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Optimal Diffractive Focusing of Matter and Light Waves
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Following the familiar analogy between the optical paraxial wave equation and the Schrodinger
equation, we derive the optimal, real-valued wave function for focusing in one- and two-space dimensions
without the use of any phase component. We compare and contrast the focusing parameters of the optimal
waves with those of other diffractive focusing approaches, such as Fresnel zones. Moreover, we
experimentally demonstrate these focusing properties on optical beams using both reflective and
transmissive liquid crystal devices. Our results provide an alternative direction for focusing waves where
phase elements are challenging to implement, such as for x-rays, THz radiation, and electron beams.
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Introduction—Fresnel zone plates [1] are optical ele-
ments that focus an incident beam due to binary variations
in its amplitude and phase. They offer precise control over
diffractive propagation and enable beam focusing in
systems where traditional lensing elements are not immedi-
ately available. In this Letter, we address the fundamental
question of whether any other approach to wave shaping,
based entirely on the modulation of a wave amplitude, can
surpass the limit set by a Fresnel zone plate. We show for
the case of matter, optical, and any other waves subjected to
paraxial propagation, that the technique of amplitude
modulation (diffractive focusing) has (i) a fundamental
limit, dictated by their wave nature, and (ii) does yield more
efficient focusing than Fresnel lenses by a factor funda-
mentally constrained to 7°/4. Moreover, we demonstrate
our approach and compare it to Fresnel zone plates by an
optical experiment.

A scalar wave, such as a matter wave or an unpolarized
electromagnetic field, comprises two components: an
amplitude and a phase. The common way to focus an
electromagnetic wave is to modulate its phase using a lens
by applying a parabolic phase variation in space. This
approach forms the pillar of both standardized and emerg-
ing imaging systems [2-4], such as lenses implemented
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with metasurfaces [5] or multilevel diffractive phase masks
[6]. However, there are waves for which a phase-modulating
lens does not exist due to technological limitations in
implementing phase-altering components in these systems.
For instance, implementing such components for x-rays and
matter waves often requires subnanometer manufacturing.

There exist alternative approaches to focusing waves via
amplitude modulation in space. For example, blocking part
of the wave by a circular aperture or annular rings known as
Fresnel zones will focus it to the Arago-Poisson spot [1]. In
these examples, the incoming waves are spatially selected
without being modified by the materials. These diffractive
focusing techniques are crucially determined by a non-
Gaussian initial wave function, as well as by the underlying
dimensionality of the problem [7-9], and have been
employed for surface gravity water waves and plasmonic
waves [10,11], as well as for a Bose-Einstein conden-
sate [12].

We emphasize that Fresnel zones provide one approach
to focusing the waves by amplitude modulation; one may
question whether other approaches, e.g., nonbinary ampli-
tude modulations, provide even better focusing. In this
Letter, we obtain the optimal initial wave function for
focusing matter waves in one and two dimensions, and
compare and contrast the focusing parameters of the
optimal two-dimensional wave function to those of the
Fresnel zone approach. Because of the same form of
the Schrodinger and the paraxial Helmholtz equations,
we are able to extend our results to electromagnetic waves.
In contrast to Fresnel zone plates producing infinitely many
foci with the low efficiency at each focus [13], the optimal
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wave function provides most efficient focusing with a
single focus. Finally, we experimentally verify the focusing
properties of the two-dimensional pattern at optical wave-
lengths using a reflective spatial light modulator and a
fabricated transmissive liquid crystal device.

Theory of optimal focusing—Our goal is to determine the
optimal initial real-valued wave function y in two spatial
dimensions that maximizes the intensity |y|? of the field on
the symmetry axis at a prescribed focusing time. This initial
wave function should be normalized and constrained to a
finite aperture.

We assume that v, is radially symmetric, as it provides
the best diffractive focusing [8], and write the solution as

wlp.7) = 21 / Pdp GO (o, 2l Owolp) (1)

of the time-dependent two-dimensional Schodinger equa-
tion of a free particle in terms of the corresponding Green’s

function
1 ) p2 + p/2 ) p/
'0) = —— Jo| — 2
p.0) 2mit P (1 2t 0\ ¢ (2)

with the Bessel function J, of the first kind [14]. Here
p=r/R and 7 = ht/(MR?) are the dimensionless radial
coordinate and time, respectively, wherein M and R denote
the mass of the particle and the radius of the circular
aperture. In the case of the two-dimensional paraxial
Helmholtz equation, 7 is equivalent to the longitudinal
distance z = kR%t from the screen, where k denotes the
wave number.

We consider only wave functions y that are truncated
by the aperture p<1 and vanish elsewhere,
wo(p = 1) = 0. As a result, for a prescribed focusing time
7¢, or focal distance z¢ = kR?7, the intensity I[y] along
the symmetry axis, p = 0, takes the form

1 1 1 2,2
I[wo) :—2/ udu/ vdv cos (u > v
7% Jo 0 T

where we have used that y is real.
In order to solve the optimization problem, we first
construct the Lagrange function

G (p,z

>z//0(u)l//0(v),
(3)

cipal =1yl =42 [Nt -1, @)

where the Lagrange multiplier A takes into account the
normalization condition for w,, and then perform the
variation of L[y,| with respect to w,, to arrive at
the eigenvalue problem

1 /)1 vdv cos <u221f1)2> wo(v) = o(u)  (5)

2
2mt;

for the optimal wave function y corresponding to the
eigenvalue A.

Since Eq. (5) is a linear integral equation with a
degenerate kernel, its solution can be found analytically,
as shown in Appendix A. Indeed, for a fixed value of 7y, we

obtain the maximum eigenvalue
1
in{ — 6
o (2Tf> H ©)

and the normalized optimal initial wave function

1
/1+(Tf) = —877'-7;2 |:1 + 2Tf
f

() =N [\/H—a cos (;—;) + V1 —asin (;—;)] .
(7)

a = cos[1/(2z;)]sign{sin[1/(27;)]} and N=
87°72A, (1;) are the amplitude parameter and the
normalization constant, respectively, with sign(x) being
the sign function,
Substituting wéOp " given by Eq. (7) into the expression
Eq. (3) for the intensity at p =0, we prove that the

Here,

. . . . . . opt
intensity, indeed, achieves its maximum value Ir(nfx) (7p) =

™) = A, (z;) for any given focusing time 7, or the
dimensionless distance z; from the screen (within the
paraxial approximation). In particular, for

1
271'710 ’

(8)

Ty =

where the integer n, counts the number of Fresnel zones
that fit in the circular aperture 0 < p < 1, Eq. (6) yields

V3
188 (z,,) =S ©)

Fresnel zones—Next we compare the maximum focus-
ing intensity, Eq. (9), of the optimal state l,uéOp Y with the
Fresnel zones approach. For this purpose, we consider two
different designs.

An amplitude Fresnel zone (AFZ) plate alters the
amplitude, while the phase Fresnel zone (PFZ) plate
modifies the phase of the incoming wave. In the AFZ,
only odd (n =1,3,5,...) annular zones are transparent,
whereas even (n =2,4,6,...) zones are opaque, that is
absorbing the incoming waves, with n =1 being the
innermost zone containing the origin. The AFZ plate is
a nonunitary object, i.e., the input intensity is not con-
served. In the PFZ, we keep even and odd zones fully
transparent; however, the phase in the even zones is
shifted by .
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FIG. 1. Implementation of optimal diffractive focusing. We show the theoretical amplitude (a) and intensity (b) of the ny = 14 optimal

wave together with the measured optical transmission through the fabricated focusing element (c) for the focusing time z,,, = 1/(27n,).
(d) Experimental apparatus used to generate the optimal state with a PBOE. A linearly polarized 633 nm Gaussian beam passes through
a half-wave plate (HWP), which rotates it to the horizontal polarization. The beam is then expanded by a factor of five by two lenses (L)
to obtain a relatively flat profile before it goes through the PBOE followed by a polarizer. The latter is then imaged by a 4f-system in
order to examine its propagation dynamics by a CCD camera. Numerically simulated (e) and experimentally observed (f) intensity
distributions for a cross section of the beam as it propagates from the plane of the device to the focus for the optimal state. Numerical
simulation taking into account contributions (g) from both the horizontal (cosine) and vertical (sine) polarization components of the
modulated beam. Experimental setup (h) for focusing with Fresnel zone patterns using the SLM. The 633 nm laser source is expanded to
cover the SLM. The 4f-lens system then images the SLM onto the CCD camera with an iris (I) placed at the focus to select the first order

of diffraction.

For the focusing time z,,, we derive in Appendix B the
maximal intensities

2 (ng(ng+1), ny=1,3,5,...
fIﬁEZ)(rno)——{ oo 1 (10)
T ng, n0:2,4,6,...
and
4
PFZ
Ir<nax >(Tno) = ;n% (11)

at the symmetry axis p = 0.

A comparison of Egs. (9) and (10) reveals that the
optimal state wéom) defined by Eq. (7) does give rise to
focusing improved by the factor #?/4 in the achieved
intensity compared to the conventional AFZ method.
Moreover, in contrast to AFZ producing many foci with
low efficiency [13], the optimal state produces a single spot
with the maximal efficiency. These are our central results.
They solve a critical problem of finding the optimal real-
valued profile, which provides the best focusing without a
phase modulation (a lens). Moreover, our results have
significant impact for valuable applications in x-ray optics,
THz imaging, and electron microscopy. Indeed, for such
waves, lenses are either unavailable or difficult to imple-
ment due to the challenges of imprinting the parabolic
phase profile otherwise required for focusing. Therefore,
schemes relying on AFZ become a viable alternative to
focus such waves. For these types of matter and light

waves, our approach of the optimal diffractive focusing
gives an improvement of 7°/4 ~2.5 compared to the
existing schemes.

Experiments—Now we demonstrate experimentally opti-
mal diffractive focusing for the two-dimensional case of
electromagnetic waves. For this purpose we have fabricated
a transmissive, liquid crystal-based Pancharatnam Berry
optical element (PBOE) [15], described in Appendix C,
which can be operated at many different wavelengths. It
generates the optimal state l//éom) given by Eq. (7). The
space-varying amplitude for the focusing time 7, defined
by Eq. (8) with ny = 14 is shown in Fig. 1(a) together with
the expected and measured intensities, Figs. 1(b) and 1(c),
respectively.

The experimental apparatus used to generate the optimal
state is displayed in Fig. 1(d). The PBOE placed between a
a half-wave plate (HWP) and a polarizer is illuminated by a
633 nm He-Ne laser with an expanded Gaussian profile. A
4-f lens system is used to image the device on a
1920 x 1080 pixel CCD camera placed on a translation
stage, which allows us to measure the intensity of the
modulated beam along its propagation toward the focus.
We have obtained this intensity profile in 50 pm steps
over 25 mm.

Whereas Fig. 1(e) shows the exact evolution of the beam
originating from the optimal state y/(()om) given by Eq. (7),
Figs. 1(f) and 1(g) display the experimentally measured and
expected intensity along the beam’s propagation axis. As
further elaborated in the Discussion section, we expect
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FIG. 2. Comparison of the three methods for two-dimensional
diffractive focusing. For a fixed focusing time 7, = 1/(27n,),
with ng = 2,3, ...,10, we display the theoretical optimal maxi-

mum intensities, I'9h (z,,,) (blue line), given by Eq. (9), as well as

1857) (7y,) (red and green), and 1%7) (t,,) (orange), associated

with the Fresnel zone plates, Egs. (10) and (11). The shift between
the blue (dots) and the green (diamond), or the blue and the orange
(squares) lines show the improvement of the optimal focusing
method compared to AFZ, or PFZ.

imperfections in our optical system to affect the propaga-
tion profile.

To compare the propagation of l//g)pt) with the ones
created by the Fresnel zone plates (Appendix B), we
replace our PBOE by a reflective spatial light modulator
(SLM), as depicted in Fig. 1(h). We used a Hamamatsu
liquid crystal on silicon SLM with 1272 x 1024 resolution
and a pixel size of 12.5 pm. Moreover, we are able to
encode both the intensity and the phase of the pattern on the
incident beam using an amplitude masking technique [16].
A phase diffraction grating is added to the pattern on the
SLM, which produces the desired field in the first order of
diffraction. We then select this first order with a 4-f lens
system and an iris, thereby allowing us to remove all other
diffraction orders while imaging the SLM plane onto our
moveable CCD camera. Although SL.Ms do not reach the
spatial resolution of our PBOE, their programmability can
more readily streamline experiments comparing various
focusing approaches.

In Fig. 2, we display the maximal focusing intensity
Inax(4,) for nine different patterns corresponding to
focusing times 7, , as defined in Eq. (8), with ny=
2,3,...,10. The results of these experiments involving
the optimal wave function as well as both forms of the
Fresnel zones are depicted in Fig. 2.

Discussion—The propagation of the beam, shown in
Fig. 1(f), features an artificial peak at T = 7;/2 arising from
the modulation by our PBOE. Indeed, an imperfect
polarization alignment in our generation apparatus leads
to contributions from a parasitic beam proportional to
sin(2a), where a = a(x,y) is the relative orientation of

the liquid crystals. This component is not part of the
optimal solution presented in this work (Appendix C).
Here, a ranges from O to z/2 such that the horizontally
polarized component of the field oscillates from 41 to —1
according to cos(2a), while the term sin(2a) oscillates
from 0 to +1 and back to 0. As a consequence, the
contribution from the sin(2a) component, which does not
have negative amplitudes, behaves like the Fresnel zones,
giving rise to a focus at z;/2. In Fig. 1(g), we show the
expected propagation, including the contribution from the
sin(2a) term, which is in good agreement with our
experimental results shown in Fig. 1(f).

The scalings of the peak intensities of the focusing
methods, considered in our Letter, with n, are shown in
Fig. 2 by solid lines together with the experimental results
depicted by the differently colored data points. The peak
focal intensity increases with increasing n, corresponding to
a tighter focusing time 7, , or, equivalently, to a shorter focal
length. Furthermore, the optimal wave function consistently
outperforms both methods relying on Fresnel zone plates.
The optimal diffractive focusing gives an improvement of
7% /8 compared to PFZ, and 7% /4 for AFZ, which manifests
itself in Fig. 2 by shifts of the straight lines relative to the
blue line.

We conclude this discussion by emphasizing that with
our PBOE we were able to achieve a better resolution in our
pattern creation, allowing for a tighter focusing time z,,
with ny = 14, than with the SLM. This advantage is
primarily due to the fact that a diffraction grating is
necessary when the SLM is used to form an arbitrary
wave function, which thus limits the maximum spatial
frequency of the phase oscillations corresponding to the
desired pattern. In addition, the SLM has limited control
over both phase and spatial modulation, as prescribed by its
bit depth and pixel pitch, respectively. As ng is increased,

the number of oscillations in w{* from +1 to —I
increases, thereby leading to sharper modulation features
in the outer region of the display.

Summary—We have derived the optimal real-valued
matter wave y/é"pt) for focusing in both one and two
dimensions (see Appendix D for one-dimensional case).
The same form of the Schrodinger equation for matter wave
and the paraxial wave equation for electromagnetic waves
allows us to transfer our treatment to light. In our optical
experiment, we have realized the two-dimensional optimal

(opt)

wave function y,*~ using liquid crystal devices, verifying

the best possible focusing properties of y/(()()p " compared to

diffractive focusing from Fresnel zone patterns.

The optimal diffractive patterns derived here are of great
interest to many different communities where phase modu-
lation, due to technological limitations, is not directly
possible. We can also envision extending this technique to
vector fields, such as spinors in both optical and matter
waves, where combinations of amplitude masks and
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specially polarized vector modes bring highly structured
variations in focused beams [17-19]. The application of

y/éom) to these tight focusing problems remains to be explored.
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Appendix A: Optimal state in two dimensions—To
obtain the analytical solution of the integral equation (5)
of the Letter, we cast it in the form

) = s[4 cos(22) 4 msin (2], an)
= - m( —
Yol 2n12A o8 2t¢ ° 2t ) |’

(A2)

1 1}2
A= / vdv cos <>y/0(v)
0 27

and

(A3)

1 2
B EA vdv sin(z—rf)wo(v)

are functions solely of ;.

Next, we insert y, given by Eq. (A1) into Egs. (A2) and
(A3), and obtain the system

1 + z;sin(1/7¢) sin*[1/(27)] ,,
[ B 8t ]A C dag B=0 (a4
sin?[1/(27;)] 1 —zpsin(1/7)]
_74751} A+ {A—TT%}BO (A5)
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of algebraic equations for A and B, which has nontrivial
solutions, only when its determinant is zero, that is

st~ (29 o

This elementary quadratic equation has the two solutions

wn(az)|

By inserting the maximal eigenvalue 4, into Eq. (A4),
we find the relation between A and B, and thus the

normalized optimal initial wave function w(()om)

Eq. (7) of the Letter.

~~

1
Ay —{chff

= A7
8rt? (A7)

given by

Appendix B: Maximal intensity of Fresnel zones—For
a given value of 7; the radii

Pn =/ 2nTen

of the Fresnel zones, with n =1,2,3,...,n(, extend to
the maximum number n, of zones fitting within the

circular aperture 0 <p <1 [1]. Therefore, the initial

wave functions l//(()AFZ) and U/(()PFZ)

phase Fresnel zone patterns read

(B1)

for the amplitude and

W () = N, [[U(p;o,pl) +> [U(/);/JZn’/JZn+1):| (B2)

n=1

WSPFZ)(p) _ \/L?; [[U(p;o,m) + nf;(—l)nu(pmn,ﬂnﬂ)}

(B3)

with U(p;a,b) =0O(b—p) —O(a—p) and a < b. Here,
O(p) denotes the Heaviside function and N; is a
normalization factor depending on z;.

To derive an analytical formula for the maximal intensity,
we choose the focusing times 7; = 7,, = 1/(27n,). In this
case, Eq. (B1) reduces to p, = 1/n/ng, and the normali-
zation condition

aNilpt + (03 —p3) + (ps —pi) +..] =1 (B4)
for z//(()AFZ>, Eq. (B2), defines the factor
2 - ong=1,3,5, ...
N, = \[{ not> 0 (B5)
T, no = 2,46, ...

as a function of ny.

Next, we insert the initial profile y/éAFZ) given by

Eq. (B2) into Eq. (3) of the Letter, and obtain the expression

1 2 2
/ udu exp <i u_) y/éAFZ) (u)
0 27'-)10

2 2
. P . P35
-1
exp [1 > ] + exp {1 21_"0}

Ny

1
AFZ
I‘(“ax )(T"o) - TT

0

=N?

2

2
—_ 1 p2
exp [12 } + ...

)

9

that is

AFZ (n0+1)2, n0:1,3,5,...
1) (g,) = N%{ (B6)

2 _
ng, ny = 2,46, ...,

where we have used the fact that p7,/(27,,) = nx.

As a result, Eq. (B6) combined with Eq. (B5) gives rise

to the maximum intensity / I(If‘aiz) (7n, )» Eq. (10) of the Letter,

produced by the amplitude Fresnel zones. Analogously, we
derive the corresponding maximum intensity I,(Tl:;z) (Tny )s
Eq. (11) of the Letter, for the Fresnel phase zones.

Appendix C: Pancharatmam-Berry optical element—
Our device consists of a patterned layer of birefringent
nematic liquid crystals whose orientation locally
determines that of the medium’s optical axis. This
feature causes the element to have the action

cos 2a(x, sin [ 2a(x,
+isin <g> (sin [[Zagx,)y’))]] _CO£ [20([(51 ])}>
(%)

on the horizontal ey and vertical ey polarization
components of an optical beam. Here ¢ is the optical
retardation of the liquid crystal molecules and o=
a(x,y) is the device’s spatially dependent liquid crystal
axis orientation expressed in terms of the transverse
Cartesian coordinates x and y.

When the device is perfectly tuned, that is for § = =, and
followed by a horizontally oriented polarizer, it can
effectively be used to mask the amplitude profile of
incoming horizontally polarized light by a factor of
cos [2a(x,y)]. This procedure was employed to generate

our real-valued optimal initial wave function 1//(()°p )

wéoPt) (x,y) by means of a device defined by an optical

axis of a(x,y) = (1/2)arccos [z//(()om) (x,y)/w&?f;)], where

(C1)
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wﬁﬁ.f;) is the maximum value of the optimal initial wave

function.

Appendix D: Optimal state in one dimension—In this
section we determine the optimal initial real-valued and
normalized wave function ¢y = ¢y(x) that maximizes
the intensity |@(0)|* of the field at x = 0, at the focusing
time t;.

In this case we use the one-dimensional Green’s function

L [e=ey
V2mit P 27

for the time-dependent one-dimensional Schrodinger equa-
tion of a free particle. Here, ¢ = x/L and 7 = ht/(ML?) are
the dimensionless position and time, respectively, and M
and L denote the mass of the particle and the slit width.

We again apply the method of the Lagrange multipliers
and arrive at the eigenvalue problem

G (&, 7l2,0) = | o

1

1 52_512
ag’cos (£ 5 ) (&) —smte) (@2

27[Tf -1 3

for the optimal initial wave function ¢, with the eigenvalue
u, that determines the maximum intensity achieved at z;.
Here, we have assumed that ¢,(£) = 0 for [£] > 1.

Since we are interested in the maximum of the intensity,
we solve the integral equation (D2) only for the largest
eigenvalue y, (7¢). As a result, for a given 7, we find the

optimal initial wave function

(opt) - 1+r iz 1—r . ﬁ
%o (6) = \/ 4rrep, cos (sz * drrep, s 27¢

(D3)

for |& < 1, with (™ (£) =0 for |& > 1, and the corre-
sponding maximal eigenvalue

pole) = Il (r)) = Z|V/2/(rm)|. - (D)

Here we have expressed the intensity
1) =3 {7+ 2/lC@P + 5P}
and the parameter
C[ 2/(m'f)}
r(z) = > >
\/{C[ 2/(ﬂ"€f)} } + {S{ 2/(717@-)} }
(D5)

in terms of the Fresnel integrals C and S [14].
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