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▪ A: Low Earth Orbiter 
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▪ Application
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Semmling et al. 2014
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sea surface altimetry

sea state estimation

sea-ice detection

water vapor estimation

ionosphere monitoring
A: e.g. PRETTY, h ~ 540 km      C: e.g. Polarstern, h ~ 25 m

B: e.g. HALO, h ~ 3500 m 
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More Detailed View …
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F-layer

▪ permanent, usually highest density

▪ max. elec. density at 250 … 400 km

▪ regular daily cycle

▪ dependent on sun incidence

E-layer

▪ usually weaker, sporadic peaks

▪ max. elec. density at 110 … 130 km

▪ less predictable 

▪ important for radio communication

Required Model Data

▪ empirical model for iono. electron 

dens. distribution (NEDM)

▪ numerical weather model for neutral 

gas based on data reanalysis (ERA5)

▪ geoid model for Ocean surface 

heights (Eigen6c2)

F-layer

(> 200 km)

Neutr.

GNSS 19100 … 23200 km

Earth surface

B

h

C

A

NEDM1)

ERA52)

Eigen6c23)

1) Jakowski & Hoque 2018 ; 2) Hersbach et al. 2020 ; 3) Förste et al. 2013 
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Data for space-borne reflectometry

Mission: TDS-1 PRETTY MAPHEUS-15

Platform type: small sat cube sat sounding rocket

Observation alt.: ~ 650 km ~ 560 km 80 … 310 km

Major field of view: near-nadir grazing grazing

Supported signals: GPS L1 C/A GPS L5C & GAL E5 GNSS L1 & L5

Observation area: Hudson Bay, Canada Arctic Ocean Northern Europe

Time period: Jan 2015 May – July 2024 Nov 2024



MAPHEUS-8: GNSS+R Simulation
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MAPHEUS-8: Rocket Flight
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Previous flight data of MAPHEUS 8

Jun 13th, 2019

Starting point to simulate GNSS 

remote sensing obervations

from a rocket

Flight 70 km to N

up to Flight (above 50 km)

239 km 6 mn

rocket ground track

PRN

15

PRN

9

Specular

reflection

ground tracks

of a mid

elevation and 

a grazing

elevation

event.

EISCAT radar Ramfjord



EISCAT: Ionosphere Scenario
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• 3h of elec. density data from EISCAT (European Incoherent Scatter) 

radar site near Ramfjord, Northern Norway

• Polar night period with E-layer dominated ionosphere

F-layer

E-layer

• Chapman layer profile fitted to EISCAT data, dominant 

E-layer peak and moderate F-layer peak

• Profile from empirical NEDM (Neustrelitz Elec. Density Model)

for comparison, E-layer underestimated

E-layer peak

2.5E11 m^-3



Results for mid elevation event: GPS PRN 15
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E-layer peak

2.5E11 m^-3

H2

H1

120 km 

120 km 

1d) 2d)

2ir) 1ir)

• Rays path for two receiver heights

(H1 ~ 50km, H2 ~ 240km) 

• For H1: incident-reflected (ir) and 

direct (d) signals hit E-layer

• For H2: only incident-reflected

signal hits E-layer (even twice)

• Comparison of TEC along direct and 

incident-reflected paths dependent on 

height of receiver (rocket)

• NEDM scenario (black), E-layer-

domin. scenario (red)

• TEC at 120km (above E-layer) differs

significantly between scenarios: 

~ 5 TECU on ir path

~ 2 TECU on d path

• Comparison of relative ionosphere

excess path (between ir and d path)

• NEDM scenario (black) and E-layer

domin. scenario (red) for L1 and L5

• ex. path at 120km (above E-layer) 

differs in dm range between scenarios:

~ 4 dm for L1

~ 8 dm for L5



Results for grazing elevation event: GPS PRN 9
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E-layer

peak

H2

H1

120 km 

120 km 

1d)2d)

2ir)1ir)

• Rays path for two receiver heights

(H1 ~ 50km, H2 ~ 240km) 

• For H1: incident-reflected (ir) and 

direct (d) signals hit E-layer

• For H2: only incident-reflected

signal hits E-layer (even twice)

• Comparison of TEC along direct and 

incident-reflected paths dependent on 

height of receiver (rocket)

• NEDM scenario (black), E-layer-

domin. scenario (red)

• TEC at 120km (above E-layer) differs

significantly between scenarios: 

~ 8 TECU on ir path

~ 4 TECU on d path

• Comparison of relative ionosphere

excess path (between ir and d path)

• NEDM scenario (black) and E-layer

domin. scenario (red) for L1 and L5

• ex. path at 120km (above E-layer) 

differs in dm to m range between

scenarios:

~ 7 dm for L1

~ 10 dm for L5



MAPHEUS-15: GNSS+R Setup and Preliminary Results
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MAPHEUS-15: GNSS Payload and Flight
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Launch pad

Esrange

Esrange

Landing

area

Iono. F-Schicht

Iono. E-Schicht

Sucessful sub-orbital flight on Nov 11 2024

Flight crosses E-layer altitudes twice

on up-leg and down-leg

Nose GNSS 

(Septentrio)

for Navigation

Tail GNSS

(Syntony)

for Reflectometry

Micro-grav. above 80 km for 8 mn

up to 310 km



MAPHEUS-15: GNSS+R Tail Setup
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rocket of MAPHEUS programme

at launcher (previous campaign)

Payload

Engine

R1 R2

S12

B

DC 

3,5 … 5 V

A

Receiver unit

in payload module

GNSS Bitgrabber

(redundant)

Payload Adapter

GNSS Antenna

Clear view to Earth

once engine is

thrown off

A

Payload adapter

Components:

- Bitgrabber (R1,2)

Syntony GNSS

- Antenna (A)

matterwaves

- Bias-tee (B)

- Splitter (S12)

- Powercontrol (DC)

Design & layout for

GNSS remote sensing

GNSS setup components

Adapter



EISCAT: Ionosphere Conditions
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• 17h of elec. density data from EISCAT (European Incoherent Scatter) 

radar site near Tromsø, Norway

• Dawn condition period with F-layer dominated ionosphere

F-layer

E-layer

• Chapman layer profile fitted to EISCAT data, dominant 

F-layer peak and small E-layer peak

• Deviation between NEDM (Neustrelitz Elec. Density Model)

and EISCAT obs.

E-layer peak

Flight time 7h38 to 7h48



Preliminary Results: Nose GNSS – GAL PRN 3
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(B)

(A)

➢ Event in eastern direction

➢ Simulated reflection points over

vegetated land

➢ Not promising reflection conditions

➢ Similation assuming Chapman layers

with variable E-layer config. shows

➢ dominating F-layer leads to overall

TEC decrease for direct link above 100 

km

➢ In this scenario E-layer results small

shift of TEC profile below 100 km 

~1TECU

Chapman layer sims.: direct Obs. vs. NEDM model: direct

Refl. Point sims. 

➢ Model results assuming NEDM also 

TEC decrease above 100 km (F-layer

effect)

➢ TEC Obs. agree with model in micro-

gravity Phase (B)

➢ Observations show strong bias in 

acceleration Phase (A), residual spin?

down-leg

up-leg

Ele 37° … 42°

Lin. Comb.

L1 – L5



Preliminary Results: Tail GNSS
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➢ Signals are affected by RFI, more acquisitions on L5

➢ four GPS sats acquired during down-leg

➢ Acquired Doppler obs. Agree direct signal model

➢ Look for reflected signal using open-loop model model

➢ Still open signal tracking for TEC retrieval

PRN 11

(ele 42° … 45°)

PRN 25

(ele < 5°)

PRN 30

(ele < 8°)

(I) up leg

(II) down leg

(III) parachute

(I) (II) (III) 

GPS L5: Acq. vs. direct path model

PRN 6

(ele 33° … 40°)

➢ only obs. with western 

azimuth

➢ Grazing events most

promising for reflections
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Thank you for your attention.

Conclusion

▪ GNSS+R obs. from satellite very significant ionospheric delay

▪ Usually F- and E-layer will contribute

▪ Can we resolve E-layer contribution with GNSS+R from rocket?

▪ Simulations using MAPHEUS-8 scenario and ionosphere from NEDM & EISCAT

▪ E-layer dominated ionosphere (ELDI) is important uncertainty in delay

▪ Simulated delay bias due to ELDI is in dm range (2-4 TECU)

▪ GNSS+R data recorded on MAPHEUS-15 in F-layer dominated conditions

▪ Direct signal obs. give realistic TEC profile above 120 km - E-layer contribution is unclear

▪ Tracking of Reflected signals still ahead

▪
Acknowledgements
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