

M. Semmling (1), H. Sato (1), M. Kriegel (1),

F. Fohlmeister (2), Y. Jin (3), J. Berdermann (1),

M. Hoque (1)

(1) Institute for Solar-Terrestrial Physics DLR-SO, Neustrelitz, Germany

(2) Institute of Communication and Navigation DLR-KN,
Oberpfaffenhofen, Germany

(3) University of Oslo UiO, Oslo, Norway

IAG Assembly, Rimini, September 2025

Outline

- Motivation GNSS Remote Sensing
- MOSAiC Expedition and GNSS Data in the Arctic
- Processing and Masking of Ship-based Data
- Results of Scintillation Index Analysis

Conclusions

Motivation GNSS Remote Sensing

A: Low Earth Orbiter

Wickert et al. 2016 Semmling et al. 2016

■ B: Aircraft

Semmling et al. 2014 Moreno et al. 2021

C: Research Vessels

Application

sea surface altimetry sea state estimation sea-ice detection water vapor estimation iono. scintillation detection

A: e.g. PRETTY, h ~ 500 km

C: e.g. Polarstern, h ~ 25 m

B: e.g. HALO, h ~ 3500 m

Ionosphere TEC Monitoring with GNSS

GNSS 19100 ... 23200 km

Ionosphere Disturbance Monitoring with GNSS

GNSS 19100 ... 23200 km Iono. Piercing points **GNSS** Tropo. station Earth surface

Can we benefit from ship-based data?

MOSAiC Expedition and GNSS Data in the Arctic

MOSAiC Expedition and Polarstern Setup

MOSAiC expedition: Sep 2019 - Sep 2020 2019 60°W

Helm et al. 2007 Semmling et al. 2013, 2022 Kriegel et al. 2017 Semmling et al. 2023 Master link (M): up-looking ant. Slave links (S_{1,2}): side-looking ant. Cruising Periods: speed > 1 m/s

Drifting Period: speed < 1 m/s

30°E

MOSAiC Expedition and Polarstern Setup

Processing and Masking of Ship-based Data

High-rate GNSS Data Processing

Limits of Visibility from the Ship

clear view to port-side

left rel. Bearing: -180° to 0°

heading of the ship right rel. bearing (blocked) left rel. bearing (clear)

1) ship's main mast

2) ship's chimney

Sep 2019 ... Sep 2020

Semmling et al. 2023

Limits of Visibility from the Ship

 σ_{ϕ} over rel. bearing

clear view to port-side

left rel. Bearing: -180° to 0°

heading of the ship right rel. bearing (blocked) left rel. bearing (clear)

- 1) ship's main mast
- 2) ship's chimney

Sep 2019 ... Sep 2020

Results of Ionospheric Index Analysis

Are the results comparable to station data?

Track of R/V Polarstern (PS)

(A) Oct 1, 2019

(B) Jan 15, 2020

(C) Jun 5-8, 2020

(D) Sep 30, 2020

before drift in ice near Svalbard before return

(C1) noon Jun 4 to afternoon Jun 8(C2) night Jun 8

calm sea, inside fjord high sea state, outside fjord

(S) Ny-Alesund station operated by Univ. of Oslo

PS results in relation to ship conditions

weak scint. limit

 $\sigma_{\omega} < 0.3 \text{ rad}$

weak scint. limit

S4 < 0.5

Index Data at PS

Semmling et al. under review

parameter x	heave	head. spread	sea ice conc.
R(σφ, x)	-0.1	0.0	-0.3
R(S4, x)	0.6	0.7	-0.7
R(ROTI, x)	0.7	0.7	-0.4

Validation with station data

1) Ny-Alesund station

C1 + 0 E (wools)

2) PS during MOSAiC

S4 < 0.5 (weak)

Oct 2019

Jan 2020

Remarks:

Apr 2020 GPS time

 weak scint. overall at high elev. (> 45°)

Jul 2020

- increased multipath effect at low elev. (< 15°)
- calm space weather cond.
 no geomagn. storms
 constant low solar act.

High Medium Low elev.

Conclusions

- GNSS remote sensing from a ship requires adapted processing (mask out ship structure disturbance)
- MOSAiC data set allow retrievals of amplitude and phase scint. index (S4 and σ_{ϕ}) up to the central Arctic
- Scint. index values are mainly in the weak regime under calm space weather conditions in agreement with data of closest station (Ny-Alesund)
- Particularly S4 index is sensitive to ship's movement (heave, heading) and to multipath conditions (sea ice concentration nearby)

Acknowledgements

Support from MOSAiC team
G. Spreen, L. Kaleschke, R. Ricker, A. Tavri
Logistics at AWI & Crew of R/V Polarstern
Werkstatt and IT staff at DLR and GFZ

Data used here were produced as part of MOSAiC project.

References

- Helm et al. 2007: GORS A GNSS Occultation, Reflectometry and Scatterometry Space Receiver. ION GNSS
- Semmling et al. 2013: A zeppelin experiment to study airborne altimetry using specular Global Navigation Satellite System reflections. Radio Science
- Semmling et al. 2016: A phase-altimetric simulator: studying the sensitivity of Earth-reflected GNSS signals to ocean topography. *IEEE Transactions on Geoscience and Remote Sensing*
- Wickert et al. 2016: GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station. IEEE Selected Topics in Applied Earth Observations and Remote Sensing
- Kriegel et al. 2017: Scintillation measurements at Bahir Dar during the high solar activity phase of solar cycle 24. Ann. Geophys.
- Semmling et al. 2019: Sea Ice concentration derived from GNSS reflection measurements in Fram Strait. *IEEE Transaction on Geoscience and Remote Sensing*
- Wang et al. 2019: Retrieving Precipitable Water Vapor from Shipborne Multi-GNSS Observations. Geophys. Res. Lett.
- Semmling et al. 2022: Sea-ice permittivity derived from GNSS reflection profiles: Results of the MOSAiC expedition. IEEE Transaction on Geoscience and Remote Sensing
- Semmling et al. 2023: Ionosphere Sounding in the Central Arctic: Preliminary Results of the MOSAiC Expedition. URSI Radio Science Letters
- DLR IMPC 2023: Ionosphere Monitoring and Prediction Center https://impc.dlr.de/products/
- Semmling et al. (under review): Scintillation Index Monitoring over the Arctic Ocean: studying GNSS data of the MOSAiC Expedition. *GPS Solutions*