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Abstract—Cracks on road surfaces are a significant safety
hazard that can progress into larger potholes, posing risks to
vehicles and passengers. Synthetic aperture radar (SAR) data
acquired by high-resolution airborne SAR systems are sensitive
to changes on the road surface and can be utilized for periodic
road condition monitoring. This study proposes a novel method
that combines an adaptive thresholding algorithm with the Radon
transform for detecting road cracks and estimating both their
severity and orientation. In this approach, the adaptive thresh-
olding algorithm detects the cracks, while the Radon transform
qualitatively quantifies their severity using the maximum Radon
magnitude from the sinogram and estimates their orientation
as bearing angles relative to true north. While the proposed
method is applicable to various airborne SAR platforms, it is
demonstrated in this study with X-band airborne SAR data
acquired by DLR’s F-SAR system with a spatial resolution of
25 cm. The detected cracks and orientations were validated
against Google Earth images, showing close agreement with the
locations and orientations of the actual cracks. This research
underscores the potential of airborne SAR data in supporting
predictive road maintenance efforts through early identification
of surface defects.

Index Terms—Synthetic aperture radar, airborne radar, sur-
face cracks, thresholding, transforms, vehicle safety.

I. INTRODUCTION

ROAD surfaces with cracks and potholes pose signifi-
cant safety risks to vehicles, leading to accidents and

premature vehicle wear and tear [1]–[4]. Road cracks form
due to a variety of reasons, including repetitive loading from
heavy vehicles [5], defects due to construction methods and
materials [6], subgrade instability [7], moisture ingress [8],
and temperature-induced expansion and contraction [9]–[11].
In cold climates, the freeze-thaw cycles during winter fur-
ther accelerate the crack and pothole formation [12], [13].
During these cycles, melted snow seeps into existing small
road cracks, freezes, expands, and further widens them. As
temperatures rise again, the ice melts and leaves voids beneath
the road surface, which collapse under traffic loads, forming
potholes, as illustrated in Fig. 1.

Given the critical importance of ensuring road safety, pe-
riodic monitoring of road conditions is essential for carrying
out maintenance activities. In several countries, road condition
monitoring is carried out using specialized survey vehicles
equipped with several sensors including ground penetrating
radar (GPR) and laser crack measurement system (LCMS),
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Fig. 1. Cracks deterioration and pothole formation due to freeze-thaw cycles
in the winter season.

which can detect various types of road cracks, including longi-
tudinal, transverse, and alligator cracking [14], [15]. However,
these surveys are costly, time-consuming, and labor-intensive,
which limits their frequency and scope [16]. For example,
in Germany, such surveys are carried out in average only
every four years, with a focus only on the major motorways
[17]. Considering the rapid deterioration of the road surfaces,
especially in winter, there is an increasing demand for more
frequent monitoring of road conditions, ideally annually [18].
Regular monitoring would enable early detection of road
deterioration, facilitating predictive maintenance strategies and
reducing the risks to road users.

To address these challenges, remote sensing techniques have
been widely considered as a time and cost-efficient approach
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for large-scale road condition monitoring [19]. However, most
prior studies available in the literature rely on high-resolution
optical images acquired using unmanned aerial vehicles
(UAVs) or vehicle-mounted cameras. These optical methods
employ either classical image processing techniques (e.g.,
edge detection, texture analysis, thresholding, morphological
operations) or deep learning models such as convolutional
neural networks (CNNs) and semantic segmentation networks
for road crack detection [20]–[23]. While these techniques
have demonstrated promising results, their performance is
often hindered by variations in illumination, shadows, surface
stains, and other environmental conditions [23]. Moreover,
the reliance on UAV or vehicle-mounted imaging platforms
restricts the spatial coverage of these approaches to localized
inspections only.

SAR offers a promising alternative for road condition mon-
itoring due to its active sensing nature, which allows operation
regardless of the ambient lighting, and it is also very sensitive
to changes on the road surface [24]. That said, studies in
the existing literature have focused on the estimation of road
unevenness and general road damage detection using medium-
resolution spaceborne SAR data [25]–[27]. Previous research
at the German Aerospace Center (DLR) has demonstrated
the successful generation of road surface roughness images
using high-resolution airborne and spaceborne X-band SAR
data from DLR’s F-SAR and Germany’s TerraSAR-X (TS-X)
systems, respectively [16], [28], [29].

Building upon the previous research, this study proposes a
novel method for detecting road cracks and estimating both
their severity and orientation. To the best of our knowledge,
no prior study has demonstrated the detection, severity, and
orientation of road cracks using high-resolution SAR images.
The proposed method utilizes high-resolution surface rough-
ness (hrms) images generated from the airborne X-band F-SAR
data as input [16]. The processing chain developed in this
study combines an adaptive thresholding algorithm for crack
detection with the Radon transform for subsequent severity
and orientation estimation. Detecting cracks and estimating
their orientation is crucial for understanding the causes behind
their formation and taking appropriate corrective measures. For
instance, longitudinal cracks that run parallel to the road are
usually caused by large tensile stresses near the tire paths [30].
In contrast, transverse cracks that run perpendicular to the road
are often due to problems such as soil settlement, shrinkage,
improper joint spacing, or freeze-thaw cycles in winter [31],
[32].

The remainder of this article is structured as follows:
Section II provides an overview of the test site and the datasets
used in this study. Section III introduces the proposed adaptive
thresholding algorithm for crack detection. The methodology
for estimating the crack severity and orientation using the
Radon transform is detailed in Section IV. Section V discusses
the experimental results, and Section VI concludes this article.

II. TEST SITE AND DATASETS

The primary test site considered for this study is the
Kaufbeuren Airfield in Bavaria, Germany. This test site is

Fig. 2. Google Earth image of the entire Kaufbeuren airfield showing regions
selected for this study. (a) Section of the runway. (c) Severely cracked parking
area. (b) and (d) shows the expected crack images illustrating the main cracks
present in these two regions and their bearing angles. (e) Zommed-in view of
a section of the parking area.

a disused military airfield where no maintenance work has
been carried out for several years. A Google Earth (GE)
image acquired in June 2020 showing an overview of the
entire airfield is depicted in Fig. 2. Two regions of the airfield
with several cracks and potholes are selected for this study.
The first region is a section of the runway, featuring repair
patches and small joints between adjacent concrete plates
beneath the asphalt layer (see GE image in Fig. 2(a)), and
the second region is a severely cracked parking area shown
in Fig. 2(c). Most cracks in these regions are found to have
two orientations: longitudinal to the runway and transverse
to the runway. The images with the expected cracks in these
two regions are illustrated in Fig. 2(b) and (d), with purple
lines indicating longitudinal cracks and green lines indicating
transverse cracks. The actual bearing angles of these cracks
w.r.t. true north are 21 degrees for the longitudinal cracks
and 112 degrees for the transverse cracks. These two bearing
angles are considered as the ground truth values for validating
the crack orientations estimated from the airborne F-SAR data.
It is important to note that the expected crack images depicted
in Fig. 2(b) and (d) serve primarily as reference sketches
intended to give an approximate idea of the crack locations
and orientations. These were drawn based on careful visual
inspection of high-resolution F-SAR and GE images. While
Fig. 2(b) provides approximate positions and orientations of
runway joints and patchwork edges on the runway, Fig. 2(d)
depicts only the general orientations due to the complexity
of several interconnected cracks in the parking area, making
manual delineation of the individual cracks challenging. A
zoomed-in section of the parking area, labeled ’Detail 1’ and
outlined by a red rectangle in Fig. 2(c), is selected for a more
detailed analysis of the severe cracks and their orientations.
The corresponding GE image of this area is shown in Fig. 2(e),
and the results for this section are presented later in Section
V.

Several X-band F-SAR datasets, each with a spatial resolu-
tion of 25 cm× 25 cm (azimuth × range), were acquired over
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the Kaufbeuren airfield on 04 September 2020 with various
incidence and aspect angles relative to the runway. For this
study, geocoded surface roughness (hrms) images generated
as part of the previous research [16] from the F-SAR dataset
with ID ’PS04’, with a flight track parallel to the runway, and
the dataset ’PS05’, with a flight track perpendicular to the
runway, were considered as input for the crack detection and
orientation estimation. Additionally, fused hrms images, which
are also generated as part of the previous research [16] by
fusing hrms images from multiple F-SAR datasets with varying
acquisition geometries, using both multi-dataset averaging
and highest signal-to-noise ratio (SNR) fusion methods, were
also considered as input for this study. In the multi-dataset
averaging method, the fused hrms image is generated by the
pixel-by-pixel averaging of the hrms values estimated from
multiple datasets. In the highest SNR method, a pixel-wise
SNR search was done on all the datasets, and for each pixel,
the hrms value estimated from the dataset having the highest
SNR was selected. In this method, the final hrms image is
generated only from the highest SNR pixels selected from all
the available datasets. More information about the Kaufbeuren
airfield, F-SAR datasets, and the fusion methods can be found
in [16].

III. WINDOWED ADAPTIVE THRESHOLDING ALGORITHM
FOR CRACKS DETECTION

An adaptive thresholding algorithm is proposed in this
study for performing the crack detection that operates on
the geocoded hrms image generated as part of the previous
research [16]. A block diagram illustrating the algorithm is
shown in Fig. 3. The hrms image is chosen as the input image
for performing the adaptive thresholding because it shows a
sharp increase in hrms values at the cracked regions compared
to the surrounding smooth road surfaces (see example image
shown in Fig. 3(a)). This relative increase is more pronounced
than what is observed for the SAR backscatter (σo) values,
which can potentially improve the performance of the adaptive
thresholding algorithm in crack detection.

Since the hrms image can contain high hrms values originat-
ing from overhead signboards, metallic lane dividers, flyover
walls, and other strong reflecting features, it is recommended
to perform an upper σo thresholding on the hrms image, as
suggested in [16], before applying the adaptive thresholding
algorithm for crack detection. This procedure masks out re-
gions with backscatter values above typical road-surface levels,
thereby preventing the adaptive thresholding algorithm from
falsely detecting these high-backscattering non-road features
as cracks. Once such strong reflecting targets are masked out,
the remaining high surface roughness changes detected by
the adaptive thresholding algorithm are more likely associated
with actual road surface anomalies such as cracks, potholes,
or material boundaries (e.g., asphalt-concrete joints), all of
which should be flagged for further inspection by the road
maintenance authorities.

The adaptive thresholding algorithm is applied locally to
the input hrms image using an N × N sliding window. For
each window, the N × N hrms values are first filtered with

a median filter to reduce spikey noise that can interfere with
accurate threshold estimation. The crack detection threshold
(τi) for the ith sliding window is then estimated as:

τi = µi + σi , (1)

where µi and σi are the mean and standard deviation computed
within the ith sliding window.

The center pixel within a sliding window is classified as
a crack if its hrms value exceeds the computed threshold τi
and is at least 1.2 mm (an empirically determined value for
the X-band F-SAR data). Pixels satisfying these conditions are
marked as cracks (value = 1) in the output image; otherwise,
they are labeled as smooth (value = 0). This decision rule is
mathematically expressed as:

Binary
crack
detection
output

=


1, if hrms(i = N/2, k = N/2) ≥ τi

and hrms(i = N/2, k = N/2) ≥ 1.2

0, otherwise

(2)

The resulting binary cracks detection map (cf. Fig. 3(b))
is then multiplied pixel by pixel with the input hrms image,
retaining hrms values only for the cracked regions and setting
the values in smooth regions to ’0’. This resulting crack
roughness image (cf. Fig. 3(c)) is then used as input to the
Radon transform for estimating the severity and orientation
of the cracks (refer to Section IV). For performing the N ×
N adaptive thresholding algorithm, it is necessary to choose
a suitable window size so that the cracks can be accurately
detected. After experimenting with different window sizes, a
25×25 sliding window is selected as the suitable window size
for performing the adaptive thresholding.

It is also important to note that different road surface
materials exhibit varying surface roughness characteristics. For
instance, concrete generally displays higher hrms values than
asphalt due to the coarser grain structure of the materials used
[16], [28], [29]. However, the adaptive thresholding algorithm
proposed in this study does not rely on absolute roughness
values but rather on detecting local anomalies, i.e., sudden
variations in hrms values within a localized window. Therefore,
whether the surface is asphalt or concrete, a crack is identified
only if it produces a significant change in roughness relative
to the surrounding pixels. This makes the algorithm robust and
effective across different pavement types.

IV. WINDOWED RADON TRANSFORM FOR CRACKS
SEVERITY AND ORIENTATION ESTIMATION

The Radon transform is an integral transform widely used
in fields such as medical imaging, including computed tomog-
raphy (CT) and nuclear magnetic resonance (NMR) imaging
[33]. It effectively captures oriented features in images by
calculating line integrals along various directions [34], making
it suitable for estimating the severity and orientation of road
cracks. In this study, the Radon transform is investigated in
two ways for crack severity and orientation estimation: first,
it is applied to simulated road crack images, and second, a
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Fig. 3. Block diagram of the windowed adaptive thresholding algorithm for crack detection. (a) Input surface roughness (hrms) image. (b) Output binary
crack detection map. (c) Corresponding crack roughness image.

sliding-window version of the Radon transform is applied to
the airborne F-SAR datasets. These investigations are detailed
in the following two sub-sections.

A. Investigations using simulated road crack images

To evaluate the capability of the Radon transform in esti-
mating crack severity and orientation, a series of 5 × 5 noisy
images was generated to simulate road cracks at different
orientations. Each image contains random background noise
and a single line oriented at a specified angle relative to the
x-axis, resembling how cracks appear in SAR backscatter or
surface roughness (hrms) images. The use of 5 × 5 images is
intentional, as the Radon transform is applied locally in real
SAR data using a sliding window. It is therefore important to
assess whether the transform remains effective when limited

to only 25 input pixels within a 5 × 5 window. For the X-
band F-SAR data used in this study, which has a spatial
resolution of 0.25 m, a 5× 5 window corresponds to an area
of approximately 1.25× 1.25 meters on the road surface.

Fig. 4 shows the simulated cracks oriented at 0, 20, 45,
and 70 degrees along with their corresponding Radon sino-
grams and magnitude plots. The sinogram provides a two-
dimensional representation of the Radon output, where the x-
axis denotes the Radon projection angle (θr) and the y-axis
represents the distance from the origin along each projection
line. Analysis of these sinograms reveals that the maximum
Radon magnitudes occur at angles matching the actual ori-
entations of the simulated cracks. Therefore, in this study,
the angle corresponding to the maximum Radon magnitude
is interpreted as the estimated crack orientation, while the
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Fig. 4. Crack detection, severity, and orientation estimation results using simulated lines with background noise resembling crack in a SAR backscatter image.

maximum Radon magnitude value itself is used as a qualitative
measure of the crack severity. This relationship is further
confirmed by the Radon magnitude plots, which are extracted

along the y-axis index of each sinogram at its maximum
response. These plots clearly show that the Radon peaks align
with the known crack angles. Notably, even in the case of the
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70-degree-oriented crack, which is represented by only two
pixels, the correct orientation is accurately estimated by the
Radon transform.

To explore the limitations of this method, an additional
experiment was conducted using a 5 × 5 image containing
only a single-pixel crack. As shown in the last row of Fig. 4,
the Radon transform does not produce a clear peak in this
case, and the resulting orientation estimate is inaccurate. This
indicates that a crack must span at least two pixels within
the window for reliable orientation and severity estimation.
Furthermore, when multiple isolated single-pixel cracks are
present, the Radon transform may incorrectly interpret them
as a single crack, leading to erroneous severity and orientation
estimates.

In summary, the results from Fig. 4 demonstrate that the
Radon transform can effectively estimate crack orientation
and provide a qualitative measure of severity when the crack
covers at least two pixels. However, since the Radon transform
generates an output regardless of whether a crack is present, it
should only be applied to pre-processed images where cracks
have already been detected, such as the crack roughness image
produced by the adaptive thresholding algorithm (cf. Section
III).

B. Application of windowed Radon transform on the crack
roughness image generated from adaptive thresholding

A dedicated processing chain has been developed to es-
timate the crack severity and orientation from X-band F-
SAR data, based on the previously described principle of
the maximum Radon magnitude and its corresponding pro-
jection angle. This method takes as input the crack roughness
image produced by the adaptive thresholding algorithm (cf.
Section III). The complete workflow is illustrated in Fig. 5.

Within this processing chain, the Radon transform is applied
locally to the large crack roughness image using a 5×5 sliding
window. As demonstrated previously with the simulated cracks
in Fig. 4, a 5×5 window provides sufficient pixels for reliable
severity and orientation estimation using the Radon transform.
Using a larger window could cause multiple cracks to overlap,
resulting in missing out smaller cracks and blurred outputs.
In addition, the sliding window is moved across the input
image in an overlapping manner, increasing the likelihood of
detecting cracks that might be missed in the current position
but detected in the next slightly shifted position of the sliding
window.

This overlapping shifting of the sliding window is particu-
larly useful in cases where multiple cracks of varying severities
fall within a single 5 × 5 window (1.25m × 1.25m on the
road surface for the input F-SAR data). In such scenarios, the
maximum magnitude of the Radon sinogram typically points
only to the most prominent crack in the window. As each
window is shifted by one pixel (approx. 25 cm on the ground
for the F-SAR data), cracks that may have produced lower
peaks in the Radon sinogram in the previous position can
become more centrally located in the next, thereby increasing
their chances of detection by producing a stronger peak. While
very fine or narrow crack segments may still go undetected,

Fig. 5. Block diagram of the windowed Radon transform-based processing
chain for crack severity and orientation estimation.

this overlapping strategy significantly enhances the likelihood
of identifying the more severe portions of longer, closely
located cracks that may span over multiple sliding windows.

At each window position, the Radon transform calculates
the maximum Radon magnitude and the corresponding pro-
jection angle (θr). These values are recorded across the entire
image to produce two outputs: a Radon maximum magnitude
image, which provides a qualitative measure of the crack sever-
ity, and a Radon angle image, which captures the orientation of
cracks. The Radon maximum magnitude image is then used to
generate a KML file for visualizing the crack severity in GE,
while the Radon angle image is further processed to estimate
the orientation of cracks.

The Radon angle image represents the orientation angles
(θr) of the detected cracks in the Cartesian coordinate sys-
tem measured w.r.t. the x-axis. However, for a geospatially
meaningful interpretation, these angles must be converted into
bearing angles (θb), which are referenced to true north. This
conversion is carried out using the following equation:

θb = (90◦ − θr − θroad − θdecl) mod 360◦ , (3)

where θroad denotes the road orientation angle relative to true
north, estimated from the OpenStreetMap (OSM) data, and
θdecl is the grid declination angle, which accounts for the
difference between UTM grid north and true north [35]. This
correction is necessary because the Radon transform is applied
to geocoded images in the UTM coordinate system.

Following this coordinate transformation, the Radon angle
image expressed in the bearing angle system is used to
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generate a second KML file that visualizes the orientation of
the detected cracks in Google Earth.

The chances of false crack detections are also minimal in
this approach. Since the Radon transform operates only on the
crack roughness image generated by the adaptive thresholding
algorithm, all smooth or background regions have already
been set to zero. The Radon transform is thus applied only
within the sliding windows containing non-zero values, which
correspond to the cracks detected by the adaptive thresholding
algorithm. This two-stage process minimizes the possibility of
falsely detecting non-crack regions as cracks.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The crack detection, severity, and orientation estimation
results generated from the X-band F-SAR datasets by applying
the novel methods discussed in Sections III and IV are
presented in the following sub-sections.

A. Flight heading angle dependency on cracks detection

Fig. 6. Illustration of the flight heading angle dependency on the SAR
backscatter response from a road crack. (a) Road crack oriented parallel to the
flight direction. (b) Road crack oriented perpendicular to the flight direction.

Since road surface cracks are oriented line-like features,
the flight heading angle of the airborne SAR system greatly
influences their visibility in the acquired datasets. Fig. 6
shows an illustration demonstrating the flight heading angle
dependency on the backscatter response from a road crack.

Fig. 7. Surface roughness (hrms) images for the section of the Kaufbeuren
runway generated from (a) PS05 dataset, (b) PS04 dataset.

Fig. 6(a) illustrates the data acquisition geometry for the
F-SAR system when a road crack is oriented parallel to the
flight direction. In this scenario, the SAR antenna, mounted on
the side of the aircraft fuselage, illuminates the entire length
of the crack from a direction perpendicular to the crack’s
orientation, resulting in a maximum backscatter response from
the crack edges. Therefore, it is expected that the cracks are
most visible in SAR images when the flight path is aligned
with their orientation. In contrast, as shown in Fig. 6(b), if
the flight direction is perpendicular or at an oblique angle to
the crack, the radar signal cannot illuminate the entire length
of the crack. Instead, most of the transmitted signal undergoes
specular reflection from the inside of the crack instead of being
backscattered from the crack edges. This leads to a reduced
backscatter response and a diminished visibility of cracks in
the SAR images, potentially causing an underestimation of the
severity of the cracks.

In Fig. 7(a), the hrms image for a section of the Kaufbeuren
runway is shown, corresponding to the area displayed in the
GE and the expected cracks images in Fig. 2(a) and (b),
respectively. This image is generated with the PS05 F-SAR
dataset with a flight track perpendicular to the runway (see
azimuth and range direction arrows). Here, the flight track is
parallel to the small joints present across the runway, resulting
in a strong backscatter response and making these joints visible
as regions of high surface roughness. Conversely, Fig. 7(b)
shows the hrms image generated from the PS04 F-SAR dataset,
having its flight track perpendicular to the orientation of these
small joints, rendering them invisible. This demonstrates that
the flight heading angle significantly affects the detectability
of cracks in airborne SAR data acquired along linear flight
tracks, confirming the backscattering assumptions based on
the crack orientations shown in Fig. 6. Thus, the flight heading
angle is crucial for crack detection, and the airborne SAR data
should be acquired with a flight (azimuth) track parallel to the
orientation of the cracks of interest to ensure their visibility.
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Fig. 8. Crack detection results generated for the section of the Kaufbeuren parking area marked as ’Detail 1’ in Fig. 2(c). Surface roughness images used as
input for cracks detection generated from (a) PS05 dataset (grey spots indicate masked-out areas with invalid hrms values [16]), (b) multi-dataset averaging,
and (c) highest SNR method. The corresponding crack severity images are presented in (d)–(f), respectively (offsets between the detected cracks and the
underlying GE imagery are due to residual geocoding errors in range direction).

B. Cracks detection results

Fig. 8 shows the GE visualizations of crack detection and
severity estimation results for the Kaufbeuren parking area
section labeled ’Detail 1’ in Figs. 2(c) and (e), using the com-
bined adaptive thresholding and Radon transform approach.
hrms images generated from the PS05 dataset, multi-dataset
averaging, and highest SNR methods are shown in Fig. 8(a),

(b), and (c), respectively. The corresponding crack severity
images are presented in Fig. 8(d), (e), and (f). The grey spots
in Fig. 8(a) indicate masked-out areas with invalid hrms values
[16]. Across all cases, areas with elevated surface roughness
values correspond well to the detected cracks, which closely
match the cracks visible in the underlying GE imagery. Larger
cracks are shown in yellow to red, indicating higher severity,
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Fig. 9. Google Earth visualization of the crack severity image generated for the Wolfsburg motorway intersection at Braunschweig, Germany.

while smaller cracks appear in cyan to green, indicating lower
severity. The number of detected cracks varies depending on
the input image due to the influence of flight heading angle
on crack visibility, as discussed in Section V-A. The result
in Fig. 8(d), derived from the PS05 dataset input, shows
more detected cracks than Fig. 8(e), which uses the fused
hrms image generated from the multi-dataset averaging method
as input, where minor cracks are smoothed out due to the
averaging process. Fig. 8(f), based on the highest SNR fused
hrms image input, detects the highest number of cracks due
to the enhanced sensitivity of this method to local backscatter
variations; however, this comes at the cost of a grainier input
hrms image and an increased likelihood of false detections.
These results suggest that generating multiple crack severity
images from individual SAR acquisitions with different flight
heading angles provides more reliable detection of cracks with
varying orientations than using fused hrms images as input.
Also, a slight positional offset can be observed between the
detected cracks and the underlying GE imagery. This offset is
most likely due to geocoding inaccuracies introduced by errors
in the Digital Elevation Model (DEM) used for geocoding and
terrain correcting the SAR datasets. Since the proposed method
operates on a single, already geocoded surface roughness
image, no co-registration step is involved in the processing
chain.

Since the previously discussed results were generated for a
decommissioned runway section, an additional experiment was
conducted to evaluate the performance of the crack detection
and severity estimation method on an active road. For this

purpose, F-SAR data were acquired over the Wolfsburg mo-
torway intersection in Braunschweig, Germany, which features
a smooth, crack-free road surface. Fig. 9 presents the resulting
crack severity image, where only unmasked features such
as road borders, flyover walls, and metallic lane dividers
are detected as cracks due to their high backscatter (σo)
values, with road borders appearing from cyan to red and lane
dividers mostly in red. It should be noted that the upper σo

thresholding mentioned in Section III was intentionally not
applied to the hrms image for this test site. Consequently, these
high-backscatter structures were falsely identified as cracks.
This highlights the importance of performing the upper σo

thresholding procedure prior to crack detection. Apart from a
few isolated blue pixels (cf. Detail 2 in Fig. 9), no cracks
are detected on the actual road surface, which is consistent
with the underlying GE imagery. These results demonstrate
that the combined adaptive thresholding and Radon transform
approach can effectively detect real cracks without significant
false positives on smooth road surfaces.

C. Cracks orientation estimation results

Fig. 10 displays the cracks orientation estimation results
for the section of the Kaufbeuren parking area marked as
’Detail 1’ in Fig. 2(c) and (e). hrms images generated from
the PS05 dataset, multi-dataset averaging, and highest SNR
methods are shown in Fig. 10(a), (b), and (c), respectively.
The corresponding crack bearing angle images are presented
in Fig. 10(d), (e), and (f). By comparing these input hrms

images with the crack bearing angle images, it can be seen that

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3613166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 10

Fig. 10. Crack orientation estimation results generated for the section of the Kaufbeuren parking area marked as ’Detail 1’ in Fig. 2(c). Surface roughness
images used as input for the cracks orientation estimation generated from (a) the PS05 dataset (grey spots indicate masked-out areas with invalid hrms values
[16]), (b) multi-dataset averaging, and (c) the highest SNR method. The corresponding crack bearing angle images are presented in (d)–(f), respectively (offsets
between the detected cracks and the underlying GE imagery are due to residual geocoding errors in range direction).

the cracks along the north-east direction predominantly appear
in purple, indicating a bearing angle of around 20 degrees,
while the cracks aligned in the east-south direction appear
in yellow to green, indicating a bearing angle of around 115
degrees. In all three images, the bearing angles estimated by
the Radon transform-based method closely match the actual
bearing angles of the cracks measured from GE, as indicated
by the white arrows. However, the number of detected cracks
varies depending on the hrms image used as input. The main
cracks visible in the GE image are accurately detected from
the PS05 dataset, while the number of detected cracks is
less when the multi-dataset averaged hrms image is used as

input. The crack bearing angle image generated from the
highest SNR fused hrms image shows a large number of cracks
in this region, which can be false crack detections due to
the grainy/noisy appearance of the hrms image. Therefore,
the multi-dataset averaged and the highest SNR method-
based hrms images are not recommended for crack detection
and orientation estimation. As already pointed out, the best
approach will be to generate multiple crack bearing angle
images from individual SAR datasets that have different flight
heading angles.

Fig. 11 shows the histograms for the crack bearing angle
images discussed in Fig. 10 for the section of the Kaufbeuren
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Fig. 11. Histograms for the crack bearing angle images shown in Fig. 10 for
the section of the Kaufbeuren parking area. Generated from (a) PS05 dataset,
(b) multi-dataset averaging, and (c) highest SNR method-based input hrms

images.

parking area. Specifically, Fig. 11(a) presents the histogram
from the PS05 dataset, (b) from the multi-dataset averaging
method, and (c) from the highest SNR method. All three
histograms indicate that the dominant bearing angles are in
the ranges of 20 to 30 degrees and 110 to 120 degrees. The
20 to 30 degrees range corresponds to the purple-colored
cracks, which match the GE-measured ground truth value of
21 degrees. The 110 to 120 degrees range corresponds to
the green-colored cracks, matching the ground truth value of
112 degrees. As discussed previously, the number of detected
cracks varies depending on the hrms image used as input.
These histograms demonstrate that the crack bearing angles
estimated by the Radon transform-based method are in close

agreement with the ground truth bearing angles measured from
GE.

Therefore, from the crack severity, crack bearing angle,
and histogram images presented in this section, it can be
concluded that the combined adaptive thresholding and Radon
transform-based method is a reliable approach for detecting
and estimating the severity and orientation of cracks on the
road surface.

VI. CONCLUSION

This article proposes a novel methodology for road cracks
detection and orientation estimation using high-resolution
SAR data acquired by the airborne X-band F-SAR system.
Analysis of the surface roughness images from different F-
SAR datasets showed that crack visibility in SAR images
depends on the flight heading angle due to the oriented nature
of cracks. Therefore, the flight heading angle for the crack
detection and orientation estimation should be chosen based
on the orientation of the cracks of interest, such as longitudinal
or transverse cracks. SAR data acquisition with a flight track
parallel to the crack orientation ensures the best visibility
of the crack in the SAR backscatter and surface roughness
images. A combined approach using an adaptive thresholding
algorithm and the Radon transform has been proposed in this
study, which successfully detected the cracks and estimated
their severity and orientation, with results validated using GE.
The Radon magnitude values were used to colour-code the
detected cracks, showing their severity from minor to severe,
and the estimated orientation angles closely agreed with the
measurements from GE. Fused surface roughness images pro-
duced by multi-dataset averaging or the highest SNR method
are not ideal to be used as input images for crack detection,
as they may either miss smaller cracks or produce many false
detections. The most effective input for accurate crack detec-
tion and orientation estimation is a surface roughness image
generated from a single F-SAR dataset. However, cracks with
certain orientations might remain undetected if they are not
well-visible in this single dataset. To address this limitation,
it is recommended to generate multiple crack detection and
orientation estimation results using several F-SAR datasets
acquired with different flight heading angles. Specifically, at
least two flight heading angles should be used: one parallel and
one perpendicular to the road. This will help in detecting both
longitudinal and transverse cracks, which are common on road
surfaces. The use of a future very-high-resolution airborne Ka-
band SAR system can improve the sensitivity of the cracks
detection algorithm to smaller cracks on the road surface
because of its higher sensitivity to road surface changes. Such
a system is currently under development at the Microwaves
and Radar Institute of the German Aerospace Center (DLR).
As part of future work, post-processing strategies such as
clustering of the detected crack pixels can be explored to
extract higher-level features such as individual crack length,
width, and spatial patterns. These metrics will be valuable
for quantitative damage assessment and for prioritizing road
maintenance efforts. In addition, future work will benefit from
the availability of very detailed ground-truth data collected
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using specialized road survey vehicles. A joint campaign was
recently conducted in Germany by DLR in cooperation with a
road condition monitoring company, where high-resolution X-
band F-SAR data were acquired in parallel with survey vehicle
measurements over a long motorway stretch. This forthcoming
survey vehicle data will provide the precise ground truth
needed to compute quantitative performance metrics, such as
crack detection rate and false alarm rate, enabling more rigor-
ous validation of the proposed methodology. These analyses,
together with advanced post-processing strategies, will form
the focus of a follow-on IEEE journal publication.
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features in synthetic-aperture radar images by use of the localized Radon
transform and prior information,” Applied optics, vol. 43, no. 2, pp. 264–
273, 2004.

[35] U. S. A. M. Service, Grids and Magnetic Declinations, 1945, no. 425.

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3613166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


