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Following the familiar analogy between the optical paraxial wave equation and the Schrödinger
equation, we derive the optimal, real-valued wave function for focusing in one- and two-space dimensions
without the use of any phase component. We compare and contrast the focusing parameters of the optimal
waves with those of other diffractive focusing approaches, such as Fresnel zones. Moreover, we
experimentally demonstrate these focusing properties on optical beams using both reflective and
transmissive liquid crystal devices. Our results provide an alternative direction for focusing waves where
phase elements are challenging to implement, such as for x-rays, THz radiation, and electron beams.
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Introduction—Fresnel zone plates [1] are optical ele-
ments that focus an incident beam due to binary variations
in its amplitude and phase. They offer precise control over
diffractive propagation and enable beam focusing in
systems where traditional lensing elements are not immedi-
ately available. In this Letter, we address the fundamental
question of whether any other approach to wave shaping,
based entirely on the modulation of a wave amplitude, can
surpass the limit set by a Fresnel zone plate. We show for
the case of matter, optical, and any other waves subjected to
paraxial propagation, that the technique of amplitude
modulation (diffractive focusing) has (i) a fundamental
limit, dictated by their wave nature, and (ii) does yield more
efficient focusing than Fresnel lenses by a factor funda-
mentally constrained to π2=4. Moreover, we demonstrate
our approach and compare it to Fresnel zone plates by an
optical experiment.
A scalar wave, such as a matter wave or an unpolarized

electromagnetic field, comprises two components: an
amplitude and a phase. The common way to focus an
electromagnetic wave is to modulate its phase using a lens
by applying a parabolic phase variation in space. This
approach forms the pillar of both standardized and emerg-
ing imaging systems [2–4], such as lenses implemented

with metasurfaces [5] or multilevel diffractive phase masks
[6]. However, there are waves for which a phase-modulating
lens does not exist due to technological limitations in
implementing phase-altering components in these systems.
For instance, implementing such components for x-rays and
matter waves often requires subnanometer manufacturing.
There exist alternative approaches to focusing waves via

amplitude modulation in space. For example, blocking part
of the wave by a circular aperture or annular rings known as
Fresnel zones will focus it to the Arago-Poisson spot [1]. In
these examples, the incoming waves are spatially selected
without being modified by the materials. These diffractive
focusing techniques are crucially determined by a non-
Gaussian initial wave function, as well as by the underlying
dimensionality of the problem [7–9], and have been
employed for surface gravity water waves and plasmonic
waves [10,11], as well as for a Bose-Einstein conden-
sate [12].
We emphasize that Fresnel zones provide one approach

to focusing the waves by amplitude modulation; one may
question whether other approaches, e.g., nonbinary ampli-
tude modulations, provide even better focusing. In this
Letter, we obtain the optimal initial wave function for
focusing matter waves in one and two dimensions, and
compare and contrast the focusing parameters of the
optimal two-dimensional wave function to those of the
Fresnel zone approach. Because of the same form of
the Schrödinger and the paraxial Helmholtz equations,
we are able to extend our results to electromagnetic waves.
In contrast to Fresnel zone plates producing infinitely many
foci with the low efficiency at each focus [13], the optimal
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wave function provides most efficient focusing with a
single focus. Finally, we experimentally verify the focusing
properties of the two-dimensional pattern at optical wave-
lengths using a reflective spatial light modulator and a
fabricated transmissive liquid crystal device.
Theory of optimal focusing—Our goal is to determine the

optimal initial real-valued wave function ψ0 in two spatial
dimensions that maximizes the intensity jψ j2 of the field on
the symmetry axis at a prescribed focusing time. This initial
wave function should be normalized and constrained to a
finite aperture.
We assume that ψ0 is radially symmetric, as it provides

the best diffractive focusing [8], and write the solution as

ψðρ; τÞ ¼ 2π

Z
∞

0

ρ0dρ0Gð2Þðρ; τjρ0; 0Þψ0ðρ0Þ ð1Þ

of the time-dependent two-dimensional Schödinger equa-
tion of a free particle in terms of the corresponding Green’s
function

Gð2Þðρ; τjρ0; 0Þ ¼ 1

2πiτ
exp

�
i
ρ2 þ ρ02

2τ

�
J0

�
ρρ0

τ

�
ð2Þ

with the Bessel function J0 of the first kind [14]. Here
ρ≡ r=R and τ≡ ℏt=ðMR2Þ are the dimensionless radial
coordinate and time, respectively, whereinM and R denote
the mass of the particle and the radius of the circular
aperture. In the case of the two-dimensional paraxial
Helmholtz equation, τ is equivalent to the longitudinal
distance z≡ kR2τ from the screen, where k denotes the
wave number.
We consider only wave functions ψ0 that are truncated

by the aperture ρ ≤ 1 and vanish elsewhere,
ψ0ðρ ≥ 1Þ ¼ 0. As a result, for a prescribed focusing time
τf , or focal distance zf ≡ kR2τf , the intensity I½ψ0� along
the symmetry axis, ρ ¼ 0, takes the form

I½ψ0� ¼
1

τ2f

Z
1

0

udu
Z

1

0

vdv cos

�
u2 − v2

2τf

�
ψ0ðuÞψ0ðvÞ;

ð3Þ

where we have used that ψ0 is real.
In order to solve the optimization problem, we first

construct the Lagrange function

L½ψ0�≡ I½ψ0� − λ

�
2π

Z
1

0

uduψ2
0ðuÞ − 1

�
; ð4Þ

where the Lagrange multiplier λ takes into account the
normalization condition for ψ0, and then perform the
variation of L½ψ0� with respect to ψ0, to arrive at
the eigenvalue problem

1

2πτ2f

Z
1

0

vdv cos

�
u2 − v2

2τf

�
ψ0ðvÞ ¼ λψ0ðuÞ ð5Þ

for the optimal wave function ψ0 corresponding to the
eigenvalue λ.
Since Eq. (5) is a linear integral equation with a

degenerate kernel, its solution can be found analytically,
as shown in Appendix A. Indeed, for a fixed value of τf , we
obtain the maximum eigenvalue

λþðτfÞ ¼
1

8πτ2f

�
1þ 2τf

���� sin
�

1

2τf

�����
�

ð6Þ

and the normalized optimal initial wave function

ψ ðoptÞ
0 ðρÞ ¼ N

� ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p
cos

�
ρ2

2τf

�
þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p
sin

�
ρ2

2τf

��
:

ð7Þ

Here, a≡ cos½1=ð2τfÞ�signfsin½1=ð2τfÞ�g and N ≡
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π2τ2f λþðτfÞ

p
are the amplitude parameter and the

normalization constant, respectively, with signðxÞ being
the sign function.
Substituting ψ ðoptÞ

0 given by Eq. (7) into the expression
Eq. (3) for the intensity at ρ ¼ 0, we prove that the

intensity, indeed, achieves its maximum value IðoptÞmax ðτfÞ≡
I½ψ ðoptÞ

0 � ¼ λþðτfÞ for any given focusing time τf , or the
dimensionless distance zf from the screen (within the
paraxial approximation). In particular, for

τn0 ≡
1

2πn0
; ð8Þ

where the integer n0 counts the number of Fresnel zones
that fit in the circular aperture 0 ≤ ρ ≤ 1, Eq. (6) yields

IðoptÞmax ðτn0Þ ¼
π

2
n20: ð9Þ

Fresnel zones—Next we compare the maximum focus-
ing intensity, Eq. (9), of the optimal state ψ ðoptÞ

0 with the
Fresnel zones approach. For this purpose, we consider two
different designs.
An amplitude Fresnel zone (AFZ) plate alters the

amplitude, while the phase Fresnel zone (PFZ) plate
modifies the phase of the incoming wave. In the AFZ,
only odd (n ¼ 1; 3; 5;…) annular zones are transparent,
whereas even (n ¼ 2; 4; 6;…) zones are opaque, that is
absorbing the incoming waves, with n ¼ 1 being the
innermost zone containing the origin. The AFZ plate is
a nonunitary object, i.e., the input intensity is not con-
served. In the PFZ, we keep even and odd zones fully
transparent; however, the phase in the even zones is
shifted by π.
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For the focusing time τn0 , we derive in Appendix B the
maximal intensities

IðAFZÞmax ðτn0Þ ¼
2

π

�
n0ðn0 þ 1Þ; n0 ¼ 1; 3; 5;…

n20; n0 ¼ 2; 4; 6;…
ð10Þ

and

IðPFZÞmax ðτn0Þ ¼
4

π
n20 ð11Þ

at the symmetry axis ρ ¼ 0.
A comparison of Eqs. (9) and (10) reveals that the

optimal state ψ ðoptÞ
0 defined by Eq. (7) does give rise to

focusing improved by the factor π2=4 in the achieved
intensity compared to the conventional AFZ method.
Moreover, in contrast to AFZ producing many foci with
low efficiency [13], the optimal state produces a single spot
with the maximal efficiency. These are our central results.
They solve a critical problem of finding the optimal real-
valued profile, which provides the best focusing without a
phase modulation (a lens). Moreover, our results have
significant impact for valuable applications in x-ray optics,
THz imaging, and electron microscopy. Indeed, for such
waves, lenses are either unavailable or difficult to imple-
ment due to the challenges of imprinting the parabolic
phase profile otherwise required for focusing. Therefore,
schemes relying on AFZ become a viable alternative to
focus such waves. For these types of matter and light

waves, our approach of the optimal diffractive focusing
gives an improvement of π2=4 ≈ 2.5 compared to the
existing schemes.
Experiments—Now we demonstrate experimentally opti-

mal diffractive focusing for the two-dimensional case of
electromagnetic waves. For this purpose we have fabricated
a transmissive, liquid crystal-based Pancharatnam Berry
optical element (PBOE) [15], described in Appendix C,
which can be operated at many different wavelengths. It
generates the optimal state ψ ðoptÞ

0 given by Eq. (7). The
space-varying amplitude for the focusing time τn0 defined
by Eq. (8) with n0 ¼ 14 is shown in Fig. 1(a) together with
the expected and measured intensities, Figs. 1(b) and 1(c),
respectively.
The experimental apparatus used to generate the optimal

state is displayed in Fig. 1(d). The PBOE placed between a
a half-wave plate (HWP) and a polarizer is illuminated by a
633 nm He-Ne laser with an expanded Gaussian profile. A
4-f lens system is used to image the device on a
1920 × 1080 pixel CCD camera placed on a translation
stage, which allows us to measure the intensity of the
modulated beam along its propagation toward the focus.
We have obtained this intensity profile in 50 μm steps
over 25 mm.
Whereas Fig. 1(e) shows the exact evolution of the beam

originating from the optimal state ψ ðoptÞ
0 given by Eq. (7),

Figs. 1(f) and 1(g) display the experimentally measured and
expected intensity along the beam’s propagation axis. As
further elaborated in the Discussion section, we expect

(a)

(e) (f) (g)

(b) (c)

(d)

(h)

FIG. 1. Implementation of optimal diffractive focusing. We show the theoretical amplitude (a) and intensity (b) of the n0 ¼ 14 optimal
wave together with the measured optical transmission through the fabricated focusing element (c) for the focusing time τn0 ¼ 1=ð2πn0Þ.
(d) Experimental apparatus used to generate the optimal state with a PBOE. A linearly polarized 633 nm Gaussian beam passes through
a half-wave plate (HWP), which rotates it to the horizontal polarization. The beam is then expanded by a factor of five by two lenses (L)
to obtain a relatively flat profile before it goes through the PBOE followed by a polarizer. The latter is then imaged by a 4f-system in
order to examine its propagation dynamics by a CCD camera. Numerically simulated (e) and experimentally observed (f) intensity
distributions for a cross section of the beam as it propagates from the plane of the device to the focus for the optimal state. Numerical
simulation taking into account contributions (g) from both the horizontal (cosine) and vertical (sine) polarization components of the
modulated beam. Experimental setup (h) for focusing with Fresnel zone patterns using the SLM. The 633 nm laser source is expanded to
cover the SLM. The 4f-lens system then images the SLM onto the CCD camera with an iris (I) placed at the focus to select the first order
of diffraction.
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imperfections in our optical system to affect the propaga-
tion profile.
To compare the propagation of ψ ðoptÞ

0 with the ones
created by the Fresnel zone plates (Appendix B), we
replace our PBOE by a reflective spatial light modulator
(SLM), as depicted in Fig. 1(h). We used a Hamamatsu
liquid crystal on silicon SLM with 1272 × 1024 resolution
and a pixel size of 12.5 μm. Moreover, we are able to
encode both the intensity and the phase of the pattern on the
incident beam using an amplitude masking technique [16].
A phase diffraction grating is added to the pattern on the
SLM, which produces the desired field in the first order of
diffraction. We then select this first order with a 4-f lens
system and an iris, thereby allowing us to remove all other
diffraction orders while imaging the SLM plane onto our
moveable CCD camera. Although SLMs do not reach the
spatial resolution of our PBOE, their programmability can
more readily streamline experiments comparing various
focusing approaches.
In Fig. 2, we display the maximal focusing intensity

Imaxðτn0Þ for nine different patterns corresponding to
focusing times τn0 , as defined in Eq. (8), with n0 ¼
2; 3;…; 10. The results of these experiments involving
the optimal wave function as well as both forms of the
Fresnel zones are depicted in Fig. 2.
Discussion—The propagation of the beam, shown in

Fig. 1(f), features an artificial peak at τ ¼ τf=2 arising from
the modulation by our PBOE. Indeed, an imperfect
polarization alignment in our generation apparatus leads
to contributions from a parasitic beam proportional to
sinð2αÞ, where α ¼ αðx; yÞ is the relative orientation of

the liquid crystals. This component is not part of the
optimal solution presented in this work (Appendix C).
Here, α ranges from 0 to π=2 such that the horizontally
polarized component of the field oscillates from þ1 to −1
according to cosð2αÞ, while the term sinð2αÞ oscillates
from 0 to þ1 and back to 0. As a consequence, the
contribution from the sinð2αÞ component, which does not
have negative amplitudes, behaves like the Fresnel zones,
giving rise to a focus at τf=2. In Fig. 1(g), we show the
expected propagation, including the contribution from the
sinð2αÞ term, which is in good agreement with our
experimental results shown in Fig. 1(f).
The scalings of the peak intensities of the focusing

methods, considered in our Letter, with n0 are shown in
Fig. 2 by solid lines together with the experimental results
depicted by the differently colored data points. The peak
focal intensity increaseswith increasingn0, corresponding to
a tighter focusing time τn0 , or, equivalently, to a shorter focal
length. Furthermore, the optimal wave function consistently
outperforms both methods relying on Fresnel zone plates.
The optimal diffractive focusing gives an improvement of
π2=8 compared to PFZ, and π2=4 for AFZ, which manifests
itself in Fig. 2 by shifts of the straight lines relative to the
blue line.
We conclude this discussion by emphasizing that with

our PBOE wewere able to achieve a better resolution in our
pattern creation, allowing for a tighter focusing time τn0
with n0 ¼ 14, than with the SLM. This advantage is
primarily due to the fact that a diffraction grating is
necessary when the SLM is used to form an arbitrary
wave function, which thus limits the maximum spatial
frequency of the phase oscillations corresponding to the
desired pattern. In addition, the SLM has limited control
over both phase and spatial modulation, as prescribed by its
bit depth and pixel pitch, respectively. As n0 is increased,

the number of oscillations in ψ ðoptÞ
0 from þ1 to −1

increases, thereby leading to sharper modulation features
in the outer region of the display.
Summary—We have derived the optimal real-valued

matter wave ψ ðoptÞ
0 for focusing in both one and two

dimensions (see Appendix D for one-dimensional case).
The same form of the Schrödinger equation for matter wave
and the paraxial wave equation for electromagnetic waves
allows us to transfer our treatment to light. In our optical
experiment, we have realized the two-dimensional optimal

wave function ψ ðoptÞ
0 using liquid crystal devices, verifying

the best possible focusing properties of ψ ðoptÞ
0 compared to

diffractive focusing from Fresnel zone patterns.
The optimal diffractive patterns derived here are of great

interest to many different communities where phase modu-
lation, due to technological limitations, is not directly
possible. We can also envision extending this technique to
vector fields, such as spinors in both optical and matter
waves, where combinations of amplitude masks and

FIG. 2. Comparison of the three methods for two-dimensional
diffractive focusing. For a fixed focusing time τn0 ¼ 1=ð2πn0Þ,
with n0 ¼ 2; 3;…; 10, we display the theoretical optimal maxi-

mum intensities, IðoptÞmax ðτn0Þ (blue line), given by Eq. (9), as well as
IðAFZÞmax ðτn0Þ (red and green), and IðPFZÞmax ðτn0Þ (orange), associated
with the Fresnel zone plates, Eqs. (10) and (11). The shift between
the blue (dots) and the green (diamond), or the blue and the orange
(squares) lines show the improvement of the optimal focusing
method compared to AFZ, or PFZ.
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specially polarized vector modes bring highly structured
variations in focused beams [17–19]. The application of

ψ ðoptÞ
0 to these tight focusingproblems remains to be explored.
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Appendix A: Optimal state in two dimensions—To
obtain the analytical solution of the integral equation (5)
of the Letter, we cast it in the form

ψ0ðuÞ ¼
1

2πτ2f λ

�
A cos

�
u2

2τf

�
þ B sin

�
u2

2τf

��
; ðA1Þ

where

A≡
Z

1

0

v dv cos

�
v2

2τf

�
ψ0ðvÞ ðA2Þ

and

B≡
Z

1

0

v dv sin

�
v2

2τf

�
ψ0ðvÞ ðA3Þ

are functions solely of τf .
Next, we insert ψ0 given by Eq. (A1) into Eqs. (A2) and

(A3), and obtain the system

�
λ −

1þ τf sinð1=τfÞ
8πτ2f

�
A −

sin2½1=ð2τfÞ�
4πτf

B ¼ 0 ðA4Þ

−
sin2½1=ð2τfÞ�

4πτf
Aþ

�
λ −

1 − τf sinð1=τfÞ
8πτ2f

�
B ¼ 0 ðA5Þ
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of algebraic equations for A and B, which has nontrivial
solutions, only when its determinant is zero, that is�

λ −
1

8πτ2f

�
2

−
�
sin½1=ð2τfÞ�

4πτf

�
2

¼ 0: ðA6Þ

This elementary quadratic equation has the two solutions

λ� ¼ 1

8πτ2f

�
1� 2τf

���� sin
�

1

2τf

�����
�
: ðA7Þ

By inserting the maximal eigenvalue λþ into Eq. (A4),
we find the relation between A and B, and thus the

normalized optimal initial wave function ψ ðoptÞ
0 given by

Eq. (7) of the Letter.

Appendix B: Maximal intensity of Fresnel zones—For
a given value of τf the radii

ρn ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
2πτfn

p
ðB1Þ

of the Fresnel zones, with n ¼ 1; 2; 3;…; n0, extend to
the maximum number n0 of zones fitting within the
circular aperture 0 ≤ ρ ≤ 1 [1]. Therefore, the initial

wave functions ψ ðAFZÞ
0 and ψ ðPFZÞ

0 for the amplitude and
phase Fresnel zone patterns read

ψ ðAFZÞ
0 ðρÞ ¼ N1

�
Uðρ; 0; ρ1Þ þ

X∞
n¼1

Uðρ; ρ2n; ρ2nþ1Þ
�

ðB2Þ

and

ψ ðPFZÞ
0 ðρÞ ¼ 1ffiffiffi

π
p

�
Uðρ; 0; ρ1Þ þ

X∞
n¼1

ð−1ÞnUðρ; ρn; ρnþ1Þ
�

ðB3Þ

with Uðρ; a; bÞ≡ Θðb − ρÞ − Θða − ρÞ and a < b. Here,
ΘðρÞ denotes the Heaviside function and N1 is a
normalization factor depending on τf .
To derive an analytical formula for the maximal intensity,

we choose the focusing times τf ≡ τn0 ≡ 1=ð2πn0Þ. In this
case, Eq. (B1) reduces to ρn ¼

ffiffiffiffiffiffiffiffiffiffi
n=n0

p
, and the normali-

zation condition

πN2
1½ρ21 þ ðρ23 − ρ22Þ þ ðρ25 − ρ24Þ þ…� ¼ 1 ðB4Þ

for ψ ðAFZÞ
0 , Eq. (B2), defines the factor

N1 ≡
ffiffiffi
2

π

r ( ffiffiffiffiffiffiffiffi
n0

n0þ1

q
; n0 ¼ 1; 3; 5;…

1; n0 ¼ 2; 4; 6;…
ðB5Þ

as a function of n0.

Next, we insert the initial profile ψ ðAFZÞ
0 given by

Eq. (B2) into Eq. (3) of the Letter, and obtain the expression

IðAFZÞmax ðτn0Þ ¼
1

τ2n0

����
Z

1

0

udu exp

�
i
u2

2τn0

�
ψ ðAFZÞ
0 ðuÞ

����2

¼ N2
1

���� exp
�
i
ρ21
2τn0

�
− 1þ exp

�
i
ρ23
2τn0

�

− exp

�
i
ρ22
2τn0

�
þ…

����2;
that is

IðAFZÞmax ðτn0Þ ¼ N2
1

(
ðn0 þ 1Þ2; n0 ¼ 1; 3; 5;…

n20; n0 ¼ 2; 4; 6;…;
ðB6Þ

where we have used the fact that ρ2n=ð2τn0Þ ¼ nπ.
As a result, Eq. (B6) combined with Eq. (B5) gives rise

to the maximum intensity IðAFZÞmax ðτn0Þ, Eq. (10) of the Letter,
produced by the amplitude Fresnel zones. Analogously, we

derive the corresponding maximum intensity IðPFZÞmax ðτn0Þ,
Eq. (11) of the Letter, for the Fresnel phase zones.

Appendix C: Pancharatnam-Berry optical element—
Our device consists of a patterned layer of birefringent
nematic liquid crystals whose orientation locally
determines that of the medium’s optical axis. This
feature causes the element to have the action

Ûq ·

�
eH
eV

�
¼ cos

�
δ

2

��
eH
eV

�

þ isin

�
δ

2

��
cos ½2αðx;yÞ� sin ½2αðx;yÞ�
sin ½2αðx;yÞ� −cos ½2αðx;yÞ�

�

×

�
eH
eV

�
ðC1Þ

on the horizontal eH and vertical eV polarization
components of an optical beam. Here δ is the optical
retardation of the liquid crystal molecules and α≡
αðx; yÞ is the device’s spatially dependent liquid crystal
axis orientation expressed in terms of the transverse
Cartesian coordinates x and y.
When the device is perfectly tuned, that is for δ ¼ π, and

followed by a horizontally oriented polarizer, it can
effectively be used to mask the amplitude profile of
incoming horizontally polarized light by a factor of
cos ½2αðx; yÞ�. This procedure was employed to generate

our real-valued optimal initial wave function ψ ðoptÞ
0 ≡

ψ ðoptÞ
0 ðx; yÞ by means of a device defined by an optical

axis of αðx; yÞ ¼ ð1=2Þ arccos 	ψ ðoptÞ
0 ðx; yÞ=ψ ðoptÞ

max


, where
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ψ ðoptÞ
max is the maximum value of the optimal initial wave

function.

Appendix D: Optimal state in one dimension—In this
section we determine the optimal initial real-valued and
normalized wave function φ0 ≡ φ0ðxÞ that maximizes
the intensity jφð0Þj2 of the field at x ¼ 0, at the focusing
time tf .
In this case we use the one-dimensional Green’s function

Gð1Þðξ; τjξ0; 0Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2πiτ

p exp

�
i
ðξ − ξ0Þ2

2τ

�
ðD1Þ

for the time-dependent one-dimensional Schrödinger equa-
tion of a free particle. Here, ξ≡ x=L and τ≡ ℏt=ðML2Þ are
the dimensionless position and time, respectively, and M
and L denote the mass of the particle and the slit width.
We again apply the method of the Lagrange multipliers

and arrive at the eigenvalue problem

1

2πτf

Z
1

−1
dξ0 cos

�
ξ2 − ξ02

2τf

�
φ0ðξ0Þ ¼ μφ0ðξÞ ðD2Þ

for the optimal initial wave function φ0 with the eigenvalue
μ, that determines the maximum intensity achieved at τf .
Here, we have assumed that φ0ðξÞ ¼ 0 for jξj > 1.
Since we are interested in the maximum of the intensity,

we solve the integral equation (D2) only for the largest
eigenvalue μþðτfÞ. As a result, for a given τf , we find the

optimal initial wave function

φðoptÞ
0 ðξÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r
4πτfμþ

s
cos

�
ξ2

2τf

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r
4πτfμþ

s
sin

�
ξ2

2τf

�

ðD3Þ

for jξj ≤ 1, with φðoptÞ
0 ðξÞ ¼ 0 for jξj > 1, and the corre-

sponding maximal eigenvalue

μþðτfÞ ¼ Ið1DÞmax ðτfÞ ¼ I
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðπτfÞ
p i

: ðD4Þ

Here we have expressed the intensity

IðzÞ≡ 1

4

�
z2 þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½CðzÞ�2 þ ½SðzÞ�2

q �

and the parameter

rðτfÞ≡
C
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðπτfÞ
p i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
C
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðπτfÞ
p i�2

þ
�
S
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðπτfÞ
p i�2

s

ðD5Þ

in terms of the Fresnel integrals C and S [14].
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