two new theorems are introduced based on the circumstance that the improved
MPR algorithm also computes the Euclidean distance between non-penetrating
shapes. In Section 6.2.2, an approach for small penetrations is established that
avoids discontinuous jumps for contact points for continuously moving objects with
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respect to time. Based on this approach, an additional definition of penetration
depth is given for small penetrations.

6.2.1 Theorems Concerning Improved MPR Algorithm
Neumayr and Otter (2017) have summarized these properties in the following new
theorems, which have been further extended in this thesis for (TC2).
Definition 6.4: (δmpr). Let A,B ∈ C, A 6= B be two convex objects. Assume that
computations are performed with infinite precision (mprTol = 0, mprIterMax =∞),
then the signed distance returned by function mpr (Line 295, Page 61) is

δmpr(A,B) = mpr(A, B; mprTol = 0, mprIterMax = ∞).

Theorem 6.1 is sufficient so that δmpr can be used as zero-crossing function for a
variable-step solver in Section 6.3.
Theorem 6.1: (Contact detection 1). (Neumayr and Otter, 2017)
Let A,B ∈ C, A 6= B. For δmpr with infinite precision the following holds:

1. δmpr > 0: A and B are not in contact with each other.
2. δmpr = 0: A and B are touching each other.
3. δmpr < 0: A and B are penetrating each other.

Proof: This proof is based on Neumayr and Otter (2017). For this proof, properties
of the Minkowski Difference are used. From Theorem 4.4 directly follows that two
objects A and B penetrate iff A � B contains the origin. Moreover, if they are
touching, the origin is on the boundary 0 ∈ ∂(A�B) (see Definition 4.10). Two
objects A and B are not in contact iff the origin is not included 0 /∈ A � B.
If function mpr terminates successfully, the relationship between the origin ray
(Definition 6.2) from r0 to the origin through the final portal is always well-defined
and the collision situation follows automatically:
Assume function mpr terminates due to (TC1): In this case r1 is on the origin

ray from r0 through the origin. r1 is the farthest support point that still lies on the
boundary of Minkowski Difference. Therefore, if the origin is between r0 and r1,
then the origin is in the Minkowski Difference 0 ∈ A�B. It follows that objects
A and B are penetrating and δmpr < 0. If r1 = 0, the objects are touching and
δmpr = 0 because the origin is on the boundary of A�B. If r1 is between r0 and
the origin, then the origin is outside 0 /∈ A�B. It follows that objects A and B
are not in contact and δmpr > 0.
Assume function mpr terminates due to (TC2): In this case r4 is the farthest

support point on the boundary of the Minkowski Difference in the direction of the
origin ray. No further support point is possible because the portal cannot be refined
any further. If the origin lies between r0 and r4, then the ray from r0 passes first
through the origin and then through r4. Therefore, the origin is inside 0 ∈ A�B,
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δmpr < 0 and objects A and B are penetrating. If r4 = 0 the objects are touching
and δmpr = 0 because the support point r4, which is the origin, is on the boundary
of A�B. If r4 lies between the origin and r0, then the origin is outside 0 /∈ A�B.
It follows that objects A and B are not in contact and δmpr > 0.

Assume function mpr terminates due to (TC3): In the case of (TC3), no further
support point lies beyond the portal plane in the direction of the origin ray. If
the origin is on the same side of the plane as r0, then the ray from r0 passes first
through the origin and then through the portal. Therefore, the origin is inside
0 ∈ A�B, δmpr < 0 and objects A and B are penetrating. If the origin is in the
plane, then the origin ray from r0 passes the origin. This is only possible if the
origin is on the portal. Since (TC3) implies that the portal is on the boundary,
the origin is on the boundary of A�B and the objects are touching δmpr = 0. If
the origin is on the opposite side of the portal plane than r0, the origin is outside
0 /∈ A�B, so that δmpr > 0 and objects A and B are not in contact. �

Theorem 6.2 is a slight extension of Theorem 6.1 Item 1 and additionally considers
δbroad (see Definition 5.1) between two non-overlapping AABBs.
Theorem 6.2: (Contact detection 2).(Neumayr and Otter, 2019b)
Let A,B ∈ C, A 6= B. For δmpr with infinite precision and δbroad which is the
Euclidean distance between two non-overlapping AABBs, the following holds:

1. δbroad > 0 or δmpr > 0: A and B are not in contact with each other.

Proof: This proof is based on Neumayr and Otter (2019b). For δbroad > 0 two
objects cannot be in contact with each other because their AABBs are not in
contact with each other. �

While Theorem 6.2 defines the collision situation for δbroad and δmpr, the fol-
lowing theorem defines the relationship between δmpr (Definition 6.4) and δd
(Definition 4.8). Furthermore, Theorem 6.3 states that the MPR algorithm either
returns the closest distance of two non-penetrating objects or an upper bound on
the closest Euclidean distance.
Theorem 6.3: (The closest distance).(Neumayr and Otter, 2017)
Let A,B ∈ C, A 6= B. If δmpr > 0 with infinite precision, the following holds:

1. If termination occurred via (TC1) or via (TC2) or via (TC3) where r4
calculated with function distanceToPortal (Line 441, Page 70) is inside
the portal triangle, then

δmpr = δd.

2. If termination occurred via (TC3) and r4 is located on one of the edges or
vertices of the portal triangle, then

0 < −r4 · e4 ≤ δd ≤ δmpr.
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Proof: This proof is based on Neumayr and Otter (2017).
Assume 1. holds: In the case of (TC1): r1 is the closest point to the origin and it

is parallel to the normalized search direction. In the case of (TC2): r4 is the closest
point to the origin and it is parallel to the normalized search direction. In the case
of (TC3): r4 is inside the portal. Due to proof of Theorem 6.1, it is the closest
point to the origin and it is parallel to the normalized search direction. Since these
vectors are in parallel to their normalized search direction, their absolute value is
the closest distance, so δmpr = δd.
Assume 2. holds: In direction of the origin ray no support point is beyond

the portal plane. On the one hand, a lower bound for the closest distance is the
projection of r4 to the plane normal: −r4 · e4 ≤ δd. On the other hand, the closest
distance δd cannot be greater than ‖r4‖ = δmpr. �

6.2.2 Ensuring Continuous Penetration Depth and Contact Points
For simulating colliding objects, the penetration depth needs to be computed for
subsequent points in time. In order to avoid numerical issues in the upcoming
chapter (see Chapter 7), the penetration depth, contact normal and contact points
must evolve continuously with respect to time.

In three situations, the penetration depth, especially contact points, and contact
normal jump discontinuously for continuously dynamically moving objects. In the
first situation, both objects are largely overlapping, like a bullet penetrating into
an object (see Figure 6.9). Second, for non-smooth objects discontinuous jumps
occur on edges and vertices (see Figure 6.10). Both situations are discussed in the
following section and an approach for small penetrations is given. Third, a contact
area instead of a contact point emerges, e.g., one face of a box collides in parallel
with another face of a box. This situation cannot be handled appropriate e.g., with
the MPR algorithm, for a more extensive discussion see Section 8.3.

Discontinuities due to Definition of Translational Penetration Depth
The conventionally used definition of penetration depth δp (Definition 4.9) is based
on pure geometric properties. It is the distance of the shortest vector over which the
objects need to be translated to bring them into touching contact. The drawback
of this definition is that dynamic movement of penetrating objects can lead to
unphysical discontinuities in contact points, contact normal and penetration depth
e.g., like a bullet penetrating into an object or dynamic collisions on vertices or
edges.
Figure 6.9 depicts a situation inspired by a bullet penetrating into an object.

It is assumed that, object B moves from left to right, which is the direction of
motion (dm), and it penetrates object A. If the penetration depth in direction of
motion δdm ≥ 0 gets large enough, the (translational) penetration depth δp is no
longer aligned in direction of motion and is physically wrong. Furthermore, contact
points and contact normals jump discontinuously.
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Figure 6.9: Discontinuities in penetration depth computation. Object B penetrates
object A in direction of motion. Discontinuity occurs if δp 6= δdm.

sphere B

polytope A
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PA2

PA3

direction of
motion

face 1 face 2

ray δp = |δmpr|
δp < |δmpr|

Figure 6.10: Sphere B penetrates polytope A in direction of motion. The occur-
rence of discontinuous penetration depth is analyzed in more detail using three
contact translations.

Discontinuities due to (Improved) MPR Algorithm
In general, for non-smooth objects discontinuous jumps of penetration depth
occur on edges and vertices. The occurrence of discontinuous penetration depth
is analyzed in more detail for the improved MPR algorithm using three contact
translations (see Figure 6.10). Sphere B is sliding in direction of motion from left
to right along the dashed arrow and penetrates polytope A, passing three contact
translations with its resulting contact points (PA1,PB1), (PA2,PB2), (PA3,PB3).

Imagine, the lower point of sphere B is on contact point PB1, then the penetration
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depth is the orthogonal distance to face 1 of polytope A and δp = |−−−−−→PA1PB1| = |δmpr|,
which in turn is the distance computed by the MPR algorithm. To illustrate
discontinuity, in Figure 6.10 the contact point PB3 of sphere B is chosen, even
though the jump occurs slightly earlier. Point PB3 is a point where the distance to
face 2 is smaller than the distance to face 1. Then the contact point on polytope A
jumps discontinuously from face 1 to face 2 and δp = |−−−−−→PA3PB3| = |δmpr|.
The improved MPR algorithm introduces a slightly different discontinuity: If

the centroids of polytope A and sphere B are on the origin ray, the MPR algo-
rithm terminates due to termination condition (TC1). This occurs, if the lower
point of sphere B is on point PB2, which also lies on the ray, and therefore
|δmpr| = |−−−−−→PA2PB2| > δp. Hence, the discontinuous jump from face 1 to face 2
occurs earlier. The contact point on the boundary of polytope A as well as δmpr
changes discontinuously if the lower point of sphere B touches PB2.

Ensuring Continuous Penetration Depth and Contact Points
To ensure continuous penetration depth, Zhang, Kim, and Manocha (2014) propose
an algorithm where the penetration depth and contact points are continuous with
respect to the motion parameters, by taking the movement of the contact points
and of past geometric properties into account.

In this thesis, the focus is on collision situations with small penetration depths.
Hence, largely overlapping objects are not considered. Furthermore, to avoid
discontinuous jumps on edges and vertices smoothing radii are introduced. Neumayr
and Otter (2017) have already discussed this approach, which is inspired by Bergen
(2003). Collision smoothing radii, with tiny radii rA and rB for objects A and B
respectively, are introduced for all non-smooth shapes (e.g., box, cylinder, cone,
frustum of a cone, and beam). This affects the support mapping computations of
Section 4.2. This procedure is performed in two steps for non-smooth shapes.

• The shape is scaled in the support mapping computation. This means it
is shrunk by its collision smoothing radius. It is examined for the box in
Lines 473 to 478.

• The related smoothing radius is added in search direction again in Lines 479
to 480. This leads to smoothed edges as illustrated in Figure 6.11.

472# support point mapping for box with smoothing radius
473function supportPoint(obj::Box, n)
474 x = 1/2*obj.lengthX - obj.smoothingRadius
475 y = 1/2*obj.lengthY - obj.smoothingRadius
476 z = 1/2*obj.lengthZ - obj.smoothingRadius
477 return (sign(n[1])*x, sign(n[2])*y, sign(n[3])*z)
478end

479supportMapping(obj::Box, n) =
480 obj.r + obj.R'*supportPoint(obj, obj.R*n) + n*obj.smoothingRadius
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δp

δp = |δmpr| ⇐⇒ δp < rA + rB

shape A shape B

rA rB

Figure 6.11: Shapes A and B, both with a smoothing radius rA, rB are penetrating
with δp (Neumayr and Otter, 2017).

In Modia3D the user can set a smoothingRadius value. To avoid dimension
problems, the smoothing value is the minimum of the user’s value and 10% of
the smallest shape lengths. For no smoothing, the value is set to 0. All support
mappings with smoothing radius can be found online9.

For small penetration depths and smooth collision shapes a relationship between
δmpr (Definition 6.4) and δp (Definition 4.9) is defined.
Definition 6.5: (Penetration depth 2). (Neumayr and Otter, 2019b)
Let A,B ∈ C, A 6= B an intersecting pair and δp < rA + rB where rA, rB ∈ R0
are collision smoothing radii. The penetration depth δp is the signed distance
δmpr(A,B) ≤ 0 computed by the MPR algorithm in the narrow phase with infinite
precision

δp(A,B) = |δmpr(A,B)| ≥ 0. (6.2)

Assume, in Figure 6.11, shape A’s smoothed edge continuously moves over shape
B’s smoothed edge, and δp < rA + rB , then the penetration depth δp = |δmpr|
is continuous. Still, there are collision situations that cannot be handled with an
algorithm that computes point-contacts, due to the loss of contact information.
For example, collisions between two parallel surfaces cannot be handled adequately.
For a detailed discussion see Section 8.3. Nevertheless, sufficient collision situations
can be handled.
The approach presented here is not applicable for all collision situations. It

depends on the collision shapes, their relative position and their relative orientation.
Furthermore, it is limited to small penetrations and continuously moving objects
with respect to time. For a detailed discussion to this topic see "Conclusion to
Collision Handling with Variable-Step Solvers (Section 8.3)". This approach and
the upcoming section dealing with zero-crossing functions for collision handling
with variable-step solvers are a preparation for "Collision Response (Chapter 7)".

9Modia3D.jl, v0.10.4, src/Shapes/boundingBoxes.jl
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6.3 Zero-Crossing Functions for Collision Handling
The time of a collision is not known in advance, but the model behavior and
its resulting forces are changing drastically when a collision occurs. In order to
determine the event time, event conditions are implicitly specified in form of
zero-crossing functions, see Section 2.4, and are detected with variable-step solvers.

In this thesis, for computing the collision response the penetration depth is needed
in Section 7.1. Neumayr and Otter (2017) and Neumayr and Otter (2019b) propose
to use the zero crossing of the signed distance δmpr (Definition 6.4) computed by the
improved MPR algorithm as an event condition. Variable-step solvers evaluate zero
crossings, i.e., the time when objects touch and trigger an event. This is suitable
for systems where many convex objects, or their convex hulls, may potentially
collide. Theorem 6.1 and its extension to Theorem 6.2 are sufficient so that function
zAB (6.3) can be used as zero-crossing function.

Definition 6.6: (Zero-crossing function for collision handling). (Neumayr
and Otter, 2019b)
Let A,B ∈ C, A 6= B be two potentially colliding convex objects, or their convex
hull, and time t ∈ R0. Furthermore, the translations and rotations of objects A,B
are time-dependent. Then, function zAB

zAB(t) =
{
δbroad(A,B) if δbroad > 0
δmpr(A,B) if δbroad ≤ 0

, A,B ∈ C, A 6= B, (6.3)

is called zero-crossing function with zAB = zBA. Where δbroad(A,B) (Definition 5.1)
is the Euclidean distance between two non-overlapping AABBs calculated in the
broad phase. Furthermore, δmpr(A,B) is the signed distance computed by the MPR
algorithm in the narrow phase (Definition 6.4).

Figure 6.12 shows a zero-crossing function. The zero crossing zAB(t) = 0, t = tev
occurs if both objects touch, then tev is the transition or event time. For zAB > 0
both objects are not in contact and for zAB < 0 both objects penetrate.
It is standard for variable-step solvers with zero-crossing support to evaluate

a zero-crossing function zAB(t) at time instant ti + h of a completed solver step
with step size h. If zAB(ti) · zAB(ti + h) ≤ 0 an interval [ti, ti + h] is determined
in which zAB crosses zero. Several algorithms with guaranteed convergence are
known that reduce the interval in which the zero crossing occurs until a specified
tolerance for the final interval is reached. For example, the solvers of the Sundials
suite use a modified secant method. The DASSL solver uses the method of Brent
(1973). In both cases, the interval is successively decreased in each iteration. Here
the only required property is the sign of zAB, which is provided by (6.3) according
to Theorem 6.2. In case of the method of Brent (1973), convergence is super-linear,
if zAB(t) is smooth.
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Figure 6.12: Signed distance, compound of distance and penetration depth,
between two objects A,B are used as zero-crossing function zAB. The zero crossing
zAB(t) = 0 at event instant tev, where both objects are touching.

Methods treating Zero-Crossing Functions for Collision Handling
The three methods for treating zero-crossing functions used for collision handling
require the distances between the collision objects and are considered below. First, a
brute force method would be to use the distances between any two collision objects
as zero-crossing functions. However, this approach is not practical for a larger
number of objects nC because O(dim (z)) = O(n2

C). The number of zero-crossing
functions, as well as the number of distance computations would grow quadratically
with the number of objects, that can potentially collide.

The second method avoids a quadratic growth of the zero-crossing functions.
Neumayr and Otter (2017) suggest limiting the number of zero-crossing functions
the solver must process. This upper bound nmax of zero-crossing functions is set
by the user. Thus, at most nmax collision pairs can be in contact at the same time
instant. If more objects get in contact, the simulation is halted with an error, or
alternatively, the simulation is halted and restarted with an enlarged z vector.
This approach has the disadvantage that an upper bound nmax on the number of
zero-crossing functions must be defined by the user, and the algorithm for tracking
the smallest nmax values is complicated.

The third method simplifies the idea of Neumayr and Otter (2017) by using only
two zero-crossing functions. This idea is preliminarily published by Neumayr and
Otter (2019b) and is discussed in the following. For this method the two functions

zd = min
A,B∈C,A6=B

(zAB : ∀ pairs A,B separated at last event), (6.4a)
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zp = max
A,B∈C,A 6=B

(zAB : ∀ pairs A,B penetrated at last event), (6.4b)

are used as zero-crossing functions. Hereby, (6.4a) is the minimum of all zero-
crossing functions (6.3) of collision pairs which were not in contact at the last event
instant. Therefore, a zero crossing of zd occurs when at least one pair of objects
that was not in contact at the last event changes from positive to negative values.
Hereby, (6.4b) is the maximum of all zero-crossing functions (6.3) of collision pairs
which were in contact at the last event instant. Therefore, a zero crossing of zp
occurs when at least one pair of objects that was in contact during the last event
separates and thus changes from negative to positive values.

The number of zero-crossing functions is reduced in the second and third methods
compared to the first method. The quadratic growth of distance calculations cannot
be avoided with all three methods, since the distances and penetration depths
between collision objects are used as zero-crossing functions.

Implementation of Zero-Crossing Functions for Collision Handling
The implementation in Modia3D uses basically one dictionary, called contactDict.
This dictionary stores each collision pair, which has been in contact at the last
event instant in order to decide whether a computed zero-crossing function (6.3)
of two arbitrary objects A,B ∈ C, A 6= B should be used in zp or in zd. Each
collision pair has a unique pairID, which is used to identify collision pairs in
dictionary contactDict. A collision pair holds information about contact points
on each object, the contact normal, both penetrating objects, and the distance
with hysteresis.

Furthermore, the following three internal functions10 are used for updating both
zero-crossing functions (6.4). Before that, distances between all potentially colliding
objects are computed in a broad and if necessary in a narrow phase.

• selectZeroCrossings!: This function is called at every event instant and
computes (6.3) for all potential collision pairs. The actual penetrating pairs
are detected and stored in contactDict. This selection is kept until select-
ZeroCrossings! is called again.

• updateZeroCrossings!: This function is called whenever the solver requests
a new zero crossing evaluation and computes (6.3) for all potential collision
pairs. Furthermore, contact points and contact normals of the collision pairs
stored in contactDict are updated.

• getDistances!: This function is called for evaluation of the equations of mo-
tion and at communication points, i.e., for result output. It updates (6.3), con-
tact points and contact normals for all collision pairs stored in contactDict.

The difference between these three functions is also pointed out in Julia pseudo
code snippet.
10As usual in Julia, function names with a ! at the end indicate that one or more of the input

arguments are changed by the function call.
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481if isEvent(...)
482 selectZeroCrossings!(...)
483elseif isZeroCrossing(...)
484 updateZeroCrossings!(...)
485else
486 getDistances!(...)
487end

Partitioning into Two Sets
The previously discussed procedure is realized by choosing two functions zd and
zp (6.4) and those are used as zero-crossing functions for the solver. Because of
that, all potential collision pairs with their zero-crossing functions zAB (6.3) are
partitioned into two sets. The first set identifies zd. In order to identify zd, the
distances between separated objects are compared and the minimum value is stored
in variable noContactMinVal (Lines 503 to 506).

zd indicates whether at least one zero crossing from positive to negative i.e.,
from non-penetrating to penetrating takes place. If zd is negative, a zero
crossing occurs. This means, zd is the minimum value of all distances between
objects which are not in contactDict.

The second set identifies zp. In order to identify zp, all information e.g., contact
points on each object, the contact normal, the two penetrating objects, and the
distance with hysteresis about penetrating pairs is stored and updated in dictionary
contactDict (Lines 488 to 502).

zp indicates whether at least one zero crossing occurs from negative to positive
(i.e., from penetrating to non-penetrating) takes place. If zp is positive, a
zero crossing occurs. For detecting that, the maximum value of all distances
of collision pairs in contactDict is stored in zp. If the contact set is empty,
zp gets a negative dummy value.

488function updateContactPair!(pair::ContactPair, obj1::Object3D, obj2::Object3D,
489 contactPoint1::Vector, contactPoint2::Vector,contactNormal::Vector,
490 distanceWithHysteresis::Float64)
491 pair.contactPoint1 = contactPoint1
492 pair.contactPoint2 = contactPoint2
493 pair.contactNormal = contactNormal
494 pair.obj1 = obj1
495 pair.obj2 = obj2
496 pair.distanceWithHysteresis = distanceWithHysteresis
497 ...
498end

499if contact
500 updateContactPair!(contactDict[pairID], obj1, obj2,
501 contactPoint1, contactPoint2, contactNormal,
502 distanceWithHysteresis)
503else
504 if noContactMinVal > distanceWithHysteresis
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505 noContactMinVal = distanceWithHysteresis
506end; end

Hysteresis for Zero-Crossing Functions
A restart of the integration after an event requires that no zero-crossing function
zAB (6.3) is identical to zero, otherwise a zero crossing cannot be detected anymore
and solvers invoke an error. However, a zero-crossing function zAB (6.3) might be
identically to zero at an event instant e.g., two objects are touching each other at
initialization. To avoid this, a hysteresis is added to zAB (6.3). Neumayr and Otter
(2019b) realize this similar to FMI Project (2017).

To sum up, the narrow phase and how to calculate the Euclidean distance
and penetration depth between two potentially-colliding objects with the MPR
algorithm is discussed. This thesis presents an enhanced version of the classical
MPR algorithm. The properties of the improved MPR algorithm are summarized
in three new theorems. For simulating continuously moving and colliding objects,
the penetration depth needs to be computed for subsequent points in time. An
approach for small penetration depths that avoids discontinuous jumps in contact
points and contact normals is presented. Thus, numerical issues in the elastic-
response calculation (see Chapter 7) – the fourth collision handling step – are
avoided. Furthermore, the penetration depth respectively the Euclidean distance is
used as zero-crossing function. Contact forces and torques are applied if the objects
are in contact.



7 Collision Response
The collision detection (collision handling steps 1-3) is a mathematical problem
of determining whether and where two geometric objects are intersecting. The
collision response known as response calculation is the fourth and final collision
handling step. Collision response is a kinetic problem that involves the motion of
two or more objects after a collision (Bourg and Bywalec, 2013).
If a collision is detected and collision response is applied, the model’s behavior

changes drastically. There are several different methods of collision response, each
with their own strengths and weaknesses. An overview of methods can be found
in Mirtich (1996), Otter, Elmqvist, and López (2005) and Hofmann et al. (2014).
The elastic-response calculation is the only one that allows penetrations between
objects. It is applicable for rigid body simulations as well as for deformable body
simulations. The penetrations need to be small enough, so that they are not no-
ticeable in relationship to the scale of the system. Elastic-response calculation
methods vary in details. The basic idea is that between the colliding objects a
spring, spring-damper or some other finite force element is present, which generates
separating forces. These forces refer to the penetration, i.e., penetration depth or
penetration volume between the colliding objects and act at the contact points or
contact area. However, finding a satisfactory response characteristic that reflects
the physical behavior is challenging. There are different types of elastic-response
calculation (Mirtich, 1996; Otter, Elmqvist, and López, 2005; Hofmann et al., 2014).

• Response calculation based on impulses. The collision response is calculated
with an idealized approach, applying impulses derived from impact laws like
Poisson’s hypothesis. The impulses of the compression and decompression
phases of an impact are set in relationship to each other. On the one hand,
only a few constants are required to describe the impact law. The solver’s
step size remains unaffected by the response calculation since it occurs in an
infinitely small moment of time. On the other hand, idealized impact laws
are only valid for stiff collisions. Moreover, the necessary constants cannot
be calculated from the material properties of the colliding objects, i.e., they
need to be measured. In addition, accurately determining the new initial
conditions after an impact presents significant challenges. Especially, when
multiple contacts occur simultaneously. There can be either no solutions
at all or infinitely many solutions using impulse descriptions. To achieve a
physically accurate response, multiple impacts may need to be applied in one
of two ways: either sequentially in some cases, or simultaneously in others.

87
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• Response calculation based on penetration depth. It uses simple elastic
spring-damper elements, e.g., the spring force is proportional to the penetra-
tion depth. This straightforward approach can be used for stiff and soft con-
tacts. It performs reasonably well with several simultaneous contact points.
The solver’s step size is significantly reduced in the contact phase to capture
the rapidly changing contact forces and torques. Spring and damper con-
stants are determined experimentally or calculated from material properties.

• Response calculation based on contact area and penetration volume. The
contact force is not only proportional to the penetration depth, but also to
the discretized contact area and the discretized penetration volume. The
force and torque calculation is more accurate and the material properties
are used to calculate the spring constants. In addition, the contact torque
can be reasonably calculated.

• Response calculation for special collision situations. The collision response
is calculated for special collision situations, e.g., for wheel/road contacts,
wheel/rail contacts, and bearing contacts. Specialized approaches tailored to
specific contact problems typically offer greater accuracy and applicability
than generic solutions.

This thesis introduces an elastic-response calculation method for rigid-body
simulation based on penetration depth. It considers several physical aspects and
elastic material laws (see Section 7.1). Consequently, solid material properties
must be assigned to each collision object. Calculating an appropriate damping
factor from the coefficient of restitution requires the initial relative velocity at the
start of penetration. Therefore, an event at the start and end of a penetration
is mandatory for this approach. Starts and ends of penetrations are identified
with zero-crossing functions taking the signed distance into account. The signed
distance consists of the penetration depth and the Euclidean distance between the
colliding objects. To ensure a physically realistic collision response, the penetration
depth, contact normal, and contact points must evolve continuously with respect
to time. This condition can be ensured for the elastic-response calculation, as it
primarily deals with small penetration depths. Moreover, smoothing the shapes
prevent discontinuous jumps at edges and vertices. Consequently, each surface
point has a unique normal vector. Furthermore, continuous movement of a surface
point induces continuous movement to its corresponding normal vector.

7.1 Force Law
The theory of Hertz (1896) is a nonlinear force law for perfectly elastic and elliptic
objects. The force law depends on the penetration depth δp and leads to

f = 4
3E

?R
1
2
geoδ

3
2
p , (7.1)
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where

E? = 1
1−ν2

1
E1

+ 1−ν2
2

E2

. (7.2)

E1, E2 are Young’s moduli and ν1, ν2 are the Poisson’s ratios of the associated
objects (see Section 7.1.1). Additionally, Rgeo is a geometry dependent coefficient
(see Section 7.1.2).

Furthermore, to consider energy loss that occurs in mechanical models several
different formulations are available which are using a damping coefficient and initial
penetration velocity. Based on a comparison by Skrinjar, Slavič, and Boltežar (2018),
the approach of Flores et al. (2011) for the introduced response characteristics (7.3)
is taken.
Neumayr and Otter (2019b) already published the resulting novel response

characteristic for elastic contacts (7.3), see Figure 7.1. A contact force f is calculated
using penetration depth δp, penetration velocity δ̇p, and various coefficients. The
contact force is composed of a normal force fn (7.3b) and a tangential force
ft (7.3c). Additionally, a torque τω (7.3d) counteracting the relative angular
velocity is applied to describe the rolling resistance.

f = kred max
(

0, 4
3E

?R
1
2
geoδ

3
2
p
(
1 + dδ̇p

))
(7.3a)

fn = fen (7.3b)
ft = −µkfet,reg (7.3c)
τω = −µrRgeofeω,reg (7.3d)

fn Contact force in normal direction.
ft Contact force in tangential direction.
τω Contact torque.
en Unit vector normal to the contacting surfaces.
et,reg, eω,reg Regularized direction vectors in direction of the relative tangential

and relative angular velocity (see (7.8), (7.10) in Section 7.1.3).
δp Penetration depth (see Definitions 4.9 and 6.5).
δ̇p Penetration velocity (see (7.6) in Section 7.1.3).
µk, µr Kinetic/sliding friction force and rotational resistance torque coeffi-

cient (see Section 7.1.1).
Rgeo Geometry dependent coefficient (see Section 7.1.2).
E? Combined Young’s moduli and Poisson’s ratios (see (7.2)).
d Damping coefficient (see (7.13) in Section 7.1.4).
kred Elastic contact reduction factor (see Section 7.1.5).
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All coefficients, regularizations, constants, and factors needed for the response
characteristic are discussed in the remainder of this section.
In order to always guarantee a positive compressive force and to avoid the

unphysical behavior of a pulling force, the normal force f is clamped at 0 (7.3a)
(Otter, Elmqvist, and López, 2005).

A short comparison points out the differences of the response characteristics (7.3)
to the literature:

• In theory, if both shapes are not-curved (like box and beam) a contact
surface can occur. Such a contact surface cannot be described by the
MPR algorithm because it only computes point contacts. This is tack-
led by an artificial geometry dependent coefficient Rgeo based on each
shape’s parameters is introduced (for an extended discussion see Sec-
tion 7.1.2).

• To avoid divisions by zero, direction vectors, the contact start velocity,
and the coefficient of restitution are regularized. Therefore, a regular-
ization function with a regularization threshold are introduced (see Sec-
tion 7.1.3).

• The damping coefficient uses the regularized initial velocity and the regular-
ized coefficient of restitution to avoid an unphysical strong creeping effect
(see Section 7.1.4).

An illustrative explanation of how the forces and torques act for two penetrating
objects is shown in Figure 7.1. It shows the relationship between the forces fn, ft,
torque τω and unit vectors: en in normal direction and et, eω in direction of the
respective relative movement. The intuition is that there is a contact surface with
a certain pressure distribution in the normal direction and a stress distribution in
the tangential direction. The response characteristics provides an approximation of
the resultant normal force fn, resultant tangential force ft, and resultant contact
torque τω. The MPR algorithm calculates an approximation of the contact point, of
the penetration depth and of a unit vector en that is orthogonal to the contacting
surfaces.

fn

ft

en

τω

et

eω

Figure 7.1: Contact normal force fn, contact tangential force ft (= sliding friction
force) and contact torque τω between two penetrating objects. en, et, eω are unit
vectors in direction of the respective relative movement.
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7.1.1 Solid Material and Material Constants of the Collision Pairs
For collision response an object needs solid material properties to describe the
physical behavior in collision situations between a collision pair (see Definitions 4.2,
4.4 and 4.5 and Remark 4.1).

Solid Material Constants
E Young’s modulus of solid material in N m−2.
ν Poisson’s ratio of solid material (0 < ν < 1).

Material Constants of the Collision Pairs
cor Coefficient of restitution (0 ≤ cor ≤ 1). An ideal inelastic collision is defined

with cor = 0 and an ideal elastic collision with cor = 1. The coefficient of
restitution is regularized in (7.12) and used for the damping coefficient (7.13).

µk Kinetic/sliding friction force coefficient (µk ≥ 0).
µr Rotational resistance torque coefficient (µr ≥ 0). Its effect is that torque

τω is computed to reduce the relative angular velocity ωrel between the two
objects. µr can be interpreted as the rolling resistance coefficient if a sphere
is rolling on a plane. For simplicity, this coefficient can also be used for a
drilling slip.

For each collision object a solid material such as "Steel" or "DryWood" must be
assigned, which defines the material parameters E and ν. In addition, for each
collision pair that may occur during a simulation their material combinations (e.g.,
"Steel, Steel" or "Steel, DryWood") must be defined, too. Furthermore, the material
constants of these collision pairs (cor , µk, µr) must be defined as well.

7.1.2 Geometry Dependent Coefficients
The collision response of a collision pair depends on their geometries also known as
shapes (see Definition 4.1). The physical behavior is reflected in the coefficient Rgeo.
These coefficients are computed approximately based on the contact theory of Hertz
(1896). It is assumed that each of the contacting surfaces can be described by a
quadratic polynomial in two variables, defined essentially by its principal curvatures
along two perpendicular directions at the point of contact. A characteristic feature
is that the penetration volume increases nonlinearly with the penetration depth,
unless the two contact surfaces are completely flat. Therefore, the normal contact
force changes nonlinearly with the penetration depth. In general, elliptic integrals
must be solved, as well as a nonlinear algebraic system of equations to calculate the
normal contact force as a function of penetration depth and principal curvatures at
the contact point. Antoine et al. (2006) propose an approximate analytical model
that replaces elliptic integrals by existing polynomial approximations.

For a numerical integration algorithm with step size control to work reasonably,
the contact force must be continuous and continuously differentiable with respect
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Table 7.1: Contact radius rc for different shapes. Additionally, their flatness is
given.

Shape is flat rc

Sphere no 1/2 diameter
Capsule no 1/2 diameter
Cone no 1/4 (diameter + topDiameter)
FileMesh no 1/2 shortestEdge
Cylinder no 1/2 min(diameter, length)
Ellipsoid no 1/2 min(lengthX, lengthY, lengthZ)
Box yes 1/2 min(lengthX, lengthY, lengthZ)
Beam yes 1/2 min(length, width, thickness)

Table 7.2: Geometry dependent coefficient Rgeo.

Shape 1 Shape 2 Rgeo
is flat

no yes rc,1
yes no rc,2
no no rc,1rc,2/(rc,1 + rc,2)
yes yes rc,1rc,2/(rc,1 + rc,2)

to the penetration depth. This in turn means that the principal curvatures of the
contacting surfaces should also be continuously differentiable, which is usually not
the case, apart from exceptional cases such as a sphere or an ellipsoid.
In this thesis, only a very rough approximation for principal curvatures of

shapes is used, since their determinations are generally complicated and the shapes
often have regions of discontinuous curvatures. The contact area of a shape is
approximated by a quadratic polynomial with constant mean principal curvature in
all directions and at all points on the shape. In other words, a sphere with constant
contact radius rc is associated with any shape used to calculate the coefficient
Rgeo

1. A default value for the contact radius rc is determined based on the available
data of each shape in Table 7.1. However, this parameter can be overwritten by the
user. This allows to use a rough approximation of Hertz’ law not only for spheres.
Furthermore, for Rgeo a distinction between flat (box and beam) and curved shapes
is made in Table 7.2. If a flat shape collides with a curved shape, the collision
radius rc,i, i = 1, 2 of the curved shape is taken for Rgeo. Only if both shapes are
curved, collision radii of both shapes are considered for Rgeo. In theory, if both
shapes are flat Rgeo tends to infinity. However, such a contact surface cannot be
1Modia3D.jl, v0.8.1, src/Shapes/setCollisionSmoothingRadius.jl
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described by the used approach. As a remedy, an artificial radius Rgeo based on
the shape’s parameters is introduced. While this is physically incorrect, it provides
meaningful results in most cases.

7.1.3 Regularization
When calculating the actual values for the response characteristic (7.3), divisions
by zero and thus undefined states can occur. To prevent this, a continuous and
smooth regularization reg : R→ R>0 (7.4) is introduced

reg(v) =

{
|v| |v|≥ vmin > 0
|v|2
vmin

(
1− |v|

3vmin

)
+ vmin

3 otherwise
, (7.4)

where vmin ∈ R>0 is the regularization threshold. Function reg returns |v| if
|v| ≥ vmin. Otherwise, it is a third-order polynomial whose minimum is vmin

3 for
v = 0. It has smooth first and second derivatives at |v|= vmin. The regularization
for reg(v) with regularization threshold vmin = 0.01 is shown in Figure 7.2.
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Figure 7.2: Regularization reg(v) for vmin = 0.01.

The regularization reg (7.4) with suitable threshold is used for vectors in direction
of the relative tangential and relative angular velocity, and for the contact start
velocity. The coefficient of restitution is regularized differently.

Regularized Direction Vectors
The vectors in direction of the relative tangential and relative angular velocity are
regularized with (7.4). Note, the absolute value | · | of a vector is the length of
v ∈ R3.

vrel = v2 − v1 (7.5)
δ̇p = vrel · en (7.6)
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vt = vrel − δ̇p en (7.7)

et,reg = vt
reg(|vt|)

(7.8)

ωrel = ω2 − ω1 (7.9)

eω,reg = ωrel

reg(|ωrel|)
(7.10)
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Figure 7.3: Absolute value of a regularized direction vector |ereg| =
∣∣ v

reg(|v|)

∣∣ with
vmin = 0.01.

The regularization thresholds for regularizing the tangential velocity (7.8) and
the angular velocity (7.10) are vmin and ωmin. Figure 7.3 shows the absolute value
of a regularized direction vector |ereg| =

∣∣ v
reg(|v|)

∣∣ with vmin = 0.01. If |v| < vmin

the regularization is used and |ereg| = 0 if |v| = 0. Otherwise, if |v| ≥ vmin then
|ereg| = 1 is a unit vector.

Regularized Contact Start Velocity
To avoid a division by zero when calculating the damping coefficient d (7.13), the
contact start velocity δ̇p

− is regularized with (7.4) and regularization threshold
vmin

δ̇p
−
reg = reg

(
δ̇p
−
)
> 0. (7.11)

A vanishing contact start velocity occurs e.g., if two objects start in touching
position.

Regularized Coefficient of Restitution
In reality, all bouncing objects come to rest after a finite number of bounces. In the
simulation, an unphysical effect occurs when cor > 0, i.e., two objects would bounce
infinitely often in finite time until they come to rest. For this reason, cor is reduced
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when the velocity at contact start δ̇p
− becomes small. Furthermore, to avoid a

division by zero when computing damping coefficient d (7.13), the regularized
coefficient of restitution is restricted to a minimum value cormin (default = 0.001).
This leads to the regularized coefficient of restitution correg

correg = cor + (cormin − cor)elog(0.01) |δ̇p
−|

vmin , (7.12)

with 0 ≤ cor ≤ 1, δ̇p
− ∈ R, vmin ∈ R>0, cormin ∈ R>0. Figure 7.4 shows this

characteristic for several different regularized coefficients of restitution correg.
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Figure 7.4: Characteristics for several regularized coefficients of restitution.

7.1.4 Damping Coefficient
There are several proposals to compute the damping coefficient as a function of
the coefficient of restitution cor and the normal velocity δ̇p

− when contact starts.
For a comparison of the different formulations, see Skrinjar, Slavič, and Boltežar
(2018). In this thesis, basically the formulation of Flores et al. (2011) is used. The
hysteresis-damping coefficient (7.13)

d = min

(
dmax,

8(1− correg)
5corregδ̇p

−
reg

)
(7.13)

includes the loss of energy during the contact process. The loss of energy is a
function of the coefficient of restitution and the initial penetration velocity. The
contact-force model of Flores et al. (2011) is developed for situations occurring
between very elastic and very inelastic contacting materials (Machado et al., 2012).
It gives similar results with respect to a response calculation with impulses for a
wide range of cor values for several experiments performed in Skrinjar, Slavič, and
Boltežar (2018).
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(7.13) has the following improvements with respect to Flores et al. (2011):

• The regularized initial velocity δ̇p
−
reg (7.11) is used instead of δ̇p

− to avoid a
division by zero.

• The regularized coefficient of restitution correg (7.12) is used instead of cor
to avoid a division by zero for cor = 0.

• The damping coefficient is limited to dmax = 2000 to avoid an unphysical
strong creeping effect for collisions with small correg values.

The damping coefficient d is shown as function of δ̇p
− for several cor values in

Figure 7.5.
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Figure 7.5: Damping coefficient as function of δ̇p
− and cor . δ̇p

− from 0.0 m s−1

to 0.01 m s−1.

7.1.5 Elastic Contact Reduction Factor
The heuristic elastic contact reduction factor kred with 0 < kred ≤ 1 is introduced
in (7.3a). It’s default value of 1 is suitable for most physical simulations. The
following discussion refers to Neumayr and Otter (2019b). The objective of this
heuristic factor is: The application of the elastic-response calculation to hard
materials like "Steel" usually leads to stiff ODEs, due to small penetration depths
in the order of 10−5 m to 10−6 m. The penetration depth is implicitly computed
by the difference of the absolute positions of the penetrating objects, and these
absolute positions are typically error-controlled variables of the solver. This in turn
means that, in general, at least a relative tolerance of 10−8 must be used for the
solver to calculate the penetration depth with 2 or 3 significant digits. To increase
the simulation speed, the elastic contact reduction factor kred reduces the stiffness
of the contact and thus increases the penetration depth. For example, if kred is
set to 10−4, the penetration depth could be on the order of 10−3 m, and then a
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relative tolerance of 10−5 might be sufficient. In many cases, the essential response
characteristic is not changed (only the penetration depth is larger), but simulation
speed is significantly improved. The heuristic elastic contact reduction factor is
clearly a violation of the contact physics. However, especially for impulse like
contacts it affects mainly only the penetration depth, but not the overall response.

7.2 Comparison Between Elastic and Impulsive
Collision Response

In this section, a comparison is made between the elastic-response characteristic
and an impulsive collision response. It shows the intention behind the development
of the force law in Flores et al. (2011), and the enhanced response characteristics
in (7.3).
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Figure 7.6: Bouncing ball with impulsive collision response and the elastic-
response characteristic of (7.3).

In Figure 7.6, the height of a bouncing ball for elastic and impulsive collision
responses are displayed. Additionally, the corresponding regularized coefficient
of restitution correg (7.12) is displayed. The red curve is the collision response if
using the elastic-response calculation of (7.3) with cor = 0.7 and the solid material
constants of "Steel" and of "DryWood". The blue curve is the collision answer if the
contact force is computed with an impulse for the same cor value. The green curve
is the corresponding regularized coefficient of restitution correg (7.12) – for small
velocities it becomes small. This shows that f in (7.3) leads to a similar reaction
if compared to an impulsive response.

To conclude, the novel response characteristics is an elastic-response calculation.
It uses elastic material laws and takes several physical aspects into account. The
collision response is limited to point contacts with small penetration depths.





8 Applications and Critical
Considerations

Insights into the application with Modia3D as well as its impacts on the internal
multibody tree follow. Subsequently, several critical deliberations, including limita-
tions and inherent issues of collision handling with variable-step solvers need to be
reflected upon. The approaches chosen in each collision handling step will most
likely only work reliably for continuously varying point contacts and penetration
depths. Hence, each collision handling step must ensure this condition is met.

8.1 Modia3D used for Collision Handling

Modia3D technically realizes collision handling as it is theoretically described
in Chapters 4 to 7. It relies on its internal execution scheme that analyzes the
multibody system components, see Section 3.2.4, and reduces the number of poten-
tial collision pairs. In Modia3D, it is determined during simulation, if Object3Ds
collide with each other to compute the collision response. When using the Modelica
modeling language for collision handling, a unique collision identifier must be
defined for each collision pair (Otter, Elmqvist, and López, 2005; Elmqvist et al.,
2015; Bardaro et al., 2017).

In Modia3D, the preprocessing step uses particular knowledge of the mechanical
structure to reduce the number of potential collision pairs, see Figure 8.1. The Ob-
ject3D’s shape, translation, and rotation are needed to create loose-fitting AABBs.
Only if AABBs are overlapping the improved MPR algorithm computes penetra-
tion depth and penetration velocity. For collision response, material properties,
e.g., Young’s moduli and the Poisson’s ratios are needed to describe the physical
behavior.
An Object3D is considered in collision situations if keyword collidable =

true is set. Additionally, it must be a Solid with a shape and material proper-
ties (e.g., Steel). If the Object3D itself has no mass properties, mass properties
must be defined for at least one Object3D of the super-object. In Figure 8.1,
collision object obj4 has no mass properties but it is sufficient that obj5 has
some.
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Figure 8.1: Internal execution scheme with two applied collision preprocessing
rules. All Object3Ds belonging to a super-object are rigidly attached and cannot
collide among themselves e.g., the collision objects: obj1, obj2, and obj3 belong
to superObject2 and cannot collide among themselves. The optional rule – super-
objects disjunct by a joint cannot collide – can be switched on or off by the user. If it
is activated, e.g., superObject2 cannot collide with superObject3 and superObject4
and vice-versa.

8.2 Application: Billiard Game
Neumayr and Otter (2020) model a billiard game1 with sliding and rolling balls.
The cue ball has initial velocity to spread the rack, see Figure 8.2. This model
shows the modularity of Modia3D and how to deal with collision handling. The
feature of a solid ball is defined once e.g., a solid sphere with collision and mass
properties, shape, and visualization material, and is reused for 16 billiard balls in
Lines 507 to 526. For preliminary work, see two additional models in Appendix B.
The cushion is arranged properly according to Mathavan, Jackson, and Parkin

(2010) in Figure 8.3. To economize collision checks the cushion is simplified. The
cushion consists of an upper part with collision features and a lower part without.
Both parts are rigidly connected to the table.
Collision handling must be globally enabled for the model. Therefore, enable-

ContactDetection = true is set in the Object3D with feature Scene. There are
several collision objects: 16 billiard balls, the table, and 4 cushions. The 4 cushions
1Modia3D.jl, v0.12.0, test/Collision/Billard16Balls.jl
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a) At initialization. b) After 1.5 s.

Figure 8.2: Billiard game with 16 balls.
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a) Relationship between ball and cushion.

b) Simplified cushion. Billiard ball will collide with upper part of cushion.

Figure 8.3: Corresponding to Mathavan, Jackson, and Parkin (2010) the cushion
is arranged and shaped in relationship to the billiard ball radius r. The contact
point’s height on the rail is h = 7

5r.
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are rigidly connected to the table. So, they belong to one super-object to reduce
collision checks. Each billiard ball has 6 Degrees of Freedom (DoF) and is a super-
object. There are no joints in this model. The balls collide with other balls, table,
and cushions. The mass properties are computed from defined density and their
shape.

507Table = Model(
508 table = Object3D(parent=:world, feature=Solid(shape=Box(...),
509 solidMaterial="BilliardTable", collidable=true)))
510 cushionLower = Object3D(parent=:table, translation=[...],
511 feature=Solid(shape=Box(...), solidMaterial="BilliardCushion")),
512 cushionUpper = Object3D(parent=:table, translation=[...],
513 feature=Solid(shape=Box(...), solidMaterial="BilliardCushion",
514 collidable=true)),
515 ...)
516Ball = Solid(shape=Sphere(...), solidMaterial="BilliardBall", collidable=true)
517Billiard = Model3D(
518 world = Object3D(feature=Scene(enableContactDetection=true)),
519 table = Table,
520 cueBall = Object3D(parent=:world, fixedToParent=false, translation=[...],
521 velocity=[...], feature=Ball),
522 ball1 = Object3D(parent=:world, fixedToParent=false, translation=[...],
523 feature=Ball),
524 ball2 = Object3D(parent=:world, fixedToParent=false, translation=[...],
525 feature=Ball),
526 ...)

For collision response, the predefine Poisson ratio and Youngs Modulus of "Bil-
liardBall"2 (Lines 527 to 531) is used. The material combination which occur if a
billiard ball is in contact with a billiard table is "BilliardBall, BilliardTable"3

(Lines 532 to 538).

527# Solid material constants
528"BilliardBall": {
529 "density": 1768.0,
530 "YoungsModulus": 5.4e9,
531 "PoissonsRatio": 0.34},

532# Material constants of a collision pair
533"BilliardBall,BilliardTable": {
534 "responseType": "ElasticResponse",
535 "coefficientOfRestitution": 0.0,
536 "slidingFrictionCoefficient": 0.8,
537 "rotationalResistanceCoefficient": 0.01
538}

2Modia3D.jl, v0.12.2, palettes/solidMaterials.json
3Modia3D.jl, v0.12.2, palettes/contactPairMaterials.json. There are material constants for

"BilliardBall, BilliardBall" and "BilliardBall, BilliardCushion".
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Figure 8.4: The cue ball and object ball subside due to gravity into the table
(upper right plot). The cue ball has initial velocity and hits the resting object ball
at 0.55 s. The cue ball slides at the beginning and then it rolls. Immediately after
impact the cue ball and the object ball slide, and then both roll (lower left and
right plots).

The sliding, rolling, and impact of two balls are analyzed in detail with a simplified
model4. This model consists of a cue ball, an object ball, and a table. Moreover,
this particular model is also analyzed for the MPR algorithm in Section 6.1.4, and
is briefly discussed in Appendix B, see Figure B.9. Both balls are placed in touching
position with the table. There is a gap between the two balls (in x direction),
see Figure 8.4. The balls subside immediately into the table due to gravity (in z
direction), from 0.03 to about 0.029 996 m. The cue ball has initial velocity (in x
direction) and the object ball is at rest. The cue ball slides for about 0.15 s due
to the sliding friction force coefficient and the velocity is reduced. At the same
time, the sliding friction force acts as a torque around the ball center and forces a
rotation of the ball (around the y axis). Without the rotational resistance torque
coefficient it would be ideal rolling. At 0.55 s, the cue ball hits the resting object
4Modia3D.jl, v0.10.2, test/Collision/TwoCollidingBalls.jl



104 8 Applications and Critical Considerations

ball. The coefficient of restitution between the two balls is set to one. Therefore,
an ideal elastic collision takes place. This means, the cue ball transfers most of its
kinetic energy to the object ball that starts moving with the velocity of the cue
ball. The momentum is conserved. Therefore, the cue ball continues rolling and its
velocity rises from zero again. Both balls slide and then roll.

Some final remarks on this model: Due to numerical inaccuracies, the resulting
contact points and the signed distance may not be aligned to the final normal
direction. This results in unphysical behavior. For spheres and ellipsoids, this can
be corrected by recalculating the contact point and the resulting signed distance
in the final normal direction. For a detailed elaboration see Sections 6.2.2 and 8.3.
Moreover, this kind of application would be very time-consuming with a non-convex
contact algorithm, e.g., PCM.
In summary, Modia3D’s internal execution scheme is especially tailored for

collision handling. The user must ensure that an Object3D have collision features.
It is therefore a collision object that must be considered in all four collision handling
steps. It is determined during simulation if it collides with other collision objects.

8.3 Critical Considerations to Collision Handling with
Variable-Step Solvers

Collision handling is a complex task in which several problems can arise. The
state-of-the-art collision handling approach consists of three steps: broad phase –
approximation by bounding volumes, narrow phase – computation of Euclidean
distance or penetration depth, and response calculation – force law. In this thesis,
a single preprocessing step is added. For each collision handling step, there are
different approaches with comprehensive literature and a number of algorithms
to choose from. Each step has its individual advantages and disadvantages which
influence the upcoming steps. In order to create awareness, some problems of
collision handling in general and of collision handling with variable-step solvers in
particular are considered on the basis of well-chosen collision settings.

Preprocessing
Particular knowledge of the mechanical structure is required to reduce the number
of potential collision pairs in the upcoming steps. A once-off preprocessing step
analyzes the 3D-model.

• To prevent unnecessary collision checks, the first rule – rigidly attached
objects cannot collide – is introduced. This rule has no disadvantage.

• The second rule – objects connected by a joint cannot collide – is more
ambiguous. On the one hand, this rule avoids undesirable collision computa-
tions. Assume the following setting: two collision objects are connected via
a joint. Consequently, in the broad phase, their bounding volumes would
always overlap near this joint. This causes an execution of all upcoming
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collision steps. On the other hand, some collisions might not be detected.
Assume the following situation: two collision objects are shaped like two
gripping fingers and are connected via a joint. In other words, their end
effectors should still collide if necessary. To overcome this limitation, a user-
defined keyword is introduced to enable or disable this second preprocessing
rule.

Broad Phase
The purpose of the broad phase is to efficiently and simply detect potentially-
colliding objects. In this important selection step, each collision object is approxi-
mated by simple bounding volumes. Only if the bounding volumes intersect, the
computationally expensive narrow phase is executed. There are different types of
bounding volumes to choose from. The decision is a tradeoff between additional
storage, speed of intersection test, most tightly fitting, and ease of implementation.
Based on the discussion in this thesis, Axis-Aligned Bounding Boxes (AABBs)
are chosen. They are simple to implement and their intersection tests are fast.
Moreover, to further decrease the number of intersection tests performed in the
broad phase, AABBs could be extendable to Bounding Volume Hierarchy (BVH)
effortlessly. In this thesis, the distance between AABBs is used for zero-crossing
functions. Thus, it must be guaranteed that, the transition from non-penetrating to
penetrating objects and vice-versa can be always detected by variable-step solvers.
In rare cases, if some surfaces or edges of an object are also parallel to an axis, and
these objects happen to collide, they already touch each other. To avoid this, the
usually tight-fitting AABBs are enlarged by a specific factor of the longest edge to
loose-fitting AABBs. This leads to more computationally expensive collision tests
in the narrow phase. To further reduce these, more elegant loose-fitting AABBs
would be necessary.

Narrow Phase
In the narrow phase, a computationally expensive intersection test is performed.
There are several algorithms available to compute contact information for different
collision aspects. The decision is a compromise between the greatest possible
versatility in handling arbitrary geometries (shapes), computational effort and
sufficient accuracy for dynamic 3D simulations. Low-level intersection tests are not
adaptable enough because too many combinations of shape types would have to
be implemented. A volume discretization is an accurate computation for arbitrary
shapes, but it is computationally expensive. These considerations lead to minimizing
the computational effort and still obtaining sufficient contact information. The
contact information consists of a (unique) contact point on each shape, a penetration
depth or Euclidean distance, and a contact normal between the two colliding convex
shapes or their convex hull. Still, this contact information is a simplification of
collision situations, as some information is lost. The algorithms: Gilbert-Johnson--
Keerthi (GJK) algorithm, Expanding Polytope algorithm (EPA), and Minkowski



106 8 Applications and Critical Considerations

Portal Refinement (MPR) algorithm all compute the same contact information.
Instead of calculating the shortest distance between two convex shapes, they reduce
complexity and calculate the shortest distance between one convex shape and the
origin. This transforms a shape-to-shape distance problem into a shape-to-point
distance problem. In doing so, the two convex shapes are transformed into one
corresponding shape in the Minkowski Difference. However, all three algorithms
suffer from the same inherent limitations. In this thesis, the MPR algorithm is
chosen because it is relatively straightforward to implement.
One major limitation is the restriction to convex shapes and convex hulls of

concave shapes. This limitation excludes some collision settings. For example, as
the pipe’s convex hull is a cylinder, it is impossible to model a ball rolling through
a pipe. There are two workarounds for this restriction: approximate the pipe with
a convex decomposition or use another, more complex contact detection method.

Another problem arises from the simplification of collision situations and a loss of
contact information. Specifically, more contact information is required to describe
collisions adequately between two parallel surfaces of boxes, which results in contact
surfaces on each box. So, there are an infinite number of contact point pairs that lie
on the contact surface. It is obvious that, there exists no unique contact point on
each box. Of course, the algorithm will pick one valid solution. If, in addition, the
two parallel surfaces change their position due to numerical inaccuracies, this leads
to slightly different contact points. This issue also influences the upcoming response
calculation because it leads to discontinuous jumps and undesirable behavior of
the boxes. For example, the boxes may rotate instead of bouncing if the contact
points vary slightly. This can cause the collision simulation to fail. To overcome this
limitation and to deal with these types of collision situations appropriately, more
contact information must be available. One is to use little helper spheres attached
to the surfaces to get a point contact instead of a surface contact. Another is to
use the centroids of the emerging contact surfaces as contact points.
The existence of a unique contact point on each shape cannot be guaranteed.

Whether unique or ambiguous contact points occur depend on the collision shapes,
their relative position and their relative orientation.

• Unique contact points for two colliding boxes do not always exist. Their
existence depends on their relative orientation and relative position.

– As already discussed, there is no unique contact point on each box
for two parallel touching surfaces.

– There is a unique contact point on each box if a vertex touches a
surface.

• There are always unique contact points if at least one collision shape is a
sphere or an ellipsoid, regardless of their orientation and position.

Another drawback concerns the definition of the translational penetration depth,
which can lead to discontinuities for dynamically moving objects. These disconti-
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nuities are depicted on the basis of two collision situations that are discussed in
more detail for the improved MPR algorithm in Section 6.2.2.

• The definition of the penetration depth is based on pure geometric properties.
There is no information about dynamic movement. Thus, discontinuities
occur, for instance when a bullet is penetrating an object. If the bullet is
too far inside the object, the penetration depth is no longer aligned with
the penetration in the direction of motion. This leads to a discontinuous
jump of the penetration depth and contact points. There are algorithms
to overcome this limitation, which take the movement of past geometric
properties into account. To prevent this issue, only small penetrations are
considered in this thesis.

• Discontinuities appear for non-smooth shapes, and the penetration depth
jumps on edges and vertices, e.g., a sphere rolling uniformly over an edge
or vertex of a box. Again, the penetration depth and contact points jump
discontinuously. To avoid this, collision smoothing radii are introduced to
smooth these edges.

Furthermore, in this thesis several major improvements to the MPR algorithm
are made. For a detailed discussion of these enhancements, see Section 6.1.5. Among
others, four considerable findings are highlighted here once more.

• The improved MPR algorithm verifies if one or both collision objects are
degenerated into a 2D geometry. Since, this work is devoted to the behavior
of 3D objects, there is no need for a 2D collision algorithm.

• To avoid infinite looping and once the maximum number of iterations is
reached or, if further refinement fails, the improved MPR algorithm is
terminated with the best found solution so far. Otherwise, the last solution,
which is not necessarily the best solution, is chosen. In some rare situations,
this led to discontinuous jumps of contact points.

• Due to numerical issues, the resulting contact points and the signed distance
may not be aligned to the final normal direction. For shapes such as spheres
and ellipsoids, with locally bijective contact points to their normal, this can
be remedied by recalculating the contact point in the final normal direction
and the resulting signed distance. Further research needs to be conducted
for the other kind of shapes.

• Since the MPR algorithm is numerically sensitive, it is performed with
quadruple precision to increase robustness and reliability when variable-step
solvers are used.

Collision Response
Some critical considerations to the fourth collision handling step – the collision
response – are highlighted. As always, depending on the application, there are
different force laws to choose from. In this thesis, the force law considers several
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physical aspects. It uses elastic material laws that are based on the theory of Hertz
for elastic shapes. The force law is based, among others, on the penetration depth
and the penetration velocity. The physical behavior and material of the shapes are
reflected in some coefficients. Especially one coefficient, a rough approximation
for principal curvatures, is computed approximately based on the contact theory
of Hertz. A sphere with constant radius can be associated with any shape. This
artificial radius is used to calculate the coefficient. The default value of this radius
is based on the geometry of the shape. The problem with this simplification is that
not every shape has an associated radius. So, with a cylinder, for example, it is a
compromise between diameter and length. To address this issue, the user is allowed
to change this value.
A continuous penetration depth must be ensured, otherwise small changes and

discontinuities during a solver step, can result in totally different contact points,
and thus an unphysical behavior.

In summary, the collision handling method presented here, which uses variable-
step size solvers and the use of penetration depth, will most likely only work
reliably for continuously varying point contacts and penetration depth. In the here
presented approach, only solid material and collision material pairing must be
defined by the user.
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9 Varying Number of States before
Simulation

In traditional object-oriented modeling languages, especially Modelica, variable
types and array sizes are precisely defined. Although a state is a vector, it is de-
composed into scalars when transformed from a DAE to an ODE. This information
is used for symbolically analyzing the structure of DAEs to generate and compile
code. Thus, it is impossible to vary the length of a state afterwards.
Contrary, Modia’s symbolic and simulation engine can handle models where

the number of states can be varied after the model code has been generated and
compiled and before the simulation starts. To that end, Modia takes full advantage
of the Julia language. Julia has a very extensive type system with type inference.
The goal of the Modia language is to use all these underlying variable types of
Julia instead of replicating them. As a result, the Modia language and the Modia
symbolic transformations do not have the complete information about the variable
types until it is determined in the Julia compiler inference run. In particular,
variable sized matrices and vectors of parameters and variables defined with init
or start attributes can be varied before simulation starts. The upcoming procedure
is already published by Neumayr and Otter (2023a).
A Modia model defines a set of unknown variables, a set of equations, and a

set of known variables (parameters). It is not necessary to know the type of the
variables. An unknown variable can also be an instance of a mutable Julia structure.
The basic requirement is that the number of unknown variables and the number
of equations must be equal. For example, if a variable is a vector, there must be
an equation to calculate this vector. Whether this requirement is fulfilled or not,
can be only determined when the model code is generated or even only during
execution. Also, a variable is usually treated as one symbol and the associated
equation as one symbol equation, even if the symbol is an array (Lines 543 to 544).
An array equation must be defined for an array variable. Furthermore, an array
must be declared with an init or start array value if its size cannot be inferred.
A model with correct array handling is given in Lines 539 to 545. Contrary, in
Lines 546 to 552, the array handling is wrong. The reason is the sizes cannot be
inferred and there is no array equation.
539# Correct code
540m1 = Model(
541 v = Var(init=zeros(2)), # size of v cannot be inferred --> init needed
542 equations = :[

111
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543 a = der(v) # size of a can be inferred
544 m*a = [2.0, 3.0]] # array equation for a
545)

546# Wrong code
547m2 = Model(
548 equations = :[
549 wd = der(w) # sizes of w, wd cannot be inferred
550 m*wd[1] = 2.0 # no array equation for wd
551 m*wd[2] = 3.0]
552)

Consequently, the size of a variable does usually not affect symbolic transforma-
tion or code generation. The equations generated are basically the same regardless
of whether a variable is a scalar or has, e.g., 10, 000 elements. All this differs from
current Modelica tools, where variables and equations are usually decomposed
before symbolic transformation takes place. This means, an array with 10, 000
elements is replaced by 10, 000 scalars, so that 10, 000 symbols are used in symbolic
transformations.
The array sizes of parameters and of variables defined with init or start

attributes can be varied in Modia after code generation, unless they are defined
as static arrays. A model with static and variable array equations is given in
Lines 553 to 573. Matrix A1 and vector y1 are arrays with static size. Such arrays
and dimensions cannot be varied after compiling if @instantiateModel was called.
Contrary, matrix A2 and vector y2 are standard Julia arrays with variable sizes.
Their dimensions can be varied after compiling with the merge attribute of the
simulate! command.
553using StaticArrays # needed for statically sized SVector and SMatrix
554LinearODEs = Model(
555 # matrix A1 and vector y1 with static size
556 A1 = parameter | SMatrix{2,2}([-1.0 0.0;
557 0.0 -2.0]),
558 y1 = Var(init = SVector{2}(1.0, 2.0)),
559 # matrix A2 and vector y2 with variable size
560 A2 = parameter | [-1.0 0.0;
561 0.0 -2.0],
562 y2 = Var(init=[1.0, 2.0]),
563 equations = :[
564 der(y1) = A1*y1 # static array equation
565 der(y2) = A2*y2]) # variable array equation
566linearODEs = @instantiateModel(LinearODEs) # generate and compile code
567simulate!(linearODEs, stopTime = 2,
568 # vary sizes of parameter A2 and variable y2
569 merge = Map(
570 A2 = [-1.0 0.0 0.0;
571 0.0 -2.0 0.0;
572 0.0 0.0 -3.0],
573 y2 = [1.1, 2.1, 3.1]))
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When executing the linear ODE model (Lines 553 to 573) Modia generates
the function getDerivatives (Lines 576 to 586). Since the model uses static and
variable sized arrays, the generated function getDerivatives allocates memory on
the stack and on the heap.

574# _x ... states vector from solver
575# model ... instantiated simulation model
576function getDerivatives(_x, model, time)
577 ...
578 p = model.evaluatedParameters # hierarchical dictionary
579 A1::SMatrix{2,2,Float64,4} = p[:A1] # p[:A1] is the value of symbol :A1
580 A2::Matrix{Float64} = p[:A2]
581 y1 = SVector{2,Float64}(_x[1], _x[2])
582 y2 = model.x_vec[1]
583 der(y1) = A1 * y1
584 der(y2) = A2 * y2
585 ...
586end

Due to Julia’s multiple dispatch, it is distinguished at compile time that A1 * y1
(Line 583) is a static array and A2 * y2 (Line 584) is a variable array. This follows
from: A1 and y1 are static arrays and operator * is overloaded. Therefore, a static
SVector array der(y1) is generated and allocates memory on the stack, i.e., fast
memory. Operations on SVectors are efficiently implemented in StaticArrays.jl
package (JuliaArrays, online). New arrays needed for calculations are automatically
rebuilt on the stack. For example, the statically sized state vector y1 is always
newly regenerated by using the corresponding elements from the model state vector
_x in the SVector constructor.

In contrast, auxiliary memory model.x_vec[1] is allocated for the state vector
y2 when the merge attribute has been processed (Line 582). Before calling function
getDerivatives, the corresponding elements of the model state vector _x are
copied into model.x_vec[1]. The generated array equation code does not depend
on the array sizes of the variables involved.

On the one hand variable sized arrays, can vary their dimensions after compiling
and before simulation starts. But they allocate new memory which might reduce
efficiency. On the other hand, static sized arrays are implemented efficiently but
their dimensions cannot be varied. In summary, static and variable sized arrays
with their pros and cons are discussed above.





10 Varying Number of States during
Simulation

A new general method for handling equation-based models with variable structure
systems is introduced. States and other variables can be added and removed
during simulation, without regenerating and recompiling the model code. This new
approach is established in a generic mathematical way. Subsequently, it is specified
to be used in Modia and Modia3D. In principle, the method can also be used for
other modeling systems, e.g., in an extended version of Modelica. This noteworthy
method is already published by Neumayr and Otter (2023a).

To simplify the description and focus on the new technique, time discrete systems,
time events, event iteration, and super-dense time (see e.g., Modelica Association,
2021, Appendix B; FMI Project, 2014, Section 3.1) are not discussed in this thesis.
However, in the Modia package these features are included.
This chapter relies on the fundamental concepts for equation-based modeling,

especially symbolic transformation, see Chapter 2. In Section 10.1 so-called pre-
defined acausal components are introduced. These are acausal components with
pre-translated functions, internal memory and remaining equations. A novel proce-
dure in Section 10.2 utilizes these predefined acausal components. This procedure
allows to dynamically vary the number of variables, including algebraic variables
and states as well as the number of equations during simulation. The re-initialization
and the redefinition of states and their start values is performed on-the-fly, without
recompiling.

10.1 Predefined Acausal Components
Predefined acausal components1 are based on acausal components, see Sec-
tion 10.1.1. The equations of an acausal component can be split into causal and
acausal partitions consisting of pre-translated functions and remaining equations,
see Section 10.1.2. These pre-translated functions calculate states, their derivatives
and event indicators which are hidden in an internal memory. This memory with
the hidden states is crucial to be utilized for variable structure systems. Acausal

1Neumayr and Otter (2023a) refer to these components as acausal built-in components. Neumayr
and Otter (2023b) decide to rename them to predefined acausal components to be more
descriptive.
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components with pre-translated functions, internal memory and remaining equa-
tions are called predefined acausal components, see Section 10.1.3. An illustrative
application of a predefined acausal component is discussed in Section 10.1.4. An-
other application of a heat transfer in a rod shows how to split the equations into
causal and acausal partitions, see Section 10.1.5.

10.1.1 Acausal Components
The basis of simulating variable structure systems are acausal components. An
acausal component can be connected with other components via inputs, outputs,
and connectors containing pairs of potential variables and flow variables. At events,
variable values can change discontinuously.

The mathematical description of an acausal component (10.1)

0 = fc (ẋ, z,w, cp, cf ,y,x,u,p, t) , (10.1)

is a set of DAEs, where

t ∈ R time, (10.2a)
p ∈ Rnp parameters, (10.2b)
u(t) ∈ C0

pw(R)nu inputs, (10.2c)
x(t) ∈ C1

pw(R)nx continuous states, (10.2d)
y(t) ∈ C0

pw(R)ny outputs, (10.2e)
cf (t) ∈ C0

pw(R)nc flow variables, (10.2f)
cp(t) ∈ C0

pw(R)nc potential variables, (10.2g)
w(t) ∈ C0

pw(R)nw local variables, (10.2h)
z(t) ∈ C0

pw(R)nz event indicators, (10.2i)

with minimal smoothness requirements23. Variables in greenish color are assumed
to be known: time t and states x are provided by the solver, p are parameters that
get constant values before the simulation starts, u are inputs and are provided
externally to the component. Unknowns are ẋ, z,w, cp, cf ,y. Figure 10.1 depicts
the acausal component’s interface.
2Definitions: Let R be the set of real numbers and assume k ∈ N0. Ck(R) is the space of
functions which are k times continuously differentiable in R. This means, C1(R) is the
function space of 1 time continuously differentiable functions. C0(R) is the function space of
continuous functions. Furthermore, due to events there are discontinuous jumps. C1

pw(R)n is
the space of piecewise (pw) 1 time continuously differentiable functions in n dimensions, as
well as C0

pw(R)n is the space of pw continuous functions in n dimensions. See e.g., Steinbach
(2007) for further details.

3Higher smoothness might be required (see e.g., Campbell, Linh, and Petzold, 2008). It depends
on the component’s connection and on the structure of the equations (10.1).
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(10.1)

p

u

y

cp
cf

ODE solver

t x ẋ z

Figure 10.1: Mathematical description of an acausal component with (10.1)
and (10.2). It can be connected with other components via its interface for inputs,
outputs, and connectors.

To solve (10.1) for its unknowns, nc equations are missing. These nc missing
equations are provided in (10.3) when connecting the component via the connection
equations of cp, cf . The connected potential variables are set equal and the sum
of the connected flow variables is set to zero. A connector has only corresponding
pairs of potential and flow variables to ensure that each connection of acausal
components is globally balanced. In other words, the number of equations and the
number of unknowns of any set of connected components are equal, assuming that
each component is locally balanced. A component is locally balanced (Olsson et al.,
2008), if

dim(cp) = dim(cf ) = nc,

dim(fc) = ny + nc + nw + nz.
(10.3)

The equations of all components of a model, together with the connection
equations form a set of DAEs4. The set of DAEs is transformed into a set of ODEs
and is solved by an ODE solver. In each model evaluation, the time t and the
continuous states x are provided to the model by the solver. Using the symbolically
transformed equations, the derivative of the states ẋ and the event indicators z
are calculated and returned to the solver.

10.1.2 Acausal Components with Pre-translated Functions
Elmqvist (2019, pp. 7–10) proposes a generic method to split the equations of an
acausal component (10.1), (10.2) into causal and acausal partitions. The causal
4The equations in the equation section of a Modelica model or the equations in the equations
vector of a Modia model belong to the system of algebraic equations.
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partitions are sorted (causalized), pre-translated and always evaluated in the
same order, regardless of the component’s connection to other components. The
unknowns are evaluated. In contrast, the sorted order of the acausal partition
depends on the component’s actual connection.

Assume, potential and flow variables are present in a component. These or parts
of them are often supplied externally. To prepare for all these cases, nc dummy
equations

0 = gc(cp, cf ) (10.4)

are defined, where each element of each argument appears in each equation of (10.4).
So, (10.4) has full incidence in all of its arguments. Mathematically speaking, (10.4)
defines a large number of potential connection possibilities of a component. Let
x,u,p, t be known. (10.1) and (10.4) are sorted by using only structural informa-
tion5. This leads to the system of algebraic equations (10.5)

0 = fc,eq(. . .) (10.5)
0 = gc(. . .),

where fc,eq is subset of fc. Since (10.4) has full incidence, all equations of (10.4) are
included in (10.5). Moreover, (10.5) represents the acausal part of the component.
These equations are needed to calculate all arguments of (10.4), i.e., the potential
and flow variables.
All other sorted equations do not depend on how the component is connected.

Equations that appear in the sorted order before fc,eq can be included in a function
fc,1 (10.6a). Equations that appear in the sorted order after fc,eq can be included
in a function fc,2 (10.6c). Within functions fc,1, fc,2, there may be local linear
and/or nonlinear algebraic equations to solve. Removing equations for gc (10.4)
from the sorted equations leads to the mathematical description of a general acausal
component (10.6)

(ẋ1, z1,w1, cp1 , cf1 ,y1) = fc,1(x,u,p, t) (10.6a)
0 = fc,eq(ẋeq, zeq,weq, cpeq , cfeq ,yeq, (10.6b)

ẋ1, z1,w1, cp1 , cf1 ,y1,x,u,p, t)
(ẋ2, z2,w2, cp2 , cf2 ,y2) = fc,2(ẋeq, zeq,weq, cpeq , cfeq ,yeq, (10.6c)

ẋ1, z1,w1, cp1 , cf1 ,y1,x,u,p, t).

Functions fc,1, fc,2 can be translated once in advance. So, these two functions are
pre-translated. The remaining equations fc,eq are solved with the overall model.
The sorted order of (10.6) will be kept. The unknown variables ẋ, z,w, cp, cf ,y
of (10.1) are split into three parts, e.g., y = (y1,yeq,y2). All inputs of fc,1 are

5In other words, a variable occurs or does not occur in an equation (see e.g., Elmqvist and
Otter, online[a], Sections 1.1–1.4).
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known, so the unknowns of (10.6a) are evaluated straightforwardly. After equations
fc,eq are solved together with equations of the overall model, all inputs of fc,2 are
known to evaluate the unknowns of (10.6c). The yellow variables will be moved
into an internal memory in Section 10.1.3. Figure 10.2 depicts the interface of the
acausal component with pre-translated functions and remaining equations.

(10.6a)
(10.6b)
(10.6c)

p

u

y = (y1,yeq,y2)

cp = (cp1 , cpeq , cp2 )
cf = (cf1 , cfeq , cf2 )

ODE solver

t x = (x1,xeq,x2) ẋ = (ẋ1, ẋeq, ẋ2) z = (z1, zeq, z2)

Figure 10.2: Description of an acausal component with pre-translated functions
fc,1 (10.6a), fc,2 (10.6c) and remaining equations fc,eq (10.6b). This component has
the same interface as Figure 10.1 and can be connected via u,y, cp, cf . Unknown
variables ẋ, z,w, cp, cf ,y are split into three parts.

It is impossible to find a general partitioning with pre-translated functions which
is suitable for all possible connections. For example, an input/output block is a
component without potential and flow variables. On the one hand, the inputs
are usually externally supplied. The outputs are calculated from the component
equations. Partitioning is performed for this general situation. All equations are
sorted and evaluated for the unknowns. Thus, all code can be pre-translated. On the
other hand, if the inverse of an input/output block is to be determined, the outputs
are externally supplied. The inputs are calculated from the component equations.
It may not be possible to determine this inverse model with a pre-translated block.
Additional differentiations of equations and derivatives of some inputs might be
required. Furthermore, if the whole code of a pre-translated block is contained in
one function, a system of algebraic equations can occur when the block is connected.
It is difficult to decide whether all causal code should be in one function or whether
it is split into more functions, as the example of (FMI Project, 2014, page 73,
Figure 5) shows. So, it is impossible to split an acausal component into causal
and acausal partitions that are suitable for all possible connections. Rather, the
most important use cases of component’s connections must be known. Then such
a partitioning can be created for these applications.
The advantage of an acausal component like in (10.6) is that fc,1, fc,2 can be

translated once in advance. This allows the symbolic transformation of an overall
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model and generating and compiling of code to be done much more efficiently than
with the original formulation of (10.1).

10.1.3 Predefined Acausal Components
Predefined acausal components are acausal components with pre-translated func-
tions, internal memory and remaining equations. The pre-translated functions
calculate states, their derivatives and event indicators to store and hide them in an
internal memory. This means that they are no longer visible in the model equations.
However, they are still passed on to the solver. Furthermore, states and event
indicators are split into invariant and variant parts. The communication between
them, the functions of predefined acausal components, sorted and solved equations,
and the solver are described below. These are prerequisites to be used for variable
structure systems.

The mathematical description of a general acausal component with pre-translated
functions (10.6) is modified. Therefore, the yellow variables of (10.6) are stored in an
internal memory m of a program. These variables are referred to as hidden variables.
This leads to the description of a general predefined acausal component (10.7)

(w3, cp1 , cf1 ,y1) = fc,1(m,xeq,u,p, t) (10.7a)
0 = fc,eq(ẋeq, zeq,weq, cpeq , cfeq ,yeq, (10.7b)

w3, cp1 , cf1 ,y1, m,xeq,u,p, t)
(cp2 , cf2 ,y2) = fc,2(ẋeq, zeq,weq, cpeq , cfeq ,yeq, (10.7c)

w3, cp1 , cf1 ,y1, m,xeq,u,p, t),

with pre-translated functions fc,1 (10.7a), fc,2 (10.7c), an internal memory m and
remaining equations fc,eq (10.7b) that are solved with the overall model. The sorted
order of (10.7) will be kept. Unlike in (10.6), fc,1, fc,2 are no longer mathematical
functions since the memory m is both an input and an output argument to these
functions. The memory m is exchanged between fc,1 and fc,2. States x1,x2 are
copied from the solver to the memory m by fc,1. Moreover, fc,1, fc,2 evaluate state
derivatives ẋ1, ẋ2 and event indicators z1, z2 and copy them from the memory to
the solver. A memory is added to the component’s interface in Figure 10.3.
There are issues with (10.7). The states x, as well as the output variables

ẋ1, z1,w1 of function fc,1 are (possibly) present in fc,eq. It would then not be
possible to add or remove these variables during the simulation without code
regenerating. If this happens, retransformations are needed. An issue of (10.7) is
that parts of the equations in fc,eq are calculated using the memory. The variables
ẋ1, z1,w1,x1,x2 in fc,eq are no longer visible. It may be necessary to hide some
of these variables in (new) local algebraic variables w3, which are returned by fc,1
and used in fc,eq. Another issue of predefined acausal components is that fc,1, fc,2
cannot be differentiated due to their internal memory.
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(10.7a)
(10.7b)
(10.7c)

p m = fc,0(sim, ID,p)

u

y = (y1,yeq,y2)

cp = (cp1 , cpeq , cp2 )
cf = (cf1 , cfeq , cf2 )

ODE solver

t x = (mx1 ,xeq, mx2 ) ẋ = (mẋ1 , ẋeq, mẋ2 ) z = (mz1 , zeq, mz2 )

Figure 10.3: Description of a predefined acausal component with pre-translated
functions fc,1 (10.7a), fc,2 (10.7c), an internal memory m, and remaining equations
fc,eq (10.7b). It has the same interface as Figures 10.1 and 10.2. Moreover, m =
fc,0(sim, ID,p) is an instance of the predefined acausal component. It is constructed
before simulation starts with a given reference to the simulation engine sim, a
unique identification ID of the instance, and parameters p. The hidden state
derivatives mẋ1 are evaluated in fc,1 and mẋ2 in fc,2. In some cases, it is necessary
to introduce new local algebraic variables e.g., to hide state variables in fc,eq.

The first prerequisite towards variable structure systems is that the states x1,x2,
their derivatives ẋ1, ẋ2, and event indicators z1, z2 are hidden in a memory and are
not visible in the model equations. Moreover, the code parts for the pre-translated
functions fc,1, fc,2 exist only once, regardless of the number of instances from the
predefined acausal component. Additionally, the used arrays operate on memory
allocated once, rather than in each model evaluation. Consequently, the effort for
symbolic transformations can be drastically reduced.
The second prerequisite for variable structure systems is explained in the fol-

lowing: The variables (states x and event indicators z) communicated between
the solver, the sorted and solved equations and the functions of the predefined
acausal components are split into an invariant and variant part: x = (xinv,xvar),
z = (zinv, zvar), see Figure 10.4. Before the simulation starts, the dimensions of the
invariant parts are defined. During simulation, the dimensions of the variant parts
can vary at events. The variables are characterized by the following attributes:

• invariant (inv): Variable name, type and number of dimensions are fixed
before code generation. All variables defined and used in an equation section
are invariant variables. This includes all input/output arguments of the
called functions. The dimensions of invariant variables (e.g., length of a
vector) can be varied before simulation starts. The solver returns xinv to
the model function, which contains the sorted and solved equations. The
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elements of xinv are copied into the elements of the invariant state variables
of the model. The calculated derivatives of the invariant state variables are
copied into ẋinv and the calculated invariant event indicators are copied
into zinv before the model function is returned.

• variant (var): At events, new variables can appear and existing variables can
disappear. The type and number of dimensions of a variant variable cannot
be varied after it has been introduced for the first time in a simulation run.
However, its dimensions (e.g., the length of an array) can be varied at events.
All model variables defined in pre-translated functions of predefined acausal
components are variant variables. Before using variant state variables of
a model in a predefined acausal component’s function, their elements are
retrieved from the solver’s vector xvar. After calculating the derivatives of
the variant state variables of a model, they are copied into the solver’s vector
ẋvar.

As defined, all variables in the sorted and solved equations must be invariant
variables. This includes all input/output arguments of the predefined acausal
component functions. Under these constraints it is possible to sort and solve the

sorted and solved
equations

functions of
predefined acausal

components

solver
ẋ = f(x, t)
z = z(x, t)

x = (xinv,xvar)
z = (zinv, zvar)

xinv, t xvar, t

ẋinv, zinv ẋvar, zvar

Figure 10.4: Communication between the solver, the sorted and solved equa-
tions, and the functions of the predefined acausal components. States x and event
indicators z are split into an invariant and a variant part: x = (xinv,xvar),
z = (zinv, zvar). The variant parts consist of the states xj,1,xj,2 and event indi-
cators zj,1, zj,2 defined and used in the causal partitions of all predefined acausal
components j, see (10.7). Before simulation starts, the dimensions of the invariant
parts are fixed. During simulation, the dimensions of the variant parts can vary at
events.
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equations of all components as well as predefined acausal components to generate
and translate code. Furthermore, two conditions must be fulfilled:

1. The symbolic transformation algorithms treat an array as one symbol (see
Chapter 9).

2. No function of a predefined acausal component is differentiated.
As a consequence, all names, types and number of dimensions of all interface
variables of a component (u,y,p, cp, cf of (10.1)) must be defined before code
generation starts and cannot be varied afterwards.
Summarizing, there are two prerequisites towards variable structure systems.

First, predefined acausal components are acausal components using pre-translated
functions with an internal memory and remaining equations to be solved with the
overall system. Second, states and event indicators are split into invariant and
variant parts. Furthermore, the variant parts are hidden in an additional memory
and are not visible in the model equations, but they are still passed on to the
solver.

10.1.4 Application: Capacitor
For a better understanding of predefined acausal components, an academic example
of a simple electrical capacitor is discussed. For comparison, there are three different
versions of a capacitor model (Figure 10.5). All three versions use the three
equations (10.8) for an equation-based capacitor model

0 = pi + ni

v = pv − nv
C v̇ = ni,

(10.8)

with potential variables pv, nv (electrical potentials) and flow variables pi, ni (elec-
tric currents), parameter C, and state v (difference between electrical potentials).

pv
p
pi

v

C

nv
n

ni

Figure 10.5: Equation-based model of a capacitor with connectors p, n.

Version 1: It is a pure equation-based model with equations (10.8). This version
is discussed in Section 3.1.2, Lines 34 to 42 (Page 20).

Version 2: (Table 10.1, Left): It is an acausal component with purely mathematical
functions, as introduced in Section 10.1.2.
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Version 3: (Table 10.1, Right): It is a predefined acausal component with functions
of a program with internal memory, as described in Section 10.1.3. It is implemented
in form of pseudo code snippets. Function fc,0 of the predefined acausal component
(Table 10.1, Right) is called once during setup of the simulation run. This function
allocates a data set or structure containing the internal memory m for the component
and copies the parameters to this memory.
The formulation of a capacitor as a predefined acausal component (Version 3)

has no benefits. This is because the equation part has 4 equations and the function
bodies are tiny. Whereas the pure equation-based model (Version 1) consists only
of 3 equations. If two capacitors, which are both defined as predefined acausal
components, are also connected in parallel, both capacitors supply the respective
state w1, w2 from function fc,1. This results in an overdetermined equation system
with three equations for two unknowns, as the parallel connection introduces a
further equation w1 = w2. Such a model is therefore rejected. Due to the parallel

Table 10.1: The capacitor is defined as: (Left): a component with mathematical
functions. (Right): a predefined acausal component with functions of a program with
an internal memory m to hide the state and the state derivative of the component
in the equation section.

Component Predefined Acausal Component
with math. functions with functions of a program and memory

Equation
section

w = fc,1(v)
w = pv − nv
0 = pi + ni

v̇ = fc,2(C, ni)

w = fc,1(m)
w = pv − nv
0 = pi + ni

fc,2(m, ni) # no return argument

function fc,0(sim, ID, C) # called once
# allocate new memory m
msim := sim; mID := ID; mC = C

return m

function fc,1(v) function fc,1(m)
Function
definitions

return v # copy mv from states in msim for mID

return mv

function fc,2(C, ni) function fc,2(m, ni)
return ni/C mv̇ := ni/mC

# copy mv̇ into state derivatives
# of msim for mID
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connection, w2 can be calculated from w1. Thus, w2 cannot be a state as defined in
the predefined acausal component. In a more realistic simulation model, a capacitor
would be implemented as in Version 1.

To sum up, a simple capacitor model is used to illustrate the principle of
predefined acausal components. Furthermore, the difference between a component
with pure mathematical functions and a component with functions and additional
memory is shown.

10.1.5 Application: Heat Transfer in a Rod
A more realistic application – heat transfer in a rod – illustrates how to split the
equations into equations which can be evaluated independently of the component’s
connection and an equation system which is symbolically transformed with all other
equations of the overall model, i.e., in a causal and in an acausal part. Furthermore,
it demonstrates how users can create their own predefined acausal components. The
generic procedure is exemplified for an equation-based model of a one-dimensional
heat transfer in a rod6 with n discretized elements. This application does not use
segmented simulation (Section 10.2) but it would be straightforward to extend.
Neumayr and Otter (2023a) and Neumayr and Otter (2023b) already published
the upcoming considerations.

All equations and parameters for this model can be found in Modelica by Example
by Tiller (online). Parameters are

k1 =
λ

∆x
c%∆x

, (10.9)

k2 = 2λA
∆x

, (10.10)

where % is the density, c is the specific heat capacity, and λ is the thermal con-
ductivity. L is the length of rod. The rod is discretized in space by elements
Vi = ∆x ·A, i = 1, . . . , n of equal lengths ∆x and equal areas A. In the center of
element Vi, a temperature Ti with initial values Ti(t = t0) = T0 in each element is

T1 Ti−1 Ti Ti+1 Tna b
aT bT

aQflow bQflow

∆x = L/n

Figure 10.6: Space discretized partial differential equation of one-dimensional
heat transfer in a rod with insulated surface.
6Modia.jl, v0.12.0, models/HeatTransfer.jl
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defined. This results in a temperature array T = [T1, T2, . . . , Tn]. a, b are thermal
connectors with potential temperatures aT , bT and heat flow rates aQflow , bQflow .
The discretized rod is shown in Figure 10.6.

The equations for the thermal connectors a, b (10.11)

aQflow = k2(aT − T1) (10.11a)
bQflow = k2(bT − Tn) (10.11b)

are the acausal and invariant part of the predefined acausal component. These
equations (10.11) are symbolically transformed with all other equations of the
overall model, since there is no prior knowledge of whether aQflow or aT and bQflow
or bT respectively are treated as known variables.
The equations of the state derivatives Ṫi (10.12) of the node temperatures

Ṫi = k1


2(aT − T1)− (T1 − T2) i = 1
(Ti−1 − Ti)− (Ti − Ti+1) i = 2, . . . , n− 1
(Tn−1 − Tn)− 2(Tn − bT ) i = n

(10.12)

are the causal part of the predefined acausal component because these equations
do not depend on how the rod is connected. The potential temperatures aT , bT
are inputs to this equation system. Thus, (10.12) is always evaluated by providing
Ti, i = 1, . . . , n from the solver and aT , bT as inputs. Temperature derivatives
Ṫi, i = 1, . . . , n are calculated from (10.12) and communicated directly to the
solver. Therefore, the number of discretized elements and thus the number of state
derivatives equations can vary. These equations (10.12) are passed directly to the
solver and are hidden from the sorted and solved equations of Modia.
In the here discussed application (Lines 587 to 602), the rod is completely

insulated on the right-hand side and has a fixed temperature on the left-hand
side. This means, the rod is connected on the left side with a fixed temperature
source T = 220 °C = 493.15 K (Line 589), and on the right side with a fixed heat
flow source with Qflow = 0 (Line 591) via thermal connectors (Lines 595 to 597).
The initial temperature is T0 = 0 °C = 273.15 K in each discretized element. The
model is symbolically transformed (Line 600) and Julia code is generated. For
this predefined acausal component, it is possible to vary the number of discretized
elements n, after compiling but before simulation starts. For this model, the number
of discretized elements is varied from 5 to 8 (Line 602). This varies the dimension
of the temperature array, and the number of state derivates (10.12). Now, the
whole model is known and (10.11) can be solved. The rod is connected on the
left side with a fixed temperature source. Therefore, the potential temperature
aT is known and T1 is also provided since it is a state. Thus, aQflow is computed
from equation (10.11a). On the right side of the rod, the heat flow rate bQflow = 0
is known. During symbolic transformation, equation (10.11b) is transformed to
bT := Tn, since bQflow is known and Tn is a state. The temperature behavior for
each discretization element is displayed in Figure 10.7.
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Figure 10.7: Temperatures at the temperature source and in the 8 discretized
elements of heated rod.

587HeatedRod = Model(
588 # temperature source
589 fixedT = FixedTemperature | Map(T=493.15),
590 # heat flow source
591 fixedQflow = FixedHeatFlow | Map(Q_flow=0.0),,
592 # insulated rod with 5 elements
593 insRod = InsulatedRod | Map(T0=273.15, n=5),
594 # connecting the components
595 connect = :[
596 (fixedT.port, insRod.portA),
597 (insRod.portB, fixedQflow.port)]
598)
599# generate and compile Julia code
600heatedRod = @instantiateModel(HeatedRod)
601# vary to 8 elements and simulate model
602simulate!(heatedRod, stopTime = 1e5, merge=Map(insRod = Map(n=8))

A predefined acausal component is specified at the beginning of the model with
two necessary parameters that define functions for symbolic transformation and
simulation (Lines 603 to 613).

• _buildFunction (Line 606): Before symbolic transformation, the hierar-
chical dictionary of the model is run through. For each sub-model, the
function defined by _buildFunction is executed once. First, this function
defines additional model variables and equations which are merged with the
corresponding model. Second, it returns an instance of the Julia structure,
which acts as the internal memory of the component.

• _initSegmentFunction (Line 608): This function is called by the simula-
tion engine before the model is initialized. Additionally, this function is
called before the model is re-initialized in each new simulation segment if
the predefined acausal component is used for segmented simulations, see
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Section 10.2. In both cases, it is necessary to redefine all local variables
of the predefined acausal component model, including states, zero-crossing
functions, and initial values for the newly defined states.

Furthermore, the acausal component defines parameters and connectors of the
component. Contrary, to a standard Modia component, no equations are defined.

603# predefined acausal component
604InsulatedRod = Model(
605 # called once before symbolic transformation
606 _buildFunction = Par(functionName = :(buildInsulatedRod!)),
607 # called before each new simulation segment
608 _initSegmentFunction = Par(functionName = :(initSegmentInsulatedRod!)),
609 # parameters
610 L = 1.0, T0 = 293.15, n = 1, A = 0.0004, rho = 7500.0, ...,
611 # connectors
612 portA = HeatPort, portB = HeatPort
613)

The buildInsulatedRod! function (Lines 614 to 628) is defined by the first
necessary parameter _buildFunction of a predefined acausal component. At the
beginning this function is executed once. It merges the actual InsulatedRod
component (Lines 603 to 613) with additional model definitions consisting of
two variables and several equations. Finally, it returns the merged model and
instantiates the internal memory of the component (Line 627). The predefined
acausal component is identified by a unique ID. It also identifies the internal
memory. The ID is specified in the function call. The $ID is inside an AST, due
to :[...] and $ inserts the actual (literal) value at this place. The temperature
states T of the rod are copied into the InsulatedRodStruct memory (Line 621).
The invariant equations (10.11) at the boundaries are defined in Lines 622 to 624.

614function buildInsulatedRod!(model, ID, ...)
615 model = model | Model(
616 # instance of an internal struct
617 rod = Var(hideResult = true),
618 success = Var(hideResult = true),
619 equations = :[
620 # copy states into rod
621 rod = openInsulatedRod!(m, $ID)
622 # equations at the boundaries (invariant)
623 portA.Qflow = rod.k2*(portA.T - rod.T[1])
624 portB.Qflow = rod.k2*(portB.T - rod.T[end])
625 # function to evaluate state derivatives (variant)
626 success = evaluateStateDerivatives!(m, rod, portA.T, portB.T)])
627 return (model, InsulatedRodStruct())
628end

The state derivatives (10.12) of the temperature are evaluated directly (Lines 630
to 639). They are copied into the state derivative vector of the internal memory.
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These equations are independent from the number of discretized elements n. There-
fore, the number of discretized elements can be changed without regenerating and
recompiling.

629# evaluate state derivatives and copy into memory
630function evaluateStateDerivatives!(m, rod, aT, bT)
631 T = rod.T, k1 = rod.k1, n = length(T)
632 rod.derT[1] = k1*(2*(aT-T[1])-(T[1]-T[2]))
633 rod.derT[n] = k1*(T[n-1]-T[n]-2*(T[n]-bT))
634 for i in 2:n-1
635 rod.derT[i] = k1*(T[i+1]-T[i]-(T[i]-T[i-1]))
636 end
637 # copy into memory
638 copy_der_x_segmented_value_to_state(m, rod.ID, rod.derT)
639end

The initSegmentInsulatedRod! function (Lines 640 to 649) is defined by the
second necessary parameter _initSegmentFunction of a predefined acausal com-
ponent. It is executed before the model is initialized and before the model is
re-initialized in each new simulation segment. If it is executed for the first time,
parameters (k1, k2) are computed once. Moreover, memory for states and their
derivatives is allocated. Finally, new states and their derivatives with units are
defined. Note that, even if the InsulatedRod component always uses the same
definition, the states must be newly defined for each new segment. This predefined
acausal component is not used for segmented simulations. So, it is not re-initialized.

Lines 621 to 626 Lines 630 to 639

solver
ẋ = f(x, t)
z = z(x, t)

x = (xinv,xvar)
z = (zinv, zvar)

portA.T, portB.T

rod.T[1], rod.T[end]

xinv, t rod.T = xvar

ẋinv, zinv ẋvar = rod.derT

Figure 10.8: Communication between predefined acausal component for heat
transfer in a rod, solver, and sorted and solved equations. The inputs and outputs
for the heat transfer in a rod are independent of how the rod is connected to other
components. Thus, xinv is not known yet.
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640# called before each new simulation segment
641function initSegmentInsulatedRod!(m, ID, ...)
642 rod = getInstantiatedSubmodel(m, ID)
643 if isFirstInitialOfAllSegments(m)
644 # compute parameters once
645 # allocate and initialize internal states
646 end
647 # define new states and state derivatives
648 rod.ID = new_x_segmented_variable!(m, ...)
649end

Figure 10.8 shows the inputs and outputs of the predefined acausal component
(compare with Figure 10.4). For the discussed application, there are no invariant
states, as the rod has a fixed temperature on one side and is insulated on the other.
Still, there could be invariant states for other applications. To sum up, the here
discussed procedure is generic and can be customized for suitable components,
resulting in predefined acausal components.

10.2 Segmented Simulations
This section introduces a generic procedure for segmented simulation with pre-
defined acausal components. Subsequently, it is specified for Modia. This novel
procedure allows to dynamically vary the number of states during simulation,
i.e., states may be added or removed. A simulation run is divided into several
segments, also called modes. Events trigger the switching to a new segment. The
re-initialization of a new segment, including the redefinition of states and their
start values is performed on-the-fly. The segments are not necessarily known in
advance.

A simulation run starts with mode i = 1, see Figure 10.9. The corresponding sys-
tem is initialized with the initial states x1,0 = (xinv0 ,xvar1,0). The ODE ẋi = fi(xi, t)
of the current mode i is solved until either a termination condition is reached
or an event indicator for a full restart zfri,j becomes positive. In the latter case,
the system switches to the next mode i+ 1 with potentially new equations and
potentially different variant states than in the previous mode. Initial values

xvari+1,0 =
(
xinv(t),hi

(
xi(t), t

))
(10.13)

in mode i + 1 are the invariant states xinv(t) at the current time instant t of
mode i. The initial variant states are computed with the states of mode i with
function hi

(
xi(t), t

)
. It depends on the application of how to define function hi.

The re-initialized mode is solved until it is terminated or another full restart event
is triggered. The number of segments is usually not known in advance.

Re-initialization is a complex topic because Dirac impulses can occur. Benveniste
et al. (2019, Section 4) give more details for a general re-initialization method for
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a large class of multi-mode systems. Dirac impulses do not occur in the discussed
applications in this thesis, so re-initialization in these cases is straightforward.

Since variables can appear and disappear at events and these modifications are
not known in advance, new systems for storing result data are required. Otter
(2022) introduces so-called signal tables as a format for exchanging data based
on dictionaries and multidimensional arrays with missing values. This format is
developed and evaluated with the open-source Julia package SignalTables.jl (Otter,
online) and is used in Modia.

The general scheme presented in Figure 10.9 is specified for Modia in Figure 10.10.
The internal data structure used to efficiently calculate the equations of a predefined
acausal component must be updated if the number of equations varies at an event
time. This internal data structure is built from the Modia model dictionary, which
defines the interface and equations of the predefined acausal component. The
internal data structure and the functions for its evaluation are called execution
scheme.

At initialization, the model in mode i = 1 and its associated execution scheme is
defined with the variant states and their initial values. The ODE ẋi = fi(xi, t) of the
current segment i is solved for t ∈ [ti,0, tstop] with its start values xi,0 = (xinv0 ,xvari,0 ).

init mode 1
i = 1

xi,0 = (xinv0 ,xvari,0 )

solve mode i
ẋi = fi(xi, t)
zfri = zfri(xi, t)

re-init mode i+1
fi → fi+1

xvari → xvari+1

xi+1,0 = (xinv(t),hi(xi(t), t))
hi → hi+1

i = i+ 1

terminate zfri,j
!= 0

Figure 10.9: State machine of segmented simulation. The first mode i = 1 is
initialized with its start values. The ODEs of the current mode i are solved until
they are terminated or interrupted by a zero-crossing event when zfri,j changes
sign. In the latter case, the model is re-initialized in mode i+ 1. This allows variant
variables to appear or disappear.
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init

. . .
instantiate predefined

acausal components with
m = fc,0(. . .); fc,init(m)
define execution scheme

(with states and start values)
initial segment: i = 1, ti,0 = t0
define states: xi = (xinv,xvari )
where xinv ∈ Rninv , xvari ∈ Rnvar,i
given start values:

xi,0 = (xinv0 ,xvari,0 )

solve ODE for segment i

solve ẋi = fi(xi, t) for
t ∈ [ti,0, tstop] and xi,0

if event for a structural change
define actions
restart = FullRestart

elseif term. event || t == tstop
restart = Terminate

init next segment i + 1

. . .
re-instantiate prede-
fined acausal compo-
nents with fc,init(m)
execute defined actions

redefine execution
scheme (define states and
compute start values)

next segment: ti+1,0 = t
redefine states: xi+1 = (xinv,xvari+1)
compute start values:

xi+1,0 = (xinv(t),xvari+1,0)
i = i+ 1

terminate

restart == FullRestart

restart == Terminate

Figure 10.10: Flow chart of segmented simulation as used by Modia.
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It is evaluated until tstop is reached or an event for a structural change occurs.
In the latter case, the so-called actions are defined and stored internally in the
predefined acausal components. Actions define how to construct mode i + 1.
Furthermore, they deal with the initialization of variant states and define hi.
Actions allow users to interact with the model to initialize a new segment. For
more details to execution schemes and actions for Modia3D, see Chapter 11. When
the predefined acausal component is re-instantiated in mode i+ 1, the execution
scheme is redefined, including new states xi+1 = (xinv,xvari+1) and their start values
xi+1,0 = (xinv(t),xvari+1,0). Then the ODE for segment i+ 1 is solved.

Based on predefined acausal components, a generic state machine for segmented
simulation is presented, where the segments need not be known in advance. This
state machine is specialized for Modia. To deal with variable structure systems the
user is allowed to interact and initialize new states with actions. The procedure
discussed here in theory is adapted for Modia3D in Chapter 11.





11 Modia3D as Predefined Acausal
Component

Modia3D is designed as a predefined acausal component of Modia to support
variable structure systems.

Modia3D offers two types of joints:
1. Joints with Invariant Variables – these joints cannot be changed during

simulation, see Section 3.2.3.
2. Joints with Variant Variables – these joints can be exchanged during simu-

lation, see Section 11.1.
The second joint type can be replaced exclusively by another joint from this category.
Currently, fixed joints (0 DoF) and free motion joints (6 DoF) are implemented.
It is therefore possible to allow an object to move freely or to rigidly attach it to
another object during simulation. The switching from free to fixed is only allowed
if the relative movement is zero, to avoid Dirac impulses.
The replacement of joints is done with action commands (Section 11.3). Their

sequence is defined in an action program. Only these action commands are permitted
to add or remove joints from the second joint type. These actions trigger events
to initialize new segments. The new states (joints) added during simulation are
initialized based on the last known positions, velocities, rotations, and angular
velocities. All remaining states are re-initialized with their last known values.
Based on the new information about the 3D system, the internal 3D structure is
rebuilt and executed until another action for a structural change is initiated. This
restructuring is performed with dynamic data structures and is extremely fast. The
concept of super-objects is extended (Section 11.2) since it is part of the internal
3D structure.

The interface to Modia is designed as a predefined acausal component (Lines 73
to 78, Page 26). It would go beyond the scope of this thesis to describe it in
detail. The generic procedure of a predefined acausal component is exemplified in
Section 10.1.5.

11.1 Joints with Variant Variables
The user has access to the second type of joints via action commands. Only
these type of joints define variant variables, including variant states, according to
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Figure 11.1: Example for an internal execution scheme. Segment 1: Before re-initialization. 12 Object3Ds with
different properties are defined: They are allowed to collide, can have a mass, and are visible. They are grouped into
five super-objects, which are disjunct via joints. SuperObject5 is an assembly with a lockable Object3D (obj10).
Only the assembly root (obj9) is allowed to vary joints and their number of states during simulation. SuperObject2
is able to interact with this assembly via its rigidly attached locking mechanism (obj2).
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Figure 11.2: Segment 2: After re-initialization. A full restart is triggered with ActionAttach(obj10, obj2, ...)
to initialize the second segment if both locking mechanisms (obj10 and obj2) are close to each other with negligible
relative velocity. The lockable obj10 identifies its assembly root, which is obj9. The joint and states of the assembly
root obj9 are removed and all Object3Ds of the assembly are attached to superObject2. This results in four rigidly
attached super-objects after re-instantiation.
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Figure 10.4, Page 122. The variant states and variant variables are visible only in
the predefined acausal component Modia3D and are hidden from Modia. During
simulation, only these variables can be added or removed via action commands. For
example, an Object3D has an optional keyword fixedToParent with a default value
of true. In this case, the Object3D is rigidly connected to its parent Object3D,
this means it has 0 DoF. If the value is set to false, the Object3D is allowed
to move freely with respect to its parent meaning it has six DoF and 12 variant
states. At events, keyword fixedToParent can be changed from false to true and
vice-versa.

Additionally, since Modia3D is designed as a predefined acausal component it
offers two types of joints. The first type of joints contains Modia equations with
invariant variables and states, see Section 3.2.3. The second type of joints defines
variant variables with variant states. The user is allowed to replace the second type
of joints during simulation with some special actions commands in Section 11.3 to
restructure the internal tree structure in Section 11.2.

11.2 Internal Tree Structure: Restructure
Super-Objects

At initialization, Modia3D’s execution scheme (internal tree structure) is built up
based on the Modia3D’s model definitions with information about the multibody
systems components (Section 3.2.4). The execution scheme is processed during
the simulation of the current segment, until one of the defined actions requests a
full restart in case of a structural change at an event instant or the simulation is
terminated. If a full restart is required, the execution scheme is restructured, as
shown in the example of Figures 11.1 and 11.2. Basically, this means that some
internal data structures will be changed.
Neumayr and Otter (2023a) extend the concept of super-objects to realize

segmented simulation and dynamically changing structures of 3D models. Therefore,
an Object3D can be marked to be the root of an assembly or it can be marked
to be lockable. An assembly is a special super-object. Only the assembly root is
allowed to vary variant joints and their number of states during simulation. It
interacts with other assemblies and super-objects via locking mechanisms.
As an example, Figures 11.1 and 11.2 show 12 Object3Ds. In Segment 1 (Fig-

ure 11.1) they are grouped into five super-objects before re-initialization. To
dynamically switch to the second mode (Segment 2, Figure 11.2) two super-objects
are rigidly connected when two respective Object3Ds are close to each other. For
this purpose, both corresponding Object3Ds (e.g., obj2 and obj10) are defined as
lockable. In addition, this action e.g., ActionAttach, must be defined in an action
program. If all requirements are fulfilled a full restart is initiated resulting in a
new Segment 2. During re-instantiation of Segment 2 the internal data structure
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of the Modia3D predefined acausal component is regenerated resulting in four
super-objects. This is a very cheap operation in the milli-seconds range.

Rigidly connected Object3Ds can form an assembly by setting assemblyRoot =
true for the freely moving Object3D, i.e.,fixedToParent = false. All rigidly
connected children of such an Object3D belong to the assembly. Additionally, any
Object3D, whether it is part of an assembly or not, can be a locking mechanism by
setting lockable = true in the Object3D constructor. In Figure 11.1, superObject5
is an assembly because obj9 is marked as an assembly root. This assembly is able
to interact with superObject2 because both have locking mechanisms (obj2 and
obj10) with lockable = true defined.

11.3 Action Commands
The user is allowed to interact with the model by specific action commands
to initialize a new segment. Actions on a Modia3D model and especially on
assemblies are executed according to the construction sketched in Lines 650 to 660.
A collection of action commands is defined in a Julia function (e.g., modelProgram).
This function is an input argument of ModelActions which returns a reference
(e.g., currentAction) to an internal data structure. This reference is passed on to
executeActions which is called in a Modia equations section. For applications
see Chapter 12.

650function modelProgram(actions)
651 ... # action commands
652end

653myModel = Model3D(
654 world = Object3D(feature=Scene()),
655 ...
656 modelActions = ModelActions(world=:world, actions=modelProgram),
657 currentAction = Var(hideResult=true),
658 equations = :[
659 currentAction = executeActions(modelActions)]
660)

The action commands in Table 11.1 increase or decrease the number of DoF
and therefore trigger an event to initialize a new segment. If the number of DoF
increases, new states are defined and their initial values are computed based on
the last configuration. Three actions: ActionAttach, ActionReleaseAndAttach,
ActionFlipChain are only possible if the referenced lockable Object3Ds are close
together and the relative velocity and angular velocity are close to zero. Currently,
the following cases are treated:

• A freely moving assembly is rigidly connected to an Object3D with Action-
Attach. This action reduces the number of DoF by 6.
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• If an assembly has at least two lockable Object3Ds (objA, objB) and is
rigidly connected via objA, this rigid connection is removed and another
rigid connection via objB is introduced with ActionReleaseAndAttach. This
action does not affect the number of DoF, but changes the internal data
structure of the super-objects.

• A rigidly connected assembly, i.e., rigid connection to an Object3D is
unlocked with ActionRelease to get a freely moving assembly. This action
increases the number of DoF by 6.

• For ActionFlipChain three lockable Object3Ds (objA, objB, objC) are
needed. The kinematic chain spanned between two lockable Object3Ds
(objA, objB) is reversed. This means, the parent-child relationship is flipped.
Hereby, special treatments of joints is required in order to correctly reflect the
reversed parent-child relationship. Furthermore, a rigid connection with objA
is removed and another rigid connection with objB to objC is introduced.
This action does not affect the number of DoF, but changes the internal
data structure of the super-objects.

• An assembly which is either freely moving or is rigidly connected to an
Object3D is deleted with ActionDelete. All Object3Ds of this assembly are
removed from the Modia3D model.

Whenever one of these actions is executed, the internal data structure with its
super-objects must be restructured because the relationships and connections
between parents and their children have changed. As a result of this restructuring,
objects may no longer be able to collide with each other or the common mass
properties of super-objects may have changed. Other Modia3D actions that do not
trigger events for new segments, are listed in Table 11.2.
To initialize the next segment, a full restart is triggered in Figure 11.1, (Seg-

ment 1) with ActionAttach(..., obj10, obj2). This only applies if both lockable

Table 11.1: Modia3D actions which trigger events for a structural change and
initialize new segments.

Function Description
ActionAttach(...) Rigidly attaches the specified assembly.
ActionReleaseAndAttach(...) Changes one rigid connection to another

rigid connection.
ActionRelease(...) Releases the specified assembly.
ActionFlipChain(...) Reverts the kinematic chain between two

lockable Object3Ds. It changes one rigid
connection to another rigid connection.

ActionDelete(...) Deletes the specified assembly.
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Table 11.2: Modia3D actions.

Function Description
EventAfterPeriod(...) Triggers an event after a specific period of time.
ActionWait(...) Waits a specific period of time.
addReferencePath(...) Adds a new reference path.
ptpJointSpace(...) Generates a point-to-point trajectory.

Object3Ds (obj2 and obj10) are close to each other. Hereby, the joint connecting
obj9 with obj5 is removed and obj10 is rigidly connected to obj1 which is the root of
superObject2. The re-instantiation reduces the number of super-objects and states.
It results in the execution scheme of Figure 11.2 (Segment 2). All remaining states
are re-initialized with their last known values. All action commands of Table 11.1
are extended with an additional keyword enableContactDetection defaultly set
to true. This allows to switch off and on collision detection for the whole scene for
the actual segment, this might speed up simulation time, (see Neumayr and Otter,
2023b).

To sum up, Modia3D is adapted to enable segmented simulation. Thus, the
internal tree structure of Modia3D is extended to re-instantiate it during a simu-
lation. This procedure can be customized to adapt Modia3D to the user’s needs
with individual action commands.





12 Applications
Modia3D is designed as a predefined acausal component of Modia. The following
applications describe dynamically changing the variable structure during simulation
from the user’s point of view. Therefore, the user needs to be sufficiently familiar
with the system and its required conditions to interact via certain (user-defined)
actions that trigger a re-instantiation of a new 3D segment. However, the segments
need not be known in advance.
From the user’s point of view, a more involved application of segmented sim-

ulations deals with a two-stage rocket, where the two stages are separated after
a while in Section 12.1. The second application, is an insight using segmented
simulation for collision handling. For this purpose, a robot gripping a sphere is
modeled in several ways. The outcome is compared and discussed in Section 12.2.
In the third application a kinematic chain is reverted to re-initialize a new segment
in Section 12.3.

12.1 Segmented Simulation: Two-Stage Rocket
An application of a two-stage rocket2 highlights Modia3D’s actions for segmented
simulation. Moreover, it exemplifies how to set up a Modia3D model. This model
simulates the separation of the two stages, Figure 12.1. It is already published by
Neumayr and Otter (2023a). To demonstrate how to delete Object3Ds, the first

a) At initialization. b) After separating (release).

Figure 12.1: A two-stage rocket1. Stage 1 is the lower left part and stage 2 the
upper right part after separation.

1The visualization data of ESA’s VEGA rocket (Arianespace, 2014) is used for the sole purpose
of providing a better illustration. The visualization data is taken from Turbosquid.com
(online, purchased in 2015).

2Modia3D.jl, v0.12.0, test/Segmented/TwoStageRocket3D.jl
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stage is removed some time after separation because it is no longer of interest in
this scenario. In Figure 12.1b, stage 1 is the lower left part and stage 2 is the upper
right part of the rocket.
The thrust of stage 1 drives both rigidly attached stages until separation. Af-

terwards, stage 2 is driven by its own thrust. Stage 1 has no thrust anymore and
loses vertical velocity until it is removed, see Figure 12.2.
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Figure 12.2: If present, the height, vertical velocity and thrusts of both stages
are shown. The thrust of stage 1 drives both rigidly attached stages. So, they have
the same height and vertical velocity. After separation (5 s), stage 2 gains height
and velocity by its own thrust. Stage 1 has no longer a thrust and loses vertical
velocity until it is removed after 10 s.

Each rocket stage is modeled using sub-model RocketStage (Lines 673 to 688),
which consists of not only mass/inertia and lockable Object3Ds at the top and at
the bottom but also has a thrust at the bottom. Model TwoStageRocket (Lines 689
to 698) builds up the rocket system with a world Object3D and two instances
of RocketStage. To execute the defined actions of the rocketProgram (Lines 661
to 671) they are passed to the constructor ModelActions. For simulating the
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separation process of the two stages, the following actions to dynamically vary
DoF during the simulation are needed.

• Segment 1: Initially, the two stages are not rigidly connected.
• Segment 2: At initialization, the top of stage 1 and the bottom of stage 2 are

rigidly attached with ActionAttach(actions, "stage1.top", "stage2.-
bottom").

• Segment 3: To separate the two stages, an event is triggered after 5 s
with EventAfterPeriod(actions, 5). It is needed to release stage1.top
from stage2.bottom with function ActionRelease(actions, "stage1.-
top"). Furthermore, thrust 1 is switched off.

• Segment 4: To remove stage 1 from the simulation run, another event is
triggered after 5 s (so at t = 10 s). Since the movement of stage 1 is no
longer of interest in this scenario, stage1.top and all Object3Ds connected
to it are deleted with ActionDelete(actions, "stage1.top").

For further information to Modia3D’s actions see Chapter 11.

661function rocketProgram(actions)
662 # segment 1 (from initialization)
663 # segment 2
664 ActionAttach(actions, "stage1.top", "stage2.bottom")
665 EventAfterPeriod(actions, 5) # Trigger an event after 5s
666 # segment 3
667 ActionRelease(actions, "stage1.top") # Release stage1.top
668 EventAfterPeriod(actions, 5) # Trigger an event after 5s
669 # segment 4
670 ActionDelete(actions, "stage1.top") # Delete stage1
671end

672# L ... length of stage, m ... mass, r_init ... initial translation
673RocketStage(; L=1.0, m=100.0, r_init, filename, thrustFunction) = Model(
674 # rocket stage with mass points
675 body = Object3D(parent=:world, fixedToParent=false, translation=r_init,
676 assemblyRoot=true, feature=Solid(
677 massProperties=MassProperties(mass=m, ...)),
678 # visualization data of a VEGA rocket
679 visualVega = Object3D(parent=:body,
680 feature=Visual(shape = FileMesh(filename=filename, ...))),
681 # lockable Object3Ds at bottom and top
682 bottom = Object3D(parent=:body, lockable=true,
683 translation=:[0.0, -$L/2, 0.0]),
684 top = Object3D(parent=:body, lockable=true,
685 translation=:[0.0, $L/2, 0.0]),
686 # thrust is applied at bottom
687 thrust = WorldForce(objectApply=:bottom, forceFunction=thrustFunction)
688)

689TwoStageRocket = Model3D(
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690 world = Object3D(feature=Scene()),
691 stage1 = RocketStage(L=2.0, r_init=[0,1,0],
692 filename="Interstage1.obj", thrustFunction=thrust1),
693 stage2 = RocketStage(L=1.0, r_init=[0,2.5,0],
694 filename="Interstage2.obj", thrustFunction=thrust2),
695 modelActions = ModelActions(world=:world, actions=rocketProgram),
696 currentAction = Var(hideResult=true),
697 equations = :[currentAction = executeActions(modelActions)]
698)

12.2 Segmented Simulation and Collision Handling:
Gripping Robot

This section emphasizes the new approach of segmented simulation to handle
collisions. Therefore, several combinations of segmented simulation and collision
handling with contact computation are discussed and compared. In all of these
applications, a KUKA YouBot robot (youbot-store, online) is gripping and trans-
porting cargo, see Figure 12.3. This robot has a 5 DoF arm and was manufactured
in the years 2010–2016. The robot is modeled with Modia, especially its electrical
drive trains and controllers. The 3D mechanics is modeled with Modia3D, (see
Elmqvist, Otter, Neumayr, and Hippmann, 2021). The following comparison of
scenarios is inspired by applications from Neumayr and Otter (2023a) and is
preliminarily published by Neumayr and Otter (2023b).

Figure 12.3: YouBot gripping or releasing a sphere on a plate.

Four variants of the following transportation scenario are simulated. In all these
scenarios, the robot follows the same trajectory. Initially, the cargo, e.g., a sphere,
rests on a plate. It is gripped by the robot’s gripper and transported upwards until
it is placed down again, where it rests on the plate until it is gripped again. The
states of the freely moving sphere, if available, and the absolute position of the
sphere center are displayed in Figure 12.4.
Scenario 1 (S1)3: This transportation scenario is modeled exclusively with

collision handling, i.e., contacts are computed with the MPR algorithm. This

3Modia3D.jl, v0.12.2, test/Robot/ScenarioCollisionOnly.jl
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Figure 12.4: States and absolute position of the sphere of all four Scenarios
(S1–S4). The states are equivalent to the translation of the sphere center in x, y,
z direction with respect to its parent. If the sphere is freely moving, world is its
parent. States can only be displayed if they are present. If the sphere is rigidly
attached to the plate or gripper, there are no states, and nothing is displayed. The
sphere in Scenario 4 (S4) has no states. Therefore, nothing is displayed. The states
for Scenarios 2 and 3 (S2, S3) are available and are displayed if the sphere is freely
moving.

means, the sphere is in contact with the plate, as well as with the fingers of the
gripper. This scenario is similar to Neumayr and Otter (2023a, Scenario 2(b)).
Scenario 2 (S2)4: This transportation scenario is modeled with both collision

handling with contact computation and segmented simulation (Lines 699 to 738).
DoFs are added or removed during simulation: At the beginning, the sphere is
rigidly attached to the plate. Shortly before the gripper reaches the sphere, the
4Modia3D.jl, v0.12.2, test/Segmented/ScenarioSegmentedCollisionOn.jl
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sphere is released (+6 DoF) and collides with the plate. Shortly afterwards it
collides with the gripper. After approximately one second, the sphere is rigidly
attached to the gripper (−6 DoF). Until the gripper is again close to the plate
to release the sphere (+6 DoF), which collides with the plate. Collision handling
remains on even if the sphere is rigidly connected to the gripper or plate, as
collisions with other bodies can still occur.

Scenario 3 (S3)5: This transportation scenario is also modeled with both collision
handling with contact computation and segmented simulation, except that collision
handling is disabled when the sphere is rigidly connected to the gripper or plate,
since it is already known from Scenario 2 that no further collisions will occur.
This is deactivated with enableContactDetection = false (Lines 699 to 738).
Basically, this means that the distance calculations between each collision pair is
switched off in these phases.

699# Scenario 2 & 3
700function robotProgram(actions)
701 # segment 1 (from initialization)
702 addReferencePath(actions, ...)
703 # segment 2
704 # 1. attach sphere to plate, -6 DoF
705 ActionAttach(actions, "sphereLock", "robot.base.plateLock",
706 # enableContactDetection = false)
707 # 2. some movement of robot
708 ptpJointSpace(actions, [
709 # open gripper + move to top
710 # open gripper + move to plate])
711 # segment 3
712 # 3. release sphere off plate, +6 DoF
713 # it collides with plate and gripper
714 ActionRelease(actions, "sphereLock")
715 # 4. gripping via collision handling
716 ptpJointSpace(actions, [
717 # grip
718 # grip + transport a bit ])
719 # segment 4
720 # 5. attach sphere to gripper, -6 DoF
721 ActionAttach(actions, "sphereLock", "robot.gripper.gripperLock",
722 # enableContactDetection = false)
723 # 6. some movement of robot with sphere
724 ptpJointSpace(actions, [
725 # grip + move to top
726 # grip + transport
727 # grip + move near to plate
728 # open gripper ])
729 # segment 5
730 # 7. release sphere off gripper, +6 DoF
731 # it collides with plate

5Modia3D.jl, v0.12.2, test/Segmented/ScenarioSegmentedCollisionOff.jl
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732 ActionRelease(actions, "sphereLock")
733 # 8. some movement of robot
734 ptpJointSpace(actions, [
735 # open gripper + move to plate])
736 # repeat step 1. - 8.
737 ...
738end

Scenario 4 (S4)6: This transportation scenario is modeled exclusively with
segmented simulation (Lines 739 to 766). This scenario is similar to Neumayr
and Otter (2023a, Scenario 2(a)). Collision handling with contact computation is
switched off for this scenario. This means, the sphere is rigidly attached to the
plate, when resting, and rigidly attached to the gripper during transportation.
Each time the sphere is rigidly connected to the plate or gripper, the segment is
re-initialized. Since the relative velocity and angular velocity between the sphere
and the gripper is zero, when the sphere is attached to the gripper or attached to
the plate, the physics is correctly modeled under the idealized assumption that
gripping time is infinitely small. Basically, this means that gripping effects are
neglected.
739# Scenario 4
740function robotProgram(actions)
741 # segment 1 (from initialization)
742 addReferencePath(actions, ...)
743 # segment 2
744 # 1. attach sphere to plate
745 ActionAttach(actions, "sphereLock", "robot.base.plateLock")
746 # 2. some movement of robot
747 ptpJointSpace(actions, [
748 # open gripper + move to top
749 # open gripper + move to plate
750 # grip ])
751 # segment 3
752 # 3. attach sphere to gripper
753 ActionAttach(actions, "sphereLock", "robot.gripper.gripperLock")
754 # 4. some movement of robot
755 ptpJointSpace(actions, [
756 # grip + transport a bit
757 # grip + move to top
758 # grip + transport
759 # grip + move near to plate
760 # open gripper ])
761 # segment 4
762 # 5. release sphere off gripper, attach it to plate
763 ActionReleaseAndAttach(actions, "sphereLock", "robot.base.plateLock")
764 # repeat step 2. - 5.
765 ...
766end

6Modia3D.jl, v0.12.2, test/Segmented/ScenarioSegmentedOnly.jl
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Table 12.1: Mean t̄sim and standard deviation σ of the simulation time tsim of all
four Scenarios (S1–S4) each for n = 12 runs on a standard notebook7.

t̄sim σ

S1 7.816 s 0.123 s
S2 7.255 s 0.075 s
S3 6.863 s 0.388 s
S4 0.397 s 0.016 s

The simulation times tsim of all four scenarios are compared in Table 12.1. The
simulation time of Scenario 4 is about 19 times less than that of Scenario 1. This is
because Scenario 4 (segmented simulation exclusively) is basically a non-stiff system
where the solver can use large step sizes. In addition, the time for reconfiguration
of the multibody system, for gripping and releasing, is negligible. Fine-tuning of
collision handling during transportation of the gripped freight is no longer required.
This makes the simulation faster and more robust. Moreover, the scenario setup is
easier. Furthermore, any type of cargo can be transported, regardless of its shape
and collision problems are avoided. It is also possible to model gripping operations
without frictional contacts but with rigid mechanical connections, such as a bayonet
lock. The disadvantage is that the details of the gripping are not modeled, but this
can be important, e.g., when developing a control system to perform an assembly
task.
Scenario 1 (collision handling exclusively) is a stiff system because the gripper

holds the sphere by elastic contact and friction forces, which change during transport.
Therefore, the solver must use much smaller step sizes. One limitation of collision
handling with the MPR algorithm is that it solely computes point contacts. If the
cargo would be a box, it would not be possible to calculate a unique point contact
that is continuous over time, for example, because one box and one gripper face
or one box and one plate face are parallel to each other during contact (Neumayr
and Otter, 2023a, Scenario 3(b)). All these considerations lead to a compromise
in modeling the gripping and releasing of the cargo with collision handling, and
otherwise rigidly attaching the sphere to the plate or gripper, resulting in Scenario 2
and Scenario 3.
There is not such a big difference in simulation time for Scenarios 1, 2, 3, see

Table 12.1. In all three cases, the calculation of the elastic contact response is the
limiting factor. This effect is modeled in all these cases. In more realistic scenarios,
the approach of Scenario 2 or 3 may pay off, if the number of collision phases is
small relative to the remaining actions.

7Intel(R) Core(TM) i7-9850H CPU @ 2.6 GHz, RAM 32 GB
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12.3 Segmented Simulation: Relocatable Space Robot

An application of a relocatable space robot (Deremetz et al., 2020) highlights the
action for flipping a kinematic chain with segmented simulation. The symmetric,
7 DoF robotic manipulator is part of the MOSAR space project (Modular and
Re-Configurable Spacecraft, (see Letier et al., 2019)). The space robot consists of
one arm with 7 joints, and two end effectors. It allows to capture, manipulate and
position spacecraft modules. The robot is able to relocate itself on the interfaces of
the spacecraft or on the modules, marked with coordinate systems in Figure 12.5.
The visualization data and trajectory for each joint of the space robot are taken
from Reiner (2022). The drive of each joint includes gear dynamics modeled by a
spring-damper pair with Modia. The 3D mechanics is modeled with Modia3D.
The following model simulates the described behavior above. In more detail, a

robot is placing modules and is walking on a platform, e.g., a spacecraft, using the
end effectors of its arm to achieve this in Figure 12.5. The model demonstrates that
the robot is capable of gripping the modules with either one of its end effectors.
Furthermore, it showcases the robot’s ability to alternate between attaching one of
its end effectors to the platform. This enables the robot to walk. In doing so, the
kinematic chain of the robot’s joints across its span of arm must be reversed. This
effectively means that the parent-child relationship between Object3Ds is flipped.
Special treatments of the joints are required in order to correctly implement this.
The platform program for the robot and six modules is sketched in Lines 768

to 799. Hereby, segments 9–12 (Lines 778 to 794) correspond to Figure 12.5a –
Figure 12.5d. To distinguish between the robot’s two end effectors, one is colorized
blue while the other is colorized green. The modules are boxes. The two end effectors
and the interfaces of the boxes are lockable Object3Ds. In order to interact with
the robot and the six boxes using action commands, they are not rigidly attached
to the platform during initialization. In segment 2, the blue end effector is rigidly
attached to the platform. In segments 3–8, the six boxes are rigidly attached to the
platform. In segment 9 and 10, the green end effector is moving and replacing a box.
In segment 11, the robot is walking. This means, the attachment to the platform
alternates between the blue and the green end effector. The blue one is released
and the green one is attached. Additionally, the kinematic chain spanned between
the end effectors is reversed. In segment 12, the blue end effector is gripping a box.
The relocatable space robot places two boxes and walks on the platform. This

scenario lasts 86 s and the simulation is performed in 2.2 s. This is much faster
than real-time, since collision handling with point contacts is neglected. Moreover,
it is impossible to represent collisions between two parallel surfaces with a collision
algorithm that computes point contact like the MPR algorithm. For a detailed
discussion see Section 8.3.
To summarize, this application demonstrates another possibility by not only

adding or removing joints, but also reversing an entire kinematic chain.
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a) Segment 9. b) Segment 10.

c) Segment 11. d) Segment 12.

Figure 12.5: Walking robot on a platform. The boxes are placed by two end
effectors of a robot arm. Thus, one end effector of the arm is attached to the
platform and stationary, while the other one is able to move the boxes. In seg-
ment 11, the robot is walking. To do so, the purposes of the rigidly attached end
effector and the moving one are reversed.

767function platformProgram(actions)
768 # segment 1 (from initialization)
769 # segment 2
770 # attach blue end effector to platform
771 ActionAttach(actions, "blueLock", "platform.lockX2Y2")
772 EventAfterPeriod(actions, 1e-10)
773 # segment 3 - 8
774 # attach 6 boxes to platform
775 ActionAttach(actions, "boxX1Y1Z1.lockZneg", "platform.lockX1Y1")
776 ...
777 EventAfterPeriod(actions, 7.0)
778 # segment 9
779 # attach box to green end effector
780 ActionReleaseAndAttach(actions, "boxX1Y1Z2.lockXpos", "greenLock")
781 EventAfterPeriod(actions, 17.0)
782 # segment 10
783 # release box off green end effector, attach box to another box
784 ActionReleaseAndAttach(actions, "boxX1Y1Z2.lockZpos", "boxX5Y1Z1.lockZpos")
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785 EventAfterPeriod(actions, 6.0)
786 # segment 11
787 # attach green end effector to platform
788 # flip kinematic chain between blue and green end effector
789 ActionFlipChain(actions, "greenLock", "platform.lockX2Y2", "blueLock")
790 EventAfterPeriod(actions, 14.0)
791 # segment 12
792 # attach box to blue end effector
793 ActionReleaseAndAttach(actions, "boxX1Y2Z2.lockXpos", "blueLock")
794 EventAfterPeriod(actions, 23.0)
795 # segment 13
796 # release box off blue end effector, attach box to another box
797 ActionReleaseAndAttach(actions, "boxX1Y2Z2.lockZpos", "boxX5Y2Z1.lockZpos")
798 ...
799end

To conclude this chapter, all applications combine actions with and without
re-initializations of new segments. The application of the two-stage rocket shows
not only attaching and releasing components, but it is also possible to delete them
if needed, e.g., to avoid computational effort. Moreover, to get deeper observations
of applications, it is reasonably simple to extend existing action commands with
further features, e.g., to enable or disable collision handling for the actual segment
and thus for the whole model. In addition, it is not only possible to add or remove
specific connections, it is even possible to revert a kinematic chain. To retrieve
the most out of the applications, users must analyze their models for suitable
separation and attachment timings and relative positions between components.
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13.1 Conclusions
Conclusion to Collision Handling with Variable-Step Solvers
Collision handling is widely researched with extensive literature but usually exclu-
sively for fixed-step solvers without step size control. There are several algorithms
available to compute contact information for different collision aspects. In this
thesis a penetration depth or the Euclidean distance and contact points between
two potentially-colliding convex objects or their convex hulls are computed. If these
objects penetrate, the resulting force is determined using elastic material laws based
on the theory of Hertz for elastic shapes. On the one hand, the contact information
is sufficient to be used with variable-step solvers and these algorithms are fast.
But on the other hand, it is a simplification of collision situations and a loss of
contact information. Therefore, not all collision situations can be treated properly.
Furthermore, it must be ensured, that there are continuously varying contact points
and penetration depths. Hence, it must be ensured that this condition is met. A
detailed discussion can be found in Section 8.3.

Conclusion to Variable Structure Systems
A novel approach for variable structure systems is introduced in this thesis. This
approach minimizes or completely eliminates time-consuming distance calculations.
Therefore, it uses the inherent mathematical structure of acausal components,
leading to predefined acausal components. The equations of acausal components
are split into acausal and causal parts. The causal equations are pre-translated
functions. The states computed by these pre-translated functions are hidden in a
memory and are directly passed to the solver. The states of the causal equations
of predefined acausal components are allowed to be added or removed during
simulation. The acausal equations of the component need to be solved with the
whole model. One challenge is to analyze and split the component’s equations
into these two parts. Another challenge is to interact with the predefined acausal
components via suitable action commands. Depending on the action command a
new segment (mode) is triggered to add or remove states.
The Modia3D package is designed as predefined acausal component for Modia.

Modia3D currently supports some actions for adding or removing rigid connections
to free motion joints, which adds or removes 6 Degrees of Freedom (DoF), or
changing one rigid connection to another rigid connection. The initiation of a new
segment is what all of these actions have in common. The segments themselves do
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not need to be known in advance. Furthermore, the extension of functionality with
additional actions for other types of joints is an open research question.

This new method is validated and seems very promising for future applications.
Moreover, it can be combined with collision handling with variable-step solvers to
achieve the optimal benefits of each. This opens up a wide range of exciting new
possibilities. However, the limitations for practical applications are to be examined.

13.2 Outlook
In light of the above discussions and limitations, further research is necessary. When
it comes to collision handling, the narrow phase in particular can benefit from
thinking outside the box. Would it make sense to use two different algorithms in the
narrow phase? One algorithm for point contacts and one for non-convex contacts.
This would make it possible to address the various issues regarding non-convex
shapes, different types of shapes, and collision situations. Is it possible to combine
both kinds of algorithms in the narrow phase? Firstly, to figure out how much
both shapes overlap with a point contact algorithm and secondly if required use a
non-convex contact algorithm. Would it make sense to compute some solver steps
with a non-convex contact algorithm, if a discontinuous jump occurs? Perhaps it
would be possible to calculate the collisions with the MPR algorithm until some
issues are encountered for a specific collision pair and to recalculate the setting
with a non-convex contact algorithm. In this case, another force law would be
needed as well.

Some new research questions arise for the novel approach for variable structure
systems. How are new states initialized during simulation while these are so strongly
dependent on the model and applications? For example, in Modia3D the new states
are added based on the last known configuration, i.e., position, rotation, and
velocity. Another question that arises, is whether it is possible to initialize new
states by interpolation. For example, when thinking of increasing the discretization
of the rod for a heat transfer by following a known temperature profile. Is it possible
to idle parts of the model, and thus states? What does this mean when reactivating
it? How to re-initialize it? Should it be based on the last values, before idling it,
or is it more like newly introducing states? At the moment, structural changes
are triggered by action commands from outside. Currently, it is not possible to
initiate a structural change from the model itself, but it is planned to introduce
this feature to Modia3D. How can this novel approach be used in Modelica?



A Mathematical Definitions
Some mathematical definitions and theorems are given without proofs.

Implicit and Explicit Functions, and Solvers
The following notations are from Bartsch (2007).

Analytical Notation as Functional Equations
• Implicit notation: F (x, y) = 0.
• Explicit notation: y = f(x).
• Parameter notation: x = x(t), y = y(t).

Solvers
• Explicit methods: An explicit solver computes the unknown variables at the

current time step, based on values of previous time steps.
• Implicit methods: An implicit solver computes the unknown variables at the

current time step, based on values of previous time steps and the current
time step. The solution can therefore only be determined iteratively.

Convex Sets and Polytopes
The following definitions and theorems are from Grünbaum and Shephard (1969),
Grünbaum and Shephard (1969) and Brondsted (2012) where further details can
be found. A subset S ⊆ Rn is called a convex set, if the line segment

λx+ (1− λ)y ∈ S
lies entirely in S for all x,y ∈ S and 0 ≤ λ ≤ 1.

A point

x =
n∑
i=1

λixi,

with
∑n

i=1 λi = 1 and λi ≥ 0, ∀i = 1, . . . , n, is called a convex combination for
x1, . . . ,xn ∈ Rn.

A subset S ⊂ Rn is convex iff any convex combination of points from S is again
in S. For any set S, the smallest convex set containing S is called the convex hull
of S and denoted by conv (S). A convex polytope, or simply a polytope, is the
convex hull of a finite set of points. The notation vertex(S) is used to refer to the
vertices of the convex hull of S. Some illustrative explanations in metric space are:
closed means that the boundary is part of the object. Bounded means that there
exists a sphere of finite radius enclosing the object.
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B Applications: Collision Handling
with Variable-Step Solvers

The following applications1 for collision handling with variable-step solvers are
analyzed in Section 6.1.4 for the MPR algorithm and are briefly discussed here.
It is determined during simulation, if Object3Ds collide with each other and the
collision response is computed. Bounding boxes are used for each collision model,
but they are only visualized in Figure B.1 with light grey boxes. To get a better
impression of colliding objects and their trajectory, their orientation is highlighted
with coordinate systems.

Figure B.1: BouncingCapsules.jl:
Three capsules fall downwards due to
gravity and have 6 DoF each. They
collide with a plate. Each capsule is
initialized with a different axis rotation.

Figure B.2: BouncingBeams.jl: Three
beams fall downwards due to gravity and
have 6 DoF each. They collide with a
plate. Each beam is initialized with a
different axis rotation.

1Modia3D.jl, v0.10.2, test/Collision/

159



160 B Applications: Collision Handling with Variable-Step Solvers

Figure B.3: BouncingCones.jl: Three
cones fall downwards due to gravity and
have 6 DoF each. They collide with a
plate. Each cone is initialized with a dif-
ferent axis rotation.

Figure B.4: BouncingFrustums.jl:
Three frustums fall downwards due to
gravity and have 6 DoF each. They
collide with a plate. Each frustum is
initialized with a different axis rotation.

Figure B.5: Rattleback.jl: The rattle-
back is an ellipsoid that collides with a
plate. It has 6 DoF and initial angular
velocities in y, z direction. The rattle-
back rotates counterclockwise and wob-
bles, until it turns and rotates clockwise
and wobbles.

Figure B.6: BouncingEllipsoidOn-
Sphere.jl: An ellipsoid (6 DoF) falls
downwards due to gravity. It collides
with a sphere. It turned out that this
application requires many refinement
iterations to determine the closest
distance with the MPR algorithm in the
narrow phase.
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Figure B.7: BouncingSphereFreeMo-
tion.jl: A sphere (6 DoF) falls downwards
due to gravity. It collides several times
with the upper plate, the wall on the left,
and the lower plate again.

Figure B.8: BouncingEllipsoid.jl: An
ellipsoid (6 DoF) falls downwards due to
gravity and collides with a plate.

Figure B.9: TwoCollidingBalls.jl: This
model analyzes the sliding and rolling of
balls. It is preliminary work for a billiard
game in Figure B.10. Two balls, each has
6 DoF, lie on a table with a gap between
them. The left ball has an initial velocity.
The effects of sliding and rolling occur,
and after some time it hits the other ball
at rest.

Figure B.10: Billard4Balls.jl: At initial-
ization, four billiard balls are placed in
touching position with the table. The
balls subside immediately, because of
gravity. The cue ball has an initial ve-
locity. The effects of sliding and rolling
occur, and after some time it hits the
rack at rest. A billiard game with 16 bil-
liard balls is explained in more detail in
Section 8.1.
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Figure B.11: CollidingSphereWithBunnies.jl: It demonstrates how to handle
collisions with concave objects. For the upper bunny the convex hull is taken, for
the lower bunny a convex decomposition is used. A sphere (6 DoF) falls downwards
due to gravity. It collides with the ear of the grey bunny. To be more precise, it
collides with the convex hull of the grey bunny. Then, the sphere collides with
the bottom of the lower bunny. The lower bunny is approximated by convex
decompositions.
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