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Abstract. In this paper, the parallelization of parallel independent rule 
applications within the double-pushout approach over adhesive cate-
gories is generalized in such a way that doubling can be avoided. If 
two rule applications to the same object delete the same part of the 
commonly accessed part, then independence is restored by removing the 
deletion part of one of the rule applications. Similarly, one can avoid 
that certain insertions are doubled. It turns out that parallelization with 
doubling avoidance is closely related to synchronization by means of 
amalgamated rules. 

1 Introduction 

Parallelism and simultaneity are fundamental principles in nature and society. 
Most biological, chemical and physical processes on one hand and most pro-
cesses in economy, administration, traffic, and every-day life run in parallel. 
Often coordination and regulation are needed to avoid collisions, conflicts or 
undesired effects. As one of the main concerns of Computer Science is the mod-
eling of real-world processes, one encounters quite a spectrum of approaches 
to the modeling of parallel systems like, e.g., cellular automata, Lindenmayer 
systems, neural networks, reaction systems, swarm computing, and many more. 
The same applies, in particular, to the area of graph transformation. See, e.g., 
Taentzer’s parallel and distributed graph transformation [ 1], Kniemeier’s growth 
grammars [ 2], Metevier’s and Sopena’s graph relabeling systems [ 3], Boehm’s, 
Fonio’s and Habel’s amalgamation of graph transformation [ 4], and various oth-
ers. One of the earliest and simplest approaches to parallel graph transformation 
was introduced by Ehrig and Kreowski [ 5] and further studied in [ 6]. The basic 
concept is the coproduct of rules used as parallel rule. As this is a rule itself, 
parallel derivations are just derivations applying parallel rules. Moreover, some 
very helpful properties of the concept can be shown like sequentialization and 
parallelization. Given a parallel rule application, the component rules can be 
applied in arbitrary order yielding the same result as the given rule application. 
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Conversely, rule applications applied to the same graph that are pairwise inde-
pendent can be applied in parallel. And this holds for two successive sequentially 
independent rule application, too. A comprehensive survey can be found in Cor-
radini et al. [ 7], the generalization to adhesive categories in Ehrig et al. [ 8, 9]. A 
complication is the fact that the search for a matching morphism is NP-complete 
if rules with arbitrarily large left-hand sides are allowed. Fortunately, a matching 
morphism of a parallel rule can be constructed from the matching morphisms of 
the component rules so that the obstacle can be circumvent. In this paper, we 
generalize this approach to rule-based parallel transformation in such a way that 
undesired doubling can be avoided. There are two types of doubling with respect 
to two rule applications to the same object. The first one concerns parallel depen-
dent rule applications that - intuitively seen - delete exactly the same part of 
the intersection of the matchings. If one modifies one of the rule applications 
in such a way that the deletion part is removed while the other one is kept, it 
turns out that they become parallel independent and can be applied in parallel. 
Moreover, the modified rule application can be reconstructed so that no infor-
mation gets lost in the process. The second case concerns rule applications that
- again intuitively - insert isomorphic parts which may be merged. And again 
this can be achieved by removing the potentially common part from one of the 
rule applications while the other one is kept. Both types of doubling may occur 
together. In Sect. 3, the parallelization with doubling avoidance (dedoubling for 
short) of two rule applications is introduced and investigated while the concept 
is generalized to families of rule applications to the same object in Sect. 4. In  
Sect. 5 we relate our approach to amalgamation as studied in [ 4]. 

2 Preliminaries 

In this section, the preliminaries are provided as far as needed for this paper. For 
the well-known categorical notions confer, e.g., Adamek et al. [ 10]. For the notion 
and properties of adhesive categories confer, e.g., Lack and Sobocinski [ 11]. For 
the notion of graph transformation confer, e.g., Ehrig et al. [ 8, 9]. 

2.1 Categorical Prerequisites 

We assume that the underlying category C is adhesive. In addition, we require 
an epi-mono factorization and a strict initial object. 

Assumption. 

1. C is adhesive, i.e., C has all pullbacks, C has pushouts along monomor-
phisms (meaning at least one of the two morphisms in the pushout span is 
a monomorphism), and pushouts along monomorphisms are Van Kampen 
squares. 

2. C has a strict initial object ∅, i.e., an initial object ∅ with the property that 
every morphism in C with codomain ∅ is an isomorphism. This implies that 
the pushouts of spans of the form G ← ∅ →  H are the coproducts of G and 
H, denoted by G + H.
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3. Every morphism in C has an epi-mono factorization, i.e., for every morphism 
f there is a factorization f = m ◦ e where e is an epimorphism and m is a 
monomorphism. The factorization is unique up to isomorphism in adhesive 
categories. 

We use two adhesive categories explicitly: the category Σ-Graphs of directed 
edge-labeled graphs and the category Rules of graph transformation rules over 
an adhesive category C. Σ-Graphs is a special variant of a diagram category 
over the category Sets of sets. And Rules is a diagram category over C. 

The category Sets of sets and mappings is the best-known adhesive category. 
Every diagram category over an adhesive category is adhesive. This remains true 
if some target objects are fixed. For instance, consider the diagram Σ ← ·→→· 
over Sets for a set Σ (of labels). The corresponding adhesive category is the 
category Σ-Graphs of directed edge-labeled graphs. An object is a system G = 
(V, E, s, t, l) where V is a set of vertices, E is a set of edges, s, t : E → V and 
l : E → Σ are mappings assigning a source, a  target and a label to every edge 
e ∈ E. An edge e with s(e) =  t(e) is called a loop. The empty graph is the initial 
object. Another adhesive category is given by the diagram · ← · → ·  which 
remains adhesive if the arrows are restricted to monomorphisms. This provides 
the category Rules of rules over C. 

2.2 The Double-Pushout Approach 

The rewriting formalism which we use throughout this paper is the double-
pushout (DPO) approach as introduced by Ehrig, Pfender and Schneider in [ 12]. 
It was originally introduced for graphs. However, it is well-defined in adhesive 
categories. 

A rule is a span of monomorphisms p = (L ←−
l 

K −→
r 

R). L is called left-hand 
side, R is called right-hand side, and  K is called gluing object. 

A rule application to some object G is defined wrt a morphism 
g : L → G which is called (left) matching morphism. G directly derives H if the 
span L ←−

l 
K −→

r 
R and matching morphism g extend to the diagram 

L K R  

G Z H  
g (1) (2)z 

l r 
h 

mZ→G mZ→H 

such that both squares are pushouts. Z is called intermediate object and h is 
called right matching morphism. Because rules and rule applications are sym-
metric, a rule p = (L ←−

l 
K −→

r 
R) induces an inverse rule p−1 = (R ←−

r 
K −→

l 
L) 

such that G =⇒
p 

H implies H =⇒
p−1 

G and vice versa. The application of a rule 

p to G wrt g is called direct derivation and is denoted by G =⇒
p 

H (where g 
is kept implicit). A derivation from G to H is a sequence of direct derivations
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G0 =⇒
p1 

G1 =⇒
p2 

· · · =⇒
pn 

Gn with G0 = G, Gn = H and n ≥ 0. If p1, · · ·  , pn ∈ P , 

then the derivation is also denoted by G n =⇒
P 

H. If the length of the derivation 

does not matter, we write G ∗=⇒
P 

H. 

2.3 Local Church-Rosser Properties 

Let p = (L ←−
l 

K −→
r 

R) and  p = (L ←−
l 

K −→
r 

R) be two rules. 

1. Two direct derivations G =⇒
p 

H and G =⇒
p 

H with matching morphisms 

g : L → G and g : L → G are parallel independent if there exist two mor-
phisms f : L → Z and f : L → Z such that g = mZ→G ◦f and g = mZ→G ◦ f . 
The situation is depicted in the following diagram. 

R K L L K R 

H Z G Z H 
h z 

r l 
g f 

gf 
z 

l r 
h 

mZ→H mZ→G mZ→G mZ→H 

2. Successive direct derivations G =⇒
p 

H =⇒
p 

X with the right matching mor-

phism h : R → H and the (left) matching morphism g′ : L → H are sequen-
tially independent if H =⇒

p−1 
G and H =⇒

p 
X are parallel independent. 

It is well-known that parallel independence induces the direct derivations 
H =⇒

p 
X and H =⇒

p 
X with matching morphisms mZ→H ◦ f and mZ→H ◦ f 

and that sequential independence induces the derivation G =⇒
p 

H =⇒
p 

X. The  
two constructions in the context of adhesive categories can be found in Lack and 
Sobocinski [ 11] (see also [  8]). 

Moreover, the coproduct of p + p of two rules p and p is called parallel rule. 
It is well-known that an application G =⇒

p+p 
X yields two sequentially indepen-

dent sequentializations G =⇒
p 

H =⇒
p 

X and G =⇒
p 

H =⇒
p 

X such that the two first 
steps are parallel independent. Conversely, parallel and sequentially independent 
rule applications induce corresponding parallel rule applications. The results con-
cerning sequentialization and parallelization are based on the Butterfly Lemma 
as used in the proof of Theorem 3 in Sect. 4 (cf. [ 6– 8] for more details). Moreover, 
in [ 6] is it shown that sequentialization is associative. The proof is done in the 
category Graphs. The same proof holds in adhesive categories. 

3 Parallelization with Doubling Avoidance of Two Rule 
Applications 

It is well-known that a set of pairwise parallel independent rule applications to 
the same object can be parallelized by applying the coproduct of the applied
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rules as parallel rule (see [ 6– 8]). In this section, parallelization is generalized in 
such a way that so-called doubling can be avoided. Given two rule applications 
to the same object, a doubling is a common part of the applied rules on which 
the matching morphisms coincide. Intuitively, the two rule applications double 
the common part. Under certain conditions, the two rule applications can be 
parallelized while the doubling is avoided. This is formally achieved by covering 
and replacing each of the rule applications by the applications of suitable parallel 
rules such that their sequentializations and proper re-parallelizations yields the 
intended effect. This parallelization without doubling can be iterated for sets of 
rule applications with more than two elements (see Sect. 4). We start with an 
example that illustrates the idea. 

Example 1. Our running example is inspired by pattern generation and tilings. 
We use two rules 

p1 = 
b 

g 
N 

g 
N ⊇ 

b 
N 
N ⊆ 

b 

w 
N 

b 
N 

p2 = b g 

E 

g 

E ⊇ 
b 

E E ⊆ 
b w 

E 

b 

E 

They are applied to finite subgraphs of an underlying infinite background 
graph defined by B = (Z × Z, Z ×Z × {b, g, w, E, N}, sB , tB , lB) where sB is the 
projection to Z × Z, lB is the projection to {b, g, w, E, N} and tB is given by, for 
all (x, y) ∈ Z ×Z, tB((x, y), c) = (x, y) for  c ∈ {b, g, w}, tB((x, y), E) = (x+1, y), 
tB((x, y), N) = (x, y + 1). This means that the vertices are the points in the 
plane with integer coordinates and each vertex is the source of five edges labeled 
with b, g, w, E and N respectively. The first three are loops colored by b(lack), 
g(ray), and w(hite). The fourth edge points to the right neighbor, the fifth to 
the upper neighbor. Each vertex (x, y) ∈ Z ×Z represents a unit square us(x, y) 
consisting of the four vertices (x, y), (x + 1, y), (x, y + 1) and (x + 1, y  + 1)  and  
the four edges ((x, y), E), ((x, y), N), ((x + 1, y), N  ) and  ((x, y + 1), E). Each set 
T of vertices with one loop each represents a subgraph sub(T ) of  B by closing T 
under the represented unit squares. It can be depicted as a grid of unit squares 
where each square is colored by the label of the loop at the corresponding vertex 
in T . The start graph is a rectangular triangle with legs of length 5. The color of 
the vertex at the bottom left is black; all other vertices have gray loops. A sample 
derivation applying the rules above to a sample grid is depicted in Fig. 1a. The 
only alternative result after five steps is depicted in Fig. 1b. 

Both rules can be applied to the start pattern. As they are parallel indepen-
dent, they can be applied in parallel as depicted in Fig. 1c. After the first parallel 
step, four rule applications are possible. But two of the matches overlap in the 
middle unit square of the hypotenuse. This is a loop that does not belong to the 
gluing graph so that the two rule application are parallel dependent. The other 
pairs are parallel independent so that two maximal parallel derivation steps are 
defined yielding the two result pattern in Fig. 1a and  1b. 

A closer look at the dependence reveals that both rule applications do exactly 
the same on the overlap: They replace the g-labeled loop by a b-labeled one. If
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Fig. 1. Sample derivations 

it would be allowed to apply this only once instead of twice, then all four rule 
applications could be parallelized yielding the grid depicted in Fig. 1d. 

In order to formally describe this observation, we need the definition of a 
cover. 

Definition 1. Let p = (L ←−
l 

K −→
r 

R), p′ = (L′ ←−
l′

K ′ −→
r′

R′) and p′′ = 
(L′′ ←−

l′′
K ′′ −→

r′′
R′′) be rules and 〈λ′; λ′′〉 : L′ + L′′ → L, 〈κ′; κ′′〉 : K ′ + K ′′ → K 

and 〈�′; �′′〉 : R′ + R′′ → R be epimorphisms such that the diagrams 

L′ + L′′ K ′ + K ′′ R′ + R′′

L K R

〈λ′;λ′′〉 (3) (4)〈κ′;κ′′〉

l′+l′′ r′+r′′

〈�′;�′′〉

l r 

are pushouts. Then the pair (p′, p′′) is a cover of p. The elements p′ and p′′ are 
called cover components of p. The rule p′′ is called complement rule of p′ and 
p′ complement rule of p′′. 

Theorem 1. 1. Let (p′, p′′) be a cover of p with the left epimorphism
〈λ′; λ′′〉 : L′+L′′ → L and G =⇒

p 
H for some objects G and H with the match-

ing morphism g : L → G be a rule application. Then p′ + p′′ can be applied to 
G with the matching morphism g ◦ 〈λ′; λ′′〉 : L′ + L′′ → G yielding G =⇒

p′+p′′
H. 

2. Let G =⇒
p 

H be another rule application that is parallel independent of 

G =⇒
p 

H. Then  G =⇒
p 

H is parallel independent of G =⇒
p′+p′′

H, too.  

Proof. 1. Let the diagrams (1) and (2) as given in Sect. 2.2 be the pushouts 
defining G =⇒

p 
H. Then the sequential compositions of (1) and (3) and (2) 

and (4) are pushouts defining G =⇒
p′+p′′

H.
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2. Due to the assumption, there are morphisms f : L → Z and f : L → Z 
such that mZ→G ◦ f = g and mZ→G ◦ f = g where Z is the intermediate 
object of G =⇒

p 
H with the monomorphism mZ→G : Z → G and g : L → G 

is the matching morphism. Composing the first equation with 〈λ′; λ′′〉 yields 
mZ→G ◦ f ◦ 〈λ′; λ′′〉 = g ◦ 〈λ′; λ′′〉. This proves (together with the second 
equation) the stated parallel independence. 
�
If Theorem 1 is applied to two rule applications to the same object in such 

a way that both covers share one of the component rules, then one gets the 
following observation by using the known results for sequentialization and par-
allelization. 

Observation 1. Let d1 = (G =⇒
p1 

H1) and  d2 = (G =⇒
p2 

H2) be two rule applica-

tions with matchings g1 and g2, respectively, and p′
1 + p′′

1 and p′
2 +p′′

2 covers of p1 
and p2, respectively. Let G =⇒

p′
1+p′′

1 

H1 and G =⇒
p′
2+p′′

2 

H2 be the corresponding rule 

applications according to Theorem 1.1 and g1 ◦ λ′′
1 = g2 ◦ λ′′

2 where λ′′
i : L′′

i → Li 
for i = 1, 2 are the morphisms according to Definition 1. Then the following 
holds. 

1. The sequentializations yield 

G =⇒
p′
1 

H ′
1 =⇒

p′′
1 

H1 G =⇒
p′′
1 

X1 =⇒
p′
1 

H1 G =⇒
p′
2 

H ′
2 =⇒

p′′
2 

H2 G =⇒
p′′
2 

X2 =⇒
p′
2 

H2 

for some objects H ′
1,H

′
2,X1 and X2. 

2. If p0 = p′′
1 = p′′

2 and g1 ◦ λ′′
1 = g2 ◦ λ′′

2 where λ′′
i : L′′

i → G for i = 1, 2 
are the morphisms mapping the left hand sides of p′′

i to the left-hand side 
of pi according to the Definition 1. Then X = X1 = X2 and (G =⇒

p0 
X) =  

(G =⇒
p′′
1 

X1) = (G =⇒
p′′
2 

X2) such that the rule applications form the following 

diagram 
H ′

1 H1 

G X  

H ′
2 H2 

p0 

p0 

p′
1 

p′
2 

p0+p′
1 

p0+p′
2 

p′
1 

p′
2 

p0 

3. Moreover, G =⇒
p0 

X and G =⇒
p′
1 

H ′
1 as well as G =⇒

p0 
X and G =⇒

p′
2 

H ′
2 are par-

allel independent. 
4. If, in addition, G =⇒

p′
1 

H ′
1 and G =⇒

p′
2 

H ′
2 are parallel independent, then the 

parallelization with G =⇒
p0 

X yields G =⇒
p0+p′

1+p′
2 

Y for some object Y and one 

obtains G =⇒
p0+p′

1 

H1 =⇒
p′
2 

Y and G =⇒
p0+p′

2 

H2 =⇒
p′
1 

Y by sequentialization. 

The special role of p0 is reflected in the following definition.
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Definition 2. Assume the situation of the previous observation. Moreover, let 
p0 not be a span of isomorphisms. 

1. Then G =⇒
p0 

X is called a doubling of d1 and d2. 
2. If, in addition, G =⇒

p′
1 

H ′
1 and G =⇒

p′
2 

H ′
2 are parallel independent, then the 

doubling is useful. 

Remark 1. If a rule is a span of isomorphisms, then its application derives an 
object that is isomorphic to the host object meaning that is has no effect and – 
in particular – nothing is doubled. 

Parallelization with dedoubling is captured in the following theorem. 

Theorem 2. Let G =⇒
p0 

X be a useful doubling of G =⇒
p1 

H1 and G =⇒
p2 

H2 with 

the corresponding cover components G =⇒
p′
1 

H ′
1 and G =⇒

p′
2 

H ′
2, respectively. 

1. Then G =⇒
p1 

H1 and G =⇒
p′
2 

H ′
2 as well as G =⇒

p′
1 

H ′
1 and G =⇒

p2 
H2 are parallel 

independent. 
2. Therefore, the parallelizations G =⇒

p1+p′
2 

Y12 for some object Y12 and G =⇒
p2+p′

1 

Y21 

for some object Y21 are defined inducing the sequentialization 

G =⇒
p1 

H1 =⇒
p′
2 

Y12 G =⇒
p′
2 

H ′
2 =⇒

p1 
Y12 G =⇒

p2 
H2 =⇒

p′
1 

Y21 G =⇒
p′
1 

H ′
1 =⇒

p2 
Y21. 

3. Moreover, Y12 
∼= Y21. 

Proof. 1. According to the reasoning in Observation 1, the rule applications 
G =⇒

p0+p′
2 

H2 and G =⇒
p′
1 

H ′
1 are parallel independent. Let 

K0 + K ′
2 L0 + L′

2 L′
1 K ′

1 

K2 L2 L1 

Z2 G Z ′
1

〈κ02;κ
′
2〉

l0+l′2

〈λ02;λ
′
2〉 λ′

1 

l′1 

z′
1 

z2 

l2 

g2 

g1 
mZ2→G 

mZ′
1→G 

be the corresponding left pushouts. Then there are morphisms 
f12 : L′

1 → Z2 and f21 : L0 + L′
2 → Z ′

1 such that 

(a) mZ2→G ◦ f12 = g1 ◦ λ′
1 

(b) mZ′
1→G ◦ f21 = g2 ◦ 〈λ0; λ′

2〉. 

Let g2 = m ◦ e for e : L2 → L and m : L → G be the epi-mono factorization 
of g2 and f21 = m̂ ◦ ê with ê : L0 + L′

2 → L̂ and m̂ : L̂ → Z ′
1 be the epi-

mono factorization of f21. Then one gets the epi-mono factorization of the
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morphism of (b) in two variants by sequential composition with the monomor-
phism mZ′

1→G on one hand and with the epi 〈λ02; λ′
2〉 on the other hand, i.e., 

mZ′
1→G ◦ m̂ ◦ ê = m ◦ e ◦ 〈λ02; λ′

2〉. The uniqueness of epi-mono factoriza-
tion implies that, without loss of generality, L = L̂, mZ′

1→G ◦ m̂ = m and 
ê = e ◦ 〈λ02; λ′

2〉. Therefore, one get mZ′
1→G ◦ m̂ ◦ e = m ◦ e = g2. Combined 

with (a), this proves the parallel independence of G =⇒
p2 

H2 and G =⇒
p′
1 

H ′
1. 

The second case follows by symmetry. 
2. The second statement follows from the first one. 
3. Using Theorem 1, the first steps of G =⇒

p1 
H1 =⇒

p′
2 

Y12 and G =⇒
p2 

H2 =⇒
p′
1 

Y21 

can be replaced by G =⇒
p0+p′

1 

H1 and G =⇒
p0+p′

2 

H2 respectively yielding two of 

the sequentializations of G =⇒
p0+p′

1+p′
2 

Y as shown in Observation 1. This means 

that Y12 
∼= Y ∼= Y21. 
�

Example 2. We continue the discussion in Example 1. After the parallel step in 
Fig. 1c, the two parallel independent steps are depicted on the left in Fig. 2a. The 
common component rule p0 is given at the top in Fig. 2b. It is applied to the 
middle of the hypotenuse. The complementary component rule p′

1 of the upper 
application of rule p1 is given in the middle in Fig. 2b, and the complementary 
component rule p′

2 of the lower application of rule p2 at the bottom in Fig. 2b. 
They are applied in such a way that all three rule applications overlap in the 
vertex corresponding to the middle hypotenuse so that they are pairwise parallel 
dependent. (p0, p′

1) covers p1, and (p0, p′
2) covers p2 so that the application of p0 

is a useful doubling, p0 + p′
i replaces pi for i = 1, 2 and  p0 + p′

1 + p′
2, p1 + p′

2 and 
p2 + p′

1 can be applied to the start pattern in Fig. 2a all deriving the pattern on 
the right. 

Fig. 2. Sample derivations and rules of Example 2
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Remark 2. Two rule applications d and d′ to the same object are not paral-
lel independent if at least one of the matching morphisms - say the matching 
morphism of d - cannot be restricted to the intermediate object of the other 
rule application d′. Intuitively, this means that d matches items that are deleted 
by d′. There are two cases: (1) d deletes the same items, or (2) d keeps some 
of them as part of the gluing object. In the second case, one faces an essential 
conflict of actions that are mutually exclusive. In the first case, deletion cannot 
be done twice. But if the deletion takes place at all, the purposes of both rule 
applications are served. With respect to deletion, this is the idea of paralleliza-
tion with dedoubling. With respect to insertion, the situation is different as one 
has the choice between doubling or dedoubling. 

4 Parallelization with Doubling Avoidance of Families 
of Rule Applications 

In this section, the parallelization with dedoubling of two rule applications is 
generalized to families of rule applications. The parallelization with dedoubling 
as introduced in the previous section is used as an operator on families of rule 
applications so that it can be iterated. The operator chooses two rule applications 
of the family with a useful doubling non-deterministically and replaces one of the 
rule applications by its complement rule application. As shown in Theorem 2, 
the other rule application and the complement rule application are parallel inde-
pendent. Moreover we show that the operator preserves parallel independence in 
the sense that a third rule application of the family which is parallel independent 
of the replaced rule application is also parallel independent of the replacing one. 
Therefore, the number of pairs of rule applications of the family cannot increase, 
and it decreases if the processed pair is not parallel independent. If one is inter-
ested in getting rid of the dependent pairs and applies the operator only to 
those, the iteration terminates either with a family of pairwise parallel inde-
pendent rule applications or one gets stuck because there remain pairs without 
useful doublings. In the first case, the family can be parallelized. In the second 
case, parallelization fails. 

Definition 3. 1. Let F be the class of all finite families of rule applications 
of the form F = {G =⇒

pi 

Hi}i∈I for some common start object G and a finite 
index set I. Then the non-deterministic dedoubling operator DD ∈ F  ×  F  
is defined as follows: Let F = {G =⇒

pi 

Hi}i∈I , F = {G =⇒
pi 

Hi}i∈I ∈ F . Then  

(F, F ) ∈ DD if there are j, k ∈ I and a useful doubling G =⇒
p0 

X of G =⇒
pj 

Hj 

and G =⇒
pk 

Hk with the complement component G =⇒
p′
j 

H ′
j of G =⇒

pj 

Hj such 

that F is obtained from F by replacing G =⇒
pj 

Hj by G =⇒
p′
j 

H ′
j. (F, F ) ∈ DD 

is denoted by F � F .
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2. As a binary relation of F , DD can be iterated F0 � F1 � · · ·  � Fn for 
some n ∈ N. This is denoted by F n 

� F with F = F0 and F = Fn or by 
F ∗

� F if the length of the dedoubling sequence is not needed explicitly. 

An interesting question concerning iterated processes is about termination. 
In many cases, a sufficient condition that guarantees termination is a natural 
variable which decreases in every process step. In the case of dedoubling, this 
applies if one wants to get rid of parallel dependence because the processed 
pair of rule applications results in a parallel independent pair (cf. Theorem 2). 
Moreover, it can be shown that dedoubling preserves parallel independence. 

Theorem 3. Let G =⇒
pi 

Hi for i = 1, 2, 3 be rule applications. Let G =⇒
p0 

X be a 
useful dedoubling of G =⇒

p1 
H1 and G =⇒

p2 
H2 with the corresponding cover compo-

nent G =⇒
p′
1 

H ′
1 of G =⇒

p1 
H1. Let  G1 =⇒

p1 
H1 and G =⇒

p3 
H3 be parallel independent. 

Then G =⇒
p′
1 

H ′
1 and G =⇒

p3 
H3 are parallel independent, too. 

Proof. Consider the following diagram 

K ′
1 L′

1 

K1 L1 L3 K3 

Z ′
1 Z1 G Z3 

κ1 

z′
1 

l′1 

λ1 g′
1 

(3′
1) 

z1 

l1 
g1 f13 (11) 

g3 

f31 
(13) z3 

l3 

mZ′
1→G 

mZ1→G 

m 
mZ3→G 

G =⇒
p1 

H1 and G =⇒
p3 

H3 provide the pushouts (11) and  (13). As they are parallel 
independent, there are morphisms f13 : L1 → Z3 and f31 : L3 → Z1 such that 
(a) mZ3→G ◦ f13 = g1 and (b) mZ1→G ◦ f31 = g3. G =⇒

p′
1 

H ′
1 provides the pushout 

depicted on the left outer square above. Choosing (c) f ′
13 = f13 ◦ λ1 yields 

(d) mZ3→G ◦ f ′
13 = 

(c) 
mZ3→G ◦ f13 ◦ λ1 = 

(a) 
g1 ◦ λ1 = g′

1. 

If there is a morphism m : Z1 → Z ′
1 with (e) mZ′

1→G◦m = mZ1→G, then choosing 
(f) f ′

31 = m ◦ f31 yields 

(g) mZ′
1→G ◦ f ′

31 = 
(f ) 

mZ′
1→G ◦ m ◦ f31 = 

(e) 
mZ1→G ◦ f31 = 

(b) 
g3. 

(d) and (g) show that G =⇒
p′
1 

H ′
1 and G =⇒

p3 
H3 are parallel independent.
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The morphism m is obtained by applying the Butterfly Lemma to the left 
pushout of G =⇒

p′
1+p0 

H1: 

L′
1 + L0 K ′

1 + K0 

L1 K1 

G Z1

〈λ′
1;λ0〉 (31) 〈κ′

1;κ0〉

l′1+l0 

(11)g1 

l1 

z1 

mZ1→G 

implies 

K ′
1 K0 

L′
1 Z1 L0 

Z0 Z ′
1 

G 

l′1 z1◦κ′
1 

(A) 
z1◦κ0 l0 

(B) 

g1 ◦ λ1 = g′
1 

(E) 

f ′
10 m′ m 

mZ1→G 

(C) (D) 

g1 ◦ λ0 = g′′
1 

(F ) 
f ′
01 

mZ0→G mZ′
1→G 

where the diagram (C)+(D) is a pushout. As l′1 is a monomorphism, the pushout 
complement of g′

1 ◦ l′1 is unique (up to isomorphism). Moreover, (D) is commu-
tative so that m : Z1 → Z ′

1 is the morphism needed above. This completes the 
proof. 
�
Definition 4. Let F = {G =⇒

pi 

Hi}i∈I ∈ F . Then  di(F ) is the number of pairs 

of F that are parallel dependent, called dependence index of F . 

Corollary 1. 1. Let F � F for F, F ∈ F  and the processed pair of rule appli-
cations be parallel dependent. Then di(F ) > di(F ). 

2. Let F0 
n 
� Fn be a sequence of dedoublings where all processed pairs are 

parallel dependent. Then di(F0) ≥ n. 

Proof. 1. According to Theorem 3, di(F ) does not increase after dedoubling. 
According to Theorem 2, it decreases at least by 1 wrt the processed pair. 

2. According to Point 1, the length of a dedoubling is bounded by di(F0) if  
only dependent pairs are processed. 
�

The situation is more difficult if the processed pairs of dedoublings are paral-
lel independent because no general termination criterion is known. But whenever 
a family is reached by a sequence of dedoublings such that each pair of mem-
bers is parallel independent, one may stop the process. The result provides a 
parallelization with doubling avoidance of the initial family. 

Another interesting question about iterated dedoubling concerns the seman-
tic relation between a given family of rule applications and one obtained by a



56 H.-J. Kreowski and A. Lye

sequence of dedoublings. A family member remains unchanged or is repeatedly 
replaced by a component rule application that is complementary to the removed 
component rule application. A component is only removed if it is a doubling so 
that it remains present in another member of the family and no information gets 
lost. This is reflected in the following theorem stating that each member of the 
start family is not changed or can be reconstructed as parallel rule application 
of the resulting member and all the removed component rule applications that 
are involved in the processing of all members with the same index as the initial 
member. 

Theorem 4. Let F = {di = (G =⇒
pi 

Hi)}i∈I , F = {di = (G =⇒
pi 

Hi)}i∈I ∈ F  

with dd = (F ∗
� F ). Then for each i ∈ I, either di = di or there is a 

parallelization G =⇒ 
( 
m(i)∑

l=1 
p0l)+pi 

Hi of G =⇒
pi 

Hi and the dedoublings G =⇒
p0l 

H0l for 

l = 1, . . . ,m(i) which are used to diminish the ith component of dd. 

Proof. Induction on the length of dd. 
Base for F 0 

� F : Then F = F and di = di for all i ∈ I. 
Step for (F n+1 

� F ) = (F n 
� F̂ 1 

� F ) for some F̂ : Then the last step is 
given by a dedoubling of d̂j = (G =⇒̂

pj 

Ĥj) and  ̂dk = (G =⇒̂
pk 

Ĥk) with a useful 

dedoubling d̂0 = (G =⇒̂
p0 

Ĥ0) corresponding cover components d̂′
j = (G =⇒̂

p′
j 

Ĥ ′
j) 

and d̂′
k = (G =⇒̂

p′
k 

Ĥ ′
k) as well as dj = d̂′

j and dk = d̂′
k. This means for i �= j 

that di = d̂i so hat the statement holds by induction hypothesis. For j ∈ I, 
one has (a) dj = d̂j and (b) Dj = (G =⇒ 

( 
m(j)∑

l=1 
p0l)+p̂j 

Ĥj) being the parallelization 

of d̂j = (G =⇒̂
pj 

Ĥj) and the dedoubling d0l = (G =⇒
p0l 

H0l) for  l = 1, . . . ,m(j) 

by induction hypothesis. By construction, one has d̂j = (G =⇒
p̂0+p̂′

j 

Ĥj). The first 

step of the sequentialization of D̂j are d̂′
j = (G =⇒̂

p′
j 

Ĥ ′
j) and  ̂di = (G =⇒̂

p 
Ĥj). 

In the case (a), this proves the statement. In the case (b), d̂j and all d0l are 
pairwise parallel independent as components of a parallelization. D̂j covers d̂j 
so that D̂j is parallel independent of all d0l according to Theorem 2. Therefore, 
the parallelization (G =⇒ 

( 
m(j)∑

l=1 
p0l)+p̂0+p̂j 

Hj) is defined proving the statement for the 

case (b) and completing the proof. 
�



Parallel Rule Application with Doubling Avoidance 57

5 Relating Parallelization with Doubling Avoidance 
to Amalgamation 

Boehm, Fonio and Habel [ 4] introduced and studied amalgamation of graph 
transformation as a generalization of parallelization of parallel independent rule 
applications. Their approach is generalized to adhesive categories in Ehrig et 
al. [ 9]. They consider the same basic situation as in our approach, i.e., two rules 
p1 and p2 sharing the same component rule p0 together with the embedding 
morphisms e01 : p0 → p1 and e02 : p0 → p2 both accompanied with complemen-
tary component rules p′

1 and p′
2 resp., which are called remainders. Then the 

amalgamated rule p12 is defined as the pushout of the span given by e01 and 
e02 (provided that it exists). The Amalgamation Theorem states the following: 
Let G =⇒

p1 
H1 and G =⇒

p2 
H2 be two rule applications the matching morphisms 

of which coincide on the embeddings of the left-hand side of p0. Moreover, let 
G =⇒

p′
1 

H ′
1 and G =⇒

p′
2 

H ′
2 be parallel independent rule applications defined by the 

matching morphisms that are composed of the given matching morphisms and 
the embeddings of left-hand sides of p′

1 and p′
2 into the left-hand sides of p1 and 

p2 resp. Then there are derivations G =⇒
p12 

Y, G =⇒
p1 

H1 =⇒
p′
2 

Y and G =⇒
p2 

H2 =⇒
p′
1 

Y 

for some object Y . We show that the amalgamated rule p12 is covered by our par-
allel rule p0 + p′

1 + p′
2 (Theorem 5) such that the Amalgamation Theorem turns 

out to be a kind of corollary of Theorem 2. The proof is based on the relation 
among the component rules of a useful doubling as summarized in Observation 2. 

Observation 2. The following diagram displays the relations among the rules 
that are involved in a useful doubling where the given epimorphisms are denoted 
by e1 and e2, the injections into coproducts are indicated by i with proper indices 
and the restrictions of e1 and e2 to the coproduct components by e with proper 
indices. Moreover, the pushout p12 of the span given by the common component 
rule p0 of p1 and p2 with the embeddings e0k : p0 → pk for k = 1, 2 is added. The 
pushout morphisms are denoted by fk : pk → p12 for k = 1, 2. And f0 : p0 → p12 
is defined as f1 ◦ e01 = f2 ◦ e02. Altogether all triangles are commutative. 

p0 + p′
1 + p′

2 

p0 + p′
1 p0 + p′

2 

p′
1 p0 p′

2 

p1 p2 

p12 

i1 

e1 

i2 

e2 

e11 

i11 

f0 

i0 

e01 e02 

i01 i02 

(A) (B) 

(C) (D) (E) (F ) 

(G) (H) 

e22 

i22 

f1 f2
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Using the coproduct property of p0 + p′
1 + p′

2 the morphisms f1 ◦ e11, f0 = 
f1 ◦ e01 = f2 ◦ e02 and f2 ◦ e22 induce e : p0 + p′

1 + p′
2 → p12 with 

(I) e ◦ ik ◦ ikk = fk ◦ ekk, k  = 1, 2 
(J) e ◦ i2 ◦ i02 = e ◦ i1 ◦ i01 = f1 ◦ e01 = f2 ◦ e02 
(K) e ◦ i0 = f0. 

Theorem 5. Let G =⇒
p0 

X be a useful doubling of G =⇒
p1 

H1 and G =⇒
p2 

H2 for 

some rule p with the embeddings e0i : p0 → pi and the corresponding complemen-
tary rule applications G =⇒

p′
i 

H ′
i for k = 1, 2. Let  p12 with the rule morphisms 

fi : pi → p12 for k = 1, 2 be the pushout of the span p1 ←−−
e01 

p0 −−→
e02 

p2 and 

e : p0 + p′
1 + p′

2 → p12 be the rule morphism constructed in the observation above. 
Then 

1. e is an epimorphism and 
2. the diagram 

L0 + L′
1 + L′

2 K0 + K ′
1 + K ′

2 R0 + R′
1 + R′

2 

L12 K12 R12 

eL eK 

l0+l′1+l′2 r0+r′
1+r′

2 

eR 

l12 r12 

is a double pushout. 

Proof. 1. Let f, f ′ : p12 → p with (X) f ◦ e = f ′ ◦ e. Then using equations 
C, F, I and X and D, E, B, A, K and X respectively, one gets f ◦fk ◦ek ◦ikk = 
f ′ ◦ fk ◦ ek ◦ ikk and f ◦ fk ◦ ek ◦ i0k = f ′ ◦ fk ◦ ek ◦ i0k for k = 1, 2. Using the 
coproduct property of p0 + p′

k one gets f ◦ fk ◦ ek = f ′ ◦ fk ◦ ek. As  ek is an 
epimorphism this implies 

(Yk) f ◦ fk = f ′ ◦ fk. 

Summarizing, one gets 

f ◦ f1 ◦ e01 = 
A 

f ◦ f0 = 
B 

f ◦ f2 ◦ e02 
Y1|| Y2|| 

f ′ ◦ f1 ◦ e01 = 
A 

f ′ ◦ f0 = 
B 

f ′ ◦ f2 ◦ e02 
. 

Because (A) + (B) is a pushout, this implies f = f ′ such that e is an epimor-
phism. 

2. Consider the following diagram for k = 1, 2:
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L0 + L′
1 + L′

2 K0 + K′
1 + K′

2 

L0 + L′
k K0 + K′

k 

Lk Kk 

X L12 K12 

e(L)q 

l0+l′1+l′2 

e(K) 

ik(L) 

ek(L) 

l0+l′k 

ek(K) 

ik(K) 

fk(L) 

qk lk fk(K) 

q 

l12 
q′

where the square in the middle is a pushout and the squares surrounding the 
pushout commute. Let q, q′ with q ◦ (l0 + l′1 + l′2) =  q′ ◦ e(K) for some object 
X. Then this implies 

q◦ik(L)◦(l0+l′k) =  q◦(l0+l′1+l′2)◦ik(K) =  q′◦e(K)◦ik(K) =  q′◦fk(K)◦ek(K). 

The pushout property of Lk yields that there is a morphism qk : Lk → X with 
q ◦ ik(L) =  qk ◦ ek(L) and  q′ ◦ fk(K) =  qk ◦ lk. This implies 

q1 ◦ e01(L) =  q1 ◦ e1(L) ◦ i01(L) =  q ◦ i1(L) ◦ i01(L) =  q ◦ i0(L) 
= q ◦ i2(L) ◦ i02(L) =  q2 ◦ e2(L) ◦ i02(L) =  q2 ◦ e02(L). 

The pushout property of L12 (as component of p12) yields that there is a 
morphism q : L12 → X with q ◦ fk(L) =  qk. It remains to prove q ◦ e(L) =  q 
and q ◦ l12 = q′. Using the available commutativities, one gets, for k = 1, 2, 

q ◦ e(L) ◦ ik(L) =  q ◦ fk(L) ◦ ek(L) =  qk ◦ ek(L) =  q ◦ ik(L) 

and 

q ◦ e(L) ◦ ik(L) =  q ◦ f0 = q ◦ fk(L) ◦ e0k(L) =  qk ◦ e0k = q ◦ ik(L). 

As L0 + L′
1 + L′

2 is a coproduct, this implies q ◦ e(L) =  q. Moreover, one gets 

q ◦ l12 ◦ fk(K) =  q ◦ fk(L) ◦ lk = qk ◦ lk = q′ ◦ fk(K) 

such that the pushout property of K12 implies q ◦ l12 = q′. Both together 
prove the stated equations. Because of the symmetry of double pushouts, the 
same reasoning works for the right-hand side completing the proof. 
�

Related Work 1. 

1. As the coproduct is associative and commutative, the theorem shows that the 
pairs (p0, p′

1 + p′
2), (p0 + p′

1, p
′
2) and (p0 + p′

2, p
′
1) are covers of p12. Therefore, 

Theorem 2 can be used showing that p0 + p′
1 + p′

2 plays the same role as the 
amalgamated rule p12 in the Amalgamation Theorem (see [ 4, 9]).



60 H.-J. Kreowski and A. Lye

2. Let F = {G =⇒
pi 

Hi}i∈I ∈ F  be a family of rule applications and 
gi : Li → G be the left matching morphisms for i ∈ I with the particular 
property that each two members share a useful doubling, meaning that there 
is a common component rule p0 and complement rules p′

i for i ∈ I such that 
(p0, p′

i) covers pi. Then, obviously, n − 1 dedoublings are possible if I has 
n elements. Moreover G =⇒

p0+
∑

i∈I p
′
i 

Y for some object Y is a parallelization 

with dedoubling of the initial family. This very situation is considered and 
investigated by Ehrig et al. [ 9,13] as multi-amalgamation. 

3. It turns out that the effect of amalgamation and multi-amalgamation can 
be obtained by means of particular sequentializations and parallelizations 
leading to parallelization with dedoubling. In both approaches, one needs to 
find special component rules (a common one and complements). One may 
argue that sequentialization and parallelization are slightly simpler and more 
basic constructions than amalgamation. Moreover, the general amalgamated 
rule does not always exist in adhesive categories as arbitrary pushouts do not 
exist in general. A further difference between both approaches concerns the 
scaling from two rule applications to an arbitrary number of them. Multi-
amalgamation in [ 9,13] is only considered for the special case that all rule 
applications delete the same part of the host object. 

6 Conclusion 

In this paper, we have studied the parallelization of rule applications that are 
constructed by double-pushouts in adhesive categories. The well-known paral-
lelization of parallel independent rule applications by means of coproducts of 
rules used as parallel rules is generalized in such a way that doubling can be 
avoided. If the dependence of two rule applications to the same object is caused 
by the fact that - intuitively - both delete that same part of the commonly 
accessed part, then independence can be restored by removing the deletion part 
of one of the rule applications provided that there are proper component rules 
complementing the deletion parts. Similarly, one can avoid that certain inser-
tions are doubled. We have given sufficient conditions to guarantee that doubling 
avoidance - called dedoubling for short - works. The construction combines the 
sequentialization of parallel rule applications and certain re-parallelizations of 
the resulting rule applications. As a main result, we have shown that dedou-
bling within a family of rule applications preserves parallel independence. Con-
sequently, a sequence of dedoubling steps yields a family of pairwise parallel 
independent rule applications that can be applied in parallel, or it gets stuck 
because none of the pairs of rule applications allow a further dedoubling. 

To obtain a better insight into the parallelization with doubling avoidance, 
the following aspects may be considered: 

1. A dedoubling of two rule applications requires to cover them by parallel rules 
with a common component rule. To find such covers is guesswork so far. 
Therefore, it would be helpful to come up with a systematic construction of
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covers. According to the definition, the component rules are embedded into 
the given rules by arbitrary rule morphisms. If one assumes monomorphic 
embeddings and finitary categories, then there is only a finite number of 
component rules so that all covers can be enumerated. 

2. If a family of rule applications has two members G =⇒
p1 

H1 and G =⇒
p2 

H2, 
then dedoubling may not be possible or dedoubling yields either G =⇒

p′
1 

H ′
1 

and G =⇒
p2 

H2 or G =⇒
p1 

H1 and G =⇒
p′
2 

H ′
2. In Sect. 3, it is shown that 

G =⇒
p′
1+p2 

Y, G =⇒
p1+p′

2 

Y , and  G =⇒
p0+p′

1+p′
2 

Y for some object Y . This means that 

both dedoublings are closely related from a semantic point of view. We expect 
that a result like this holds for arbitrary families and arbitrary sequences of 
dedoublings that does not require to store the doublings and is stronger than 
Theorem 4 in this way. 

3. A dedoubling applied to two parallel dependent rule applications yields paral-
lel independence so that all dedoublings have the same effect with respect to 
the deletion part. Dedoubling with respect to the insertion part behaves quite 
different as one has various options between a common component rule that 
does not insert anything and some insertion part that identifies the maximal 
mergable parts of the two involved right-hand sides. The question is whether 
there are more interesting standard cases between the two extremes. 

4. It would be interesting to study applications of the proposed concepts. As 
our example in Sects. 3 and 4 indicates, the area of pattern generation is a 
potential candidate as many patterns, tilings, and fractals can be generated 
in a parallel mode of construction. Rule-based collaborative text editing (e.g. 
refactoring source code by multiple people) fits into this view. The authors of 
[ 13– 15] have pointed out that amalgamation and multi-amalgamation are very 
helpful concepts for the specification of model transformations. Therefore, it 
may be interesting to see whether parallelization with dedoubling can play a 
similar role. 
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