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Abstract. In this paper, the parallelization of parallel independent rule
applications within the double-pushout approach over adhesive cate-
gories is generalized in such a way that doubling can be avoided. If
two rule applications to the same object delete the same part of the
commonly accessed part, then independence is restored by removing the
deletion part of one of the rule applications. Similarly, one can avoid
that certain insertions are doubled. It turns out that parallelization with
doubling avoidance is closely related to synchronization by means of
amalgamated rules.

1 Introduction

Parallelism and simultaneity are fundamental principles in nature and society.
Most biological, chemical and physical processes on one hand and most pro-
cesses in economy, administration, traffic, and every-day life run in parallel.
Often coordination and regulation are needed to avoid collisions, conflicts or
undesired effects. As one of the main concerns of Computer Science is the mod-
eling of real-world processes, one encounters quite a spectrum of approaches
to the modeling of parallel systems like, e.g., cellular automata, Lindenmayer
systems, neural networks, reaction systems, swarm computing, and many more.
The same applies, in particular, to the area of graph transformation. See, e.g.,
Taentzer’s parallel and distributed graph transformation [1], Kniemeier’s growth
grammars [2], Metevier’s and Sopena’s graph relabeling systems [3], Boehm’s,
Fonio’s and Habel’s amalgamation of graph transformation [4], and various oth-
ers. One of the earliest and simplest approaches to parallel graph transformation
was introduced by Ehrig and Kreowski [5] and further studied in [6]. The basic
concept is the coproduct of rules used as parallel rule. As this is a rule itself,
parallel derivations are just derivations applying parallel rules. Moreover, some
very helpful properties of the concept can be shown like sequentialization and
parallelization. Given a parallel rule application, the component rules can be
applied in arbitrary order yielding the same result as the given rule application.
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Conversely, rule applications applied to the same graph that are pairwise inde-
pendent can be applied in parallel. And this holds for two successive sequentially
independent rule application, too. A comprehensive survey can be found in Cor-
radini et al. [7], the generalization to adhesive categories in Ehrig et al. [8,9]. A
complication is the fact that the search for a matching morphism is NP-complete
if rules with arbitrarily large left-hand sides are allowed. Fortunately, a matching
morphism of a parallel rule can be constructed from the matching morphisms of
the component rules so that the obstacle can be circumvent. In this paper, we
generalize this approach to rule-based parallel transformation in such a way that
undesired doubling can be avoided. There are two types of doubling with respect
to two rule applications to the same object. The first one concerns parallel depen-
dent rule applications that - intuitively seen - delete exactly the same part of
the intersection of the matchings. If one modifies one of the rule applications
in such a way that the deletion part is removed while the other one is kept, it
turns out that they become parallel independent and can be applied in parallel.
Moreover, the modified rule application can be reconstructed so that no infor-
mation gets lost in the process. The second case concerns rule applications that
- again intuitively - insert isomorphic parts which may be merged. And again
this can be achieved by removing the potentially common part from one of the
rule applications while the other one is kept. Both types of doubling may occur
together. In Sect. 3, the parallelization with doubling avoidance (dedoubling for
short) of two rule applications is introduced and investigated while the concept
is generalized to families of rule applications to the same object in Sect.4. In
Sect. 5 we relate our approach to amalgamation as studied in [4].

2 Preliminaries

In this section, the preliminaries are provided as far as needed for this paper. For
the well-known categorical notions confer, e.g., Adamek et al. [10]. For the notion
and properties of adhesive categories confer, e.g., Lack and Sobocinski [11]. For
the notion of graph transformation confer, e.g., Ehrig et al. [8,9].

2.1 Categorical Prerequisites

We assume that the underlying category C is adhesive. In addition, we require
an epi-mono factorization and a strict initial object.

Assumption.

1. C is adhesive, i.e., C has all pullbacks, C has pushouts along monomor-
phisms (meaning at least one of the two morphisms in the pushout span is
a monomorphism), and pushouts along monomorphisms are Van Kampen
squares.

2. C has a strict initial object @, i.e., an initial object # with the property that
every morphism in C with codomain ) is an isomorphism. This implies that
the pushouts of spans of the form G « () — H are the coproducts of G and
H, denoted by G + H.
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3. Every morphism in C has an epi-mono factorization, i.e., for every morphism
f there is a factorization f = m o e where e is an epimorphism and m is a
monomorphism. The factorization is unique up to isomorphism in adhesive
categories.

We use two adhesive categories explicitly: the category X-Graphs of directed
edge-labeled graphs and the category Rules of graph transformation rules over
an adhesive category C. Y-Graphs is a special variant of a diagram category
over the category Sets of sets. And Rules is a diagram category over C.

The category Sets of sets and mappings is the best-known adhesive category.
Every diagram category over an adhesive category is adhesive. This remains true
if some target objects are fixed. For instance, consider the diagram Y «— -Z-
over Sets for a set X (of labels). The corresponding adhesive category is the
category X-Graphs of directed edge-labeled graphs. An object is a system G =
(V, E,s,t,1) where V is a set of vertices, E is a set of edges, s,t: E — V and
l: E — X are mappings assigning a source, a target and a label to every edge
e € E. An edge e with s(e) = t(e) is called a loop. The empty graph is the initial
object. Another adhesive category is given by the diagram - «— - — - which
remains adhesive if the arrows are restricted to monomorphisms. This provides
the category Rules of rules over C.

2.2 The Double-Pushout Approach

The rewriting formalism which we use throughout this paper is the double-
pushout (DPO) approach as introduced by Ehrig, Pfender and Schneider in [12].
It was originally introduced for graphs. However, it is well-defined in adhesive
categories.

A rule is a span of monomorphisms p = (L o K - R). L is called left-hand
side, R is called right-hand side, and K is called gluing object.

A rule application to some object G is defined wrt a morphism
g: L — G which is called (left) matching morphism. G directly derives H if the
span L " K - R and matching morphism ¢ extend to the diagram

L+—F—K——R
@ 2 @
G mz -G Z mz—-H H

such that both squares are pushouts. Z is called intermediate object and h is
called right matching morphism. Because rules and rule applications are sym-
metric, a rule p = (L < K - R) induces an inverse rule p~! = (R . K - L)

such that G:>H implies H :>G and vice versa. The apphcatlon of a rule
p to G wrt g is called direct derwatwn and is denoted by G:>H (where ¢

is kept implicit). A derivation from G to H is a sequence of dlrect derivations
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G0=>G1=> =G, withGo =G, G, =H and n >0. If p1,--- ,p, € P,
D2 Pn

then the derivation is also denoted by G :Z> H. If the length of the derivation

does not matter, we write G :;> H.

2.3 Local Church-Rosser Properties
Let p = (L<TK—>R) and p = (L «— K — R) be two rules.
T l T

1. Two direct derivations G==H and G== H with matching morphisms
P P
g: L — G and g: L — G are parallel independent if there exist two mor-
phisms f: L — Z and f: L — Z such that g =m_ o f andg=mz_.gof.
The situation is depicted in the following diagram.

R +— K —
hg[ l \ / z% hl

mz—H mz_q mz_.qg Mz H

2. Successive direct derivations G => H = X with the right matching mor-
P P

phism h: R — H and the (left) matching morphism ¢': L — H are sequen-
tially independent if H => G and H :> X are parallel independent.

It is well-known that parallel independence induces the direct derivations
HzX and HﬁX with matching morphisms mz_y o f and my_golf

and that Sequentlal independence induces the derivation G=— H :>X The
P

two constructions in the context of adhesive categories can be found in Lack and
Sobocinski [11] (see also [8]).

Moreover, the coproduct of p + P of two rules p and p is called parallel rule.
It is well-known that an application G :+5X yields two sequentially indepen-

p+b

dent sequentializations G :p> H=— XandG=H :p> X such that the two first
steps are parallel independent. Colilversely, pargllel and sequentially independent
rule applications induce corresponding parallel rule applications. The results con-
cerning sequentialization and parallelization are based on the Butterfly Lemma
as used in the proof of Theorem 3 in Sect. 4 (cf. [6-8] for more details). Moreover,
in [6] is it shown that sequentialization is associative. The proof is done in the
category Graphs. The same proof holds in adhesive categories.

3 Parallelization with Doubling Avoidance of Two Rule
Applications

It is well-known that a set of pairwise parallel independent rule applications to
the same object can be parallelized by applying the coproduct of the applied
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rules as parallel rule (see [6-8]). In this section, parallelization is generalized in
such a way that so-called doubling can be avoided. Given two rule applications
to the same object, a doubling is a common part of the applied rules on which
the matching morphisms coincide. Intuitively, the two rule applications double
the common part. Under certain conditions, the two rule applications can be
parallelized while the doubling is avoided. This is formally achieved by covering
and replacing each of the rule applications by the applications of suitable parallel
rules such that their sequentializations and proper re-parallelizations yields the
intended effect. This parallelization without doubling can be iterated for sets of
rule applications with more than two elements (see Sect.4). We start with an
example that illustrates the idea.

Example 1. Our running example is inspired by pattern generation and tilings.
We use two rules

g b
N N N b g g b b w b
= g D) Cw =
” bg bCEN b%V P 0slel20s 6 < (s]n]

They are applied to finite subgraphs of an underlying infinite background
graph defined by B=(Z x Z,Z x Z x {b,g,w, E, N}, sp,tp,lp) where sp is the
projection to Z x Z, I is the projection to {b,g,w, E, N} and tp is given by, for
all (z,y) € ZxZ,t5((z,y),c) = (z,y) for c € {b,g,w}, t((z,y),E) = (x+1,y),
tg((z,y), N) = (x,y + 1). This means that the vertices are the points in the
plane with integer coordinates and each vertex is the source of five edges labeled
with b, g,w, E and N respectively. The first three are loops colored by b(lack),
g(ray), and w(hite). The fourth edge points to the right neighbor, the fifth to
the upper neighbor. Each vertex (x,y) € Z X Z represents a unit square us(z,y)
consisting of the four vertices (x,y), (z + 1,y), (z,y + 1) and (x + 1,y + 1) and
the four edges ((z,v), E), ((xz,y),N), ((z+1,y), N) and ((z,y + 1), E). Each set
T of vertices with one loop each represents a subgraph sub(T') of B by closing T
under the represented unit squares. It can be depicted as a grid of unit squares
where each square is colored by the label of the loop at the corresponding vertex
in T'. The start graph is a rectangular triangle with legs of length 5. The color of
the vertex at the bottom left is black; all other vertices have gray loops. A sample
derivation applying the rules above to a sample grid is depicted in Fig. la. The
only alternative result after five steps is depicted in Fig. 1b.

Both rules can be applied to the start pattern. As they are parallel indepen-
dent, they can be applied in parallel as depicted in Fig. 1c. After the first parallel
step, four rule applications are possible. But two of the matches overlap in the
middle unit square of the hypotenuse. This is a loop that does not belong to the
gluing graph so that the two rule application are parallel dependent. The other
pairs are parallel independent so that two maximal parallel derivation steps are
defined yielding the two result pattern in Fig. la and 1b.

A closer look at the dependence reveals that both rule applications do exactly
the same on the overlap: They replace the g-labeled loop by a b-labeled one. If
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BB O e B

) A sample derivation

;‘%aj 2

(b) Alternative result (c) Parallel rule application (d) Rule application with overlap

Fig. 1. Sample derivations

it would be allowed to apply this only once instead of twice, then all four rule
applications could be parallelized yielding the grid depicted in Fig. 1d.

In order to formally describe this observation, we need the definition of a
cover.
Definition 1. Let p = (L " K — R),p = (L " K' — R') and p" =
I ’ 7,/
(L — v — K" — R") be rules and (N; N'y: L'+ L" — L, (v;5"): K+ K" - K
and {(¢'; 0"): R/ R"” — R be epimorphisms such that the diagrams

L+ L & U+l K + K" 7, 4" R + R"
<>\/;A,/>l (3) J/<K, I{,/> (4) J/(g/ //
L K

1 T

are pushouts. Then the pair (p',p") is a cover of p. The elements p’ and p” are
called cover components of p. The rule p” is called complement rule of p’ and
p' complement rule of p”.

Theorem 1 1. Let (p',p") be a cover of p with the left epimorphism
(NN L'+ L" — L and G=>H for some objects G and H with the match-

ing morphism g: L — G be a rule application. Then p' +p” can be applied to
G with the matching morphism go (N;N'): L' + L — G yielding G = H.
p’'+p"”

2. Let G=H be another rule application that is parallel independent of
P
G = H. Then G = H ‘s parallel independent of G ? H, too.
P P p'+p”

Proof. 1. Let the diagrams (1) and (2) as given in Sect.2.2 be the pushouts
defining G = H. Then the sequential compositions of (1) and (3) and (2)
p

and (4) are pushouts defining G ? H.
p/ p//
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2. Due to the assumption, there are morphisms f: L — Zand f: L — Z
such that mz_ 5o f = g and mz_g o f = g where Z is the intermediate
object of G:>H with the monomorphism m_, ~: Z —-Gandg: L — G

is the matchmg morphism. Composing the first equation with (\; A"} yields
My _ o fo(N;N') = go (N;\’). This proves (together with the second
equation) the stated parallel independence. O

If Theorem 1 is applied to two rule applications to the same object in such
a way that both covers share one of the component rules, then one gets the
following observation by using the known results for sequentialization and par-
allelization.

Observation 1. Let dy = (G== H;) and dy = (G = H3) be two rule applica-
P1 p2

tions with matchings g; and go, respectively, and p} +p7 and p), +pf covers of p;
and pq, respectively. Let G :> (Hy and G = Hj be the corresponding rule
Py py+py
applications according to Theorem 1.1 and g1 0 A{ = ga 0 Ay where \/: L — L;
for i = 1,2 are the morphisms according to Definition 1. Then the following

holds.

1. The sequentializations yield

G:>H1:>H1 G:”>X1:/>H1 G:>H2:>H2 G:>X2:>H2
p] pl Py Py p2 p2
for some objects Hl,Hé,Xl and Xj.

2. If po = pf = py and g1 o A = go o \j where \/: LY — G for i = 1,2
are the morphisms mapping the left hand sides of p” to the left-hand side
of p; according to the Definition 1. Then X = X; = X, and (G?X) =

0

(G=X1) = (G=> X>) such that the rule applications form the following
Py Py

diagram
Po
H] Hy
p] Po+p]
/
Py
Po
G X ,
P2
/ /
D2 e Po+py I
2 i 2

3. Moreover, G= X and G= Hj as well as G= X and G = H}, are par-
Po 4 Po 28

allel independent.
4. If, in addition, G:>H1 and G:>H2 are parallel independent, then the

parallelization with G :>X ylelds G = Y for some object Y and one

Po+pi+ph
obtains G = H; = Y and G = H, = Y by sequentialization.
Po+Dp] DY Po+ph P]

The special role of pg is reflected in the following definition.
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Definition 2. Assume the situation of the previous observation. Moreover, let
po not be a span of isomorphisms.

1. Then G= X is called a doubling of d1 and ds.
Po
2. If, in addition, G= Hj and G:/>H§ are parallel independent, then the
Py Py
doubling is useful.

Remark 1. If a rule is a span of isomorphisms, then its application derives an
object that is isomorphic to the host object meaning that is has no effect and —
in particular — nothing is doubled.

Parallelization with dedoubling is captured in the following theorem.

Theorem 2. Let G=—=>X be a useful doubling of G=—= H; and G =—> Hs with
Po pP1 p2

the corresponding cover components G = Hi and G = H), respectively.
Py Py

1. Then G= H; and G = H}, as well as G = H{ and G = Hy are parallel
P1 D P} P2

independent.

2. Therefore, the parallelizations G = Y12 for some object Y12 and G = Y,
p1+ P2 p2+p1
for some object Ya1 are defined inducing the sequentialization

G:>H1:>Y12 G:>H2:>Y12 G:>H2:>Y21 G:>H1:>Y21
pP1 p2 pP1 101 b2

3. Moreover, Y12 = Yo;.

Proof. 1. According to the reasoning in Observation 1, the rule applications
G = Hy;and G :>H1 are parallel independent. Let

p0+p2
lo+1)
Ko+ Ky —2 5 Lo+ I Ly ¢ K
1
(Ko2;kh) (Noz2;A%) ™M
i ] L
Ky —2 1, 2]
lzz \ /
Mz, -G
Zo = T Zy

be the corresponding left pushouts. Then there are morphisms
f122 Lll — Z2 and f212 Lo + Ll2 — Z{ such that

(a) mz,~gofia=gio X1
(b) Mz o fa1 = g2 © (Ao; Ay).
Let go = moefore: Ly — L and m: L — G be the epi-mono factorization

of g3 and fo1 = h o é with é: Lo + Ly — L and 7h: L — Z] be the epi-
mono factorization of fo1. Then one gets the epi-mono factorization of the



52 H.-J. Kreowski and A. Lye

morphism of (b) in two variants by sequential composition with the monomor-

phism mz; g on one hand and with the epi (Ag2; A5) on the other hand, i.e.,

My g ©1Mm o é = M oeo (Ag;Ay). The uniqueness of epi-mono factoriza-

tion implies that, without loss of generality, L = I:, mz: g om = m and

é = €0 (\o2; Ay). Therefore, one get my; g omoe=moe = gs. Combined

with (a), this proves the parallel independence of G?Hg and G?H{.
1

The second case follows by symmetry.
2. The second statement follows from the first one.
3. Using Theorem 1, the first steps of G= H; = Y15 and G= Hy, = Y5
p1 P P2 Pl

can be replaced by G = H; and G = Hj respectively yielding two of
Po+p} Po+ph

the sequentializations of G = Y as shown in Observation 1. This means
Po+p;+Dh
that Yo 2 Y = Y5,. O

Ezxample 2. We continue the discussion in Example 1. After the parallel step in
Fig. 1c, the two parallel independent steps are depicted on the left in Fig. 2a. The
common component rule py is given at the top in Fig.2b. It is applied to the
middle of the hypotenuse. The complementary component rule p} of the upper
application of rule p; is given in the middle in Fig.2b, and the complementary
component rule p, of the lower application of rule ps at the bottom in Fig. 2b.
They are applied in such a way that all three rule applications overlap in the
vertex corresponding to the middle hypotenuse so that they are pairwise parallel
dependent. (po,p)) covers p1, and (pg, py) covers py so that the application of pg
is a useful doubling, po + p} replaces p; for i = 1,2 and po + p + ph, p1 + ph and
p2 + pj can be applied to the start pattern in Fig. 2a all deriving the pattern on
the right.

_| b
P g:_)ogg

A
r?(l

pe| vy 2 B el

= b b b

o>

;o b g b b w

P2 = S)EQE 2 QE B S QEQE

(a) Parallel rule application with (b) derived rules from dedoubling

dedoubling

Fig. 2. Sample derivations and rules of Example 2
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Remark 2. Two rule applications d and d’ to the same object are not paral-
lel independent if at least one of the matching morphisms - say the matching
morphism of d - cannot be restricted to the intermediate object of the other
rule application d’. Intuitively, this means that d matches items that are deleted
by d'. There are two cases: (1) d deletes the same items, or (2) d keeps some
of them as part of the gluing object. In the second case, one faces an essential
conflict of actions that are mutually exclusive. In the first case, deletion cannot
be done twice. But if the deletion takes place at all, the purposes of both rule
applications are served. With respect to deletion, this is the idea of paralleliza-
tion with dedoubling. With respect to insertion, the situation is different as one
has the choice between doubling or dedoubling.

4 Parallelization with Doubling Avoidance of Families
of Rule Applications

In this section, the parallelization with dedoubling of two rule applications is
generalized to families of rule applications. The parallelization with dedoubling
as introduced in the previous section is used as an operator on families of rule
applications so that it can be iterated. The operator chooses two rule applications
of the family with a useful doubling non-deterministically and replaces one of the
rule applications by its complement rule application. As shown in Theorem 2,
the other rule application and the complement rule application are parallel inde-
pendent. Moreover we show that the operator preserves parallel independence in
the sense that a third rule application of the family which is parallel independent
of the replaced rule application is also parallel independent of the replacing one.
Therefore, the number of pairs of rule applications of the family cannot increase,
and it decreases if the processed pair is not parallel independent. If one is inter-
ested in getting rid of the dependent pairs and applies the operator only to
those, the iteration terminates either with a family of pairwise parallel inde-
pendent rule applications or one gets stuck because there remain pairs without
useful doublings. In the first case, the family can be parallelized. In the second
case, parallelization fails.

Definition 3. 1. Let F be the class of all finite families of rule applications
of the form F = {G:>H Yier for some common start object G and a finite

index set I. Then the non-deterministic dedoubling operator DD € F x F
is defined as follows: Let F = {G:>H Vien, F = {G:>H Yier € F. Then

(F,F) € DD if there are j,k € I and a useful doubling G:>X ofG:>H
and G = Hj, with the complement component G=>H’ of G=>H such
Pk ]
that F is obtained from F by replacing G == H; by G = Hj. (F, F)e DD
Pj 2

is denoted by F ~ F.
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2. As a binary relation of F, DD can be iterated Fy ~ Fy ~ -+~ F, for
some n € N. This is denoted by F & F with F = Fy and F = F,, or by
F =5 F if the length of the dedoubling sequence is not needed explicitly.

An interesting question concerning iterated processes is about termination.
In many cases, a sufficient condition that guarantees termination is a natural
variable which decreases in every process step. In the case of dedoubling, this
applies if one wants to get rid of parallel dependence because the processed
pair of rule applications results in a parallel independent pair (cf. Theorem 2).
Moreover, it can be shown that dedoubling preserves parallel independence.

Theorem 3. Let GﬁH for1=1,2,3 be rule applications. Let G=>X be a
useful dedoubling ofG :> H, and G = Hy with the corresponding cover compo-
P2
nent G= H{ of G = Hl. Let Gy = H, and G = Hj be parallel independent.
j 4 P1 P1 p3

Then G=> H| and G => Hj3 are parallel independent, too.
P} Ps3

Proof. Consider the following diagram

G :> H; and G :> Hj provide the pushouts (1;) and (13). As they are parallel

mdependent there are morphisms fi13: L1 — Z3 and f31: L3 — Z; such that
(a) mz,—co fiz = g1 and (b) mz, g o fs1 = g3. G=> H{ provides the pushout
Py

depicted on the left outer square above. Choosing (c) f15 = fi3 0 A1 yields

(d) mz,—~qo fis (ZC) mz,—a o fizo A (f) g1oA1 = gj.

If there is a morphism m: Z; — Z] with (e) mz; .gom = mz, g, then choosing
(f) f31 = mo fa yields

(g) mgz: g ©° fa1 (?) mz, G omo fa (—) mz, G © [31 (—) g3-

(d) and (g) show that G = H{ and G = Hj3 are parallel independent.
14 p3
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The morphism m is obtained by applying the Butterfly Lemma to the left

pushout of G = Hj:
P +po

implies

N / Jmm} Z1 /

g1oX1 =g

where the diagram (C)+ (D) is a pushout. As [} is a monomorphism, the pushout
complement of g} o] is unique (up to isomorphism). Moreover, (D) is commu-
tative so that m: Z; — Z] is the morphism needed above. This completes the
proof. a

Definition 4. Let F = {G:>H Yier € F. Then di(F) is the number of pairs
of F' that are parallel dependent called dependence index of F'.

Corollary 1. 1. Let F ~ F for F,F € F and the processed pair of rule appli-
cations be parallel dependent. Then di(F) > di(F).

2. Let Fy 5 F, be a sequence of dedoublings where all processed pairs are
parallel dependent. Then di(Fy) > n.

Proof. 1. According to Theorem 3, di(F') does not increase after dedoubling.
According to Theorem 2, it decreases at least by 1 wrt the processed pair.

2. According to Point 1, the length of a dedoubling is bounded by di(Fp) if
only dependent pairs are processed. O

The situation is more difficult if the processed pairs of dedoublings are paral-
lel independent because no general termination criterion is known. But whenever
a family is reached by a sequence of dedoublings such that each pair of mem-
bers is parallel independent, one may stop the process. The result provides a
parallelization with doubling avoidance of the initial family.

Another interesting question about iterated dedoubling concerns the seman-
tic relation between a given family of rule applications and one obtained by a
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sequence of dedoublings. A family member remains unchanged or is repeatedly
replaced by a component rule application that is complementary to the removed
component rule application. A component is only removed if it is a doubling so
that it remains present in another member of the family and no information gets
lost. This is reflected in the following theorem stating that each member of the
start family is not changed or can be reconstructed as parallel rule application
of the resulting member and all the removed component rule applications that
are involved in the processing of all members with the same index as the initial
member.

Theorem 4. Let F = {d; = (G= H)}ier, F = {d; = (G=H;)}icr € F
pi Py

with dd = (F ~ F). Then for each i € I, either d; = d; or there is a

parallelization G =  H; of G:>H and the dedoublings G:>H0; for
)
( l; po1)+P;

I1=1,...,m(i) which are used to diminish the ith component of dd.

Proof. Induction on the length of dd.
Base for F -5 F: Then F = F and d; =d; foralli e I.
Step for (F' S F) = (F S RN F) for some F: Then the last step is

given by a dedoubling of d; = (G= H;) and dr = (G=> Hy) with a useful
pj Pk

dedoubling dy = (G = Hy) corresponding cover components a?; = (G= H )
Po P}

and d} = (G:>ﬁ’) as well as d; = dj and dj, = d},. This means for i # j

that d; = d; so hat the statement holds by induction hypothesis. For j € I,

one has (a) d; = d and (b) D; = (G =  Hj) being the parallelization
()
( Lé Pot)+Pj;

of d;j = (Gz]i) and the dedoubling doi = (G'== Ho) for L = 1,...,m(j)
by induction hypothesm By construction, one has d = (G = H; ;). The first
Po +pJ
step of the sequentialization of D; are d; = (G:,Hf[]’) and d; = (G:>H'])
Pj

In the case (a), this proves the statement. In the case (b), d and all dg; are

pairwise parallel independent as components of a parallelization. D covers d

so that Dj is parallel independent of all dy; according to Theorem 2. Therefore,

the parallelization (G =~ == H;) is defined proving the statement for the
(ii) pot)+Po+D;

case (b) and completing the proof. O
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5 Relating Parallelization with Doubling Avoidance
to Amalgamation

Boehm, Fonio and Habel [4] introduced and studied amalgamation of graph
transformation as a generalization of parallelization of parallel independent rule
applications. Their approach is generalized to adhesive categories in Ehrig et
al. [9]. They consider the same basic situation as in our approach, i.e., two rules
p1 and po sharing the same component rule py together with the embedding
morphisms ep;: pg — p1 and egz: py — p2 both accompanied with complemen-
tary component rules pj and p), resp., which are called remainders. Then the
amalgamated rule pio is defined as the pushout of the span given by eg; and
eo2 (provided that it exists). The Amalgamation Theorem states the following:
Let G= H; and G = H> be two rule applications the matching morphisms

P1 P2
of which coincide on the embeddings of the left-hand side of pg. Moreover, let
G=H 1 and G == H % be parallel independent rule applications defined by the
P Py

matching morphisms that are composed of the given matching morphisms and
the embeddings of left-hand sides of p] and p} into the left-hand sides of p; and

po resp. Then there are derivations G —=Y,G=— H; — Y and G = Hy, —Y
P12 P1 2 P2 14

for some object Y. We show that the amalgamated rule p;s is covered by our par-
allel rule po + p} + p5 (Theorem 5) such that the Amalgamation Theorem turns
out to be a kind of corollary of Theorem 2. The proof is based on the relation
among the component rules of a useful doubling as summarized in Observation 2.

Observation 2. The following diagram displays the relations among the rules
that are involved in a useful doubling where the given epimorphisms are denoted
by e; and es, the injections into coproducts are indicated by ¢ with proper indices
and the restrictions of e; and ey to the coproduct components by e with proper
indices. Moreover, the pushout p;o of the span given by the common component
rule pg of p; and ps with the embeddings e : pg — pi for k = 1,2 is added. The
pushout morphisms are denoted by fi: pr — p12 for k= 1,2. And fo: pg — p1o
is defined as f1 o egy = fo 0 ego. Altogether all triangles are commutative.

i Po + Py + Db .

Pl (@) kl (D) Po (E) kQW) Ph
€ B €22

p1 ) em P2

P12
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Using the coproduct property of pg + p} + p) the morphisms fi o eq1, fo =
fioegr = faoep and fa 0 ezo induce e: py + pi + phy — p12 with

(D
(J) eoigoigy =eoijoipr = froep = faoep
(K) eoip= fo.

Theorem 5. Let G:>X be a useful doubling of G:>H1 and G:>H2 for

€0l oiyy = froerk, k=12

some rule p with the embeddmgs €oi: po — pi and the correspondmg complemen—
tary rule applications G:>H’ for k = 1,2. Let p1o with the rule morphisms

fitpi — p12 for k =1, 2 be the pushout of the span p; < po — D2 and
e: po+pi +ph — pia be the rule morphism constructed in the observatzon above.
Then

1. e is an epimorphism and
2. the diagram

l l/ l/ ’ !
Lo+ L+ Ly 0% g k1 k) T gy RCOY R

er| Jex Ler

Lo Ko Ry

is a double pushout.

Proof. 1. Let f, f': pjo — p with (X) foe = f oe. Then using equations
C,F,Iand X and D, E, B, A, K and X respectively, one gets fo fyoegoigr =
f/ fk: o eg Oikk and f fk O €Ek OiOk = f/ .fk O e OiOk for k = 172 Using the
coproduct property of po + pj, one gets fo froep = f o froeg. As ey is an
epimorphism this implies

(V) fofu=1Ffof
Summarizing, one gets
fofioen = fofog Jofaoen

Vil va|

f/0f10€o1jf’ofoiflofzoeoz

Because (A) + (B) is a pushout, this implies f = f’ such that e is an epimor-
phism.
2. Consider the following diagram for k =1, 2:
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L L, + L K K! + K/
0+ Lj + L g o KKK
Lo+ L, «——— Ko+ K|
k ZOJFZ;C k
e(L) lek(L) J/ek.(K) e(K)

- Ly +—— K,

t Fi(K)
fr (L)

where the square in the middle is a pushout and the squares surrounding the
pushout commute. Let ¢, ¢’ with go (Io + 1] + 1) = ¢’ o e(K) for some object
X. Then this implies

Kio

qoir(L)o(lo+1},) = qo(lo+1 +15)0ir(K) = ¢ oe(K)oir(K) = ¢’ o fr(K)oex(K).

The pushout property of Ly, yields that there is a morphism g, : Ly — X with
qgoir(L) =G oex(L) and ¢ o fr,(K) =Gy, o lx. This implies

Gy oeo(L) =gy oei(L)oioi(L) = qoii(L)oioi(L) =qoio(L)
= qoiy(L) oign (L) @y 0 e2(L) 0iga(L) = Gy 0 eqa(L).

The pushout property of Lis (as component of pi2) yields that there is a
morphism g: Lys — X with §o fx(L) = G, It remains to prove goe(L) = ¢
and g o li5 = ¢’. Using the available commutativities, one gets, for k = 1, 2,

qoe(L)oir(L) =7o fu(L)oer(L) =70 ex(L) = qoix(L)
and
goe(L)oir(L)=go fo=7o fi(L)oeo(L) =7qy 0 eor = qoir(L).
As Lo+ L} + L} is a coproduct, this implies g o e(L) = ¢q. Moreover, one gets
goligo fr(K) =qo fr(L)oly =G 0l = ¢' o fr(K)

such that the pushout property of Kis implies G o l1o = ¢'. Both together
prove the stated equations. Because of the symmetry of double pushouts, the
same reasoning works for the right-hand side completing the proof. O

Related Work 1.

1. As the coproduct is associative and commutative, the theorem shows that the
pairs (po, py + ph), (po + P}, ph) and (po + ph, p}) are covers of py5. Therefore,
Theorem 2 can be used showing that py + p] + p5 plays the same role as the
amalgamated rule p;o in the Amalgamation Theorem (see [4,9]).
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2. Let F {G:>H}161 € F be a family of rule applications and

: L; — G be the left matching morphisms for ¢ € I with the particular
property that each two members share a useful doubling, meaning that there
is a common component rule py and complement rules p; for ¢ € I such that
(po, p;) covers p;. Then, obviously, n — 1 dedoublings are possible if I has
n elements. Moreover GG +§> Y for some object Y is a parallelization

Po ierPi
with dedoubling of the initial family. This very situation is considered and
investigated by Ehrig et al. [9,13] as multi-amalgamation.

3. It turns out that the effect of amalgamation and multi-amalgamation can
be obtained by means of particular sequentializations and parallelizations
leading to parallelization with dedoubling. In both approaches, one needs to
find special component rules (a common one and complements). One may
argue that sequentialization and parallelization are slightly simpler and more
basic constructions than amalgamation. Moreover, the general amalgamated
rule does not always exist in adhesive categories as arbitrary pushouts do not
exist in general. A further difference between both approaches concerns the
scaling from two rule applications to an arbitrary number of them. Multi-
amalgamation in [9,13] is only considered for the special case that all rule
applications delete the same part of the host object.

6 Conclusion

In this paper, we have studied the parallelization of rule applications that are
constructed by double-pushouts in adhesive categories. The well-known paral-
lelization of parallel independent rule applications by means of coproducts of
rules used as parallel rules is generalized in such a way that doubling can be
avoided. If the dependence of two rule applications to the same object is caused
by the fact that - intuitively - both delete that same part of the commonly
accessed part, then independence can be restored by removing the deletion part
of one of the rule applications provided that there are proper component rules
complementing the deletion parts. Similarly, one can avoid that certain inser-
tions are doubled. We have given sufficient conditions to guarantee that doubling
avoidance - called dedoubling for short - works. The construction combines the
sequentialization of parallel rule applications and certain re-parallelizations of
the resulting rule applications. As a main result, we have shown that dedou-
bling within a family of rule applications preserves parallel independence. Con-
sequently, a sequence of dedoubling steps yields a family of pairwise parallel
independent rule applications that can be applied in parallel, or it gets stuck
because none of the pairs of rule applications allow a further dedoubling.

To obtain a better insight into the parallelization with doubling avoidance,
the following aspects may be considered:

1. A dedoubling of two rule applications requires to cover them by parallel rules
with a common component rule. To find such covers is guesswork so far.
Therefore, it would be helpful to come up with a systematic construction of
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covers. According to the definition, the component rules are embedded into
the given rules by arbitrary rule morphisms. If one assumes monomorphic
embeddings and finitary categories, then there is only a finite number of
component rules so that all covers can be enumerated.

2. If a family of rule applications has two members G = H; and G=>H2,
p1

then dedoubling may not be possible or dedoubling yields either G :/>H 1
b1

and G=— Hy or G=— H; and G:>H2 In Sect.3, it is shown that
D2 p1

G=Y(G=Y and G = Y for some object Y. This means that
pi+p2 p1+Dp) po+p)+ph

both dedoublings are closely related from a semantic point of view. We expect
that a result like this holds for arbitrary families and arbitrary sequences of
dedoublings that does not require to store the doublings and is stronger than
Theorem 4 in this way.

3. A dedoubling applied to two parallel dependent rule applications yields paral-
lel independence so that all dedoublings have the same effect with respect to
the deletion part. Dedoubling with respect to the insertion part behaves quite
different as one has various options between a common component rule that
does not insert anything and some insertion part that identifies the maximal
mergable parts of the two involved right-hand sides. The question is whether
there are more interesting standard cases between the two extremes.

4. Tt would be interesting to study applications of the proposed concepts. As
our example in Sects.3 and 4 indicates, the area of pattern generation is a
potential candidate as many patterns, tilings, and fractals can be generated
in a parallel mode of construction. Rule-based collaborative text editing (e.g.
refactoring source code by multiple people) fits into this view. The authors of
[13-15] have pointed out that amalgamation and multi-amalgamation are very
helpful concepts for the specification of model transformations. Therefore, it
may be interesting to see whether parallelization with dedoubling can play a
similar role.

Acknowledgements. We are grateful to the anonymous reviewers for their valuable
comments that led to various improvements.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Taentzer, G.: Parallel and distributed graph transformation: formal description
and application to communication-based systems. Ph.D. thesis, TU Berlin, Shaker
Verlag (1996)

2. Kniemeyer, O.: Design and implementation of a graph grammar based language
for functional-structural plant modelling. Ph.D. thesis, Brandenburg University of
Technology, Cottbus - Senftenberg, Germany (2008)

3. Métivier, Y., Sopena, E.: Graph relabelling systems: a general overview. Comput.
Artif. Intell. 16(2), 167-185 (1997)



62

10.

11.

12.

13.

14.

15.

H.-J. Kreowski and A. Lye

Boehm, P., Fonio, H.-R., Habel, A.: Amalgamation of graph transformations with
applications to synchronization. In: Ehrig, H., Floyd, C., Nivat, M., Thatcher,
J. (eds.) CAAP 1985. LNCS, vol. 185, pp. 267—283. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-15198-2_17

Ehrig, H., Kreowski, H.-J.: Parallelism of manipulations in multidimensional infor-
mation structures. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp.
284-293. Springer, Heidelberg (1976). https://doi.org/10.1007/3-540-07854-1_188
Kreowski, H.-J.: Manipulationen von Graphmanipulationen. Ph.D. thesis, Tech-
nische Universitdt Berlin (1978)

Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Lowe, M.: Algebraic
approaches to graph transformation part I: basic concepts and double pushout
approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Comput-
ing by Graph Transformation, Vol. 1: Foundations, pp. 163-245. World Scientific,
Singapore (1997)

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

Ehrig, H., Ermel, C., Golas, U., Hermann, F.: Graph and Model Transformation -
General Framework and Applications. Monographs in Theoretical Computer Sci-
ence. An EATCS Series. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47980-3

Adémek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories - The
Joy of Cats. Dover Publications (2009)

Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. RAIRO Theor.
Inform. Appl. 39(3), 511-545 (2005)

Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach.
In: Proceedings of the 14th Annual Symposium on Switching and Automata The-
ory, Towa City, Towa, USA, 15-17 October 1973, pp. 167-180. IEEE Computer
Society (1973)

Biermann, E., Ehrig, H., Ermel, C., Golas, U., Taentzer, G.: Parallel indepen-
dence of amalgamated graph transformations applied to model transformation. In:
Engels, G., Lewerentz, C., Schifer, W., Schiirr, A., Westfechtel, B. (eds.) Graph
Transformations and Model-Driven Engineering. LNCS, vol. 5765, pp. 121-140.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17322-6_7

Born, K., Taentzer, G.: An algorithm for the critical pair analysis of amalgamated
graph transformations. In: Echahed, R., Minas, M. (eds.) ICGT 2016. LNCS, vol.
9761, pp. 118-134. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40530-8_8

Taentzer, G., Golas, U.: Towards local confluence analysis for amalgamated graph
transformation. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS,
vol. 9151, pp. 69-86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21145-9.5


https://doi.org/10.1007/3-540-15198-2_17
https://doi.org/10.1007/3-540-15198-2_17
https://doi.org/10.1007/3-540-15198-2_17
https://doi.org/10.1007/3-540-15198-2_17
https://doi.org/10.1007/3-540-15198-2_17
https://doi.org/10.1007/3-540-15198-2_17
https://doi.org/10.1007/3-540-15198-2_17
https://doi.org/10.1007/3-540-15198-2_17
https://doi.org/10.1007/3-540-15198-2_17
https://doi.org/10.1007/3-540-07854-1_188
https://doi.org/10.1007/3-540-07854-1_188
https://doi.org/10.1007/3-540-07854-1_188
https://doi.org/10.1007/3-540-07854-1_188
https://doi.org/10.1007/3-540-07854-1_188
https://doi.org/10.1007/3-540-07854-1_188
https://doi.org/10.1007/3-540-07854-1_188
https://doi.org/10.1007/3-540-07854-1_188
https://doi.org/10.1007/3-540-07854-1_188
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-642-17322-6_7
https://doi.org/10.1007/978-3-642-17322-6_7
https://doi.org/10.1007/978-3-642-17322-6_7
https://doi.org/10.1007/978-3-642-17322-6_7
https://doi.org/10.1007/978-3-642-17322-6_7
https://doi.org/10.1007/978-3-642-17322-6_7
https://doi.org/10.1007/978-3-642-17322-6_7
https://doi.org/10.1007/978-3-642-17322-6_7
https://doi.org/10.1007/978-3-642-17322-6_7
https://doi.org/10.1007/978-3-642-17322-6_7
https://doi.org/10.1007/978-3-319-40530-8_8
https://doi.org/10.1007/978-3-319-40530-8_8
https://doi.org/10.1007/978-3-319-40530-8_8
https://doi.org/10.1007/978-3-319-40530-8_8
https://doi.org/10.1007/978-3-319-40530-8_8
https://doi.org/10.1007/978-3-319-40530-8_8
https://doi.org/10.1007/978-3-319-40530-8_8
https://doi.org/10.1007/978-3-319-40530-8_8
https://doi.org/10.1007/978-3-319-40530-8_8
https://doi.org/10.1007/978-3-319-40530-8_8
https://doi.org/10.1007/978-3-319-21145-9_5
https://doi.org/10.1007/978-3-319-21145-9_5
https://doi.org/10.1007/978-3-319-21145-9_5
https://doi.org/10.1007/978-3-319-21145-9_5
https://doi.org/10.1007/978-3-319-21145-9_5
https://doi.org/10.1007/978-3-319-21145-9_5
https://doi.org/10.1007/978-3-319-21145-9_5
https://doi.org/10.1007/978-3-319-21145-9_5
https://doi.org/10.1007/978-3-319-21145-9_5
https://doi.org/10.1007/978-3-319-21145-9_5

	Parallel Rule Application with Doubling Avoidance
	1 Introduction
	2 Preliminaries
	2.1 Categorical Prerequisites
	2.2 The Double-Pushout Approach
	2.3 Local Church-Rosser Properties

	3 Parallelization with Doubling Avoidance of Two Rule Applications
	4 Parallelization with Doubling Avoidance of Families of Rule Applications
	5 Relating Parallelization with Doubling Avoidance to Amalgamation
	6 Conclusion
	References


