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Abstract

Accurate building footprints are essential for urban planning, crisis manage-

ment, and social science research, yet Germany lacks a comprehensive and up

to date nationwide register. Existing sources such as cadastral data, and Open-

StreetMap remain incomplete or inconsistent. At the same time current deep learn-

ing models for automatic footprint extraction still suffer from systematic errors.

This thesis investigates whether optimizing preprocessing, postprocessing, and

training data selection can improve the CNN-based extraction model proposed by

Stiller et al. [2023]. Experiments with normalization strategies, LiDAR-based height

layers, tile overlap, and threshold settings show that targeted adjustments enhance

performance. The final pipeline, using DSM data and refined data normalization,

improved Overall Accuracy by 7.0 percentage points, IoU by 5.2 percentage points,

and F1 score by 3.3 percentage points compared to the baseline.

A case study on Berlin illustrates the practical value of the generated data for

the social sciences by linking building geometries with demographic and building

use data.

The findings highlight both the technical and applied relevance of the improved

workflow: advancing footprint extraction toward official usability while enabling

new insights in the social sciences.
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1 Introduction

According to Li et al. [2024b, p. 2], building footprints are the ”two-dimensional (2D)

visual representation of a building, describing its exact location, size, and shape on the

ground”. Figure 1 illustrates this concept, showing footprints extracted from aerial im-

agery.

Figure 1: Example of building footprints derived from aerial imagery (RGB from Web
map Service (WMS) Layer Berlin, DLR internal).

In the social sciences, accurate building footprint data are essential for tasks such

as estimating population distributions in regions where census information is outdated

or incomplete [Hertrich et al., 2025]. As shown by Wardrop et al. [2018], building out-

lines derived from remote sensing imagery serve as key covariates in models that predict

population density, enabling more informed research and policy making [Stiller et al.,

2021].

Yet, the relevance of building footprints extends far beyond data-poor contexts. In

1



highly developed countries such as Germany, they represent a critical data layer for

multiple domains. Accurate and recent building footprint information underpins ur-

ban planning [Schiller et al., 2021], infrastructure monitoring, and environmental report-

ing [Milojevic-Dupont et al., 2023]. It also supports crisis management, for instance

in flood risk assessment or disaster response [Bhuyan et al., 2023] and contributes to

socio-economic analysis by serving as proxies for population distribution and housing

supply [Bakillah et al., 2014]. In short, building footprints are indispensable geospatial

information for both scientific research and public administration [Krause et al., 2022].

Despite their importance, no recent and comprehensive nationwide register of building

footprints exists in Germany. Instead, information is fragmented across multiple admin-

istrative systems, and no single source provides complete or uniform coverage [Krause

et al., 2022].

Cadastral offices, for example, record geolocations and selected structural attributes

of buildings. Boundaries are measured through terrestrial surveys and documented as two

dimensional ground plans in the official digital cadastral map (Digitale Flurkarte, DFK).

This process is slow and labor intensive, often resulting in delays of several months

between the completion of a building and its appearance in the records (e.g. Figure

2). Moreover, the system relies on building owners reporting construction or demolition

activities, if these are not communicated, undocumented buildings remain absent from

the DFK altogether [Li et al., 2020].

Building authorities (Bauaufsichtsbehörden) represent another potential source of

footprint information, as they collect data during permit procedures or when projects

are subject to notification. Depending on state regulations, this may include site plans,

construction drawings, and other attributes [Maenning and Just, 2012]. However, their

data is also incomplete. Many projects are now permit- or notification-exempt, so new

builds or demolitions are not consistently recorded. In addition, discrepancies between

approved plans and completed buildings are not always documented, further limiting

their value for nationwide coverage [Li et al., 2020].

Finally, the census survey (Gebäude- und Wohnungszählung, GWZ) provides detailed

information on building footprints and housing spaces, most recently in 2011 and 2022.

Yet these data cannot be repurposed to build an administrative register, as they are

protected by the principle of statistical secrecy (Statistikgeheimnis) [Krause et al., 2022].

To address the fragmented data landscape, the Federal Statistical Office (Statistisches

Bundesamt) has proposed the creation of a nationwide Gebäude- und Wohnungsregister

(GWR) [Krause et al., 2022]. This register shall be based on a survey of property owners,

similar to the building and housing census, and shall be maintained by integrating updates

from existing administrative sources such as cadastral data, construction permits, and

tax records. To ensure consistency across these sources, unique identifiers for every

building shall be introduced. However, this register is still far from being finished [Graaf
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(a) Industrial area in Berlin (b) Newly built area in Berlin

Figure 2: Example for buildings that are not included into the DFK. The purple areas
represent the available cadastral data. Buildings that are visible but not covered by
purple indicate structures that are missing from the official DFK dataset.

and Steuwer, 2025], and therefore not a feasible solution of the current lack of building

footprint information.

Another available source for building footprints is Open Street Map (OSM) data, a

global, collaborative mapping project that provides freely accessible geospatial data con-

tributed by volunteers. The platform allows users to digitize and edit building footprints

[Weber and Haklay, 2008]. But in the OSM data, many small buildings are missing, and

those building footprints that exist, often show a strong offset to real world reference

[Fan et al., 2014], making OSM data unsuitable for official tasks which require precise

information of building footprints [Herfort et al., 2023].

In light of the shortcomings of administrative and volunteered data sources, global ini-

tiatives that leverage artificial intelligence and satellite imagery have emerged as promis-

ing alternatives [Touzani and Granderson, 2021]. One project is Microsoft’s Building

Footprints initiative, which aims to create detailed, open access maps of building outlines

worldwide [Bing Maps, 2023]. Using deep learning algorithms trained on high resolution

satellite imagery, the project provides an automated approach to map building footprints.

For Germany, this means access to a regularly updated, unified layer of building footprint

data.

However, limitations remain: building detection quality depends heavily on the reso-

lution and recency of satellite imagery, and errors such as misclassifications, missing small

structures, or footprint simplification can still occur especially in urban areas [Touzani

and Granderson, 2021].

In response to these limitations of administrative and global datasets, the German

Statistical Office in collaboration with the Federal Agency for Cartography and Geodesy

(Bundesamt für Kartographie und Geodäsie) has initiated the research project Sat4GWR,
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conducted by the German Aerospace Center (DLR) [Hennig et al., 2025]. The project

applies CNN-based deep learning models to high resolution aerial imagery and LiDAR

derived height profiles to automatically detect building footprints. Compared to global

initiatives such as Microsoft’s building footprints, Sat4GWR leverages the finer resolution

of aerial data, allowing for more precise extraction of building footprints.

One contribution from the Sat4GWR project is the study by Stiller et al. [2023], which

systematically examined the challenges of building footprint segmentation, by using a

Deep Learning Model.

But their workflow and model also revealed limitations: frequent false positives in

rural settings (e.g., water bodies, forests) and difficulties in complex urban areas such as

bridges or railway infrastructure (Figure 3). These shortcomings highlight the need for

further methodological refinements to ensure reliable nationwide application.

The main goal of this thesis is to reduce misclassifications while ensuring highly precise

building detection. Rather than modifying the model architecture, which was already

thoroughly optimized by [Stiller et al., 2023], this work will focus on improving the

surrounding components of the data pipeline. Specifically, the investigation will target

enhancements in pre- and post-processing procedures, as well as in the selection and

composition of the training data. The main research question (RQ) is therefore:

• RQ 1: Can optimization of pre-processing, post-processing and training

data selection improve building footprint detection of the CNN model

proposed by Stiller et al. [2023]?

This main research question shall be targeted by several sub questions (presented in

Table 1) which aim to identify which settings regarding pre- and post-processing, as well

as training data selection, will lead to the best results.
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Table 1: Summary of the main research question and its sub-questions.

RQ Research Question

RQ1 Can optimization of pre-processing, post-processing and training data se-

lection improve building footprint detection of the CNN model proposed

by Stiller et al. [2023]?

RQ1.1 Does normalization of input data improve the accuracy of building foot-

print detection compared to unnormalized inputs?

RQ1.2 Which normalization strategy (Z-score or Min–Max) provides better re-

sults in heterogeneous landscapes?

RQ1.3 Do models that combine RGB and height information (DSM or nDSM)

outperform models using only RGB data?

RQ1.4 Does the use of a DSM provide better performance than an nDSM by

offering richer contextual information?

RQ1.5 Does introducing overlap between adjacent tiles improve building foot-

print detection compared to non-overlapping tiling?

RQ1.6 Can adjusting overlap differently in the training and inference phases

lead to better performance?

RQ1.7 Does optimizing the decision threshold for class assignment in overlap-

ping tile regions improve building footprint detection compared to default

majority voting?

RQ1.8 Does increasing the diversity of training data by adding targeted regions

that cover known failure cases improve overall detection accuracy?

Beyond these technical questions, this thesis also includes an applied case study (Sec-

tion 8) to highlight the broader value of improved building footprint data for the social

sciences. The case study focuses on Berlin and demonstrates how Convolutional Neural

Network (CNN) derived footprints, when linked with demographic and land use informa-

tion, can be used to investigate substantive urban questions. In particular, it examines

the relationship between migration and the functional composition of the building stock.

Migration has been one of the main drivers of demographic change in Berlin, raising

questions about how migrant presence interacts with the city’s housing supply and com-

mercial infrastructure. The case study therefore addresses the following social science

research question:

• RQ2: Is a higher migration share associated with the balance between

housing and commercial functions in Berlin’s building stock?
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2 Literature

The first attempts to automate building footprint extraction from aerial or satellite im-

agery relied on rule based algorithms [Bouziani et al., 2010] and classical machine learning

[Van Nguyen et al., 2015]. The first approach struggles with complex urban buildings and

the second needs a wast amount of labeled data, when used in new environments [Dabove

et al., 2024]. As a result, their generalizability to new environments was limited. Around

the mid 2010s, deep CNNs began to transform aerial image analysis. In 2015–2016,

pioneering studies [Saito et al., 2016, Alshehhi et al., 2017] showed that CNNs could

significantly outperform earlier methods in detecting buildings by automatically learn-

ing features from large datasets, which made Deep Learning quickly the state of the art

approach for this task [Luo et al., 2021]. By 2017, encoder-decoder CNNs with skip

connections like U-Net [Maggiori et al., 2017] and SegNet [Bischke et al., 2019] emerged,

yielding much higher accuracy and more coherent building shapes than earlier methods

[Luo et al., 2021].

Between 2018 and 2020, research on building footprint segmentation focused on mak-

ing models more accurate and robust by improving both architecture and training strate-

gies [Luo et al., 2021]. A key direction was the use of multi scale models. Since building

morphology range from tiny sheds to large complexes and are embedded in diverse sur-

roundings, networks such as DeepLab introduced multi-scale feature fusion (e.g. Atrous

spatial pyramid pooling), improving building detection at different scales [Ryuhei Ham-

aguchi et al., 2018]. At the same time, transfer learning with pretrained CNNs, based

on large datasets (e.g. ImageNet) was used [Iglovikov and Shvets, 2018]. Additionally,

researchers increasingly turned to data fusion: supplementing RGB imagery with ad-

ditional sources such as infrared layerss or height information from LiDAR and stereo

derived DSMs. These multi modal approaches helped separate buildings from visually

similar objects and provided richer input features [Liu et al., 2019, Dabove et al., 2024].

Transformer based models for building footprint segmentation in aerial and satellite

imagery started to appear around 2021. Their main advantage lies in the ability to capture

long range contextual information, which led to more accurate footprint detection [Chen

et al., 2021]. By 2024 transformer based segmentation of building footprints matured

reported not only higher accuracy, but also a better generalization across different urban

areas, compared to purely CNN based models [Gibril et al., 2024].

Nevertheless, CNNs remain highly competitive for building extraction from aerial im-

agery. As Angelis et al. [2023] point out, transformers are computationally more expensive

and memory intensive than CNNs, which directly impacts inference speed. This is a crit-

ical consideration for applications involving high-resolution imagery at large scale. For

projects aiming to map extensive, heterogeneous regions such as entire countries, CNN

architectures thus continue to offer a favorable balance between accuracy and efficiency.
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Additionally CNNs are more data efficient and better suited to limited label regimes

[Rosy et al., 2025]. One representative example of a CNN-based study that was trying

to approach the problem of building detection in aerial imagery was that of Stiller et al.

[2023]. The authors systematically addressed the challenges of building segmentation

from high resolution remote sensing images, focusing on urban environments with com-

plex spatial and morphological features. The authors generated a comprehensive building

dataset covering approximately 34.5 km² across various cities in North Rhine-Westphalia,

integrating both orthophotos (including RGB and near infrared layers) and normalized

digital elevation models (nDSM). This diverse dataset allowed the authors to design

nearly 500 experimental configurations, where the authors analyzed systematically the

influence of multiple factors such as model architecture, spatial resolution, input image

size, training region diversity, and label accuracy. The authors systematically evalu-

ated model accuracy. The findings revealed that the FPN architecture with the resnet50

encoder backbone achieved the best overall results, when combining orthophotos with

nDSM data, substantially improving building detection and separation from background

structures. Although the CNN models developed by Stiller et al. [2023] demonstrated

strong performance on the North Rhine-Westphalia dataset, they show limitations in

other settings. This is evident in rural areas characterized by natural features such as

water bodies (Figure 3b), forests, and narrow roads. Moreover, the model also struggles

in complex urban environments, for instance, around bridges or railway infrastructure

(Figure 3a) where structural ambiguity increases the risk of misclassifications.

The primary problem observed is a high rate of false positives (FP): regions that do

not contain buildings are frequently misidentified as such. These errors are especially

prevalent in settings where non building objects share visual or textural similarities with

built structures. Consequently, the model’s reliability diminishes outside the specific

urban contexts in which it was originally trained.

(a) Example for FP in an urban setting (b) Example for FP in a rural setting

Figure 3: The red areas were detected as buildings by the model.
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While the influence of different model architectures has already been thoroughly in-

vestigated by Stiller et al. [2023], it is crucial to recognize that network design is not

the only factor influencing the performance of deep learning workflows. For CNN-based

models, which input data is selected, how input data are prepared and how raw outputs

are refined can be equally decisive. In image based deep learning tasks, preprocessing

constitutes the initial stage in which raw data are transformed into a form more suitable

for CNN training. The underlying mechanisms vary, but the overall goals are consistent:

to improve data quality, ensure consistency across inputs, stabilize and accelerate the

training process, enhance generalization to unseen data, and ensure compatibility with

CNN architectures [Li et al., 2019]. Raw images frequently contain noise or low qual-

ity visual information caused by factors such as radiation effects, shadows, or varying

illumination. Preprocessing mitigates these issues through techniques such as e.g. color,

contrast, and brightness adjustments, augmentation (e.g., flipping, resizing), noise fil-

tering, and resolution modifications. These operations enhance feature clarity, making

patterns more recognizable for CNNs and often improving model performance [Koresh,

2024]. Postprocessing steps, on the other hand, refine the model’s raw predictions. They

address common CNN limitations such as e.g. blurred boundaries or false positives and

produce vector ready building footprints suitable for GIS applications. Examples include

morphological filtering, boundary regularization, and polygon simplification [Wei et al.,

2020]. Comparative studies demonstrate that models trained and applied without robust

pre- and postprocessing pipelines are prone to higher error rates and reduced transfer-

ability to new environments [Sakeena et al., 2023, Liu et al., 2018]. Equally important

is the selection of training data. CNN based segmentation models depend on the repre-

sentativeness of their training sets to learn discriminative patterns, and models trained

on thematically limited data often struggle to generalize to new environments [Maggiori

et al., 2017, Audebert et al., 2018]. Recent studies confirm that these supporting proce-

dures strongly affect performance but are often overlooked in comparison to architecture

[Chawda et al., 2018].

This thesis addresses this gap by systematically evaluating key pre-processing, post-

processing strategies, and training data selection for CNN-based building footprint ex-

traction. Rather than proposing a new architecture, the focus lies on improving the

efficiency and reliability of existing models by conducting a series of experiments de-

signed to enhance the performance of the overall deep learning workflow. By analyzing

aspects of these three components systematically, this thesis provides a structured frame-

work for understanding how supporting procedures, in addition to architecture, govern

the performance and robustness of building footprint extraction models [Clark et al.,

2023].

H1. Main Research Hypothesis. Improving preprocessing routines, postprocessing
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strategies, and training data selection enhances the accuracy of CNN based building foot-

print extraction.

The specific hypotheses presented in the following sections are formulated as sub-

hypotheses that address this overarching research hypothesis. Each of them isolates and

tests a distinct factor that may influence the performance of the model. Together, these

sub-hypotheses provide a systematic framework to evaluate how supporting steps around

the core CNN architecture contribute to the task of detecting building footprints in high

resolution aerial imagery.

2.1 Normalization

Normalization is one of the most fundamental preprocessing steps in deep learning pipelines

for semantic segmentation. It rescales or standardizes input values so that features are

expressed on a comparable scale, preventing single layers or pixel intensities from dis-

proportionately influencing model training. In computer vision, normalization has long

been shown to stabilize optimization, accelerate convergence, and improve generalization

across diverse test sets [Lecun et al., 1998]. In remote sensing applications, common

approaches include Min-Max normalization, which rescales input data to a fixed inter-

val (e.g., [0,1]), and Z-score normalization, which centers values around zero with unit

variance [Jeon et al., 2021].

For building footprint detection, normalization has direct implications for segmen-

tation quality. Buildings can occur in highly heterogeneous settings: dense urban cores

with sharp contrasts, but also homogeneous rural landscapes where pixel values vary only

slightly. Tile wise Min-Max normalization, for example, can distort these subtle differ-

ences by stretching narrow value ranges, effectively erasing discriminative information in

uniform areas such as water bodies or large roofs. Z-score normalization, by contrast,

tends to preserve variance across tiles, leading to more stable predictions [Jeon et al.,

2021].

Theoretical Argument. If normalization ensures consistent scaling of training and

testing data, models are better able to generalize across heterogeneous imagery, reducing

false positives in spectrally similar non building areas. Conversely, inconsistent or poorly

chosen normalization settings distort the input, degrade feature learning, and inflate

commission errors. Thus, careful evaluation of normalization strategies is theoretically

essential to advancing the quality of building footprint extraction.

Research Hypotheses.
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H1.1. Normalization of input data improves the accuracy of building footprint detection

compared to unnormalized inputs.

H1.2. Z-score normalization outperforms Min-Max normalization in heterogeneous land-

scapes, due to its robustness to varying pixel distributions and outliers.

2.2 Height Input Layer

Beyond spectral information, height cues play a central role in improving the separa-

bility of buildings from spectrally similar surfaces. Optical imagery alone often fails to

distinguish light colored roofs from roads, industrial hardscapes, or even reflective water

surfaces. To address this limitation, many studies have combined RGB imagery with

height information derived from Light Detection and Ranging (LiDAR) data. Two ver-

sions of this derived data are Digital Surface Models (DSM) (Section 4.2.1) [Dabove

et al., 2024] and normalized DSMs (nDSM) Section 4.2.3) [Stiller et al., 2023], which

represent the elevation of objects above ground level. The inclusion of vertical structure

provides a powerful discriminative feature, as buildings are typically elevated above their

surroundings, while most non building classes lie close to ground level [Liu et al., 2019].

In remote sensing research, height information has repeatedly been shown to improve

building extraction accuracy. Liu et al. [2019] found that CNNs trained with combined

RGB and DSM inputs achieved significantly higher IoU and F1 scores than those trained

with RGB data alone. However, despite the benefits, the literature still debates the

most effective form of height representation. While DSMs encode absolute elevation,

including terrain undulations, nDSMs isolate relative heights and thus emphasize vertical

structures. Each representation carries advantages and drawbacks: DSMs can provide

richer topographic context, but may introduce confusion in hilly landscapes; nDSMs

simplify the height profile but may suppress useful contextual variation [Audebert et al.,

2018].

Theoretical Argument. Theoretically, adding height information should enhance the

model’s ability to discriminate between buildings and spectrally similar non building

surfaces. nDSMs are expected to improve completeness by ensuring that even spectrally

ambiguous buildings are detected, while DSMs may reduce false positives by incorporating

full terrain context. Conversely, removing height layers (removing nDSM or DSM data)

should lead to worse results through all metrics, as the model is forced to rely solely

on spectral cues. Thus, evaluating the contribution of different height representations is

essential to determine which configuration maximizes the model results.

Research Hypotheses.
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H1.3. Models using combined RGB and height information (DSM or nDSM) outperform

models using only RGB data.

H1.4. The use of DSM data as the fourth layer improves the model results compared to

nDSM, as absolute elevation provides richer contextual information.

2.3 Tile Overlap

In deep learning workflows for semantic segmentation of high-resolution aerial imagery,

large images are typically partitioned into smaller tiles to fit GPU memory constraints.

While this tiling step is unavoidable, it introduces boundary effects: objects cut at tile

edges are often segmented incompletely, leading to discontinuities or missing detections.

To mitigate these artifacts, many studies employ overlapping tiles, ensuring that bound-

ary pixels are observed in multiple contexts during training and prediction. Overlap

thus provides contextual redundancy that improves segmentation accuracy, particularly

at object boundaries [Reina et al., 2020, Volpi and Tuia, 2016].

Increasing the overlap ratio has been shown to enhance boundary delineation and

reduce edge artifacts [Sherrah, 2016]. However, higher overlaps also inflate the num-

ber of training and testing patches, which significantly increases computational cost.

Consequently, overlap design involves balancing segmentation accuracy against runtime

efficiency [Reina et al., 2020]. The work by Audebert et al. [2018] further suggests that

the overlap ratio does not necessarily need to be identical during training and testing: a

carefully chosen combination may provide accuracy gains while reducing computational

load.

Theoretical Argument. From a theoretical perspective, overlap improves the model’s

ability to capture contextual cues across object boundaries, thereby reducing false nega-

tives (missed buildings) and false positives (fragmented or spurious detections) near tile

edges. Moreover, different overlap strategies between training and inference may shift

the balance between redundancy and efficiency.

Research Hypotheses.

H1.5. Introducing overlap between adjacent tiles improves building footprint detection

compared to non overlapping tiling.

H1.6. Changing the overlap between the training and inference phase can have a positive

impact on the model results.
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2.4 Decision Thresholds

In the deep learning workflow of Stiller et al. [2021], the model outputs hard class la-

bels for each pixel. It produces predictions indicating whether a pixel belongs to the

background or to the building class. Due to tile overlap, some pixels receive multiple

predictions from different tiles. To transform these probabilities into a binary mask, a

decision threshold must be applied. This threshold defines the cutoff above which a pixel

is classified as building and below which it is classified as background [Reina et al., 2020].

Although several studies adopt the default value of 0.5 [Roth et al., 2018, Reina et al.,

2020, Cira et al., 2024], and therefore a majority vote, research shows that varying the

threshold parameter directly impacts model performance [Wu et al., 2019]. Lower thresh-

olds increase sensitivity by labeling more pixels as positive, which improves recall but also

increases false positives (commission errors). Higher thresholds, in contrast, reduce false

positives but risk omitting true positives (omission errors) [Sherrah, 2016]. The work by

Bohao Huang et al. [2018] has highlighted that threshold optimization can lead to mea-

surable improvements in segmentation tasks, particularly in heterogeneous landscapes

where class boundaries are ambiguous. Moreover, threshold tuning is computationally

inexpensive compared to architectural modifications, making it attractive for large scale

applications such as nationwide building mapping. The novelty of the approach in this

study is that instead of relying solely on majority voting, all thresholds between 0 and 1

are systematically evaluated, and the setting yielding the best results is selected.

Theoretical Argument. From a theoretical perspective, the decision threshold di-

rectly governs the trade-off between omission and commission errors in building footprint

detection. A lower threshold prioritizes completeness, increasing the likelihood that even

tiles with limited discriminative features (e.g., without visible roof edges) are still clas-

sified as buildings. Conversely, a higher threshold prioritizes correctness, ensuring that

predicted building labels are more reliable, but at the expense of overlooking marginal or

ambiguous cases. Identifying an optimal threshold is therefore crucial to balance these

competing objectives.

Research Hypotheses.

H1.7. Optimizing the threshold for class assignment in overlapping tile regions improves

building footprint detection performance compared to the default majority voting

approach.

2.5 Additional Training Data

The quality and diversity of training data are among the most decisive factors in deep

learning for remote sensing [Maggiori et al., 2017]. Unlike classical methods, where per-
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formance depends heavily on handcrafted features, CNN-based segmentation models rely

on the representativeness of the training set to learn discriminative patterns [Wu et al.,

2019]. Studies have shown that models trained on thematically limited data often struggle

to generalize to new environments. Errors frequently arise in settings that are underrep-

resented in the training data [Audebert et al., 2018, Liu et al., 2019].

One approach to mitigate these weaknesses is to enrich the training data with ad-

ditional samples specifically targeting those areas or objects that have high error rates.

Targeted sampling strategies have been applied in semantic segmentation to improve

performance on rare or difficult classes. This method has been called ”active learning”

by [Tuia et al., 2016]. In building extraction, expanding training datasets with comple-

mentary regions has been shown to improve robustness across urban morphologies [Li

et al., 2021]. However, the effectiveness of this strategy is not guaranteed: adding data

that differs too strongly from the target distribution can lead to marginal gains or even

degraded performance due to domain shift [Persello and Bruzzone, 2014].

Theoretical Argument. From a theoretical standpoint, training data diversity is ex-

pected to improve generalization by exposing the model to a wider range of spectral,

structural, and contextual patterns. Specifically, areas or objects that the model does

not perform well shall be added to the training data. Nonetheless, if the new samples

differ substantially from the target domain, they may introduce noise or bias rather than

improve performance. Careful evaluation is therefore necessary to determine whether

targeted additions meaningfully contribute to accuracy or whether they instead dilute

the representativeness of the training set.

Research Hypotheses.

H1.8. Increasing the diversity of training data by adding targeted regions addressing

known failure areas/objects improves overall building footprint detection accuracy.
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Summary of Research Hypotheses

Table 2: Summary of the main research hypothesis and its sub-hypotheses

Hypothesis Statement

H1 Improving preprocessing routines, postprocessing strategies, and training

data selection enhances the accuracy of CNN based building footprint

extraction.

H1.1 Normalization of input data improves the accuracy of building footprint

detection compared to unnormalized inputs.

H1.2 Z-score normalization outperforms Min-Max normalization in heteroge-

neous landscapes, due to its robustness to varying pixel distributions and

outliers.

H1.3 Models using combined RGB and height information (DSM or nDSM)

outperform models using only RGB data.

H1.4 The use of DSM data as the fourth layer improves the model results

compared to nDSM, as absolute elevation provides richer contextual in-

formation.

H1.5 Introducing overlap between adjacent tiles improves building footprint

detection compared to non overlapping tiling.

H1.6 Changing the overlap between the training and inference phase can have

a positive impact on the model results.

H1.7 Optimizing the threshold for class assignment in overlapping tile regions

improves building footprint detection performance compared to the de-

fault majority voting approach.

H1.8 Increasing the diversity of training data by adding targeted regions ad-

dressing known failure areas/objects improves overall building footprint

detection accuracy.

3 Model

With the problem context and hypotheses established, follows the introduction of the

neural network (NNs) foundation of this approach. To provide a clear methodological

foundation for the subsequent tests in the methodology part, the following section in-

troduces the NNs model underlying this approach, beginning with the basics of neural

networks, Deep Learning and CNNs.
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3.1 Neural Networks

NNs are a class of machine learning models designed to approximate complex, often non-

linear relationships in large datasets [Wu and Feng, 2018]. In computer vision tasks like

semantic segmentation, NNs can learn to map pixel values directly to semantic categories,

thereby enabling automated extraction of structures such as buildings from aerial imagery

[Audebert et al., 2018].

At the core of NNs lies the perceptron [Rosenblatt, 1958], a simple computational

unit. Figure 4 illustrates its basic structure. Each perceptron receives a set of inputs

a1, a2, . . . , aN , which may represent features such as pixel intensities in an image. Every

input is multiplied by a corresponding weight w1, w2, . . . , wN , reflecting the importance

of that feature for the current task. A bias term b is added, which shifts the decision

boundary and allows more flexibility in learning. The weighted inputs are summed, and

the result is passed through a non-linear activation function σ, producing the output aout

[Singh and Banerjee, 2019]. Depending on the task, this output can take different forms:

in a binary classification setting it might be a single probability between 0 and 1 (e.g.

the likelihood that a pixel belongs to a building), in multi-class classification it can be

a probability distribution across several classes, and in regression tasks it represents a

continuous value [Lecun et al., 2015].

Figure 4: Perceptron visualization, adapted from Singh and Banerjee [2019].

During training, the weights and bias are initially randomized. Predictions are com-

pared to the true labels using a loss function (L), which quantifies how far the model’s

predictions deviate from the correct outputs. In classification tasks, the most common

choice is the cross-entropy loss [Goodfellow et al., 2016], defined as

L = −
M∑
c=1

yc log(ŷc),

where M is the number of classes, yc is the true label (1 if the sample belongs to
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class c, 0 otherwise), and ŷc is the predicted probability for class c. This loss penalizes

confident but incorrect predictions more strongly, encouraging the model to assign high

probability to the correct class.

To minimize the loss, the network parameters θ = {wi, b} are updated using gradi-

ent descent. In this procedure, the gradient ∇θL(θ) is computed [David E. Rumelhart

et al., 1986], indicating how much the loss changes with respect to each parameter. The

parameters are then adjusted in the opposite direction of the gradient:

θ(t+1) = θ(t) − η∇θL(θ),

where η is the learning rate, controlling the step size. Here, t denotes the iteration

step in training: θ(t) are the parameters before the update, and θ(t+1) the parameters

after applying one gradient descent step. This iterative process aims to converge toward

a (local) minimum of the loss function. Training proceeds over multiple epochs, where

one epoch corresponds to a complete pass through the training dataset [Goodfellow et al.,

2016].

3.2 Deep Learning

A single perceptron can model only simple linear relationships. By combining many

perceptrons into layers, and stacking these layers together, one obtains a Multi-Layer

Perceptron (MLP). In an MLP, outputs from one layer of perceptrons serve as inputs to

the next, enabling the network to learn increasingly complex, non-linear representations

[Prince, 2023]. The intermediate layers between input and output are called hidden layers,

because they are not directly observed in the data or labels but instead learn internal

feature representations that facilitate the final prediction [Bishop, 1995]. This step from

single units to deep architectures marks the essence of deep learning [Goodfellow et al.,

2016].

Figure 5 illustrates a generic deep learning model with multiple hidden layers, high-

lighting how information flows from input features through successive transformations to

the output layer.
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Figure 5: Example of a fully connected neural network with Di = 3 input features x,
Do = 2 output units y, and K = 3 hidden layers h1, h2, h3 of sizes D1 = 4, D2 = 2,
and D3 = 3 respectively. The weights are represented by matrices Ωk that transform the
activations from one layer into pre-activations for the next layer. For example, Ω1 ∈ R2×4

maps the four activations in h1 to the two units in h2. Bias terms are stored in vectors βk

and have dimensions matching the layer they feed into; for instance, β2 ∈ R3 corresponds
to the three units in h3. Information flows strictly from the input layer to the output
layer, making this a simple example of a deep learning network structure. Image sourced
from Prince [2023].

Deep learning excels at autonomously learning meaningful representations from raw

input data, a capability that proves especially valuable in high-dimensional domains with

abundant training samples [Lecun et al., 2015].

Modern deep learning extends beyond MLPs through specialized architectures de-

signed for different data types.

3.3 Convolutional Neural Networks

CNNs are a class of neural networks designed to process grid structured data such as

images. Unlike fully connected NNs, which connect every neuron in one layer to every

neuron in the next (Figure 5), CNNs exploit local connectivity: each convolutional layer

applies a set of learnable filters (kernels) to small regions of the input. This enables the

network to detect simple patterns such as edges, corners, and textures in early layers,

and more complex structures such as shapes or object parts in deeper layers [Lecun et al.,

1998].

A key advantage of CNNs is parameter sharing. The same filter is applied across the

entire input image, meaning that the number of parameters is independent of image size

and that learned features recognized in one location can also be recognized elsewhere.

Pooling layers are often added between convolutional layers to downsample the spatial

resolution, thereby increasing the receptive field and reducing computational cost, while
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retaining the most important features [Goodfellow et al., 2016].

For semantic segmentation, where each pixel is assigned a class label, CNNs act as

the primary feature extractors. Combined with decoder mechanisms in encoder–decoder

networks, they recover fine spatial detail after downsampling. This makes CNNs well

suited to high-resolution remote sensing tasks such as building footprint detection [Prince,

2023].

Figure 6: Example of a 2D convolution on an RGB image. A 3×3 kernel slides across the
image to generate feature maps, enabling the network to detect local patterns efficiently.
Image source: Prince [2023].

3.4 The Encoder–Decoder Principle

Many modern semantic segmentation architectures, including the model used in this work,

follow an encoder-decoder principle (Figure 7). The encoder transforms the input image

into a series of abstract feature representations by applying convolutional operations and

downsampling. This process captures high level semantic information while reducing

spatial resolution. The decoder then takes these abstract features and reconstructs a

dense, pixel level prediction map, using upsampling operations.

Encoder–decoder networks benefit from combining features across resolutions: low-

level features preserve spatial detail, while high-level features capture semantic context.

Fusing these multi-scale representations, as in Feature Pyramid Networks (FPNs), yields

segmentation maps that are both precise and semantically rich, enabling robust detection

of objects of varying sizes and shapes [Lin et al., 2017].
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Figure 7: Example of an encoder–decoder network for semantic segmentation. The en-
coder (left part) reduces the input image to a compact feature representation using convo-
lutions and pooling, while the decoder (right part) upsamples this representation through
transposed convolutions to produce a pixel-wise classification map with class probabilities
for each pixel. Figure and explanation Prince [2023]

3.5 Model Architecture and Usage

The model used in this work builds upon the framework established by [Stiller et al., 2023]

(workflow in Figure 9), which identified an architecture for building footprint detection.

It employs a ResNet-50 backbone as the encoder and a Feature Pyramid Network (FPN)

as the decoder.

The ResNet-50 encoder is a deep convolutional network with residual connections

that allow many layers to be trained without performance degradation [He et al., 2016].

These skip connections enable the network to learn residual mappings instead of direct

transformations, resulting in more efficient optimization. As the input passes through the

encoder, it is transformed into a hierarchy of feature maps with decreasing spatial reso-

lution but increasing semantic abstraction. The FPN decoder reconstructs fine-grained

prediction maps from this hierarchy using a top–down pathway with lateral connections

(Figure 8) Lin et al. [2017].
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Figure 8: Schematic illustration of the Feature Pyramid Network (FPN) structure, show-
ing the top–down pathway with upsampling, 1×1 convolutions for lateral connections, and
element-wise addition for multi-scale feature fusion. In the encoder–decoder paradigm
(Section 3.4), this represents the decoder stage, with the ResNet-50 backbone providing
the encoder feature maps. Image and explanation are from Lin et al. [2017].

Coarse, high-level features are upsampled and merged with finer, lower-level features

using 1 × 1 convolutions and element-wise addition. A 3 × 3 convolution is applied at

each stage to make the features more consistent.

At the output, a two-class softmax activation produces per-pixel probability maps for

binary segmentation

3.5.1 Training Phase

In the training phase (Figure 9), the model learns to separate building from non-building

pixels by comparing predictions against ground truth labels. Input data consist of nor-

malized RGB orthophotos combined with a height layer and the additional ground truth

layer, cut into 320 × 320 pixel tiles with adjustable overlap. The available dataset is

divided randomly into a training set (80%), used to update parameters, and a validation

set (20%), used to monitor generalization performance. These tiles and their correspond-

ing building masks are passed through the network, which produces probability maps for

each pixel. The predictions are compared to the labels using a soft cross-entropy loss

function, and the model parameters are updated through gradient based optimization.

To improve robustness, random flips, rotations, and color perturbations (data augmen-

tation) are applied during training, while batch normalization layers stabilize learning by

normalizing feature distributions. The encoder starts from ImageNet pre-trained weights
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[Deng et al., 2009], transferring general visual features to the building extraction task. At

the end of training, the model has learned a set of parameters that allow it to generalize

from the training data to unseen images.

3.5.2 Testing Phase

In the testing phase (Figure 9), the trained model is applied to new imagery to evaluate

its generalization ability. The inputs are, normalized Red Green, Blue layer (RGBs) and

a height layer tiled into 320×320 size tiles. For each tile, the model outputs a probability

map representing the likelihood that each pixel belongs to the building class. Where tiles

overlap, predictions are aggregated, by averaging, to produce probabilities for each pixel.

To convert these probabilities into a binary building mask, a decision threshold is

applied: pixels above the threshold are classified as buildings, while those below are

labeled as background. The resulting masks are refined through post-processing steps,

including Douglas–Peucker simplification with a tolerance of 0.2m, which reduces noise

while preserving building geometry. To define how well the model works, the resulting

masks are compared to the ground truth.

Figure 9: Training and testing workflow of the CNN model used in this work

4 Data

This chapter details the datasets used to train, validate, and test the building footprint

model.
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4.1 RGB

Digital orthophotos (DOP) are georeferenced, high-resolution aerial images produced in

Germany according to state specific standards. For this work, TrueDOPs with a 10 cm

ground resolution were used. Unlike traditional orthophotos, which are projected onto a

terrain model, TrueDOPs employ a image based digital surface model (iDSM) that incor-

porates buildings, trees, and other elevated features. This corrects for radial displacement

and the “leaning” of tall objects by filling hidden areas with information from overlapping

images. The result is a geometrically accurate, complete representation of urban environ-

ments, well suited for mapping, planning, and GIS applications [NRW Geobasis, 2021].

A comparison to traditional DOPs is shown in Figure 10. All ortophotos used in this

work are True DOPs. Orthophotos are provided in four layers: red, green, blue (RGB)

and near-infrared (NIR). In this thesis, only the RGB layers of the TrueDOPs are used,

as the NIR band does not improve model performance [Hertrich, 2024]. Throughout the

text, the term RGBs refers to these three layers. Each image has a ground resolution of

0.1 m.

(a) Conventional DOP from 2016 (b) True DOP from 2019

Figure 10: Comparison between a traditional DOP and a True Orthophoto (True DOP)
[NRW Geobasis, 2021].

4.2 LiDAR data

Light Detection and Ranging (LiDAR) estimates distances by emitting short laser pulses

and measuring the time-of-flight of their returns. Airborne laser scanning (ALS) pro-

duces dense, georeferenced point clouds of (x, y, z) measurements that describe the three-

dimensional structure of the surface. Individual pulses can generate multiple returns

(first, intermediate, last), which facilitates the separation of canopy tops from the ground

[Lillesand et al., 2015].

After acquisition, points are classified e.g., ground, vegetation, buildings, bridges,

noise, using automated algorithms with subsequent manual quality control. These classes
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are the base for the different height layers used in this work [Berlin Senatsverwaltung,

2021].

Because this work integrates datasets from multiple surveying authorities (NRW,

Berlin, Brandenburg), the underlying classification schemes differ by region. For example,

NRW provides a more granular set of classes than Brandenburg. To ensure comparabil-

ity between training and testing, class selections were harmonized per region so that the

derived DSM/DTM/nDSM layers have as similar semantics as possible. The resulting

class mappings, and which classes where selected to create the different height layers, are

documented in the Supplementary Materials ( 9).

4.2.1 DSM

A Digital Surface Model (DSM) represents elevations of the terrain including above-

ground objects such as buildings and vegetation. In contrast to a DTM, a DSM captures

the surface visible to the sensor and thus provides height cues that complement RGB

appearance and aid the separation of spectrally similar classes (e.g., roads vs. rooftops)

[Lillesand et al., 2015].

In this thesis, DSM rasters are derived from airborne LiDAR (ALS) point clouds.

The procedure was adapted to the procedure that was used on the test data in Berlin.

This procedure was explained by Matthias Weller from the Berlin surveying authority,

who is the responsible for the LiDAR based height layers in Berlin. Using the same

procedure, when working with the point clouds from different German federal states,

ensures consistency between the different datasets. The procedure begins by reading

LiDAR tiles (.laz/.las) and filtering the point clouds to retain surface-relevant classes

(see the regional class tables; e.g., Tables 21, 22, and 23). The filtered LiDAR points

(visualized in 11a) are then rasterized to a regular 0.5m grid using a 2D binning method,

where the maximum elevation value ”z” within each cell is used to represent the surface

height. The result of this binning method can be seen in Figure 11b. The problem with

the result of this representation of the surface height is, that it contains NAs in those

grid cells that did not contained points from the LiDAR data.

In order to produce a DSM at 1m resolution, without NAs, the data is further pro-

cessed using interpolation. All valid (non empty) cells from the 0.5m DSM are extracted

and converted into a set of (x, y, z) coordinates. A Delaunay triangulation is applied

to these points, generating a Triangulated Irregular Network (TIN) [Evans et al., 2001].

Within each triangle, linear interpolation is performed using barycentric coordinates. A

data point p = (x, y) lies inside a triangle defined by vertices v1, v2, and v3, each with

elevation values z1, z2, and z3. The barycentric coordinates (λ1, λ2, λ3) are computed

such that:
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p = λ1v1 + λ2v2 + λ3v3, with λ1 + λ2 + λ3 = 1

Then, the interpolated elevation value at p is given by:

z(p) = λ1z1 + λ2z2 + λ3z3

Once all raster cells in the 1m grid have been calculated through interpolation, the

resulting DSM, with a resolution of 1m per pixel, is saved as a GeoTIFF (Figure: 11c).

In a final step, a version of the dsm is created where the interpolated DSM is resampled

to a resolution of 0.1m. With a 0.1m resolution, the data fits to the RGB resolution

(Figure: 11d).

(a) Raw classified LiDAR points (b) 0.5m rasterized DSM (with nodata)

(c) 1m interpolated DSM (TIN) (d) Final DSM resampled to 0.1m

Figure 11: DSM processing pipeline from ALS points to final 0.1m raster.
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4.2.2 DTM

A Digital Terrain Model (DTM) is a representation of the Earth’s bare surface, excluding

buildings, vegetation, and other elevated objects. When derived from LiDAR point cloud

data, DTMs are generated by selectively filtering points classified as ground, typically

class 2 in standard classification schemes (see Table 24). These filtered points are then

interpolated into a continuous raster surface that reflects the natural topography of the

terrain.

The primary distinction between a DTM and a DSM lies in the type of features

represented: while DSMs include the heights of all surface objects, DTMs are restricted

to the underlying terrain Lillesand et al. [2015].

(a) Example for DTM data (b) Example for DSM data

Figure 12: Comparison of DTM and DSM data at the same extent in an area in Cologne.

The second difference of the DTM data compared to the DSM data is the resolution

of the two-dimensional binning method. For the DSM data, a resolution of 0.5 grids has

been used to determine the height per grid. On the DTM data a grid size of 1m was

used. After that step the TIN procedure was used in order to fill the missing gaps. The

data was resampled to a resolution of 0.1m

4.2.3 nDSM

A Normalized Digital Surface Model (nDSM) represents the height of objects above

ground. It is obtained by subtracting the DTM from the DSM:

nDSM = DSM−DTM. (1)

While the DSM contains elevations of all visible features (terrain, buildings, vegetation),

the DTM contains only the underlying terrain. Their difference removes terrain influence

and yields aboveground height, which is informative for distinguishing structures such as
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buildings, tree canopies, and infrastructure [Lillesand et al., 2015]. Figure 13 visualizes

this computation.

nDSM

=

DSM

−

DTM

Figure 13: Visual representation of nDSM calculation as DSM minus DTM.

The DSM and DTM raster data is used at a resolution of 1m. The subtraction yields

an nDSM of the same resolution. This raster is then resampled to 0.1m to match the

RGB data.

4.3 Ground truth

To distinguish buildings from the background, the LoD2 definition was adopted, in which

buildings are represented as 3D objects corresponding to man-made structures with roofs,

exterior walls, and semantically structured boundary surfaces [Löwner et al., 2012]. The

2D building ground truth was derived from the RGB datasets in combination with official

Level of Detail 2 (LoD2) building data [Open Geodata NRW, 2025, Open Geo Data Berlin,

2025].

Because the available LoD2 building datasets contains systematic issues (as explained

in Section 1), missing or spurious buildings, manual correction was performed with the

0.1m RGB orthophotos as the primary reference. The nDSM (Section 4.2.3) was consulted

in ambiguous cases; however, where conflicts arose, due to acquisition-date mismatches,

the RGB imagery was preferred. This follows Stiller et al. [2023], who highlight RGB as

the most informative predictor for the applied model.

Ground truth for the training regions was taken from previous DLR studies, while

labeling of the test data was performed as part of this thesis. Corrected building vectors

were rasterized to 0.1 m binary masks (building = 1, background = 0) and geo-aligned

with the RGB grid.
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(a) RGB patch from the training data (b) Building footprint ground truth

Figure 14: Example of derived ground truth from 0.1m RGB imagery [NRW Geobasis,
2021].

4.4 Training data

The training data for the model consists of five different layers: the three RGB layers

(Red, Green and Blue), the height layer (LiDAR derived height profile) and the ground

truth layer (Figure 15). The previous section gave an overview about the types of

data used. This section shall explain which data combination was used for the different

experiments and what sources they come from.

Figure 15: Overview of the training phase workflow

The main training data source, are the five regions in Figure: 16. Each regions has

an area of 1.9 sqkm, making it 9.5 sqkm, of training data, in total.
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Figure 16: Overview of the RGB layers of the training regions adopted from [Hertrich,
2024].

The Baseline training data, consists out of the following layers and sources:

Table 3: Baseline training data summary

Datatype Year Source Comment

RGB 2019 [NRW Geobasis, 2019] 0.1m resolution, first statewide TrueDOP gen-

eration, worse data quality than later years.

nDSM 2017–2021 Statewide nDSM [NRW

Geobasis, 2025c] 0.5m

Downloaded as nDSM data, was all ready pro-

cessed based on LiDAR data. Resampled to

0.1m

Ground truth 2021 [Open Geodata NRW,

2025]

Footprints manually corrected against 0.1m

RGB, rasterized to 0.1m.

To answer research question RQ1.4 and its following research hypotheses H1.4, a new

training dataset, with DSM data instead of nDSM data had to be created (Table 4.

Because the DSM was not available for the download from the NRW Geobasis [2025b],

they had to be created based on the the LiDAR data from the same source (explained in

Section 4.2.1). This new data comes from aerial imagery that was taken from 2021-2024,

and therefore contains DSM data that is newer than the RGB tiles from 2019, that are

displayed in Table 3. Out of this discrepancy in time a discrepancy in buildings emerged.

Therefore, new RGB data (2023) had to be collected and the ground truth had to be

adapted.
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Table 4: DSM instead of nDSM training data summary

Datatype Year Source Comment

RGB 2023 via WMS [NRW Geobasis,

2025a]

0.1m True DOPs, manually corrected, higher

overfly overlap as the RGB data from [NRW

Geobasis, 2019]

DSM 2021–2024 Based on LiDAR point

clouds [NRW Geobasis,

2025b]

Created as explained in Section 4.2.1. Point

cloud class labels see Table 21.

Ground truth 2023 [Open Geodata NRW,

2025]

Footprints manually corrected against 0.1m

RGB, rasterized to 0.1m.

4.4.1 Additional Training data

To answer research question RQ1.9 and its following H1.9 two additional training regions

were added. One from Brandenburg and one from Duisburg in NRW.

Table 5: Additional training data — Duisburg (NRW)

Datatype Year Source Comment

RGB 2023 via WMS [NRW Geobasis,

2025a]

0.1m True DOPs, manually corrected, higher

overfly overlap as the RGB data from [NRW

Geobasis, 2019]

DSM 2017 Based on LiDAR point

clouds NRW Geobasis

[2025b]

creation as explained in Section 4.2.1. Point

cloud class labels see Table 21.

Ground truth 2023 [Open Geodata NRW,

2025]

Footprints manually corrected against 0.1m

RGB, rasterized to 0.1m.

Table 6: Additional training data — Brandenburg (BB)

Datatype Year Source Comment

RGB 2018 [Brandenburg Geobasis,

2025]

Manually downloaded, data quality is much

more blurry, especially edges of roofs

DSM 2016 Based on LiDAR point

clouds [Brandenburg Geo-

broker, 2025]

creation as explained in Section 4.2.1. Point

cloud class labels see Table 22

Ground truth 2018 Manually added footprints

4.5 Test data

The main aim of this work is to improve the building footprint detection model and

its surrounding components. To this end, regions had to be identified where the model

struggled to correctly detect building footprints, particularly in cases of false positives.

The selection procedure was as follows:
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First, the baseline model [Stiller et al., 2023] was applied to the entire area of Berlin

to obtain predicted building footprints. These predictions were then intersected with the

2018 LBM-DE land cover/use dataset [Bundesamt für Kartographie und Geodäsie, 2025],

which provides 39 land-cover classes for Berlin. For each class, intersection areas with

predicted building footprints were computed (see Supplementary Materials 9).

Tiles with disproportionately high overlaps in classes unlikely to contain buildings

(e.g., streets and railways, water, trees) were selected. In addition, representative exam-

ples of urban morphology (housing, industrial, inner city) and known challenging cases

(bridges and boats, forest roads, map edges, riverbanks) were included. The selection

was carried out on a regular 1 km × 1 km grid, with each chosen tile covering exactly

1 km2. All test areas are summmarized in Figure 17
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(a) Forest (b) Streets and railway (c) Water

(d) Housing area (e) Industrial area (f) Inner city

(g) Bridges and boats (h) Street through forest (i) Water on edge

(j) Water riverbank

Figure 17: Examples of selected high false positive test areas in Berlin, ordered by cat-
egory: (a–c) high FP land cover / land use classes; (d–f) characteristic Berlin urban
scenes; (g–j) manually added complex falsepositive cases. Each tile covers 1 km2.

The same information is needed in the test data, as compared to the training data.

Below is an overview of the different layers used in the test data:
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Table 7: Test data from Berlin

Datatype Year Source Comment

RGB 2024 DLR internal WMS TrueDOPs at 0.1m resolution; most recent im-

agery available for Berlin.

nDSM/DSM 2021 Downloaded from Berlin

Geoportal [2025]

Both the DSM and the nDSM layer were used

in different experiments. Resampled to 0.1m

for compatibility with RGB imagery. Informa-

tions about the point cloud class labels in Ta-

ble 23.

Ground truth 2024 LoD2 building footprints

[Open Geo Data Berlin,

2025]

Footprints corrected manually against 0.1m

RGB

5 Research design

The testing of the different possible settings in pre-processing, post-processing and changes

in training data, in this thesis follows a sequential evaluation strategy. Each component

of the data pipeline is evaluated step by step: the configuration that achieves the best

performance at one stage is retained and used as the baseline for the subsequent stage.

This allows for assessing the effect of incremental improvements.

To better isolate the effect of individual components, the settings in question are,

at the first experiment, initially deactivated, i.e., set to a neutral baseline such as no

additional height layer or no normalization. Parameters are then introduced and varied

one by one. This way, performance differences can be attributed solely to the parameter

under investigation.

This procedure is known in machine learning research as an ablation study. Specific

components of a trained neural network or data pipeline are systematically removed to

observe how such changes affect the performance [Meyes et al., 2019].

For each experiment, results will be ranked according to the evaluation metrics, com-

pared against both the baseline from the previous stage and the corresponding ablation.

This stepwise ranking makes it possible to systematically assess the relative importance

and effectiveness of each component in the overall pipeline.

Experiments were run on an NVIDIA RTX A4000 (16 GB VRAM; CUDA 12.8) using

PyCharm 2024.1, with 64 GB system RAM. Each model setting will be trained with 50

epochs.
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6 Methodology and Results

Chapter structure. In this chapter, methodology and results are presented together

for each of the five experiments (Normalization, Height Layer, Tile Overlap, Decision

Threshold, and Selection of Training Data). Although this is uncommon, integrating

them here avoids redundancy and preserves the logical flow from research question to

experimental setup and immediate outcome. Implications are synthesized subsequently

in the Discussion (Section 7).

Evaluation Metrics The performance of the model and its different parameter settings

is evaluated using common metrics in semantic segmentation: Intersection over Union

(IoU), Precision, Recall, F1 Score, and Overall Accuracy. In this study, Overall Accuracy

is considered the most important evaluation metric. Because some of the selected test

areas do not contain any buildings, which are in this case the, true positives (TP). For

such cases, the standard segmentation metrics, Intersection over Union (IoU), Precision,

Recall and F1 Score, cannot be computed, as their formulas require at least one TP.

Overall Accuracy, in contrast, can be calculated for all test images, regardless of whether

true positives are present. Therefore, it serves as the most comprehensive indicator of

model performance across the entire test set.

The IoU, Precision, Recall and F1 Score are still reported for those test areas that

contain true positives, as they provide additional insight into the model’s segmentation

quality when buildings are present. In this dataset, images with TP correspond to Fig-

ure 17 (b, d, e, f, g), while images without TP are shown in Figure 17 (a, c, h, i, j).

Overall Accuracy. Overall Accuracy is the fraction of correctly classified pixels over

all pixels:

Accuracy =
TP + TN

TP + FP + FN + TN

In the special case of test images without any true positives (TP = 0 and FN = 0), the

formula reduces to:

Accuracy =
TN

TN+ FP

Here, the metric reflects the proportion of background pixels correctly classified as back-

ground, providing a valid measure of performance even when no buildings are present in

the ground truth.

Intersection over Union (IoU). IoU, also known as the Jaccard Index, measures the

overlap between the predicted and ground truth building masks:

IoU =
TP

TP + FP + FN
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It ranges from 0 (no overlap) to 1 (perfect match), with higher values indicating better

segmentation accuracy.

Precision. Precision quantifies the proportion of predicted building pixels that are

correct:

Precision =
TP

TP + FP

A high precision means few false positives.

Recall. Recall measures the proportion of actual building pixels that are correctly

identified:

Recall =
TP

TP + FN

A high recall means few false negatives.

F1 Score. The F1 Score is the harmonic mean of Precision and Recall:

F1 = 2 · Precision · Recall
Precision + Recall

It balances false positives and false negatives.

After Overall Accuracy, the two most important secondary indicators are IoU and F1

Score. Both are widely used in semantic segmentation to assess the quality of predicted

object shapes and boundaries, as for example in: Dabove et al. [2024], Chawda et al.

[2018], Li et al. [2019]. IoU measures the proportion of overlap between predicted and

ground truth masks relative to their union, making it a direct measure of spatial agree-

ment. F1 Score, as the harmonic mean of Precision and Recall, balances the trade off

between missing buildings (false negatives) and including non existent buildings (false

positives), providing a more holistic measure of segmentation performance.

While Precision and Recall still provide valuable insight into model behavior, espe-

cially for understanding bias towards over or under segmentation, they are not used as

primary ranking criteria for parameter selection in this work. Instead, they serve as sup-

porting metrics to interpret why certain parameter configurations may perform better or

worse.

6.1 Normalization

Normalization, of the input pixel ranges, is a key preprocessing step in semantic segmen-

tation, ensuring input features share a common scale to stabilize training and improve

generalization, as described in 2.1. Two widely used methods are Min–Max normal-

ization and Z-score normalization. Min–Max rescales values to a fixed range, typically
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[0, 1]:

Xmin-max =
x− xmin

xmax − xmin

, (2)

where x is the input value and xmin, xmax are the dataset-specific minima and maxima.

Z-score normalization, by contrast, standardizes inputs to zero mean and unit variance:

Xz-score =
x− µ

σ
, (3)

where µ and σ are the mean and standard deviation of the training data.

In the baseline setup 3.5 adapted from Stiller et al. [2023], Min–Max normalization

was applied per layer to large training images (16,755×11,399 px). As these images

already spanned nearly the full RGB range, normalization had little effect. However, at

test time the small tiles (320×320 px) were normalized independently, as they were drawn

from the WMS layer. In homogeneous tiles (e.g., water), the very small pixel range made

Min–Max collapse almost all pixels in a layer to zero, deleting that layer (e.g., an R-layer

with 99.9% value 29 and 0.01% value 30 maps 29 to 0). This confused the model and

produces systematic false positives, as visible in Figure 18.

(a) Min-Max normalized image tiles stitched
together

(b) Corresponding building footprint predic-
tion

Figure 18: Error from Min–Max normalization of small tiles.

A further issue was the sequential use of Min–Max and Z-score normalization, a

non-standard practice. Since Min–Max rescales and Z-score re-centers and re-scales,

applying both cancels out the benefits of each and may confuse the network, reducing

interpretability and consistency. Best practice is to evaluate these approaches separately

and select the most effective one empirically for the task [Jeon et al., 2021].

The baseline configuration nonetheless achieved solid results (Table 8), with overall

accuracy of 0.912, IoU of 0.811, and F1 of 0.891. However, the imbalance between high
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recall (0.953) and lower precision (0.843) indicates systematic overprediction, consistent

with the normalization artifacts described above.

Table 8: Baseline normalization performance.

Trial Parameter Overall Accuracy IoU F1 Score Precision Recall Ranking
Normalization Baseline set-up 0.912 0.810 0.890 0.842 0.952 1

6.1.1 Ablation

In order to assess the importance of normalization in the preprocessing pipeline, an

ablation experiment was conducted in which neither Min–Max normalization nor Z-score

standardization was applied to the input data. In this configuration, the raw pixel values

of the RGB layers and the nDSM data were fed directly into the network without any

rescaling or centering.

Table 9: Comparison between Baseline and ablation experiment

Trial Parameter Overall Accuracy IoU F1 Score Precision Recall Ranking

Normalization
Baseline 0.912 0.810 0.895 0.842 0.952 1
Ablation 0.958 0.587 0.848 0.772 0.953 2

Results: The ablation experiment (Table 8) shows that, despite achieving the highest

Overall Accuracy (0.958), the model’s Intersection over Union (IoU) drops sharply to

0.587 compared to the baseline’s 0.8109. The F1 Score also decreases to 0.848, with

Precision falling to 0.772 while Recall remains high at 0.953. This indicates that the

model continues to identify most building pixels (high recall), but does so with a much

larger proportion of false positives, and with poorer spatial alignment between predicted

and true building shapes.

Although Overall Accuracy is the primary metric for ranking in this study (Section 6),

it becomes less meaningful in extreme cases such as this one. The high Overall Accuracy

here is largely driven by correctly classifying background pixels in areas without buildings,

while the actual segmentation quality for building footprints, as reflected by the low

IoU, is poor. This highlights that without proper normalization, the model struggles to

generalize well to the building class, leading to degraded object level performance despite

seemingly strong pixel level accuracy.

These findings confirm that normalization plays a critical role in ensuring balanced

model performance across both classes, and that Overall Accuracy alone is insufficient to

capture quality in cases where object segmentation degrades severely.

6.1.2 Min–Max Normalization

In this experiment, only Min–Max normalization was applied to all four input layers,

without any Z-score normalization. The normalization was performed independently for
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each image or tile, using the tile specific minimum and maximum values. The minimum

and maximum values from the training data were not transferred to the test data. This

decision was based on two considerations: first, the RGB layers already spanned nearly

the full 0–255 range, making global scaling unnecessary; and second, restricting nDSM

values to a fixed range would risk clipping important elevation differences.

Table 10: Min-Max Normalization experiment

Trial Parameter Overall Accuracy IoU F1 Score Precision Recall Ranking

Normalization
Baseline 0.912 0.810 0.890 0.842 0.952 1
Ablation 0.958 0.587 0.848 0.772 0.953 2
Min-Max Normalization 0.896 0.741 0.844 0.771 0.945 3

The results (Table 8) show that this approach yields an Overall Accuracy of 0.896,

the lowest among the tested configurations. The IoU drops to 0.741 compared to 0.810

in the baseline, and the F1 Score decreases to 0.844. Precision (0.771) is substantially

lower than in the baseline, while Recall (0.945) remains high.

6.1.3 Z-score Normalization

In this experiment, only Z-score normalization was applied to the input data. For each of

the four layers (RGB + nDSM), the mean and standard deviation were computed from

the training images, and these same statistics were used to normalize both the training

and test data. This ensured that all input values were centered around zero with unit

variance, and that the scaling applied to the test set was consistent with that of the

training set.

Table 11: Comparison between Experiments

Trial Parameter Overall Accuracy IoU F1 Score Precision Recall Ranking

Normalization

Baseline 0.912 0.810 0.890 0.842 0.952 2
Ablation 0.958 0.587 0.848 0.772 0.953 3
Min-Max Normalization 0.896 0.741 0.844 0.771 0.945 4
Z-score Normalization 0.978 0.840 0.911 0.875 0.952 1

The results (Table 8) show that this configuration outperforms all other tested nor-

malization approaches. It achieves the highest Overall Accuracy (0.978), IoU (0.840), F1

Score (0.911) and Precision (0.875) while maintaining a high Recall (0.952). Compared

to the baseline, Precision improves markedly, indicating fewer false positives and better

discrimination between building and background pixels. The simultaneous improvement

in IoU and F1 Score demonstrates that the model is achieving both high spatial overlap

with the ground truth and a balanced trade off between Precision and Recall.

A clear distinction emerges between test areas that contain true positives (TP) and

those that do not. In TP containing areas (see Fig. 17 b, d, e, f, g), improvements in IoU

and F1 Score indicate overall a slightly more accurate building delineations and a better

balance between detecting buildings and avoiding false alarms. In contrast, for non TP
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areas (Fig. 17 a, c, h, i, j), metrics such as IoU, F1 Score, Precision and Recall, remain

at zero by definition, since no buildings are present in the ground truth. For these cases,

Overall Accuracy becomes the only meaningful indicator, showing substantial reductions

in false detections with the Z-score normalization.

6.2 Height Layer

The fourth input layer in the model contains height information in the form of a nor-

malized Digital Surface Model (nDSM), as described in Section 4.2.1. In the baseline

configuration, this layer provides per pixel elevation relative to the surrounding terrain,

enabling the model to leverage vertical structure as an additional discriminative feature.

The experiments in this section builds upon the best performing configuration from

the normalization experiments (Section 6.1), which now serves as the new baseline. The

performance of this baseline, which uses Z-score normalization, is summarized in Table 12.

These values form the reference point against which all subsequent height layer related

modifications will be evaluated.

Table 12: Performance of the new baseline configuration, derived from the optimal nor-
malization settings in Section 6.1.

Trial Parameter Overall Accuracy IoU F1 Score Precision Recall Ranking

Height Layer Baseline 0.978 0.840 0.911 0.875 0.952 1

6.2.1 Ablation

The ablation experiment removes the height layer entirely, leaving the model to rely

solely on spectral information from the RGB layers. As shown in Table 13, the removal

of the height information results in a noticeable decline in performance across all key

metrics. Overall Accuracy drops from 0.978 to 0.957, but the more telling changes are

observed in the spatially sensitive metrics: IoU decreases by 0.1, and F1 Score declines

by 0.025, indicating a reduced ability to produce precise and complete building footprint

delineations.

Precision decreases slightly, from 0.875 to 0.843, showing an increased rate of false

positives when height cues are absent. Recall also drops from 0.952 to 0.933, reflecting a

higher number of missed building pixels.

Table 13: Ablation of the height layer compared to the baseline model.

Trial Parameter Overall Accuracy IoU F1 Score Precision Recall Ranking

Height Layer
Baseline 0.978 0.840 0.911 0.875 0.952 1

Ablation height layer 0.957 0.740 0.886 0.843 0.933 2
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6.2.2 DSM Data

In this experiment, the height layer that consisted of nDSM data was replaced with

a Digital Surface Model (DSM), in the training and testing data. The training DSM

data was created through the same procedure as the test data for Berlin (see Section

4.2.1. Through this procedure the training data closely matches the Berlin test data in

resolution, preprocessing, and interpolation methodology.

Because the newly generated DSM data are based on LiDAR acquisitions from 2021–2023,

new RGB orthophotos (2022–2024) were used for the corresponding training regions to

ensure temporal consistency between height and optical inputs. Ground truth building

masks were also adapted to reflect structural changes and building stock updates (see

Table 4).

As shown in Table 14, replacing the nDSM with the DSM data leads to slightly higher

Overall Accuracy (0.979 vs. 0.978), IoU (0.842 vs. 0.840), with a substantial improvement

in Precision (0.913 vs. 0.875). This indicates a reduction in false positives. However,

Recall decreases (0.912 vs. 0.952), suggesting a more conservative detection behavior

that occasionally misses buildings.

Table 14: Comparison of the baseline against the ablation and DSM data.

Trial Parameter Overall Accuracy IoU F1 Score Precision Recall Ranking

nDSM

Baseline 0.978 0.840 0.911 0.875 0.952 2

Ablation 0.957 0.740 0.886 0.843 0.933 3

DSM Data 0.979 0.842 0.912 0.913 0.912 1

6.3 Tile Overlap

The overlap parameter controls the fraction of shared pixels between adjacent tiles when

partitioning large orthophotos into smaller patches for training and testing. Choosing an

overlap affects both the quantity of unique training samples and the consistency of model

predictions along tile boundaries. Larger overlap ratios increase sample redundancy and

ensure that boundary pixels are seen in multiple contexts, often improving edge seg-

mentation performance and reducing boundary artifacts. However, higher overlap also

inflates the dataset size and increases training and inference time. Conversely, minimal

or zero overlap yields fewer patches and faster processing but may degrade segmentation

quality at tile edges, manifesting as discontinuities or missing detections. An example of

how the overlap works, can be seen in Figure 19.

To quantify these trade offs, experiments were conducted with different overlap sizes.

In the training phase, only overlaps of 0%, 10%, 20%, 30%, and 50% were tested, as

larger values would be unreasonable from a time efficiency perspective. In the testing

phase, overlaps from 0% up to 80% were evaluated to better understand their impact on

39



prediction quality.

Figure 19: Example of tiles with 20% overlap marked by the yellow bands. Image is from
the test data in Berlin.

As shown in Figure 20, the result for a 0% overlap in the testing phase is substantially

below all other settings; the panel displays IoU, but the same pattern holds for Overall

Accuracy, F1, Precision, and Recall. To make the smaller differences among the non-zero

settings visible, the testing overlap of 0 is excluded in the visualization. Figure 21 plots

all metrics with the test overlap on the x-axis, while line colours encode the training

overlap (0–50%). This design separates the effect of test overlap, described through the

x-axis from training overlap (colour), clarifying how performance (y-axis) varies within

the non-zero range.

Figure 20: Comparison of model performance across different overlap settings. The 0%
overlap case is significantly below the others, making differences between higher overlaps
harder to distinguish.
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Figure 21: Performance metrics across overlap settings.

Two optima emerge, both visible in Figure 21 and quantified in Table 15. Overall

Accuracy, IoU, and F1-Score exhibit an early local peak when the training overlap is set to

20% and the testing overlap to 10%. Performance then declines slightly for intermediate

settings and reaches a global optimum at a training overlap of 50% combined with a

testing overlap of 80%.

However, the computational cost of the global optimum configuration, with 50% train-

ing overlap and an 80% test overlap, is computationally difficult. Extrapolation from this

test run indicated that the 50% training overlap requires 105 hours of training, and using

this model for bigger areas like Berlin at 80% test overlap would take about 11 days.

Given that the gain in Overall Accuracy over the early peak (train 20%, test 10%) is only

≈ 0.001, this additional cost is not reasonable. Therefore the first peak with 20% overlap

in training and 10% in testing is used as the improved setting for subsequent experiments

(see also Section 9).

Table 15: Comparison of optimal Overlaps with the Baseline from last experiment

Trial Parameter Overall Accuracy IoU F1 Score Precision Recall Ranking

Overlap

Baseline 0.979 0.842 0.912 0.913 0.912 3

Ablation 0.365 0.124 0.216 0.187 0.271 4

Training 20% Testing 10% 0.982 0.860 0.923 0.927 0.920 2

Training 50% Testing 80% 0.983 0.866 0.926 0.917 0.937 1

6.4 Decision Threshold

In the baseline, predictions from overlapping tiles were merged by majority vote. For

each pixel, it was counted how many of the tiles covering it predicted “building” versus

“background” and assigned the class with more votes. This is equivalent to using a fixed

decision threshold of τ = 0.5 on the aggregated score: a pixel is labeled “building” if at
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least half of the votes (or the mean probability) favor that class. Because τ is fixed at

the conventional default and not tuned, this baseline also serves as an ablation.

To improve on this, a configurable decision threshold is introduced. In this setting,

each pixel may have multiple prediction probabilities due to overlapping tiles. These

probabilities are aggregated (e.g., by averaging or summing), and the pixel is classified as

a building only if the aggregated score exceeds a defined threshold (e.g., 0.7). Varying the

decision threshold allows explicit control over the balance between precision and recall:

lower thresholds increase sensitivity but raise false positives, while higher thresholds

reduce false positives but risk omitting true positives. In contrast to majority voting,

this threshold based approach provides finer control of this trade off.

A visualization with the τ = 0 value is shown in Figure 22. Another visualization

without the τ = 0 can be seen in Figure 23 for better distinguishability between the

values.

Figure 22: Impact of varying the decision threshold (0.0 to 1.0) on different evaluation
metrics. Lower thresholds increase recall but reduce precision, while higher thresholds
improve precision at the expense of recall.

Figure 23: Impact of varying the decision threshold (0.1 to 1.0) on evaluation metrics.
The 0.0 case is omitted to make the differences between thresholds more distinguishable.

The results show that Overall Accuracy, F1-Score, and IoU all have the highest value
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at a decision threshold of about 0.3, suggesting this value provides the best overall trade

off. Precision reaches its maximum at a much higher threshold of 0.8, meaning stricter

requirements for building classification reduce false positives but at the cost of recall.

Recall itself peaks at the lowest threshold (0.0), since every potential building pixel is

labeled positive, but this naturally introduces large numbers of false detections. For

practical purposes, the 0.0 threshold is not considered, as it visually masks the smaller

but more relevant differences across the other thresholds. Hence, a decision threshold of

0.3 emerges as the most balanced choice for this task.

Table 16: Comparison of baseline (ablation at fixed 0.5 threshold) with the optimized
threshold setting.

Parameter Overall Accuracy IoU F1 Score Precision Recall Ranking

Baseline (0.5 threshold) 0.982 0.860 0.923 0.927 0.920 2

Decision Threshold (0.3) 0.982 0.862 0.923 0.917 0.933 1

6.5 Selection of training data

The baseline setup is trained on imagery from five predominantly urban regions in North

Rhine-Westphalia (NRW). In the work by Stiller et al. [2023], it was shown, that all 5

selected training regions improve the model performance. However, it still often mis-

classifies specific types of regions. To address this, two additional 1 km2 training regions

were curated to specifically target the remaining failure modes. First, very large rooftops,

where tiles that do not touch roof edges tend to be missed (false negatives), and second

large vessels that are still sometimes predicted as buildings (false positives). One area

was selected in Brandenburg to cover extensive roof structures, and one in Duisburg to

capture harbour scenes with large boats.
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Figure 24: Example of the additional Brandenburg training region targeting very large
and green roofs.

Figure 25: Example of the additional Duisburg training region targeting harbour scenes
with large vessels.
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From each of the two regions, tiles were added to the training set in 20% increments

(20, 40, 60, 80, 100% of the available tiles) to test whether gradually increasing the

share of these targeted scenes improves performance. Across all increments and for both

regions, no configuration increased the overall accuracy on the Berlin test set compared

to the baseline. The detailed metric deltas are summarized in Figures 26 and 27, while

Figures 24 and 25 show the two new training regions.

The creation of the additional training data are explained in the data Section in

Table 3 for the data from Duisburg and Table 6 for the data from Brandenburg.

Figure 26: Change in evaluation metrics when adding tiles from the Brandenburg region
(large roofs) in 20% increments.

Figure 27: Change in evaluation metrics when adding tiles from the Duisburg region
(harbour with large vessels) in 20% increments.
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In summary, while the additional datasets were specifically chosen to address persis-

tent failure modes, none of the increments of added training tiles whether from Bran-

denburg or Duisburg led to an improvement in the overall accuracy of the model. This

is as well testified by table 17. The ablation which is at the same time the baseline, is

compared against the best resulting values of the additional training data.

Table 17: Comparison of baseline (ablation) with best performance of additional training
data.

Parameter Overall Accuracy IoU F1 Score Precision Recall Ranking

Ablation 0.982 0.862 0.923 0.917 0.933

1

80% tiles from Duisburg 0.981 0.856 0.921 0.897 0.948 2

6.6 Summary of Results

Table 18 summarizes all Results that have been gathered. It makes clear, that the biggest

gain in performance could be achieved through the correct Normalization and the use of

DSM data instead of nDSM data as the height Layer.

Table 18: Summary table of the different tests.

Trial Parameter Overall Accuracy IoU F1 Score Precision Recall Ranking

Normalization

Baseline 0.912 0.810 0.890 0.842 0.952 2
Ablation 0.958 0.587 0.848 0.772 0.953 3
Min-Max Normalization 0.896 0.741 0.844 0.771 0.945 4
Z-score Normalization 0.978 0.840 0.911 0.875 0.952 1

Height Information
Ablation 0.957 0.740 0.886 0.843 0.933 2
DSM data 0.979 0.842 0.912 0.913 0.912 1

Overlap
Ablation 0.365 0.124 0.216 0.187 0.271 3
Training 20% / Testing 10% 0.982 0.860 0.923 0.927 0.920 2
Training 50% / Testing 80% 0.983 0.866 0.926 0.917 0.937 1

Decision Threshold
Ablation 0.982 0.860 0.923 0.927 0.920 2
Decision Threshold (0.3) 0.982 0.862 0.923 0.917 0.933 1

Additional Training Data
Ablation 0.982 0.862 0.923 0.917 0.933 1
80% tiles from Duisburg 0.981 0.856 0.921 0.897 0.948 2

The comparison of baseline and final results (Table 19) highlights the magnitude of the

improvements. Overall Accuracy increased by 7.0 percentage points (pp) from 0.912 to

0.982, IoU by 5.2 pp from 0.810 to 0.862, F1 Score by 3.3 pp from 0.890 to 0.923. Precision

showed the strongest gain with 7.5 pp from 0.842 to 0.917, while Recall declined by 1.9

pp from 0.952 to 0.933.

Table 19: Comparison of first baseline and final improved version.

Trial Parameter Overall Accuracy IoU F1 Score Precision Recall Ranking

Final comparison
Baseline 0.912 0.810 0.890 0.842 0.952 2
Final results 0.982 0.862 0.923 0.917 0.933 1
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7 Discussion

The sequential experiments conducted in this thesis directly addressed the main research

question (RQ1) and its sub-questions by systematically refining preprocessing, postpro-

cessing, and training data selection. The results provide partially evidence on the va-

lidity of the proposed hypotheses (H1–H1.9), which will be explained in the following

paragraphs.

Normalization The first set of experiments investigated the role of input data normal-

ization. The results clearly support the hypotheses that normalization improves model

accuracy (H1.1) and that Z-score normalization outperforms Min-Max normalization in

heterogeneous landscapes (H1.2). Among the tested strategies, Z-score normalization

achieved the highest overall accuracy and the best balance between precision and recall,

while avoiding the systematic false positives introduced by per tile Min-Max scaling.

This pattern can be explained by a normalization mismatch between training and

test data. When Min-Max normalization is computed on a per tile basis, particularly in

small or homogeneous tiles such as open water areas, the dynamic range of certain layers

is compressed toward zero. This erases informative variation and encourages the model

to misclassify large regions as buildings. Although recall remains high, since the model

is inclined to label many pixels as buildings, the decline in IoU and precision indicates

reduced segmentation quality and an increase in false positives.

A regional comparison confirms this mechanism. The weakest performance of per tile

Min-Max normalization occurs in very homogeneous environments, such as water bodies,

where local variation is minimal. By contrast, results in heterogeneous urban areas,

such as inner city tiles, are relatively better, since the stronger local contrast partly is

not leading to the scaling problem. In other words, Min-Max normalization may be

acceptable on heterogeneous tile, but it performs poorly in homogeneous landscapes.

Z-score normalization, in contrast, avoids these pitfalls by relying on training set

statistics, ensuring consistent scaling between training and test data. This stabilizes

the input distribution and allows the model to generalize more effectively. As a result,

building delineations are more accurate and overprediction errors are reduced. While

Z-score and Min-Max normalization yield similar results in heterogeneous tiles, Z-score

provides a clear advantage in homogeneous tiles. For this reason, Z-score normalization

emerges as the most effective strategy for this dataset and model configuration.

Height Layer The inclusion of height information alongside RGB data was examined.

As hypothesized (H1.3), the addition of vertical structure significantly improved segmen-

tation accuracy compared to the ablation. Between the two tested representations, DSM

data outperformed nDSM (supporting H1.4), particularly by reducing false positives in
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spectrally ambiguous areas such as water bodies and forests. While recall decreased

slightly for test areas with huge homogeneous rooftops, the precision gains more than

compensated for this drawback, leading to more reliable predictions overall.

The benefits of DSM input are especially visible water and forest areas, false positives

were almost completely eliminated, with a false positive rate of 0% in pure water bodies

and dense forest regions, of the test areas. In structurally complex settings such as

bridges, industrial facilities, and mixed street–railway areas, DSM data improved the

model’s geometric understanding and reduced misclassifications of infrastructure elements

as buildings. For instance, in the “Streets & railway” category, IoU increased by more

than 0.04, reflecting a clearer separation between buildings and their surroundings.

The main limitation of the DSM input was observed in homogeneous rooftop tiles

without visible edges, where some marginal building pixels were missed, creating gaps in

otherwise continuous building outlines. This slight loss in recall, however, is outweighed

by the consistent reduction in false positives across other classes. Overall, these findings

demonstrate that incorporating DSM data provides substantial added value for building

footprint segmentation.

To verify that these improvements were due to the use of DSM data itself rather

than differences in acquisition times between the DSM (2023) and nDSM (2021) (see for

more information about the two different data layers in Section 4) datasets, an additional

comparison experiment was conducted. As documented in the supplementary materials

(Section 9), this analysis confirms that the observed performance differences stem from

the DSM input rather than from variations in the RGB imagery or building footprint

data.

Overlap The experiments confirmed that choosing the size of the overlap between adja-

cent tiles, has a notable impact on detection quality. As hypothesized (H1.5), introducing

overlap between adjacent tiles substantially improved the segmentation of large roofs com-

pared to non-overlapping tiling. Moreover, varying the amount of overlap during training

and testing revealed that asymmetric settings can provide additional benefits (H1.6).

While the global optimum was reached with 50% training overlap and 80% testing

overlap, this configuration proved computationally prohibitive. A more practical solution

was found at 20% overlap in training and 10% in inference, which captured most of the

performance gains of larger overlaps while keeping runtime manageable.

These improvements are consistent with the use of DSM input. Tiles centered on

large, uniform roofs were sometimes missed, possibly because they contained too little

height contrast. Increasing overlap raised the likelihood that a tile also included roof

edges, where height transitions provided crucial cues for separating buildings from the

background. Interesting for future research can be, how increased tile sizes could posi-

tively influence the model results. As bigger tiles have a higher chance of detecting roof
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edges as well.

Decision Threshold A further refinement was introduced by optimizing the decision

threshold for classifying building pixels. As hypothesized (H1.7), aggregating proba-

bilities and applying a flexible threshold outperformed the default majority voting. A

threshold of 0.3 improved IoU and F1 with a slightly lower recall. Although the im-

provements were modest, this adjustment provided finer control over the precision recall

balance.

Regional comparisons illustrate how this mechanism plays out in practice. In het-

erogeneous urban areas such as applying a threshold of 0.3 improved IoU and F1 while

recall was maintained or even slightly increased. In homogeneous both the baseline and

optimized thresholds already achieved perfect accuracy, resulting in no measurable dif-

ference. In dense built-up areas, improvements were smaller but consistent, with recall

benefitting slightly at the expense of a modest precision drop.

While the absolute gains over the majority vote baseline were small, they were sys-

tematic, computationally inexpensive, and particularly valuable in complex regions.

Future work could further explore the interaction between decision thresholds and tile

overlap. It is assumed that threshold effects might become more pronounced with larger

overlaps, although testing this systematically was beyond the computational resources

available for this study. With greater computing power, such experiments could provide

valuable insights and potentially yield further performance improvements.

Additional Training Data In contrast to the other experiments, the hypothesis on

training data diversity (H1.8) was not supported. Adding targeted training regions did

not improve generalization to the Berlin test set. This outcome suggests that the original

NRW regions already provided sufficient diversity, and that the new regions either failed

to contribute meaningful variability or did not possess the necessary quality to enhance

model performance.

One likely explanation lies in the quality of the additional data. The Brandenburg

imagery, for instance, often contains blurry roof edges, in contrast to the NRW dataset,

which benefits from manual post-processing and a high overflight rate [NRW Geobasis,

2021]. As a result, the added tiles may have introduced more noise than useful signal.

Furthermore, the new regions were relatively large, but only small parts of them actually

contained structures of interest, such as vessels or extensive green roofs. Since the training

tiles were sampled randomly in 20% increments, many of the added tiles may not have

represented these challenging cases at all. As for example the additional training data

from NRW, it contained a lot of industrial areas, which might have confused the model.

A more targeted strategy could therefore be more effective. Instead of sampling

broadly from entire regions, future work should focus on selectively including tiles that
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truly capture the specific structures or contexts where the model still struggles. Such a

tailored approach may provide the intended additional aspects, that the model can learn,

without diluting the training set with irrelevant examples.

Answer of the Main RQ and Hypothesis Taken together, the experiments pro-

vide partial confirmation of the main hypothesis (H1). Systematic optimization of pre-

processing and post-processing substantially enhanced the accuracy of CNN-based build-

ing footprint detection, whereas the addition of new training data did not yield improve-

ments. The final optimized configuration, combining Z-score normalization, DSM input, a

moderate overlap of 20% during training and 10% during testing, and a decision threshold

of 0.3, outperformed the baseline across nearly all evaluation metrics. This demonstrates

that careful refinement of data preparation and model settings can significantly improve

segmentation performance, even in heterogeneous environments, while simply increasing

the size of the training dataset is not necessarily beneficial.

8 Case study

This case study illustrates how the improved CNN-Model for the detection of building

footprints can be applied in the social sciences. The aim is not a full scale research

project, but to demonstrate the potential of the Model and the building footprint data it

can create. By linking detailed building geometries to demographic and building use data,

it becomes possible to revisit research questions at an unprecedented spatial resolution.

Introduction and Literature

Over the past decade Germany has received the largest absolute number of migrants

in Europe, making it a key case for studying how migration transforms societies [Fed-

eral Ministry of the Interior and Community, 2023]. Migrants predominantly settle in

metropolitan areas, with Berlin standing out for the share of residents with a migration

background. In 2022, 24.9% of Berlin’s population were foreign citizens, around 972,000

people [Amt für Statistik Berlin-Brandenburg, 2022].

Research emphasizes that migration reshapes the urban landscape by altering land

use, public space, economic activity, and social dynamics [Tawil et al., 2025]. For cities

like Berlin, understanding these processes is crucial for evidence based urban planning

and policymaking [Barbarino et al., 2021]. While housing pressures are a well-known

consequence of immigration [International Organization for Migration, 2022], migration

also reshapes local economies. Migrants frequently turn to self employment when facing

exclusion from labor markets, while at the same time, ethnic communities create de-

mand for goods and services not supplied by the local economy [Schmiz and Kitzmann,
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2017, Portes and Manning, 2019]. These dynamics contribute to the formation of ethnic

economies and concentrations of shops and workplaces in migrant dense neighborhoods.

Theoretical frameworks such as middleman minority theory highlight how immigrants

historically occupied intermediary roles in trade and commerce, reinforcing the expecta-

tion that migrant presence correlates with commercial activity [Bonacich, 1973]. Yet

despite extensive theorizing, empirical evidence at the urban scale remains scarce. For

example, Olney [2013] shows for the U.S. that areas with rising immigration experienced

growth in small shops. However, it remains unclear whether this also holds true for

Berlin, as it has not been studied to date. The research question investigated in this case

study is therefore:

• RQ2: Is a higher migration share associated with the balance between

housing and commercial functions in Berlin’s building stock?

The hypothesis is that, due to particular needs and exclusion from mainstream pro-

fessions, migrant communities contribute to a relative increase in shops and workplaces,

which is reflected in a lower housing share, compared to the amount of shops and working

places, in their neighborhoods.

Data

Answering the research question of the case study requires data that link building foot-

prints, building use, and demographic composition at a fine spatial scale.

The first dataset consists of CNN-derived building footprints generated with the final

improved model described in Chapter 6.6. Using RGB orthophotos at 10 cm resolution

and LiDAR-based DSM data (Table 7), the model was applied to the entire Berlin area

through an inference pipeline, producing a shapefile of several hundred thousand building

footprints. This dataset provides the base for the subsequent analysis, with each building

footprint polygon, representing one unit of observation.
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Figure 28: Building footprints of Berlin as extracted by the improved CNN-based model.

The second dataset is composed of LoD2 [Open Geo Data Berlin, 2025] and OSM

[Boeing, 2025] building layers. Although less precise and partly incomplete (see Section 1),

they provide functional information on building use. Both cadaster and OSM contain

highly detailed building use classes (over 300 in cadaster and 215 in OSM), which were

harmonized and mapped to a common set of aggregated categories. This enrichment

procedure was developed by the DLR and made available for this work. CNN footprints

were spatially joined with the harmonized dataset, and class percentages were assigned

based on intersection areas. Footprints without a direct match were linked to OSM land

use polygons, and in cases of multiple overlaps, percentages were normalized to sum to

1. Remaining unmatched footprints were assigned the class Other. For the analysis, only

the classes Housing and Shopping/Working were retained, while footprints classified as

completly part of the class ”Other”, were excluded. The two retained categories were

renormalized to sum to 1. s By using percentage shares per building, the data capture

that buildings are not necessarily used exclusively for housing or for shopping/working.

This provides a more realistic representation of urban land use than a simple binary

classification.

The third dataset provides demographic composition from the 2022 Zensus [Amt für
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Statistik Berlin-Brandenburg, 2022], reporting the share of migrants in the total popula-

tion. Zensus data is only available at the block level Amt für Statistik Berlin-Brandenburg

[2016]. Figure 29 illustrates this integration, where census polygons (blue) provide de-

mographic information and building footprints (red) supply geometry and functional

attributes.

Figure 29: Integration of data sources: census polygons (blue) provide demographic
information on migrant population, while building footprints (red) supply geometry and
functional attributes from LoD2 and OSM. The merge enables building level analysis of
how migrant share relates to building use.

To account for further context, three control variables were included. Each observation

was assigned its district identifier to capture broad planning and regulatory differences

across the city. Building polygon area size was added because housing complexes tend to

consist of smaller buildings. Whereby smaller building complexes tend to only contain

housing. Finally, the building to city center distance (defined as the Berliner Alexander-

platz), was included to reflect Berlin’s monocentric structure, where central areas host a

stronger mix of economic uses. .
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Research Design and Methodology

The central hypothesis is that higher migrant shares will be linked to lower proportions

of housing use within building footprints.

The dependent variable is therefore the proportion of each building footprint classified

as Housing, measured as the share of footprint area. Because this outcome is a bounded

continuous variable between 0 and 1, it is modeled using a multilevel beta regression

rather than a linear model. This ensures that predictions remain between 0 and 1 and

that the variance structure, which depends on the mean, is correctly represented [Heiss,

2021].

Buildings are nested within blocks and districts, and use patterns are known to cluster

spatially. To capture this hierarchical structure and unobserved contextual influences,

the model includes random intercepts at both block and district levels. This allows

each district and block to have its own baseline housing share, absorbing unobserved

heterogeneity and reducing the risk of omitted variable bias [Harrison et al., 2018].

(1) Distribution of housing share

yijk ∼ Beta(αijk, βijk), αijk = µijk ϕ, βijk = (1− µijk)ϕ

(2) Linking predictors to the mean

logit(µijk) = α + β1MigrantSharej + β2DistCenterijk + β3Areaijk + uk + vj

(3) District and block variation

uk ∼ N (0, σ2
district), vj ∼ N (0, σ2

block)

Here yijk is the proportion of housing use in building i in block j and district k, µijk

is its expected mean, and ϕ is the precision parameter, which governs how tightly the

observed values are distributed around the mean. The mean is linked to the predictors

through the logit function, ensuring that fitted values remain between 0 and 1. Random

intercepts uk and vj are modeled as normally distributed with mean zero and variances

σ2
district and σ2

block, respectively. This reflects the standard hierarchical modeling approach,

where most groups are expected to cluster around the overall mean with symmetric

deviations, while allowing some districts and blocks to differ more strongly [Harrison

et al., 2018].

All parameters, including the precision ϕ, were estimated in a Bayesian framework,

with results summarized as posterior means and 95% credible intervals.

54



Results

Table 20 reports the fixed effects of the multilevel beta regression with random inter-

cepts for districts and blocks. The dependent variable is the proportion of each building

footprint classified as Housing.

Table 20: Multilevel beta regression for housing share.

Predictor Mean 95% CrI

Intercept 0.731 [0.683, 0.775]
Migrant share (per +10 pp) 0.001 [-0.024, 0.026]
Distance to center (per km) 0.002 [-0.004, 0.004]
Building area (sqm) 0.015 [-0.030, 0.027]

District SD (σdistrict) 0.023 [0.003, 0.059]
Block SD (σblock) 0.018 [0.001, 0.054]
Precision (ϕ) 0.215 [0.207, 0.223]

Notes: Coefficients are on the logit scale of the mean housing share.

The posterior means indicate that block-level migrant share, distance to the city

center, and building area do not show credible associations with housing share, as all

95% credible intervals overlap zero.

The estimated standard deviations of the random intercepts are σdistrict = 0.023 and

σblock = 0.018. These values indicate how much the baseline housing share (on the logit

scale) typically varies across districts and blocks, after accounting for the fixed predictors.

The variation is modest, meaning that most districts and blocks differ only slightly from

the overall average housing share.

The estimated precision parameter is ϕ ≈ 0.215, which indicates a great dispersion

around the predicted means. This is consistent with the observed distribution of housing

shares, which includes many values close to the extremes of 0 or 1.

Overall, the analysis provides no evidence for the central hypothesis that higher mi-

grant share is negatively associated with housing use. None of the predictors display a

robust relationship with housing share, while contextual variation across districts and

blocks remains present but modest in magnitude.

Summary and Discussion

This case study demonstrates how the CNN-Model and the building footprints it can

create, can improve research in the social sciences.

The combination of building footprints, harmonized building use classes, and demo-

graphic information made it possible to test the hypothesis: that migrant presence is

associated with a lower proportion of housing space relative to working places and shops.
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The empirical results, however, do not support this hypothesis. In the multilevel beta

regression, block level migrant share was not credibly associated with housing share,

and neither distance to the city center nor building size showed robust effects. Instead,

most of the variation is explained by building level extremes in housing share (close to 0

or 1), with only modest baseline differences across districts and blocks. These findings

highlight that, once hierarchical structure and data dispersion are properly accounted

for, the expected negative relationship between migrant share and housing share does

not emerge.

Besides that, several limitations should be acknowledged. First, the model tries to

capture associations rather than causal effects, even if the results would have shown robust

positive or negative results, they cannot determine whether migrant presence influences

building use, if building use influences migrant presence, or whether both are shaped by

unobserved third factors. Second, functional classifications from LoD2 and OSM, while

harmonized, are not free of error and may bias category proportions. Third, the model

uses a simplified specification, contrasting housing with all other use cases. Future work

could explore multinomial regression with more detailed categories of building functions

to better capture land-use mixes. Finally, the underlying data remain incomplete: OSM

and LoD2 contain gaps and inconsistencies at the building level. Future releases of

the Gebäudewirtschaftsregister (GWR) could offer a more powerful data source when

combined with CNN-derived building footprints [Krause et al., 2022].

9 Conclusion

This thesis set out to evaluate whether improvements in pre-processing, post-processing,

and training data selection can enhance the CNN-based building footprint detection

model proposed by Stiller et al. [2023]. The results demonstrate that targeted work-

flow adjustments do indeed lead to improvements. In particular, the improvement of

normalization strategies and the use of DSM instead of nDSM as the height layer data,

had the strongest positive impact, underscoring that model performance depends not

only on architecture but also on the design of the surrounding data pipeline.

In addition to the quantitative improvements, visual inspection shows that the pipeline

performs more robustly across heterogeneous landscapes. Figure 30 illustrates examples

from bridges, forests and roads, and water bodies, where the improved workflow clearly

reduced false positives and yields more accurate building outlines.
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(a) Bridge (baseline) (b) Bridge (improved)

(c) Forests and roads (baseline) (d) Forests and roads (improved)

(e) Water (baseline) (f) Water (improved)

Figure 30: Examples of improvements across heterogeneous landscapes. In each case
(bridges, forests/roads, and water), the improved pipeline reduces false positives and
refines building footprint predictions.

For practical applications, these improvements address the central challenge outlined

in the introduction: the lack of a reliable and up-to-date nationwide source of building
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footprints in Germany. The improved CNN-based pipeline developed in this thesis pro-

vides a scalable alternative that produces building footprints directly from recent aerial

imagery and LiDAR data.

By reducing false positives in heterogeneous landscapes and generating more consis-

tent predictions, the approach brings automatic building detection closer to the level of

completeness and precision required for official use. The model was able to deliver de-

tailed, citywide estimates of building areas. While OSM and LoD2 data remain valuable

for functional attributes and administrative purposes, the aerial, image based pipeline

established here contributes the missing piece: an accurate, up to date footprint layer

that can be integrated into future registers such as the planned GWR.

Beyond its technical contribution, this thesis also demonstrated the research value of

the generated data through a case study in Berlin. By linking building footprints with

demographic and building use information, the case study showed that the dataset can

help to answer substantive social science questions. For example, how migrant presence

interacts with the urban economic landscape. This underlines the twofold relevance of

the improved model and the building footprints it can create: as a step toward closing

critical data gaps in official statistics, and as a resource for applied research in urban and

social sciences.

Nevertheless, several limitations remain. The most fundamental issue lies in the very

definition of a building footprint. In the introduction, footprints were defined as the

“two-dimensional (2D) visual representation of a building, describing its exact location,

size, and shape on the ground” [Li et al., 2024b]. However, as this work has shown, aerial

imagery cannot directly capture the building’s base; it only records the extent of the

roof as seen from above. In practice, the predictions produced by the model therefore

correspond to ”roofprints”.

In regions such as Berlin or NRW, this distinction has little practical impact, as roof

outlines usually align closely with the building’s ground footprint. Yet in areas where

roofs extend far beyond the walls, the roof-based representation may overestimate the

true ground level footprint, highlighting a structural limitation of aerial image based

extraction approaches. This could be solved through more sophisticated approaches,

including a 3D Model based on LiDAR data as for example in Li et al. [2024a].

Another limitation lies in the simple implementation of the decision threshold. More

advanced approaches, such as adaptive or context-aware thresholds [Wu et al., 2019],

could further improve results. The interaction between thresholding, tile size, and overlap

was also not systematically explored, although larger tiles or overlaps may capture more

context at object boundaries [Bohao Huang et al., 2018]. Computational constraints

prevented such tests, underscoring the need for stronger GPU resources or distributed

computing.

The quality and selection of training data also posed challenges. Additional data
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from Brandenburg was of lower quality than imagery from Berlin and NRW, which may

explain why it failed to improve performance. Furthermore, tiles from the additional

training data were choosen randomly, diluting the training signal with heterogeneous

scenes. A more targeted sampling strategy focusing specifically on known failure modes

such as large roofs or vessels would likely be more effective. This underlines that simply

adding more data is not sufficient, the quality, representativeness, and sampling strategy

are equally critical.

Finally, this thesis was limited to CNN-based architectures. Recent research suggests

that transformer models can achieve higher accuracy and better generalization, particu-

larly in capturing long range dependencies [Gibril et al., 2024]. The workflow developed

here provides a solid foundation for systematic comparisons, and future work should di-

rectly contrast CNNs and transformers to more fully assess the state of the art in semantic

building footprint extraction.

This thesis has shown that strengthening the robustness of CNN based extraction and

demonstrating its value in applied research enhances the groundwork for future geospatial

infrastructures, where up to date building footprints are no longer a bottleneck but a

catalyst for innovation across science, policy, and society.
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Florian Hennig, Maren Köhlmann, Julius Weißmann, and Marianne Schepers. Er-

forschung von Satelliten-und weiteren Fernerkundungsdaten zur Ermittlung von
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Clemens Glock, and Xiao Xiang Zhu. Detection of undocumented building construc-

tions from official geodata using a convolutional neural network. Remote Sensing, 12

(21):1–21, 11 2020. ISSN 20724292. doi: 10.3390/rs12213537.

Qingyu Li, Lichao Mou, Yao Sun, Yuansheng Hua, Yilei Shi, and Xiao Xiang Zhu. A

review of building extraction from remote sensing imagery: Geometrical structures and

semantic attributes. IEEE Transactions on Geoscience and Remote Sensing, 62:1–15,

3 2024b. ISSN 15580644. doi: 10.1109/TGRS.2024.3369723.

Weijia Li, Conghui He, Jiarui Fang, Juepeng Zheng, Haohuan Fu, and Le Yu. Semantic

segmentation-based building footprint extraction using very high-resolution satellite

images and multi-source GIS data. Remote Sensing, 11(4), 2 2019. ISSN 20724292.

doi: 10.3390/rs11040403.

Ziming Li, Qinchuan Xin, Ying Sun, and Mengying Cao. A deep learning-based

framework for automated extraction of building footprint polygons from very high-

resolution aerial imagery. Remote Sensing, 13(18):3630, 9 2021. ISSN 20724292. doi:

10.3390/rs13183630.

Thomas Lillesand, Ralph Kiefer, and Jonathan Chipman. Remote sensing and image

interpretation. John Wiley & Sons, 2015.

64

https://www.econstor.eu/bitstream/10419/263205/1/wista-2022-4-025-038.pdf
https://www.econstor.eu/bitstream/10419/263205/1/wista-2022-4-025-038.pdf
http://arxiv.org/abs/2310.16717 http://dx.doi.org/10.1109/TGRS.2024.3487652
http://arxiv.org/abs/2310.16717 http://dx.doi.org/10.1109/TGRS.2024.3487652


Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge

Belongie. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 2117–2125.

Cornell University and Cornell Tech, 7 2017.

Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path Aggregation Network for

Instance Segmentation. CVPR, 2018.

Wei Liu, Meng Yuan Yang, Meng Xie, Zihui Guo, Er Zhu Li, Lianpeng Zhang, Tao Pei,

and Dong Wang. Accurate building extraction from fused DSM and UAV images using

a chain fully convolutional neural network. Remote Sensing, 11(24), 12 2019. ISSN

20724292. doi: 10.3390/rs11242912.
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Supplementary Materials

LiDAR Classification tables

DSM LiDAR Classification tables

Table 21: LiDAR Classification Values Used in NRW and Their Use in DSM Creation

Class Definition Used in DSM

1 Unclassified points. These are not as-

signed to a specific category and may in-

clude reflections or vegetation.

No

2 Ground points. These describe the nat-

ural terrain, excluding buildings, vegeta-

tion, and water. Relevant for DGM.

Yes

9 Synthetic water points. Interpolated wa-

ter surface points located under bridges.

No

17 Bridge points. Represent the surface of

bridges such as roadways, but not piers or

supports.

Yes

18 Noise. Points caused by measurement er-

rors, such as birds, fog, or clouds.

No

20 Last return not ground. Points from

the last laser return not classifiable into

other specific categories, such as cars or

rooftops.

Yes

21 Synthetic building points. Interpolated

points under large buildings. Only used

until 2019.

No

24 Basement points. Located in basement

shafts or below natural terrain, such as

light wells.

Yes

26 Synthetic ground points. Interpolated

points under bridges or dense vegetation.

Yes
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Table 22: LiDAR Point Classification Scheme and Their Use in DSM Creation (Bran-
denburg)

Class Definition Used in DSM

0 Created, never classified Yes

1 Unclassified Yes

2 Ground Yes

20 Building Yes

Table 23: LiDAR Classification Values Used in Berlin and Their Use in DSM Creation

Class Definition Used in DSM

0 Created, never classified No

2 Ground Yes

3 Low vegetation. Typically vegetation un-

der 0.5 meters.

Yes

4 Medium vegetation. Vegetation between

0.5 and 2 meters in height.

Yes

5 High vegetation. Vegetation taller than 2

meters.

Yes

7 Low point. Often erroneous or noise

points located below the surface.

No
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DTM LiDAR Classification tables

Table 24: LiDAR Classification Values Used in NRW and Their Use in DSM Creation

Class Definition Used in DTM

1 Unclassified points. These are not as-

signed to a specific category and may in-

clude reflections or vegetation.

No

2 Ground points. These describe the nat-

ural terrain, excluding buildings, vegeta-

tion, and water. Relevant for DGM.

Yes

9 Synthetic water points. Interpolated wa-

ter surface points located under bridges.

No

17 Bridge points. Represent the surface of

bridges such as roadways, but not piers or

supports.

No

18 Noise. Points caused by measurement er-

rors, such as birds, fog, or clouds.

No

20 Last return not ground. Points from

the last laser return not classifiable into

other specific categories, such as cars or

rooftops.

No

21 Synthetic building points. Interpolated

points under large buildings.

No

24 Basement points. Located in basement

shafts or below natural terrain, such as

light wells.

No

26 Synthetic ground points. Interpolated

points under bridges or dense vegetation.

No

New nDSM Data

To ensure that the performance gains observed with DSM input were not merely due to

the use of newer RGB imagery or updated ground truth labels, a new nDSM dataset

was created using exactly the same LiDAR source data as for the DSM experiment. The

DSM and DTM inputs for this nDSM were produced with the same workflow described

in Section 4.2.1 for DSM generation and Section 9 for DTM generation. The normalized

Digital Surface Model was then computed by subtracting the DTM from the DSM follow-

ing the method in Section 4.2.3 and, and finally resampled to 0.1,m resolution to match

the RGB imagery. This ensures that the nDSM data for the NRW data was created in
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the same way as the test data in Berlin.

This controlled setup ensured that the only variable that was different between the

DSM and new nDSM experiments was the type of height representation, while the RGB

inputs, acquisition years, and label updates remained identical.

The results in Table 25 demonstrate that the new nDSM configuration does not match

the performance of the DSM based model. While recall is slightly higher (0.957, the

best of all settings), other key metrics decline. IoU drops to 0.817, F1 score to 0.893,

placing this setup below both the DSM and even the original baseline nDSM. These

outcomes confirm that the improvements observed with the DSM input stem from the

richer absolute elevation information it provides, rather than from newer RGB imagery

or updated ground truth labels.

Trial Parameter Overall Accuracy IoU F1 Score Precision Recall Ranking

nDSM

Baseline 0.978 0.840 0.911 0.875 0.952 3

Ablation 0.957 0.740 0.886 0.843 0.933 4

DSM Data 0.979 0.842 0.912 0.913 0.912 1

new nDSM 0.973 0.817 0.893 0.845 0.957 2

Table 25: Comparison of the baseline and alternative height inputs, including the old
and new DSM data instead of nDSM.

Intersection Test Areas
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Figure 31: Intersection areas between predicted building footprints and land cover classes for Berlin. Y-Axis shows the amount of
intersecting square kilometers.
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Figure 32: Intersection areas between predicted building footprints and land use classes for Berlin. Y-Axis shows the amount of intersecting
square kilometers.
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Test Images with Intersection

(a) Original – Bridges and boats (b) Intersection – Bridges and boats

(a) Original – Forest (B311) (b) Intersection – Forest (B311)

(a) Original – Housing area (N112) (b) Intersection – Housing area (N112)
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(a) Original – Industrial area (N120) (b) Intersection – Industrial area (N120)

(a) Original – Inner city (B110) (b) Intersection – Inner city (B110)

(a) Original – Street through forest (b) Intersection – Street through forest
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(a) Original – Streets and railway (N122) (b) Intersection – Streets and railway (N122)

(a) Original – Water (B511) (b) Intersection – Water (B511)

(a) Original – Water on edge (b) Intersection – Water on edge
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(a) Original – Water riverbank (b) Intersection – Water riverbank

Normalization Experiments: Comparison Baseline and best re-

sults

(a) Baseline — Forest (b) Z-score — Forest

Figure 43: Forest: baseline vs. Z-score normalized prediction.

Metric Baseline Improved Difference

Overall Accuracy 0.996 1.000 +0.004

False Positive Rate 0.004 0 -0.004

Table 26: Region: Forest
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(a) Baseline — Industrial area (b) Z-score — Industrial area

Figure 44: Industrial area: baseline vs. Z-score normalized prediction.

Metric Baseline Improved Difference

Overall Accuracy 0.968 0.936 -0.032

IoU 0.927 0.852 -0.075

F1 Score 0.962 0.920 -0.042

Precision 0.948 0.960 +0.012

Recall 0.977 0.883 -0.094

False Positive Rate 0.022 0.015 -0.007

Table 27: Region: Industrial area

(a) Baseline — Inner city (b) Z-score — Inner city

Figure 45: Inner city: baseline vs. Z-score normalized prediction.

80



Metric Baseline Improved Difference

Overall Accuracy 0.964 0.952 -0.012

IoU 0.924 0.898 -0.025

F1 Score 0.960 0.946 -0.014

Precision 0.939 0.933 -0.006

Recall 0.983 0.961 -0.022

False Positive Rate 0.028 0.031 +0.002

Table 28: Region: Inner city

(a) Baseline — Small street through forest (b) Z-score — Small street through forest

Figure 46: Small street through forest: baseline vs. Z-score normalized prediction.

Metric Baseline Improved Difference

Overall Accuracy 0.994 0.999 +0.006

False Positive Rate 0.006 0.001 -0.006

Table 29: Region: Small street through forest
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(a) Baseline — Water at mosaic edge (b) Z-score — Water at mosaic edge

Figure 47: Water at mosaic edge: baseline vs. Z-score normalized prediction.

Metric Baseline Improved Difference

Overall Accuracy 1.000 1.000 0

False Positive Rate 0 0 0

Table 30: Region: Water at mosaic edge

(a) Baseline — Streets & railway (b) Z-score — Streets & railway

Figure 48: Streets & railway: baseline vs. Z-score normalized prediction.
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Metric Baseline Improved Difference

Overall Accuracy 0.922 0.938 +0.016

IoU 0.753 0.794 +0.041

F1 Score 0.859 0.885 +0.026

Precision 0.786 0.827 +0.041

Recall 0.947 0.953 +0.006

False Positive Rate 0.065 0.050 -0.015

Table 31: Region: Streets & railway

(a) Baseline — Water (b) Z-score — Water

Figure 49: Water: baseline vs. Z-score normalized prediction.

Metric Baseline Improved Difference

Overall Accuracy 0.628 1.000 +0.372

False Positive Rate 0.372 0 -0.372

Table 32: Region: Water
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(a) Baseline — Water riverbank (b) Z-score — Water riverbank

Figure 50: Water riverbank: baseline vs. Z-score normalized prediction.

Metric Baseline Improved Difference

Overall Accuracy 0.771 1.000 +0.229

False Positive Rate 0.229 0 -0.229

Table 33: Region: Water riverbank

(a) Baseline — Housing area (b) Z-score — Housing area

Figure 51: Housing area: baseline vs. Z-score normalized prediction.
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Metric Baseline Improved Difference

Overall Accuracy 0.972 0.973 +0.001

IoU 0.853 0.858 +0.005

F1 Score 0.921 0.924 +0.003

Precision 0.913 0.916 +0.003

Recall 0.928 0.931 +0.003

False Positive Rate 0.016 0.015 -0.001

Table 34: Region: Housing area

DSM Experiments: Comparison Baseline and best results

(a) Baseline — Bridges & boats (b) DSM — Bridges & boats

Figure 52: Bridges & boats: baseline (Z-score) vs. DSM input.

Metric Baseline DSM Difference

Overall Accuracy 0.946 0.945 -0.001

IoU 0.700 0.671 -0.030

F1 Score 0.824 0.803 -0.021

Precision 0.748 0.787 +0.039

Recall 0.917 0.820 -0.098

False Positive Rate 0.042 0.030 -0.012

Table 35: Region: Bridges and boats
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(a) Baseline — Forest (b) DSM — Forest

Figure 53: Forest: baseline (Z-score) vs. DSM input.

Metric Baseline DSM Difference

Overall Accuracy 0.996 1.000 +0.004

False Positive Rate 0.004 0 -0.004

Table 36: Region: Forest

(a) Baseline — Industrial area (b) DSM — Industrial area

Figure 54: Industrial area: baseline (Z-score) vs. DSM input.
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Metric Baseline DSM Difference

Overall Accuracy 0.968 0.936 -0.032

IoU 0.927 0.852 -0.075

F1 Score 0.962 0.920 -0.042

Precision 0.948 0.960 +0.012

Recall 0.977 0.883 -0.094

False Positive Rate 0.022 0.015 -0.007

Table 37: Region: Industrial area

(a) Baseline — Inner city (b) DSM — Inner city

Figure 55: Inner city: baseline (Z-score) vs. DSM input.

Metric Baseline DSM Difference

Overall Accuracy 0.964 0.952 -0.012

IoU 0.924 0.898 -0.025

F1 Score 0.960 0.946 -0.014

Precision 0.939 0.933 -0.006

Recall 0.983 0.961 -0.022

False Positive Rate 0.028 0.031 +0.002

Table 38: Region: Inner city
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(a) Baseline — Small street through forest (b) DSM — Small street through forest

Figure 56: Small street through forest: baseline (Z-score) vs. DSM input.

Metric Baseline DSM Difference

Overall Accuracy 0.994 0.999 +0.006

False Positive Rate 0.006 0.001 -0.006

Table 39: Region: Small street through forest

(a) Baseline — Water at mosaic edge (b) DSM — Water at mosaic edge

Figure 57: Water at mosaic edge: baseline (Z-score) vs. DSM input.

Metric Baseline DSM Difference

Overall Accuracy 1.000 1.000 0

False Positive Rate 0 0 0

Table 40: Region: Water at mosaic edge
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(a) Baseline — Streets & railway (b) DSM — Streets & railway

Figure 58: Streets & railway: baseline (Z-score) vs. DSM input.

Metric Baseline DSM Difference

Overall Accuracy 0.922 0.938 +0.016

IoU 0.753 0.794 +0.041

F1 Score 0.859 0.885 +0.026

Precision 0.786 0.827 +0.041

Recall 0.947 0.953 +0.006

False Positive Rate 0.065 0.050 -0.015

Table 41: Region: Streets & railway

(a) Baseline — Water (b) DSM — Water

Figure 59: Water: baseline (Z-score) vs. DSM input.
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Metric Baseline DSM Difference

Overall Accuracy 1.000 1.000 0

False Positive Rate 0 0 0

Table 42: Region: Water

(a) Baseline — Water riverbank (b) DSM — Water riverbank

Figure 60: Water riverbank: baseline (Z-score) vs. DSM input.

Metric Baseline DSM Difference

Overall Accuracy 1.000 1.000 0

False Positive Rate 0 0 0

Table 43: Region: Water riverbank

(a) Baseline — Housing area (b) DSM — Housing area

Figure 61: Housing area: baseline (Z-score) vs. DSM input.
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Metric Baseline DSM Difference

Overall Accuracy 0.972 0.973 +0.001

IoU 0.853 0.858 +0.005

F1 Score 0.921 0.924 +0.003

Precision 0.913 0.916 +0.003

Recall 0.928 0.931 +0.003

False Positive Rate 0.016 0.015 -0.001

Table 44: Region: Housing area

Overlap Experiments: Comparison Baseline and best results

(a) Baseline — Bridges & boats
(b) Improved (train 20%, test 10%) — Bridges
& boats

Figure 62: Bridges & boats: baseline (DSM) vs. improved overlap configuration.

Metric Baseline Improved Difference

Overall Accuracy 0.946 0.945 -0.001

IoU 0.700 0.671 -0.030

F1 Score 0.824 0.803 -0.021

Precision 0.748 0.787 +0.039

Recall 0.917 0.820 -0.098

False Positive Rate 0.042 0.030 -0.012

Table 45: Region: Bridges & boats
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(a) Baseline — Forest (b) Improved (train 20%, test 10%) — Forest

Figure 63: Forest: baseline (DSM) vs. improved overlap configuration.

Metric Baseline Improved Difference

Overall Accuracy 0.996 1.000 +0.004

False Positive Rate 0.004 0 -0.004

Table 46: Region: Forest

(a) Baseline — Industrial area
(b) Improved (train 20%, test 10%) — Indus-
trial area

Figure 64: Industrial area: baseline (DSM) vs. improved overlap configuration.
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Metric Baseline Improved Difference

Overall Accuracy 0.968 0.936 -0.032

IoU 0.927 0.852 -0.075

F1 Score 0.962 0.920 -0.042

Precision 0.948 0.960 +0.012

Recall 0.977 0.883 -0.094

False Positive Rate 0.022 0.015 -0.007

Table 47: Region: Industrial area

(a) Baseline — Inner city
(b) Improved (train 20%, test 10%) — Inner
city

Figure 65: Inner city: baseline (DSM) vs. improved overlap configuration.

Metric Baseline Improved Difference

Overall Accuracy 0.964 0.952 -0.012

IoU 0.924 0.898 -0.025

F1 Score 0.960 0.946 -0.014

Precision 0.939 0.933 -0.006

Recall 0.983 0.961 -0.022

False Positive Rate 0.028 0.031 +0.002

Table 48: Region: Inner city
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(a) Baseline — Small street through forest
(b) Improved (train 20%, test 10%) — Small
street through forest

Figure 66: Small street through forest: baseline (DSM) vs. improved overlap configura-
tion.

Metric Baseline Improved Difference

Overall Accuracy 0.994 0.999 +0.006

False Positive Rate 0.006 0.001 -0.006

Table 49: Region: Small street through forest

(a) Baseline — Water at mosaic edge
(b) Improved (train 20%, test 10%) — Water
at mosaic edge

Figure 67: Water at mosaic edge: baseline (DSM) vs. improved overlap configuration.

Metric Baseline Improved Difference

Overall Accuracy 1.000 1.000 0

False Positive Rate 0 0 0

Table 50: Region: Water at mosaic edge
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(a) Baseline — Streets & railway
(b) Improved (train 20%, test 10%) — Streets
& railway

Figure 68: Streets & railway: baseline (DSM) vs. improved overlap configuration.

Metric Baseline Improved Difference

Overall Accuracy 0.922 0.938 +0.016

IoU 0.753 0.794 +0.041

F1 Score 0.859 0.885 +0.026

Precision 0.786 0.827 +0.041

Recall 0.947 0.953 +0.006

False Positive Rate 0.065 0.050 -0.015

Table 51: Region: Streets & railway

(a) Baseline — Water (b) Improved (train 20%, test 10%) — Water

Figure 69: Water: baseline (DSM) vs. improved overlap configuration.
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Metric Baseline Improved Difference

Overall Accuracy 1.000 1.000 0

False Positive Rate 0 0 0

Table 52: Region: Water

(a) Baseline — Water riverbank
(b) Improved (train 20%, test 10%) — Water
riverbank

Figure 70: Water riverbank: baseline (DSM) vs. improved overlap configuration.

Metric Baseline Improved Difference

Overall Accuracy 1.000 1.000 0

False Positive Rate 0 0 0

Table 53: Region: Water riverbank

(a) Baseline — Housing area
(b) Improved (train 20%, test 10%) — Hous-
ing area

Figure 71: Housing area: baseline (DSM) vs. improved overlap configuration.
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Metric Baseline Improved Difference

Overall Accuracy 0.972 0.973 +0.001

IoU 0.853 0.858 +0.005

F1 Score 0.921 0.924 +0.003

Precision 0.913 0.916 +0.003

Recall 0.928 0.931 +0.003

False Positive Rate 0.016 0.015 -0.001

Table 54: Region: Housing area

(a) Baseline — Bridges & boats (b) Decision threshold 0.3 — Bridges & boats

Figure 72: Bridges & boats: baseline (train 20%, test 10% overlap) vs. decision threshold
0.3.
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Decision threshold: Comparison Baseline and best results

Decision threshold: Comparison Baseline and Threshold 0.3

(a) Baseline — Bridges & Boats (b) Decision threshold 0.3 — Bridges & Boats

Figure 73: Bridges & Boats: baseline (train 20%, test 10% overlap) vs. decision threshold
0.3.

Metric Baseline Threshold 0.3 Difference

Overall Accuracy 0.948 0.965 +0.017

IoU 0.703 0.777 +0.073

F1 Score 0.826 0.874 +0.048

Precision 0.756 0.856 +0.100

False Positive Rate 0.040 0.028 -0.012

Table 55: Region: Bridges & Boats
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(a) Baseline — Forest (b) Decision threshold 0.3 — Forest

Figure 74: Forest: baseline (train 20%, test 10% overlap) vs. decision threshold 0.3.

Metric Baseline Threshold 0.3 Difference

Overall Accuracy 1.000 1.000 0.000

False Positive Rate 0.000 0.000 0.000

Table 56: Region: Forest

(a) Baseline — Industrial area (b) Decision threshold 0.3 — Industrial area

Figure 75: Industrial area: baseline (train 20%, test 10% overlap) vs. decision threshold
0.3.
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Metric Baseline Threshold 0.3 Difference

Overall Accuracy 0.974 0.975 0.000

IoU 0.940 0.941 0.001

F1 Score 0.969 0.970 0.001

Precision 0.967 0.962 -0.005

Recall 0.971 0.977 0.006

False Positive Rate 0.014 0.016 0.002

Table 57: Region: Industrial area

(a) Baseline — Inner city (b) Decision threshold 0.3 — Inner city

Figure 76: Inner city: baseline (train 20%, test 10% overlap) vs. decision threshold 0.3.

Metric Baseline Threshold 0.3 Difference

Overall Accuracy 0.960 0.959 -0.001

IoU 0.915 0.914 -0.001

F1 Score 0.956 0.955 -0.001

Precision 0.941 0.935 -0.006

Recall 0.971 0.976 +0.005

False Positive Rate 0.027 0.030 +0.003

Table 58: Region: Inner city
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(a) Baseline — Small street through forest (b) Decision threshold 0.3 — Small street
through forest

Figure 77: Small street through forest: baseline (train 20%, test 10% overlap) vs. decision
threshold 0.3.

Metric Baseline Threshold 0.3 Difference

Overall Accuracy 1 1 0

False Positive Rate 0 0 0

Table 59: Region: Small street through forest

(a) Baseline — Water at mosaic edge (b) Decision threshold 0.3 — Water at mosaic
edge

Figure 78: Water at mosaic edge: baseline (train 20%, test 10% overlap) vs. decision
threshold 0.3.
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Metric Baseline Threshold 0.3 Difference

Overall Accuracy 1.000 1.000 0.000

False Positive Rate 0.000 0.000 0.000

Table 60: Region: Water at mosaic edge

(a) Baseline — Streets & railway (b) Decision threshold 0.3 — Streets & railway

Figure 79: Streets & railway: baseline (train 20%, test 10% overlap) vs. decision threshold
0.3.

Metric Baseline Threshold 0.3 Difference

Overall Accuracy 0.954 0.955 +0.001

IoU 0.829 0.835 +0.006

F1 Score 0.906 0.910 +0.004

Precision 0.925 0.914 -0.011

Recall 0.888 0.905 +0.017

False Positive Rate 0.018 0.021 +0.003

Table 61: Region: Streets & railway
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(a) Baseline — Water (b) Decision threshold 0.3 — Water

Figure 80: Water: baseline (train 20%, test 10% overlap) vs. decision threshold 0.3.

Metric Baseline Threshold 0.3 Difference

Overall Accuracy 1.000 1.000 0.000

False Positive Rate 0.000 0.000 0.000

Table 62: Region: Water

(a) Baseline — Water riverbank (b) Decision threshold 0.3 — Water riverbank

Figure 81: Water riverbank: baseline (train 20%, test 10% overlap) vs. decision threshold
0.3.

Metric Baseline Threshold 0.3 Difference

Overall Accuracy 1.000 1.000 0.000

False Positive Rate 0.000 0.000 0.000

Table 63: Region: Water riverbank
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(a) Baseline — Housing area (b) Decision threshold 0.3 — Housing area

Figure 82: Housing area: baseline (train 20%, test 10% overlap) vs. decision threshold
0.3.

Metric Baseline Threshold 0.3 Difference

Overall Accuracy 0.970 0.971 +0.001

IoU 0.839 0.847 +0.008

F1 Score 0.912 0.917 +0.004

Precision 0.931 0.920 -0.011

Recall 0.895 0.914 +0.019

False Positive Rate 0.012 0.014 +0.002

Table 64: Region: Wohngebiet (Housing area) — Baseline vs. Decision Threshold 0.3
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