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Abstract

This paper presents the design and implementation of a guidance algorithm for the re-entry
vehicle ReFEx (Reusability Flight Experiment). This algorithm aims at correcting for the
dispersion in position and velocity after separation from the launcher, by updating the
trajectory. The need for this update is driven by the expected divergence from the nominal
trajectory at separation, due to the use of an unguided launcher. The transcription of the
problem into an optimal control problem is used as a baseline for verification purposes.
This algorithm consists of a simplification of the optimal control problem, reducing the
profiles of the control variables to a finite set of control parameters. Combining this problem
reduction with a function that propagates the trajectory from the initial state, this approach
is able to transform the problem into an unconstrained optimization problem. This paper
shows that this simplification is able to find solutions of similar quality to the full optimal
control approach. The resulting algorithm is proven real-time capable by deploying it
into a hardware equivalent of the on-board computer. In addition, a strategy to diverge
during flight to an alternative target if the nominal one cannot be reached is appended to
the algorithm.

Keywords: trajectory optimization; re-entry guidance; optimal control

1. Introduction
The increasing demand for cost-effective and reliable access to space has intensified

the development of reusable launch systems. Among these, winged re-entry vehicles offer
a promising approach, enabling controlled atmospheric descent and precision landing
without the need for propulsion during re-entry. The German Aerospace Center (DLR) is
pursuing this concept through the Reusability Flight Experiment (ReFEx), a demonstrator
designed to validate the autonomous guidance, navigation, and control (GNC) capabilities
required for such vehicles [1]. With a vertical takeoff and horizontal landing profile, ReFEx
aims to showcase the feasibility of aerodynamic trajectory control across a wide flight
envelope, from hypersonic to subsonic speeds.

This article is a revised and expanded version of a paper entitled ‘Design of ReFEx
Guidance: Trajectory Correction after Ascent’, which was presented at AIAA SciTech
Forum 2023 [2]. It addresses the challenge of ensuring accurate and robust trajectory guid-
ance for a winged re-entry vehicle operating under high uncertainty and strict onboard
constraints. After separation from an unguided launcher, large dispersions in position
and velocity must be corrected to ensure the vehicle reaches its designated target. This
paper presents a guidance algorithm that can handle the later challenge, performing a
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major update of the trajectory to correct for the error in position and velocity after ReFEx
separates from the launcher. The main differences with regard to [2] are the following:
(1) a broader literature review, (2) an overview of the design of the GNC system and its
guidance role, (3) reorganization of theoretical content for clarity purposes, (4) refinement
of the algorithm, (5) update of ascent trajectories (to reflect updated vehicle mass), (6) more
extensive Monte Carlo campaigns, and (7) assessment of execution time and performance
in the on-board computer.

The design of guidance algorithms for atmospheric re-entry has long been a critical
area of research for space missions. With the increasing emphasis on reusable launch
vehicles (RLVs), the need for accurate, reliable, and computationally efficient guidance
methods has grown significantly. The challenges associated with re-entry guidance stem
from a range of factors, including high initial state dispersion, a rapidly changing aerody-
namic environment, and stringent path constraints arising from thermal, structural, and
controllability limits. Over the decades, a variety of strategies have been developed to
address these challenges, each offering unique advantages and limitations depending on
mission profiles and onboard resources.

Among them, the algorithm presented in this paper is influenced by (1) energy-
managed entry guidance with bank-angle control, (2) predictor–corrector (P-C) methods,
and (3) optimal control. Energy-managed entry guidance with bank-angle control de-
couples longitudinal and lateral trajectory control by exploiting the dual functionality
of the bank angle: its magnitude modulates the lift vector in the vertical plane, shaping
the downrange trajectory, while its sign determines the direction of lateral lift, enabling
crossrange steering and final heading alignment [3–5]. P-C methods refer to a class of
guidance algorithms that iteratively estimate the trajectory required to meet a desired
terminal condition and apply corrections based on the current vehicle state. Typically,
a predictor step propagates the vehicle dynamics forward using an initial guess for the
control input, while a corrector step adjusts the input to minimize deviation from the target.
These methods are particularly attractive for entry guidance due to their modular structure,
suitability for onboard implementation, and ability to incorporate real-time updates [6,7].
Optimal control is a mathematical framework for determining control inputs that steer
a dynamic system from a given initial state to a desired final state while minimizing (or
maximizing) a specified cost function, such as fuel consumption, time of flight, thermal
load, or terminal error. The solution must respect the system’s differential equations and
any control or state constraints. This formalism is well suited for re-entry guidance, where
vehicles operate under tight physical limits and complex non-linear dynamics [8–10].

This paper begins by giving an introduction to ReFEx, describing the vehicle and the
different phases of the mission in Section 2, as well as the structure of the GNC subsystem
and the challenges that the guidance faces. Section 3 describes the problem at hand.
First, Section 3.1 describes the solution of the problem using an optimal control approach.
Developing a real-time safe version of an optimal control solver is not trivial and solving the
optimal control problem can be computationally expensive. Therefore, several strategies to
reduce the problem complexity are studied, including parameterizing the control vector in
Section 3.2 and using a shooting optimization method in Section 3.3. The control parameters
for the concrete problem at hand are defined in Section 4.1, while different approaches
to solving the resulting non-linear unconstrained optimization problem are described in
Section 4.2. An automatic process to define alternative targets before flight and decide
which of these targets to aim at during flight is explained in Section 5. In Section 6, the
performance of the different algorithms proposed is studied, including an assessment of
the execution time in flight hardware.
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2. ReFEx
RLVs represent a central strategy in current efforts to make access to space more

sustainable and economically viable. By enabling the recovery and refurbishment of
vehicle stages, RLV systems can significantly reduce mission costs, increase reliability,
and improve launch cadence. ReFEx, developed by DLR, is a demonstrator for such a
mission. Its purpose is to validate the autonomous flight capabilities of a winged re-entry
vehicle in the context of a vertical takeoff, horizontal landing (VTHL) architecture. ReFEx
specifically focuses on the return phase of a reusable stage, aiming to gather critical data
and operational experience on autonomous guidance, navigation, and control during
hypersonic and subsonic atmospheric flight [11,12].

2.1. Mission

The re-entry segment of ReFEx has approx. 400 kg of mass and a longitudinal length
of 2.7 m. The wingspan is 1.1 m and the diagonal terms of the moment of inertia are
approx. 15 kg m2 for the longitudinal axis and 240 kg m2 for the other two axes. The design
consists of two fixed wings located at the back of the vehicle, a fin with an attached vertical
tail actuator (rudder) and two canards positioned close to the nose of the vehicle. Two sets
of actuators are used: (1) RCS (Reaction Control System), with eight thrusters located
at the back of the vehicle, and (2) aerodynamic actuators, with the canards and rudder
previously mentioned.

Figure 1 shows the sequence of events for the mission with some preliminary details.
Several phases can be identified from this figure: (1) launch phase, (2) experimental phase
until EI (Entry Interface), (3) experimental phase between EI and EoE (End of Experiment),
and (4) experimental phase after EoE.

Figure 1. Mission architecture and flight events [13].

A Brazilian solid propellant two-stage rocket, VSB-30, will be used during the launch
phase. This rocket is unguided and only passively stabilized, leading to a considerable state
uncertainty at separation. This uncertainty drives the need to perform a major trajectory
update to generate a feasible trajectory from the position and velocity at separation to the
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target ellipsoid. During the launch phase, most of the re-entry segment is covered using a
hammerhead fairing to minimize its aerodynamic effect. After the two stages are burned
out, the rocket is spun down using a Yo-Yo system and both the fairing and the rocket are
separated. The launch site is the Koonibba test range in Australia.

After separation and until EI, the atmosphere is not dense enough to meaningfully
affect the motion of the vehicle, leading to a ballistic trajectory. During this ballistic
flight, the uncertainty in position and velocity propagates, increasing considerably before
reaching EI. The aerodynamic actuators are also not effective and, thus, the RCS is used.
The objectives of this phase are (1) to detumble the vehicle after separation, (2) to acquire
the location of the sun to improve the attitude information in the navigation solution,
and (3) to reach EI with the desired attitude. During this phase, the guidance subsystem
performs the major update of the trajectory that is described in this paper.

When EI is reached, the dynamic pressure is already high enough to (1) generate
aerodynamic forces able to influence the trajectory and (2) control the attitude of the vehicle
using the aerodynamic actuators. During this phase, the objective is to use the aerodynamic
forces to correct the trajectory, compensating for the state dispersion at separation as well as
other uncertainties and errors. The target point to be reached at EoE is defined in position
and velocity. After EoE, the vehicle aims at dissipating as much energy as possible to
minimize the ground impact.

2.2. GNC System

The GNC system is divided in two physical on-board computers (OBCs): the HNS
(Hybrid Navigation System) and the GCC (Guidance and Control Computer) [14] (see
Figure 2).

Figure 2. Simplified functional architecture of GNC algorithms for ReFEx [14].

The HNS runs the navigation algorithms and interfaces with the sensors and with the
GCC. The input of the sensors is fused to generate the navigation solution. The fusion is
conducted using Extended Kalman Filters, executed at 400 Hz. The navigation message is
sent at 80 Hz. For more information on the design of these algorithms, the reader is referred
to [15,16].

The GCC runs the guidance and control algorithms. The control algorithms receive
the reference command from guidance, the navigation message, and the measurements
of the internal sensors of the actuators. The torque needed to follow the commanded
attitude is computed as explained in [17]. The controller output (i.e., commanded torque)
is then allocated to either thrusters (exo-atmospheric phase) or aerodynamic actuators
(endo-atmospheric phase) [18]. Both steps are executed at 40 Hz.

The computation of the nominal trajectory in 3DoF (Three Degrees of Freedom) is
explained in [12]. This trajectory propagates solely the translational state. This trajectory
is updated by the guidance algorithms in two stages. An initial trajectory update aims at



Aerospace 2025, 12, 838 5 of 23

correcting for the dispersion in position and velocity after separation from the launcher
by generating an updated trajectory leading from the estimated state to the target. This
algorithm was originally introduced in [2], and is further explained in this paper. During the
rest of the trajectory, periodic trajectory updates aim at correcting for the accumulating effect
of modeling uncertainties and control errors [19]. A filter is added between this algorithm
and the controller, ensuring that the angles, angular rates, and angular accelerations are
smooth, while allowing discontinuities in the jerk.

The process to prepare these algorithms for integration in the flight software, as well as
the investigation of their execution time when deployed in the flight hardware, is explained
in [20].

2.3. Guidance-Specific Challenges

Among the main challenges that arose when designing and implementing the guidance
algorithm are (1) the huge uncertainty in the state at separation, (2) the particularities of
the flight constraints, and (3) the computational power available.

As the rocket used for the launch is unguided, the error (with regard to the nominal
trajectory) at the separation point (when ReFEx detaches from the launcher) is potentially
huge. Figure 3 shows the dispersion expected at separation in latitude, longitude and
altitude. This figure also shows how the error at separation propagates until a dynamic
pressure of 1000 Pa is reached. This threshold is selected based in the assumption that no
meaningful correction of the trajectory via aerodynamic forces can be conducted at lower
dynamic pressures. To gain perspective of the mission objectives, the target ellipsoid is also
shown, with concentric circles of radius 5, 10, and 15 km. The high uncertainty regarding
the position and velocity of the vehicle when reaching the defined threshold in dynamic
pressure indicates that the nominal trajectory will need to be extremely modified in order
to be able to reach the target with the desired altitude, velocity, and heading. In the figure,
h is the altitude, ϕ the latitude, and λ the longitude.

Figure 3. Trajectory dispersion at separation (o) and reaching 1000 Pa (+). Target (*).

The flight constraints that need to be enforced during the mission can be divided
in two main groups: (1) constraints to ensure the physical integrity of the vehicle and
(2) constraints to ensure the controllability of the vehicle. The first group includes lim-
itations in variables such as the load, dynamic pressure, heat flux, and heat load. The
vehicle is designed such that these constraints are always met (for the envelope of trajec-
tories considered) and, therefore, they do not need to be considered when designing the
trajectory update.

The controllability of the vehicle is ensured via three constraints: (1) limitation in
the angular rate, (2) limitation in the angular acceleration, and (3) imposition of a flying
corridor in Mach (Ma) and angle of attack (α). The reason for a flying corridor is that, due
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to the aerodynamic properties of the vehicle, there are combinations of Ma and α where the
vehicle is underactuated. A trimability analysis was performed in the Mach-α domain for
different values of the angle of sideslip (β). Trimability is defined as the existence of a set
of deflections in the aerodynamic actuators (canards and rudder) that lead to the vehicle
being trimmed in all axes. Based on this trimmability analysis (see [2,18]), a flight corridor
is defined with the aim of minimizing the time spent in underactuated and potentially
unstable regions (see Figure 4).

Figure 4. Path constraints for α with regard to Ma.

The nature of the path constraint in Ma and α is particularly complicated as Ma is
not always decreasing and the translation of this corridor to any other set of variables is
defined differently for each trajectory.

The guidance algorithms are executed in the Guidance and Control Computer (GCC)
(see Figure 5). The GCC consists of one computer stack, composed of three stackable
PCI/104-Express boards from RTD Embedded Technologies, Inc. [20]. The three boards
are a processor board, a CAN interface board, and a power supply board. All boards are
enclosed within a ruggedized housing. In relation with this paper, the most relevant board
is the processor board. This board is a PCI/104-Express single-board computer. with PCIe
Type 2 and PCI expansion busses. It features an Intel Atom E3845 1.91 GHz quad-core
processor with 4 GB DDR3 SDRAM and an on-board 32 GB SSD. The algorithms need to be
optimized in order to comply with the need to execute the trajectory update between the
separation from the launcher and the Entry Interface (see Figure 1), with the computing
power provided by this processing board.

Figure 5. Guidance and Control Computer (GCC) [20].

3. Problem Definition
As previously mentioned, the objective of the algorithm presented in this paper is to

perform a major update of the trajectory to correct for the error in position and velocity
after ReFEx separates from the VSB-30 launcher.
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The starting point for this update is the nominal trajectory (see [12]). The nominal
trajectory contains the evolution of the state, using the equations of motion defined in
Appendix A, for the nominal profile of α and bank angle (µ), assuming nominal position
and velocity at separation. The update of the trajectory aims at modifying the profiles of
α and µ such that the resulting trajectory connects the estimated state at separation with
the desired target at EoE. In order to evaluate the evolution of the trajectory for given
profiles of α and µ, the dynamics and kinematics of the vehicle are modeled as shown in
Appendix A. Finding angular profiles that are able to generate a suitable trajectory presents
certain challenges that are explained in Section 2.3.

Throughout this section, this problem is first enunciated as an optimal control problem
(see Section 3.1). The computational cost of this approach is too high to consider it for the on-
board software, and developing and verifying an optimal control solver to be used on-board
is outside the scope of the mission. In order to solve this issue, the problem is reduced
using a dual approach. First of all, the control vector is parameterized, transforming
the optimization variable from a continuous-time signal to a discrete set of parameters
(see Section 3.2). Then, a function that propagates the trajectory based on the value of
those parameters is implemented. This function also incorporates the path and control
constraints (see Section 3.3). The aggregate of these approaches transforms the problem
into a non-linear unconstrained optimization problem with a finite (and small) number of
control parameters.

3.1. Optimal Control

Despite its limitations regarding on-board usage, this approach is fundamental in
providing a valid benchmark and an upper limit on the optimality of the resulting trajectory.
For broader information on the optimal control problem theory and practical approaches
on how to define optimal control problems, the author recommends [8,21].

For this optimal control problem, the state vector considered is

x(t) = [r, λ, ϕ, vG, γG, χG, µ, α, µ̇, α̇]⊺ (1)

where r is the distance to Earth’s center, vG is the norm of the velocity with regard to the
ground, γG is the flight path angle of the velocity with regard to the ground, and χG is the
heading angle of the velocity with regard to the ground.

The angle of sideslip (β) is not considered as part of the state, as it is not used for
guidance purposes (i.e., its command is always zero). The control vector is

u(t) = [µ̈, α̈]⊺ (2)

The use of angular accelerations as part of the control vector enables constraints to be
imposed in both angular accelerations and rates. It also enforces smoothness in the solution.
The time derivative of the state vector is composed of the translational kinematics

ṙ = vG sin γG (3)

ϕ̇ =
vG cos γG cos χG

r
(4)

λ̇ =
vG cos γG sin χG

r cos ϕ
(5)

and dynamics

v̇G =
Fv

m
+ ω2r cos ϕ(sin γG cos ϕ − cos γG sin ϕ cos χG) (6)
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γ̇G =
Fγ

m
+

vG
r

cosγG + 2ω cos ϕ sin χG (7)

+ ω2 r
vG

cos ϕ(cos ϕ cos γG − sin γG sin ϕ cos χG)

χ̇G =
Fχ

m
+

vG
r

cos γG tan ϕ sin χG − 2ω(tan γG cos ϕ cos χG − sin ϕ) (8)

+ ω2 r
vG cos γG

cos ϕ sin ϕ sin χG

where the different components of the force (F) are shown in Appendix A, m is the mass,
and ω is the angular rate. The rotational kinematics

µ̇ =
dµ

dt
; α̇ =

dα

dt
(9)

and dynamics

µ̈ =
dµ̇

dt
; α̈ =

dα̇

dt
(10)

are also considered [22].
The position and velocity are defined by the state at separation, and µ, α, µ̇, and α̇ are

unconstrained. Through the trajectory, limitations in the maximum value of µ̇ and α̇ and of
µ̈ and α̈ are imposed according to requirements. Additionally, a path constraint is defined,
ensuring that α is within the corridor defined in Figure 4 at each collocation point. The final
time is an unconstrained variable.

The cost function to be minimized consists of the addition of the following two terms:

c1 =

√
∆r
rre f

2
+

∆λ

λre f

2
+

∆ϕ

ϕre f

2
+

∆χG
χre f

2
(11)

c2 =
∆E
Ere f

where E is the total energy per unit of mass; rre f , λre f , ϕre f , and χre f are defined based
in the required accuracy in each of those state variables; and Ere f combines the accuracy
requirements on r and v. This ensures that the variables in which accuracy requirements
are imposed (r, λ, ϕ, vG, and χG) are optimized.

The general-purpose MATLAB software program GPOPS–II is used to solve this prob-
lem. This software employs a Legendre–Gauss–Radau quadrature orthogonal collocation
method where the continuous-time optimal control problem is transcribed to a large sparse
non-linear programming problem (NLP). An adaptive mesh refinement method is imple-
mented that determines the number of mesh intervals and the degree of the approximating
polynomial within each mesh interval to achieve a specified accuracy. More information
about this tool can be found in [23].

3.2. Control Vector Parameterization

Even though solving the full optimal control problem can provide valid solutions
to the trajectory update, it comes at a high computational cost and development effort.
Strategies to define a more time efficient subproblem often involve iterative solving meth-
ods, such as successive convexification [24] or iterative linearization [25]. The proposed
strategy focuses instead on simplifying the optimal control problem into a ’small’ non-linear
unconstrained optimization problem, finding inspiration in bank angle modulation and
predictor–corrector approaches. The first step in this direction is to reduce the control vector
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from a (two-dimensional) continuous-time signal (see (2)) to a discrete set of parameters
(û) such that

u(t) = u(û, x(t)) (12)

where x is the state vector. This simplifies the optimization problem, as it reduces the size of
the control vector enormously. However, this also reduces the available optimization space,
potentially limiting the quality of the solution found. Therefore, the selection of this set of
parameters is not trivial and should be conducted taking into account the characteristics
of the original optimal control problem, in order to be certain that the resulting solution
space is enough to find a solution for the envelope of initial conditions. In this case, the
envelope of initial conditions is defined by the uncertainty in position and velocity after the
ascent phase, when the vehicle ReFEx separates from the launcher. The selection of control
parameters is explained in Section 4.1.

For this transcription of the problem, the state and control vectors are slightly different
than those shown in (1) and (2), and are expressed as

x(t) = [r, λ, ϕ, v, γ, χ]⊺ (13)

u(t) = [µ, α]⊺ (14)

The control parameter (û) contains parameters related to the evolution of both α and µ

in the energy domain. The resulting temporal evolution of the control variables (α and µ)
can be expressed as

u(t) = u(û, E(x(t))) (15)

where E is the total energy per unit of mass, expressed as

E = Ekinetic + Epotential =
v2

2
− µE

r
(16)

where µE is Earth’s standard gravitational parameter.

3.3. Trajectory Propagation

After the evolution of the control vector u(t) is defined as the set of control parameters
û, the next step is to implement a function that propagates the trajectory based in the initial
state (x0) and the control parameters û.

x(t) = F(x0, û, t) (17)

Function F propagates the state vector x (see (13)) using the vehicle dynamics described
in Appendix A. The propagation uses an adaptive Runge–Kutta method, with methods of
order 4 and 5. Therefore, a variable time-step is used to ensure the propagation tolerances
are fulfilled at every step while reducing the computational time.

The constraints in the angular rates, angular accelerations, and angle of attack are
imposed directly in this function. The path constraint in the angle of attack is imposed
by extracting the Ma at each propagation step, computing the maximum and minimum
commanded α based on that Ma, and imposing those limits in the commanded α. The
limits on the angular rates and angular accelerations are considered individually for each
angle (α and µ) and are imposed over the angular acceleration every propagation step as

θ̈upper =min(θ̈max, (θ̇max − θ̇prev)/dt) (18)

θ̈lower =max(−θ̈max,−(θ̇max + θ̇prev)/dt) (19)

where θ is a generic angle and the subindices min and max represent the design constraints.
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As the objective of the optimization is limited to the difference between the state at
EoE and the target state, function F can be modified to

∆xt=t f = F(x0, û) (20)

so that the effect of changes in û in the final error can be studied directly. It is not feasible to
reach the objective in the same time for all trajectories (see Section 2.3) and it is not part of
the mission objectives. Therefore, the final time is not included as an optimization variable.
Instead, the constraint c2 defined in (11) is used to determine the end of the propagation,
leading to

∆xE=E f = F(x0, û) (21)

4. Problem Solution
From Section 3, the theoretical base of the algorithm has been defined, but there are

still two open points, linked to the actual implementation: (1) which parameters to use in
the control vector and (2) how to solve the resulting optimization problem. This section
aims to answer both of these questions.

4.1. Control Vector Parameters

From the nature of the problem (see Section 3.1), it is clear that µ and α are the most rele-
vant control variables. The strategy in this regard is to define parameterized profiles for this
variables, performing a trade-off between control vector size and commanding capabilities.

The concrete control parameters selected are based on prior experience and experi-
mental tuning, as well as the influence of bank modulation strategies [5]. In relation to
µ, four intervals are defined in the energy domain (see Figure 6). These four intervals are
separated by three energy thresholds, two of which are control parameters. Through each
interval, µ is constant, leading to four constants that are part of the control parameter set
û. Regarding α, an initial profile in the energy domain is provided, based on the nominal
trajectory. This profile is divided in five intervals in the energy domain, as shown in
Figure 6. In each interval, a constant offset is added to the initial profile. These five offsets
are control parameters.

Figure 6. Schematic representation of the control parameters. These parameters define the µ and α

profiles with regard to E.

The energy threshold named Eroll is fixed in the energy domain, and defines one
of the most critical maneuvers that the vehicle performs during the flight: transitioning
from flying ‘belly up’ to flying ‘belly down’. This transition, shown in (22), is driven by
the particularities of the aerodynamics of the vehicle. These particularities mean that at
hypersonic regimes the vehicle shall fly with negative α, and with positive α at transonic
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and subsonic regimes. The conditions in µ are driven by the desire to produce a lift in the
upwards direction.{

α < 0
µ ∈ [π/2, 3π/2]

if E > Eroll ;

{
α > 0

µ ∈ [−π/2, π/2]
if E < Eroll ; (22)

The resulting parameterized control vector is

û = [E12, E34, µ1, µ2, µ3, µ4, ∆α1, ∆α2, ∆α3, ∆α4, ∆α5]
⊺ (23)

Figure 7 contains the nominal profiles, with vertical lines marking the intervals de-
scribed in Figure 6.

Figure 7. Nominal profiles of µ and α with regard to E. This is the representation of Figure 6 for the
actual mission.

The correlation between the different control parameters was investigated in order to
further understand their interdependency, as this can have implications for the structure
and conditioning of the optimization problem. The correlation is studied using the Hessian
matrix, which was computed numerically in an equivalent manner to the Jacobian (27).

The results are shown in Figures 8 and 9, for the correlation between the control
parameters at different iterations of the optimization process (i.e., with different initial
guesses). From these figures, two conclusions can be drawn. First of all, there is a high
correlation between the different parameters with regard to all objective variables. This
can lead to slow converge and sensitivity to initial conditions in methods that do not
use the Hessian. Secondly, the correlation can change extremely during the optimization
process. This has two implications: (1) potential redundancies between parameters that
could be indicated by high constant correlations are not present, and (2) the local curvature
of the objective function is highly non-stationary (leading to additional challenges in
optimization convergence).

Figure 8. Correlation between control parameters (E12, E34, µ1, µ2, µ3, µ4, ∆α1, ∆α2, ∆α3, ∆α4, ∆α5) for
each objective variable (r, λ, ϕ, χ). More than 0.4 in white, and less than in black. Computed at
iteration 1 of run 1 from Monte Carlo shown in Section 6.2.
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Figure 9. Correlation between control parameters (E12, E34, µ1, µ2, µ3, µ4, ∆α1, ∆α2, ∆α3, ∆α4, ∆α5) for
each objective variable (r, λ, ϕ, χ). More than 0.4 in white, and less than in black. Computed at
iteration 26 of run 1 from Monte Carlo shown in Section 6.2.

One strategy that was investigated in order to reduce the effects of this high correlation
was to perform a dimensionality reduction in the control space once certain conditions
applied. This way, after a threshold in the number of iterations or rejected updates has
been reached, the control vector is modified to (24). The implementation is such that the
different control parameters can be activated or deactivated at each iteration, opening the
door to online selection of active control variables (e.g., based on Jacobian sensitivity). This
approach proved successful in improving the convergence of the solution.

û = [E34, µ3, µ4, ∆α4, ∆α5]
⊺ (24)

4.2. Optimization Problem

With the definition of F shown in (21), different optimization techniques can be used
to find an optimal solution for the set of control parameters û. The options considered are
the following:

1. MISO (Multiple Input Single Output) optimization problem.
2. MIMO (Multiple Input Multiple Output) 0-search.

Both options rely on a shooting method approach, such as the one described in [8].
For option 1, the cost function is the term c1 in (11). The problem is then solved using the
MATLAB optimization function fmincon. This option is developed solely as a benchmark,
in order to evaluate the performance of the actual algorithm (see option 2).

The 0-search algorithm is implemented by the author for this specific problem. It is
based on the work presented in [8]. This approach is equivalent to expressing the original
objective as a hard constraint and solving the resulting feasibility problem. This method
aims at finding a û such that

c =


∆r
∆λ

∆ϕ

∆χ

 =


f (F(xt=t0 , û))
f (F(xt=t0 , û))
f (F(xt=t0 , û))
f (F(xt=t0 , û))

 = 0 (25)

This 0-search was initially conducted using Newton’s method such that

ûk+1 = ûk + σJ−1
k c(ûk) (26)

where J is the Jacobian, k the iteration, and σ is a scalar. The quality of the update is evalu-
ated using Equation (11) as a merit function. The Jacobian consists of the partial derivative
of c with regard to û, with both variables scaled to avoid badly conditioned Jacobians.

Jk =
∂c
∂û

=


∂∆r
∂û1

∂∆λ
∂û1

∂∆ϕ
∂û1

∂∆χ
∂û1

. . . . . . . . . . . .
∂∆r
∂ûn

∂∆λ
∂ûn

∂∆ϕ
∂ûn

∂∆χ
∂ûn

 (27)
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The partial derivatives are computed numerically using centered differences. There-
fore, in order to compute J (necessary at each step of Newton’s method) the trajectory
propagation function (see (20)) needs to be executed at twice the size of û, i.e., 22 times.
As this is computationally expensive, and in order to maximize the use of the information
generated when computing J, a line search algorithm was also implemented, modifying
parameter σ. In order to perform a more global search in the first few iterations, the deltas
used to compute the partial derivatives are not constant but variable, going lower as the
certainty of having converged to a minimum increases. The deltas also define the trust
region, limiting the region where the updated solution is allowed to be.

Two additions were made to this algorithm. First of all, in order to reduce the diver-
gence from the nominal trajectory, a term penalizing the cumulative corrections on the
control vector (∑ ∆û) was introduced. This leads to a modified search direction such that

ûk+1 = ûk + σ(JT
k J + Q)−1(Jkc(ûk)− Q ∑ ∆û) (28)

with Q a cost matrix penalizing the different terms of the control vector.
Secondly, the trajectory propagations required for Jacobian computation were iden-

tified as the most computationally intensive component of the algorithm. To reduce
execution time, these propagations were optimized by limiting them only to the portion
of the trajectory that is influenced by a given control parameter and any subsequent seg-
ments. For example, since the control parameter µ4 only becomes active after event E23,
the computation of δc

δµ4
is performed by initializing the trajectory at the nominal state at

E23 and propagating only the remaining segment. This approach leads to an approximate
30% reduction in execution time.

5. Target Definition
The nominal target is defined by flying the nominal α and µ profiles, while making

sure that the limitations in flight corridor and angular rates and accelerations are respected.
The nominal initial state is computed as the average of all available ascent trajectories.

The analyses shown in Section 6.2 point to the impossibility of reaching the nominal
target for a certain combination of errors in the state at separation. This impossibility is
handled by (1) defining offline an envelope from which the main target can be reached,
(2) grouping the remaining cases outside that envelope, and (3) defining alternative targets
for each of these groups.

In order to study this envelope, a Monte Carlo run with increased uncertainties is
executed (see Figure 10a). To mathematically define this envelope in a manner that future
updates of ascent trajectories can be easily processed in a repeatable manner, the envelope
of convergence is defined automatically using regularized logistic regression [26]. As the
objective is to evaluate whether the main target is reachable after conducting (maximum)
one trajectory propagation, the idea is to define a function such as

e(xsep, xEoE) =

{
1, if target reachable
0, if target not reachable

x = [r, λ, ϕ, v, γ, χ]; (29)

where xsep is the state at separation and xEoE is the final state when propagated with
nominal û. This approach consists of minimizing the cost function

J(θ) = − 1
m

m

∑
i=1

(y(i)log(hθ(X(i)) + (1 − y(i))log(1 − hθ(X(i)))) +
λ

2m

n

∑
j=1

θ2
j (30)
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where y is the target vector (reachability of the nominal target, [0, 1]), X is the design matrix
(can be any combination of xsep and xEoE), λ is the regularization factor, θ is the parameter
vector (that defines the resulting envelope), and hθ is the sigmoid function

hθ(X) =
1

1 + eXθ
(31)

Figure 10b contains the visualization of the convergence envelope. The results point
towards the possibility of defining this convergence envelope based solely on λEoE and
ϕEoE. To verify this possibility, the design matrix is defined as a polynomial combining the
normalized λEoE and ϕEoE up to order 5. The parameter vector is obtained using 75% of
the datapoints (of a total of 1000 runs) while the other 25% is used to test the accuracy of
the resulting envelope. The training accuracy is 96% and the testing accuracy is 97%, which
is considered acceptable, taking into account the inflated uncertainty that was considered
for this Monte Carlo campaign. The resulting decision boundary is shown in Figure 10b.

(a) Monte Carlo trajectories (b) Decision boundary and targets

Figure 10. Definition of convergence envelope for main target.

For this mission, it is apparent that the points outside the envelope can be grouped in
one cluster and, therefore, only one alternative target needs to be defined. This additional
target is defined by shifting the nominal target’s latitude and longitude (the remaining
variables remain the same) in a direction defined by the relative position of the centroids
of successful and unsuccessful cases. Figure 10b shows the position of both nominal
and alternative targets. The performance of the algorithm, including the selection of an
alternative target, is shown in Section 6.3.

6. Results
This section presents a comparison between the performance of the three formulations

explained throughout the paper:

• Opt. Control: Solving the discretized optimal control problem, using the time profiles
α̈(t) and µ̈(t) as control variables. This leads to a high-dimensional sparse static
non-linear constrained optimization problem. This approach is used as a baseline.

• Optimization: Reducing the problem to a low-dimensional dense non-linear uncon-
strained MISO optimization problem, using the set of control parameters û as the
control vector. This approach is used as a baseline.

• 0-Search: Reducing the problem to a MIMO 0-search problem, also using set of control
parameters û as the control vector. This approach is integrated into the flight software.

Each strategy has its own advantages and disadvantages. The first one provides
the broadest optimization space, as the complete time profiles of α and µ are used to
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optimize the trajectory. However, it is computationally more expensive, requiring on
average approximately ten times more time to generate a solution compared to the 0-search
method. Even though some of this difference might originate from non-optimal algorithm
implementations, the author does not expect it to reduce dramatically using alternative
implementations. The effort required to develop a real-time safe optimal control solver
would also be considerable. The other two methods have a restricted optimization space,
defined by the set of control parameters. This set of parameters is chosen with the aim of
ensuring that the resulting optimization space is enough to find a valid trajectory from the
expected dispersion of the separation state. On the other hand, as a result of this problem
reduction, a solution can be found one order of magnitude faster, making these parameters
more suitable candidates for on-board software. The differences between the optimization
and the 0-search lie in the method used to find the solution.

The analyses included in this section are as follows:

1. An example of how a limited number of trajectories is optimized by each strategy.
2. Performance evaluation with only a nominal target.
3. Performance evaluation including an alternative target.
4. An assessment of execution time in a processor.

The assessments in 2, 3, and 4 are based on the same 500-run Monte Carlo campaign.

6.1. Examples

The aim of this section is to explain the qualitative differences in the different methods
compared, using the first three runs of the Monte Carlo campaign conducted for the analysis
in Section 6.2.

Figure 11 shows the optimized trajectories using each strategy. It can be observed that
very different solutions are found, while finding a solution to the problem of similar quality.
This indicates that the problem analyzed has a considerable number of valid solutions.
Additionally, it can be observed that for the most eastwards of the trajectories, all strategies
struggle to find a suitable candidate.

(a) Opt. Control (b) Optimization (c) 0-Search

Figure 11. Example of nominal (gray) and optimized trajectories (black).

Figure 12 shows the evolution of α and µ for the five cases presented in Figure 11. It can
be observed that the optimal control approach has more flexibility in the modifications to
the nominal profile. The reduction in flexibility in the optimization and 0-search approaches
can be seen in the more uniform profiles (e.g., between two energy points, the commanded
µ is constant). This can meaningfully reduce the resulting solution space.
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(a) Opt. Control (b) Optimization (c) 0-Search

Figure 12. Example of optimized control profiles.

6.2. Performance with Nominal Target

The performance of the different strategies is compared in two steps. First, the cost
function at (11) is extended to also include the velocity component and analyzed at a
variable level, as shown in (32). The reference values are based on the accuracy requirements
for each variable. If the success condition (s) is not met, the case is considered a failure,
reported as such and not considered for the later analyses on the performance.

s = [
∆r
rre f

;
∆λ

λre f
;

∆ϕ

ϕre f
;

∆v
vre f

;
∆χG
χre f

] < 1 (32)

Figure 13 shows the horizontal state at EoE for each strategy. Table 1 shows the
percentage of successful and failed cases. It can be observed that with all strategies there are
some cases that are not able to reach the target. These cases were identified as problematic
due to the magnitude of state error at separation. In particular, heading errors eastwards
seem to be a major problem. The strategy to deal with these cases consists of defining an
alternative target and is defined in Section 5.

(a) Opt. Control (b) Optimization (c) 0-search

Figure 13. Horizontal state at EoE. Success (+), failure (o).
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Table 1. Performance with only nominal target.

Opt. Problem Optimization 0-Search

Success [%] 92.2 90.6 91
Failure [%] 7.8 9.4 9

The overlap in the failed cases is such that around 90% of the failures obtained with
the optimization and the 0-search are common. This is to be expected, as they share the
same control vector. Around 90% of the failures using the optimal control approach are also
failures using the other two. This indicates that there are a number of cases where there is
no feasible solution to reach the target, as it is not found by any of the presented methods.
However, it is also apparent that every method can be improved, as every method has
runs where only it fails. The failures are assumed to be caused by two factors: (1) limited
solution space (see Section 4.1), and (2) abundance of local minima.

For the successful cases, the errors at EoE in r, λ, ϕ, v, and χ are approximated
as normal distributions. The resulting distributions are shown in Figure 14. The error
requirements for the flight (for understanding the quality of the performance) are the
following: ∆ϕ: 20,000 m; ∆λ: 20,000 m; ∆r: 1000 m; ∆V: 100 m; and ∆χ: 20 deg. It can
be observed that the discretized optimal control problem can achieve extremely accurate
solutions in more cases. However, the level of accuracy reached by the 0-search and
optimization approaches is well within requirements and determined mainly by exit
conditions for the search.

Figure 14. Performance comparison with only nominal target.

Between the optimization and 0-search approaches, the main difference lies in the
number of function evaluations that are necessary to reach the final solution. The optimiza-
tion strategy requires on average between 4 and 5 times the evaluations that are required
for the 0-search to achieve similar performance.

6.3. Performance Including Alternative Target

For this analysis, the strategy for selecting the target explained in Section 5 is used.
This results in 11.8% of the cases being redirected to the alternative target, with a direct
impact on the success rates of the mission. Similarly, as in Section 6.2, Table 2 contains the
success rates of each strategy. It can be seen that the success rate is considerably higher,
even though there are still some cases failing. The cause of these failures is assumed not to
be due to feasibility but rather to convergence to local minima with high gravitational pull.
In the case of the optimal control approach, there are also cases in which the algorithm does
not converge to a meaningful solution. It is expected that this would be solvable by further
refinement of this strategy (out of the scope as this paper, as this strategy is only used as
a baseline). The basis of these assumptions is that there are no failed cases in common
between any strategy. For the 0-search, this was confirmed further, as small modifications
to the initial guess (e.g., modifying the µ1 by 1 degree) led to its success.
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Table 2. Performance including alternative target.

Opt. Problem Optimization 0-Search

Success [%] 98.4 99.2 99.6
Failure [%] 0.8 0.8 0.4

Figure 15 shows the horizontal error at EoE for the three strategies, to help visualize
the performance of each case. It can be seen that the feasibility problem with eastward
initial states is solved by the addition of the alternative target.

(a) Opt. control (b) Optimization (c) 0-search

Figure 15. Horizontal state at EoE. Success (+), failure (o).

Figure 16 contains the performance of each approach, approximated as a normal
distribution. In this case, as previously, the optimal control approach delivers the most
accurate solution, but all approaches are within requirements.

Figure 16. Performance comparison including alternative target.

6.4. Assessment of Execution Time in Processor

The same approach as explained in [20] is followed, but including the updates in the
code and in the ascent trajectories as well as more extensive testing. For the development
and verification process (including the automatic generation of the algorithm code), see [20].
The results shown in this section result from the execution of the automatically generated
C++ code for the algorithms in the STHiL platform. The STHiL platform features an
engineering model of the GCC, with equivalent hardware. The combination of the test
cases for the different trajectories and the functions under test is compiled locally for the
open-source Real-Time Operating System RTEMS before deployment. Only the 0-search
approach is implemented here, as it is the selected implementation for the flight.

The same Monte Carlo campaign as shown in Section 6.3 is conducted. Figure 17
shows the execution time as a function of the number of iterations required. It can be
seen that the execution time has a linear dependency with the number of iterations until
approx. 40 iterations. This is because the dimensionality reduction explained in Section 4.1
is activated at this iteration. The time depends mainly on the trajectory propagation
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time multiplied by the time the trajectory is propagated, and this time is directly linked
to the size of the control vector. The requirement for execution time is linked to the
duration of the exoatmospheric phase (which ranges between 150 and 200 s). Therefore, it
considered that the execution time of this algorithm makes it flight-capable. Nevertheless,
additional investigations can be performed to reduced the time. One example is that it was
observed that removing the control parameter ∆α1 does not have any negative effect on the
performance of the algorithm, potentially reducing 10% of the time.

Figure 17. Execution time in flight processor (0-Search algorithm).

Figure 18 shows the performance of the results obtained. As explained in [20], numeri-
cal differences are expected and the verification effort is invested into verifying performance
compliance instead of numerical equivalence. The failure cases are the same. It can be seen
that the results have similar performance to the results obtained in a MATLAB environment.

Figure 18. Performance executed in a flight processor (0-search algorithm).

7. Conclusions
The guidance algorithms developed for the demonstrator mission ReFEx aim at

two main objectives: (1) to correct for the uncertainty after the ascent phase, and (2) to cor-
rect for errors in control, navigation, and modelling during the re-entry. This paper focuses
on an algorithm targeting the first of these objectives, which is particularly challenging due
to the high uncertainty inherent to the unguided rocket used in the ascent phase. Therefore,
this algorithm aims at updating the trajectory after separation, producing a trajectory from
the current estimate of position and velocity to the target.

This problem, producing an updated trajectory, is first transcribed as an optimal
control problem. While this can be used as a baseline to study the performance of the
algorithms developed, it is computationally too expensive to be used on-board and it would
require a high development effort. The approach proposed in this paper reduces the size
of the problem using a parametrization of the control function, i.e., angle of attack and
bank angle profiles. After defining the set of control parameters, which needs to account
for the particularities of the mission, a function that propagates the trajectory is defined.
This function outputs the state at EoE (End of Experiment) based on the initial state and
the control parameters, and it incorporates all the constraints. Several approaches to solve



Aerospace 2025, 12, 838 20 of 23

this function are then introduced, including (1) treating the problem as an unconstrained
MISO optimization problem and (2) treating the problem as a MIMO 0-search problem.

The results show that the effect of the problem reduction on the quality of the solution
trajectory is limited and does not threaten the fulfillment of the requirements, therefore
validating the selection of control parameters. When comparing the two approaches used
to solved the reduced problem, it is clear that (for the implementations described in this
paper) the 0-search approach is superior, as it requires a lower number of iterations and
converges to similarly accurate solutions.

The analyses also highlight the possibility of finishing the ascent phase with a com-
bination of position and velocity from which the nominal target is not reachable. The
envelope from which the nominal target can be reached is estimated using a regularized
logistic regression approach, and the cases outside this envelope are redirected to an
alternative target.

The execution of the algorithms in a hardware-equivalent of the on-board computer
validate their real-time capability. This analysis was also used to verify the performance of
the automatically generated C++ code, executed in the operating system used for the flight.
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Abbreviations
The following abbreviations are used in this manuscript:

ReFEx reusable flight experiment
GNC guidance, navigation, and control
RLV reusable launch vehicle
VTHL vertical takeoff, horizontal landing
EoE, EI end-of-experiment, entry interface
OBC on-board computer
HNS hybrid navigation system
GCC guidance and control computer
α, β, µ angle of attack, angle of sideslip, bank angle
q̄, Ma, ρ, E dynamic pressure, Mach, density, total energy
L, D, CL, CD lift, drag and aerodynamic coefficients for lift and drag
F, ω, m force, angular rate, mass
h, r, ϕ, λ altitude, distance to Earth’s center, latitude, longitude
v, γ, χ velocity norm, flight path angle, heading angle
ẋ, ẍ time derivate of x, double time derivate of x
u, û control profiles, vector of control parameters
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Appendix A. External Forces—3DoF Model
The two contributions to the external forces that are considered are (1) gravity ( fg) and

(2) aerodynamic ( fa) forces.Fv

Fγ

Fχ

/m =

 fv

fγ

fχ

 =

 fg,v

fg,γ

fg,χ

+

 fa,v

fa,γ

fa,χ

 (A1)

The gravity acceleration is obtained based on a model including the J2 term
and expressed in ECEF (Earth-Center–Earth-Fixed). The transformation to the NED
(North–East–Down) frame can be expressed as

fg,NED =

−sinϕcosλ −sinϕsinλ cosϕ

−sinλ cosλ 0
−cosϕcosλ −cosϕsinλ −sinϕ

fg,ECEF (A2)

To express this acceleration in relation to v, γ, and χ (i.e., in spherical coordinates), the
transformation between v, γ, and χ and vNED is defined asv

ϕ

λ

 =

 |vNED|
atan2(−vNED(3), |vNED(1 : 2)|)

atan2(vNED(1), vNED(2))

 (A3)

and therefore

 fg,v

fg,γ

fg,χ

 =


fT

g,NEDvNED

|vNED |
fg,NED(1:2)TvNED(1:2)

|vNED(1:2)|
vNED(3)
|vNED |2 − fg,NED(3)|vNED(1:2)|

|vNED |2
−fg,NED(1)vNED(2)+fg,NED(2)vNED(1)

|vNED(1:2)|2

 (A4)

The aerodynamic acceleration depends on (1) the aerodynamic properties of the
vehicle, (2) the atmosphere (i.e., temperature and density), and (3) the velocity with regard
to the local atmosphere, i.e., including the wind. The aerodynamic properties of the vehicle
were determined by the Institute of Aerodynamics and Flow Technology, also part of DLR,
using CFD (Computational Fluid Mechanics) simulations. More information about the
generation of this database and its validation can be found in [27,28]. For the atmosphere,
the NRLMSISE-00 Atmosphere Model is used. The wind model is obtained based on
HWM14 (Horizontal Wind Model 14). The aerodynamic lift L and drag D accelerations can
be then expressed, assuming no angle of sideslip and that the vehicle is symmetric with
regard to the XZ-plane, as

L =
FL
m

=
1
2

ρv2
WSCL; CL = Cz(Ma, α)cosα + Cx(Ma, α)sinα (A5)

D =
FD
m

=
1
2

ρv2
WSCD; CD = −Cx(Ma, α)cosα + Cz(Ma, α)sinα

where ρ is the density, Ma the Mach, and m the mass. The subscript W denotes the local
atmosphere including the wind. The aerodynamic acceleration can be expressed with
regard to W as  fa,v

fa,γ

fa,χ


w

=

 −D
Lcosµ

vW
Lsinµ

vW cosγW

 (A6)
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The transformation to accelerations with regard to G (ground) is performed in the
following steps:  fa,v

fa,γ

fa,χ


w

−→I fa,NED,W ≈I I fa,NED,G −→I I I

 fa,v

fa,γ

fa,χ


G

(A7)

where I I is based on the assumption of slowly varying wind, I I I is the transformation
defined in (A4), and I is obtained following the inverse procedure to the one shown in (A3)
and (A4), as shown below.

vNED =

vcosϕcosλ

vcosϕsinλ

−vsinϕ

; (A8)

fa,NED,W =

 fa,vcosγcosχ − v fa,γsinγcosχ − vcosγ fa,χsinχ

fa,vcosγsinχ − v fa,γsinγsinχ + vcosγ fa,χcosχ

− fa,vsinγ + v fa,γcosγ


W

(A9)
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