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Florian Pütz,* Hannes Lüdtke, Astrid Ramirez Hernandez, Patrick Oßwald, Patrick Le Clercq,
Uwe Bauder, Georg Eckel, and Andreas Huber

Cite This: Energy Fuels 2025, 39, 18001−18012 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: This study addresses a fundamental source of
uncertainty in predicting the properties of sustainable aviation
fuels (SAF) based on their composition: the unresolved
distribution of structural isomers within iso-alkanes. Two
complementary weighted average models are applied to analyze
the influence of subgroups in composition analysis on the
prediction of fuel properties. Both models are based exclusively
on isomer properties and mixing rules without any training or
fitting process. The first, the Mean Matrix model, represents fuels
using conventional two-dimensional gas chromatography
(GC×GC) resolution (carbon number by hydrocarbon family),
whereas the second, the SubGroup Mean Matrix (SGMM) model,
incorporates retention index (RI) based subgroups within the
C7−C17 iso-alkane range to capture structural differences among isomers. Both models are built from a comprehensive isomer
database augmented by Quantitative Structure−Property Relationship (QSPR) predictions where experimental data was unavailable.
The model performance is evaluated on eight samples (Jet A-1; ATJ-SPK, two FT-SPK and four paraffinic solvents), comparing
absolute errors and a normalized Relative Performance Change (RPC) metric. By incorporating higher compositional resolution via
iso-alkane subgroups in the SGMM, the predictive accuracy for all evaluated properties of the ATJ-SPK fuel, which is characterized
by a narrow and highly branched composition, was significantly improved. These properties included distillation temperatures,
density, viscosity, net heat of combustion, and cetane number. In general, the improvements in volatile properties are most
noticeable. Bulk properties such as density and net heat of combustion show only minor changes in prediction accuracy. Although
the approach improves or maintains the predictive accuracy for the fuel samples, a deterioration can also be observed to some extent
in the property prediction of the paraffinic solvents. Overall, the results indicate that incorporating subgroup-level resolution not only
improves prediction accuracy for fuels with narrow, highly branched isomer profiles, but also can lead to an average performance
improvement for most of the samples.

1. INTRODUCTION
The pathway toward climate neutral aviation through
sustainable aviation fuel (SAF), which is being driven by
political targets such as those of the European Union,1 requires
a rapid scale-up in fuel production capacities. Achieving these
targets requires the utilization of a wide range of feedstocks
and conversion pathways.2−4 However, this diversity brings
substantial challenges for certification of new production
pathways. New synthetic blending component (SBC)
candidates must undergo the ASTM D4054 approval process
in order to being annexed to the ASTM D7566 standard
specification to ensure a safe use. The certification process
involves extensive experimental testing and requires significant
cost, time, and resource investments.5,6 These barriers often

slow the transition from early laboratory-scale innovation to
commercial deployment.

To accelerate development and derisk early stage invest-
ment, a variety of fuel property prediction models6−14 have
been developed to support research and development in the
field of SAF. These models provide composition-based
property predictions for candidate fuels in early stages. To
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address uncertainties in model predictions, researchers have
adopted various strategies - ranging from competing models10

and probabilistic frameworks7 to predictive capability metrics
that assess model reliability.15

While these strategies are effective in assessing and
quantifying uncertainties, they do not reduce them at the
root. One source of such uncertainty stems from structural
isomers - molecules with identical molecular formula but
different structures. These isomers can have different physical
properties,16 which limits the accuracy of predictive models.
Conventional models often oversimplify fuel composition by
assuming that either all isomers for which a measured property
value is available or only one or two within a hydrocarbon
family and carbon number might be present in the fuel.7,17,18

These simplifications can lead to inaccuracies in predicting fuel
properties and performance by neglecting the actual isomeric
distribution present in real fuels. The problem is that even
advanced techniques, such as comprehensive two-dimensional
gas chromatography (GC×GC), are unable to resolve the
composition of fuels on a structural isomer level.12

Shi et al.18 assumed a limitation in predicting the cold
weather properties of diesel fuel due to the reliance on
compositional data based solely on carbon number and
hydrocarbon family. To address this, they proposed distin-
guishing between mono- and highly branched structures,
emphasizing that a more detailed understanding of isomeric
composition could enhance predictive accuracy. Bell4 identi-
fied isomeric variance as a major source of uncertainty in fuel
property prediction and developed a method using two-
dimensional gas chromatography with a vacuum ultraviolet
detector (GC×GC−VUV) to resolve specific isomers in jet
fuels. The study aimed to improve the reliability of property
predictions by addressing the influence of isomeric diversity.
The effectiveness of VUV-based detection, though, is limited
by the availability of reference spectra in spectral libraries.4

Feldhausen et al.11 used GC×GC−VUV with a novel
deconvolution technique to identify 26 structural isomers
accounting for 93.6% of a Synthetic Aromatic Kerosene (SAK)
mass. This high analytical resolution led to significant
improvements in prediction accuracy, including a 90%
reduction in viscosity prediction error. Yang et al.9 developed
Tier α property prediction tools and found that properties with
low isomeric variance, such as density, are predicted more
accurately than those with high variance, such as viscosity. All
the studies highlight the importance of knowing the isomer
distribution within a fuel for accurately predicting its
properties.

To better resolve the distribution of isomers in GCxGC
analysis, Lüdtke et al.19 developed a method in which the iso-
alkanes are divided into subgroups based on their retention
indices (RI).19 Although it does not fully eliminate isomer-
related uncertainty, this advancement aims to reduce it and
therefore addresses key limitations of earlier models. It has the
potential to enable more accurate predictions of fuel properties
by characterizing the composition in more detail. In this way,
the dependence on reference spectra, which limits the
applicability of the GC×GC-VUV method,4 is avoided.

Building on these advancements in compositional analytics,
this study investigates the influence of structural resolution on
the prediction of fuel properties using two basic, training-free
modeling approaches. The first, the Mean Matrix model is
similar to the weighted average method proposed by of Shi et
al.18 and Vozka et al.20 The Mean Matrix model extends the

weighted average method18,20 by using Quantitative Struc-
ture−Property Relationship (QSPR)21 predictions in addition
to the measured properties to calculate the average property
values. It represents fuel composition at the level of carbon
number and hydrocarbon family, reflecting the current state-of-
the-art resolution typically available in compositional analyses.
The second model, the SubGroup Mean Matrix (SGMM),
extends this framework by including retention index (RI)-
based subgroups and therefore uses additional information
about the distribution of isomers within the fuel. This
enhanced resolution captures systematic differences among
isomers - particularly within iso-alkane families - and thus has
the potential to enable more accurate modeling of bulk
properties. The rule for forming subgroups was adopted for
this work exactly as published by Lüdtke et al.19 Since the
underlying study of Lüdtke et al.19 has so far been limited to
iso-alkanes with a chain length C7−C17, this study is subject to
the same limitations with regard to the iso-alkane range.

Both models are part of a broader spectrum of method-
ologies used for predicting fuel properties. This spectrum
includes molecule-based models, which use the structures and
properties of individual components along with mixing rules to
estimate bulk properties.9,10,18,20,21 Hybrid approaches, such as
the M-QSPR model,7 which combine isomer property data
with the general composition and properties of fuels. This
allows them to be trained on both isomer and fuel data sets,
eliminating the need for mixing rules as these can be derived
from the data itself. At the other end of the spectrum are
empirical models that treat the fuel as a single entity.19,20

These models can learn composition-property correlations
directly from fuel data but they require large and diverse data
sets for training. Within this context, the Mean Matrix and
SGMM models explicitly represent fuels as mixtures of
individual molecular components. This design enables their
use as proof-of-concept frameworks, as they rely exclusively on
measurements and QSPR-based10,21−24 predictions of molec-
ular properties without any training on fuel samples. As a
result, there is no need for a large amount of subgroup GCxGC
data, which is not available at the time of writing. Both models
are based on the calculation of the mean property values for all
combinations of carbon numbers and hydrocarbon families of
a GCxGC analysis.18 The resulting mean property matrix can
then be used to predict the bulk property by simple
multiplication of the matrix values with the composition,
taking mixing rules into account. Saldana et al.25 have
previously shown that the combination of QSPR-predicted
property values with appropriate mixing rules can provide
accurate flash point predictions for binary and ternary
mixtures. While their hybrid approach differs in implementa-
tion, the underlying concept of combining QSPR predictions
and mixing rules is related to the methodology used in this
study.

To evaluate the impact of subgroups on this weighted
average method, a range of test fuels was selected, including
conventional Jet A-1, synthetic Fischer−Tropsch (FT-SPK)
and Alcohol-to-Jet (ATJ-SPK) fuels, as well as paraffinic
solvents. These samples span a spectrum of isomeric
complexity and compositional diversity, making them ideal
for assessing the potential benefits and limitations of subgroup-
informed modeling. Using this data set, the study investigates
whether the enhanced compositional resolution provided by
the SGMM, relative to the baseline Mean Matrix model,
improves the predictive accuracy of fuel properties and thereby
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supports more reliable early stage prescreening in sustainable
aviation fuel (SAF) development.

2. METHODOLOGY
2.1. Molecule Database. For the calculation of the mean

matrix, an extensive isomer database is required. The isomers
used in this work are all from commercially or freely available
databases of single components. The majority of these isomers
are from the NIST Standard Reference Database 103a26 and
DIPPIR 801 database27 as well as the public databases
Pubchem28 and Chemspider.29 Since it is not possible to
determine all isomers in a fuel19 and, at the time of writing, no
information is available on the general possible isomers in such
mixtures, this work follows the approach of Hall et al. and
assumes that all molecules listed in physicochemical property
databases can occur in a fuel.10 In contrast to the approach of
Yang et al.30 or Shi et al.,18 this method is not limited to the
availability of measurements, as property values are predicted
using structural information from the referenced databases
whenever measurement data are unavailable.10

The need for isomer property prediction arises from the
significant disparity between the number of theoretically
possible constitutional isomers and those with available
property data. For iso-alkanes in the C7−C17 range, 4290031

isomers are theoretically possible, yet only 353 are included in
the molecular database in this study (∼0.82%), and only 42 of
the entries have a measured cetane number values (∼0.1%).
This highlights the limitations of existing databases and
underscores the importance of predictive methods to address
these data gaps. (Supporting Information A)
2.2. Isomer Property Prediction with Quantitative

Structure−Property Relationship Models. To increase the
number of available property values for potential isomers for
each carbon number, we use the Quantitative Structure−
Property Relationship (QSPR) models developed by Hall et
al.7 to predict the properties of all isomers in our database for
which no measurement is available. These are based on the
research of Saldana et al.22−24 and correlate the structure of a
molecule with its physicochemical properties. The structure of
a molecule is thereby described by quantifying molecular
descriptors such as the carbon number or the number of
methyl groups.21 The research of Hall et al.10,21 and Saldana et
al.22−24 has shown that QSPR models provide reliable property
predictions for a wide range of hydrocarbons, and therefore
provide the foundation for the calculation of the mean
property matrix.
2.3. Mean Property Matrix. The mean property matrix P

is the core element of the proposed modeling framework. As
shown in Figure 1, each cell corresponds to the average
property for a given combination of carbon number and
hydrocarbon family. These average properties are calculated in
three steps. First, all isomers corresponding to a given matrix
cell - defined by hydrocarbon family and carbon number - are
sampled from the isomer database (chapter 2.1). In the second
step, the property value for each isomer is predicted
individually using QSPR models (chapter 2.2) if no
experimental measurement is available. Finally, the arithmetic
mean of these predicted (and measured, if available) values is
computed for each matrix entry. This means that the property
for an average pseudo isomer is calculated for each cell of the
matrix.

For the experimental validation carried out in chapter 3, the
matrices for the following properties are calculated: density at

15 °C, kinematic viscosity at 20 °C and net heat of
combustion. However, the principle can be extended to
other properties and temperatures as long as QSPR models (or
other reliable models) are available for these properties.
2.4. Mean Matrix Model. The Mean Matrix model

combines the two different matrices shown in Figure 2. The
composition matrix W = (wij)ij represents the detailed
composition of the fuel based on a GCxGC analysis. It is
organized according to hydrocarbon families and carbon chain
length, where each element wij is the relative occurrence of a
particular carbon number i for hydrocarbon family j. The same
applies to the average property matrix P = (pij)ij described in
Chapter 2.3. Each element pij stores the mean property value
per hydrocarbon family and carbon number.

The bulk property pmixture of the fuel is calculated by the
summation of the individual mean properties pi, j, weighted by
their respective fractions wi, j. A linear mixing rule is used for
the properties density, cetane number and net heat of
combustion (eq 1).

p w pmixture lin
i j

i j i j,
,

, ,= ·
(1)

An exponential mixing rule is used for the kinematic viscosity
(eq 2).

i

k
jjjjjjj

y

{
zzzzzzzp w pexp lnmixture

i j
i j i j,ln

,
, ,= ·

(2)

During the validation against the CRC World Fuel Survey
data set32 (Supporting Information B), a consistent offset was
observed in the predicted density values. This offset is likely
due to the overrepresentation of subgroups 1(a and b) and 2 in
the database. In the isomer database of this work (Supporting
Information C), subgroup 1 comprise 49.0% of the data set
(220 entries), whereas subgroups 3−7 account only for 21.8%
(96 entries). According to the subgroup classification of
Lüdtke et al.,19 lower-branched isomers occur predominantly
in smaller subgroups. Isomers with fewer branches exhibit
slightly higher densities than those with a higher degree of
branching (see also Figure 11, exemplary for C9). Con-
sequently, when mean values are calculated, these isomers
would receive disproportionate weighting resulting in elevated
mean matrix values and consequently higher density. One

Figure 1. Calculation of the mean property matrix P. The figure
shows exemplary values for density at 15 °C in kg/m3.
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often used solution would be to fit the property matrix to the
density data. Since this requires more data than is available, we
account for this systematic deviation by subtracting a
correction factor of 8.1 kg/m3 from all predicted densities.
This correction was applied uniformly for both the current
model and the SGMM model.

The prediction of distillation curve properties - T10, T50, T90,
and the final boiling point (FBP) - deviates from the
methodology applied to other fuel properties. Instead of
relying on mean values from the property matrix, improved
prediction accuracy was achieved by distributing the mass
fraction to the individual boiling points of the isomers within
each carbon number and hydrocarbon family. This method
captures the natural variability of boiling behavior rather than a
single average value, resulting in a more representative
prediction of the distillation profile. The distillation values
are predicted for ASTM D2887, and, when needed, a
correlation according to Ford et al.33 is applied to estimate
atmospheric distillation values (ASTM D86), as suggested in
the D2887 standard.
2.5. SubGroup Mean Matrix Model. The Subgroup

Mean Matrix (SGMM) model extends the Mean Matrix model
by integrating additional compositional details obtained from
retention index (RI)-based subgrouping in two-dimensional
gas chromatography (GC×GC). This enhancement leads to a
more detailed characterization of the fuel composition, as the
isomer distribution and its influence on the fuel properties can
be reflected to some extent. As a result, the accuracy of the

property prediction is expected to improve and its uncertainty
to decrease.

In contrast to the conventional composition matrix, which
aggregates hydrocarbons exclusively according to family and
carbon number, the subgroup composition matrix contains an
additional degree of separation (Figure 3). According to the
rule for the formation of subgroups proposed by Lüdtke et
al.,19 iso-alkanes were sorted in up to eight subgroups,
depending on carbon number and RI. The subgroup
classification is structured so that subgroup number correlates
with molecular branching, with lower subgroup numbers
corresponding to a lower degree of branching.19 The structure
of the SGMM model remains essentially unchanged compared
to the Mean Matrix model, except for the addition of these
subgroups. From a modeling perspective, the change is
equivalent to the introduction of new hydrocarbon families.

This change also requires an adjustment of the property
matrix as well as the standard deviation matrix. Instead of
sampling from all iso-alkanes within a given carbon number,
the SGMM matrices are now calculated by sampling only the
iso-alkanes that belong to the corresponding subgroup (an
overview of the isomers per subgroup available in our database
is provided in Supporting Information C). While this should
lead to a more accurate prediction of property values, it also
increases the likelihood of empty matrix cells if there is no
molecule for a subgroup in the database (section 2.1). For
these cases, where no isomer structure and therefore no
property measurement or prediction is available, an adaptive

Figure 2. Mean Matrix model combining composition matrix W (left, mass %) and mean property matrix P (right, density at 15 °C in kg/m3).

Figure 3. Difference in GCxGC resolution - Mean Matrix model (left) vs SubGroup Mean Matrix model (right). Values are shown in mass %.
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property value assignment is carried out. In the first step, the
subgroup distinction is removed and the entire iso-alkane
family is considered. If there is still no matrix value available for
the given carbon number, in the second step a search is made
for property values within a range of ± 2 carbon numbers. For
all other families (not iso-alkanes), step two is carried out
directly if average property values are missing. All equations
(eqs 1−4) from section 2.4 are also valid for the SGMM
model. Since not enough measurement data with subgroup
composition analyses is available at the time of writing, the
scaling factor Sf determined for the Mean Matrix model is also
applied to the SGMM model.
2.6. Relative Performance Change Metric. To

quantitatively assess model performance, this study introduces
the Relative Performance Change (RPC) metric. RPC
quantifies the percentage change in absolute prediction error
between an evaluated model and a baseline model, normalized
by the error of the baseline model. The prediction error is
defined as the difference between the measured and predicted
values for a given fuel property pair. The RPC is calculated as
follows:

RPC
max

100%p f
base p f eval p f

f F base p f
,

, ,

,

=
| | | |

| |
×

(3)

where:

• εbasep, f and εevalp, f are the absolute prediction errors of
the baseline and evaluated models, respectively for fuel f
and property p,

• F denotes the set of all fuels,

• and maxfϵ̂F|εbasep, f|̂ is the maximum absolute error of the
baseline model across all fuels for a specific property.

This normalization scheme ensures that performance
differences are scaled by the maximum observed prediction
error within each property, making the results comparable
across properties with different physical units and magnitudes.
Standardizing by the maximum baseline error across all fuels,
instead of the baseline error of the evaluated fuel, reduces the
risk of inflated relative differences when prediction errors are
small and the baseline model already exhibits high accuracy.
Thus, the RPC metric provides a more interpretable and
balanced measure of comparative model performance for
heterogeneous property types.

For the comparison of the mean matrix and the SGMM
model, the RPC is calculated as

RPC
max

100%p f
MM p f SGMM p f

f F MMp f
,

, ,

,
=

| | | |

| |
×

(4)

This metric is a measure of the extent to which the
introduction of compositional detail at the subgroup level
impacts predictive accuracy. Positive RPC values represent an
enhancement in prediction due to subgrouping, while negative
values indicate performance decline.

3. EXPERIMENTAL EVALUATION
The effectiveness of the SGMM model is evaluated by
comparing the model predictions with measured properties
for the distillation curve, density at 15 °C, kinematic viscosity
at −20 °C, net heat of combustion and cetane number. This
analysis focuses on assessing how the inclusion of subgroup
information affects property predictions compared to the
traditional Mean Matrix model. A property-wise overview of
how the subgroups affect the modeling assumptions can be
found in the Supporting Information D. Due to the limited
availability of detailed measurements of subgroup composition,
this study should be considered a proof of concept
demonstrating the potential of incorporating subgroup-level
information into predictive modeling frameworks. The limited
size of the data set is primarily due to two factors. First,
subgroup composition analysis has been introduced recently,
and currently, only one analytical laboratory performs these
measurements. Second, as reported in Lüdtke et al.,19

subgroups 1 and 2 dominate the composition of most samples,
especially conventional jet fuels. However, for these subgroups,
there is hardly any deviation between the property matrix of
the SGMM and the Mean Matrix Model (Supporting
Information D). The reason for similarity of the property
matrices is the disproportionately high representation of
subgroups 1 and 2 in the underlying isomer database
(Supporting Information C). This study therefore focuses
primarily on fuels whose composition differs significantly from
conventional Jet A-1. Those fuels cause major challenges in
terms of property prediction. These samples are rare for several
reasons. One reason is that many production processes are still
in development, sample data often cannot be published.
Another reason is that the fuels themselves are usually only
available in small quantities, which limits the possibility of
comprehensive property measurements. A Predictive Capa-
bility Assessment as proposed by Hall et al.,15 to determine the
impact of subgroups on prediction accuracy is beyond the
scope of the present study due to these limitations.

Figure 4. Fuel composition (left) and RI-based iso-alkane subgroup distribution (right) of ATJ-SPK. The compositional profile is resolved by
hydrocarbon family and carbon number (color coded families), while the subgroup plot illustrates structural differentiation within the iso-alkane
fraction by carbon number (color coded subgroups). Reproduced from ref 19. Available under a CC BY 4.0 license. Copyright 2025 Lüdtke et al.
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3.1. Fuel Selection - Experimental Setup. The SGMM
model is evaluated using a total of eight samples, including a
conventional Jet A-1, three synthetic paraffinic blending
components, including an Alcohol to Jet (ATJ-SPK) and two
Fischer−Tropsch (FT-SPK_1, FT-SPK_2) as well as four
commercially available paraffinic solvents (IsoPar G, IsoPar H,
IsoPar J, IsoPar L). This distinction allows the performance of
the SGMM model to be analyzed for different aspects. While
the Jet A-1, the FT-SPK and the ATJ-SPK differ significantly in
their composition, the paraffinic solvents are an ideal test case
for the modeling approach, as the high content of iso-alkanes
enables good applicability of the subgroup approach.

The ATJ-SPK shown in Figure 4 is a relevant test case to
demonstrate the limitations of the mean matrix model and the
benefits of adding additional subgroups to the modeling
approach. The composition of the fuel has two distinct peeks
in subgroup 5 of C12 and subgroup 4 of C16. As explained by
Lüdtke et al., a high degree of branching is therefore
expected.19 It is already reported in the literature, that these
two peaks are caused by two isomers, which together account
for 88.2% of the composition.34,35 This is in clear contradiction
to the core assumption of the mean matrix approach, that the
fuel can be modeled by considering all isomers within a certain
hydrocarbon family and carbon number.

In addition to its low molecular diversity, the composition of
the fuel consists of approximately 95% iso-alkanes between
carbon numbers C7 and C17. The subgroup method according
to Lüdtke et al.19 is only defined for iso-alkanes in this range,
which means that a subgroup analysis is possible for almost the
entire fuel.

Unlike the ATJ-SPK, the FT-SPK_1 (Figure 5) has a lower
degree of branching. This is reflected in the dominance of
subgroups 1 and 2. In addition, the iso-alkane content is
significantly lower at around 42%. Another 50% of the
composition are n-alkanes (n-alkanes + iso-alkanes ∼ 92%).
The effect of the isomer distribution from nonparaffinic
hydrocarbon families is therefore limited to 8% of the fuel.

The Jet A-1 (Figure 6) has the most complex composition of
the selected jet fuels. Only 30% of the fuel composition is iso-
alkanes. Due to the current restriction of the subgroup method
to iso-alkanes from C7 to C17, a subgroup analysis is only
possible for this share. In addition, the iso-alkane profile reveals
that it is a fuel with low branching, with the dominant
subgroups 1 and 2. In contrast to the FT-SPK_1, the isomer
information is missing for 50% of the fuel composition.

The remaining samples (solvents and FT-SPK_2) are shown
in Figure 7. The figure shows the respective composition of the
samples including the subgroup profile, summed up by the
carbon number. The exact compositions for the individual
samples are provided in Supporting Information E.

4. RESULTS AND DISCUSSION
4.1. Impact of Subgroup Analysis on Property

Prediction. To assess the influence of subgroup resolution
on property prediction, several key fuel properties - namely
distillation curve characteristics (T10, T50, T90, and final boiling
point), density, net heat of combustion, kinematic viscosity,
and cetane number - were modeled using both the Mean
Matrix and SGMM approaches. The model comparison in this
study is based on deviations between predicted and

Figure 5. Fuel composition (left) and RI-based iso-alkane subgroup distribution (right) of FT-SPK_1. The compositional profile is resolved by
hydrocarbon family and carbon number (color coded families), while the subgroup plot illustrates structural differentiation within the iso-alkane
fraction by carbon number (color coded subgroups). Reproduced from ref 19. Available under a CC BY 4.0 license. Copyright 2025 Lüdtke et al.

Figure 6. Fuel composition (left) and RI-based iso-alkane subgroup distribution (right) of Jet A-1. The compositional profile is resolved by
hydrocarbon family and carbon number (color coded families), while the subgroup plot illustrates structural differentiation within the iso-alkane
fraction by carbon number (color coded subgroups). Reproduced from ref 19. Available under a CC BY 4.0 license. Copyright 2025 Lüdtke et al.
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experimentally measured mean values across all available
samples for both modeling methods. This approach enables an
evaluation of relative prediction accuracy across fuels with
differing subgroup profiles.

Figure 8 shows the Relative Performance Change (RPC) for
each fuel-property pair, comparing the SGMM model to the

Mean Matrix baseline. The heatmap visualizes the direction
and magnitude of performance differences using a color
gradient, with positive values indicating improved prediction
accuracy and negative values indicating lower accuracy for the
SGMM model. This representation facilitates direct compar-
ison of model performance across different fuels and
properties. For the distillation properties T10, T50, T90, FBP
only simulated distillation values were available for IsoPar G,
H, J and L as well as the FT-SPK_2, which is indicated by the
blue box.

The data presented in Figure 8 forms the foundation for an
analysis of each individual property, which will be discussed in
detail in the following sections. To make the results more
accessible, the calculated RPC have been divided into five
categories. RPC values greater than 15% are classified as a
“significant improvement”, values between 15% and 5% as a
“moderate improvement”, and values between 5% and −5% as
“no significant change”. Similarly, values less than −15% are
classified as a “significant decline” and values between −15%

and −5% as a “moderate decline”. An overview of the
classification of the evaluation metric and a graphical summary
of the RPC matrix from Figure 8 are provided in Supporting
Information F.

While the RPC formulation enables meaningful comparison
of a model performance across heterogeneous properties, it
remains sensitive to the characteristics of the fuel data set. In
particular, when the maximum baseline error is very small,
RPC values may appear disproportionately large, potentially
overstating improvements. Conversely, if the maximum error is
high, the metric may understate performance change.

Distillation. For T10, the incorporation of subgroup
information resulted in noticeable improvements in prediction
accuracy for seven of the eight samples, as indicated by the
absolute prediction errors in Figure 9. With the exception of
IsoPar H, all samples exhibited a moderate improvement in
prediction accuracy, while ATJ-SPK showed a significant
improvement in agreement with the measured values (Figure
8).

For T50, the incorporation of subgroup information led to
improvements across all non IsoPar samples (Figure 9). The
largest improvements were observed for ATJ-SPK, FT-SPK_1
and FT-SPK_2, which exhibited significant improvements in
prediction accuracy. IsoPar G and IsoPar J showed moderate
decline (Figure 8).

As shown in Figure 9 for T90, predictive performance
improved for half of the samples. IsoPar H and IsoPar J, which
were previously overestimated by the baseline model, are now
underestimated, resulting in comparable absolute errors. FT-
SPK_1 and Jet A-1 exhibited no significant change in
predictive accuracy. The remaining samples showed moderate
improvements, while ATJ-SPK showed significant improve-
ments as the prediction error was reduced by 52% (Figure 8).

For the final boiling point, the incorporation of subgroup
information resulted in improved predictive accuracy for four
out of the eight samples, while three were showing a decline in
prediction accuracy (Figure 9). ATJ-SPK, which was
previously overpredicted, is now slightly underpredicted, but
the overall accuracy significantly improved. Similar levels of
improvement were observed for IsoPar G. Jet A-1 and FT-
SPK_1 exhibited moderate improvement in prediction
accuracy, whereas IsoPar H remained almost unaffected. In
contrast, a moderate decline in performance was noted for
IsoPar J, FT-SPK_2 and a significant decline for IsoPar L
(Figure 8). It is worth mentioning that within the distillation
parameters, the final boiling point according to ASTM D86
and ASTM D2887 is the measurement value with the greatest
uncertainty. The standard specifies a reproducibility of up to
10.4 °C. For this reason, the evaluation of the model
prediction for this property should be treated with caution.

Overall, the inclusion of subgroup information improved the
prediction performance for the distillation properties. This
general improvement is consistent with the theoretical
foundation of gas chromatography, where the retention
strongly correlates to volatility, a key parameter in distillation
behavior.36,37 A plot showing boiling point measurements
against RI with color coded subgroups is provided for iso-
alkane C10 structures in Supporting Information G.

Density and Net Heat of Combustion. As shown in Figure
10, the incorporation of subgroup information did not result in
significant changes in prediction accuracy for density and net
heat of combustion across the majority of samples. This
outcome reflects the inherently lower isomeric variance

Figure 7. Composition FT-SPK_2, IsoPar G, H, J and L, with
subgroup information, aggregated over the carbon number. Hydro-
carbon families are only shown if their mass fraction is at least 0.2% of
the total composition.

Figure 8. RPC of SGMM model compared to Mean Matrix baseline
for T10, T50, T90, FBP, density, net heat of combustion, kinematic
viscosity and cetane number. Positive values indicate improved
prediction accuracy with the SGMM model; negative values indicate
reduced accuracy. The blue box indicates that the distillation values
are not from an atmospheric distillation according to ASTM D86, but
from a simulated distillation according to ASTM D2887.
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associated with these bulk properties,16 which lowers the
potential impact of increased compositional detail through
subgrouping. A notable exception is ATJ-SPK, where the
SGMM model produced a significant improvement in density
prediction and a moderate improvement in net heat of
combustion prediction (Figure 8). These improvements are
due to the highly distinctive and compositionally narrow
profile of the fuel, which violates the core assumption of the
mean matrix model that the isomers are evenly distributed
within each compositional bin. The SGMM model is better
suited to capture such compositional specificity due to the
inclusion of RI-based subgrouping. This is particularly relevant
for the ATJ-SPK in this work, which contains mostly high

branched isomers (subgroups 4 and 5) that are under-
represented in the isomer database.

For the remaining fuels, a moderate decline in prediction
accuracy was observed for FT-SPK_2 and IsoPar H for the
density prediction (Figure 8), whereas all other fuels exhibited
negligible changes. These results are consistent with the trends
shown in Figure 11, which indicates a relatively weak
correlation between density and RI in GC×GC-based
characterization. This is particularly evident in subgroups 1,
2 and 3, which dominate in the samples other than the ATJ-
SPK.

Similarly, for net heat of combustion, the SGMM model
yielded no accountable change in predictive performance for

Figure 9. Absolute prediction errors for distillation temperatures T10 (top left), T50 (top right), T90 (bottom left), and final boiling point
(bottom right) across all samples. Blue circles represent errors from the Mean Matrix model; orange diamonds represent errors from the SGMM
model. The horizontal zero line indicates perfect agreement with experimental measurements. For FT-SPK_2 and IsoPar G, H, J and L the
distillation values are not from an atmospheric distillation according to ASTM D86, but from a simulated distillation according to ASTM D2887.

Figure 10. Absolute prediction errors for density (left) and net heat of combustion (right) across all samples. Blue circles represent errors from the
Mean Matrix model; orange diamonds represent errors from the SGMM model. The horizontal zero line indicates perfect agreement with
experimental measurements.
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fuels other than ATJ-SPK (Figure 10). This observation is
consistent with previous studies indicating that the net heat of
combustion varies only slightly within the isomers of the iso-
alkane family.16 However, since the subgroups are only defined
for this hydrocarbon family, the current more precise analysis
within this family has little effect on the predicted results.

Overall, these results suggest that the SGMM approach
offers limited benefit for the prediction of bulk properties like
density and net heat of combustion - except in cases where the
assumptions of the baseline model are clearly violated by the
compositional structure of the fuel.
Kinematic Viscosity and Cetane Number. Although Hall et

al.16 have demonstrated a significant isomer effect on the
kinematic viscosity this effect could not reflected by the
implementation of subgroup information (Figure 12). This
discrepancy is largely attributed to the weak correlation
between viscosity and the RI derived from GC×GC measure-
ments, as shown in Figure 13.

Nevertheless, a significant improvement in viscosity
prediction was observed for ATJ-SPK (Figure 8). Due to its
distinct molecular composition, which is dominated by a few
highly branched iso-alkanes, the assumptions underlying the
mean-matrix model (uniform isomer distribution within the

compositional bins) are again invalid. The SGMM captures the
high degree of branching more accurately, leading to a lower
and more accurate viscosity prediction.

In contrast, a clear dependence of cetane number on
molecular branching and thus RI has been reported in the
literature,38−41 supporting the value of subgroup analysis for
this property. As visualized in Figure 14, the incorporation of
subgroup information introduces systematic adjustments of the
used mean values. While higher subgroups and thus highly
branched isomers lower the cetane number, smaller subgroups
lead to an increase in the cetane number when comparing the
SGMM model assumption with the mean matrix baseline.

However, this does not result in consistent improvement
across all samples (Figure 12). For the jet fuel and SBC
samples, SGMM yields a better agreement with experimental
data, while for the IsoPars, the conventional Mean Matrix
model performs comparably or even better. This outcome
confirms that the use of a linear mixing rule is not suitable for
cetane number prediction, as nonlinear molecular interactions
play a significant role. This is supported by the findings of

Figure 11. Correlation between retention index and density
measurements at 15 °C for C10 iso-alkanes. The individual isomers
are color coded in their respective subgroups.

Figure 12. Absolute prediction errors for kinematic viscosity (left) and cetane number (right) across all samples. Blue circles represent errors from
the Mean Matrix model; orange diamonds represent errors from the SGMM model. The horizontal zero line indicates perfect agreement with
experimental measurements.

Figure 13. Correlation between retention index and kinematic
viscosity measurements at 0 °C for C10 iso-alkanes. The individual
isomers are color coded in their respective subgroups. Reproduced
from ref 19. Available under a CC BY 4.0 license. Copyright 2025
Lüdtke et al.
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Boehm et al.42 and Kim et al.,43 who observed nonlinear
blending behavior in certain mixtures.
4.2. Comparative Assessment of Key Fuels. This

chapter synthesizes the modeling results and evaluates the
comparative performance of the SGMM approach across key
the in chapter 3.1 highlighted fuel samples (ATJ-SPK, FT-
SPK_1 and Jet A-1). Among the evaluated fuels, ATJ-SPK
clearly proves to be a case that is particularly suitable for the
SGMM approach. Due to its strong subgroup profile
dominated by highly branched isomers, SGMM significantly
improved the prediction accuracy for all properties. These
results illustrate the importance of considering specific isomer
contributions in fuels with low compositional variability, where
the core assumption of the mean matrix model, a uniform
isomer distribution, is clearly violated.

In contrast, the impact of subgroup incorporation on FT-
SPK_1 was substantially lower. This outcome can be partially
attributed to its lower iso-alkane content, which accounts for
only 42% of the total composition, compared to 95% in ATJ-
SPK. In addition, the subgroup distribution in FT-SPK_1 is
dominated by less branched isomers whose properties are
more consistent with the assumptions of the mean matrix and
therefore have less influence on the divergence between the
modeling approaches.

For Jet A-1, only moderate improvements were observed.
This is likely due to the complex composition of the fuel,
which includes a substantial proportion of cyclo-alkanes and
aromatics, for which subgrouping has not yet been developed.
The unresolved isomeric variance within these hydrocarbon
families limits the effectiveness of the current SGMM
approach, indicating the need for further subgrouping methods
that include additional hydrocarbon families.
4.3. Limitations of the Modeling Approach. A key

limitation of the modeling approach is the potential bias in the
reference database toward lower-branched isomers, coupled
with its reliance on QSPR-predicted property values. Since the
database content determines which isomers contribute to the
bulk property estimates, any underrepresentation of specific
species can introduce systematic bias into the results. This
issue also affects the subgrouping approach: although
subgrouping mitigates this source of error to some extent, it
cannot be fully eliminated until all isomers present in a given

fuel are definitively identified. An optimization of the weighted
average matrices, as proposed by Shi et al.,18 is not possible
due to the limited data with subgroup information available at
the time of writing. Moreover, the approach underlies the
assumption that the QSPR models used to supplement
experimental property data are sufficiently accurate. As the
availability of subgroup-resolved fuel samples grows, systematic
evaluation of the QSPR contribution to predictive accuracy
will be essential.

5. CONCLUSION AND OUTLOOK
This study shows the effect of retention index (RI)-based iso-
alkane subgroups, derived from GCxGC compositional
analysis, on fuel property prediction. The subgroup framework
was implemented within a weighted average method,18,20

represented by the mean matrix method. A comparison of
property predictions from the Mean Matrix and SubGroup
Mean Matrix (SGMM) approaches was conducted using eight
samples, comprising a jet fuel, three synthetic blending
components and four iso-paraffinic solvents. Both methods
rely on isomer property measurements supplemented by
quantitative structure−property relationship (QSPR)-predic-
tions and mixing rules to compute the bulk property.

The SGMM approach was selected because it does not
require training on fuel samples and relies solely on isomer-
specific property measurements or QSPR models to estimate
isomer properties. Its capacity to capture isomeric interaction
effects is limited because it represents all isomers of a given
carbon number within a hydrocarbon family as a linear
combination. The approach collapses them into a single
pseudoisomer defined by the mean property value for each
hydrocarbon family−carbon number pair. This approach
inherently introduces uncertainties. However, refining the
resolution of GCxGC data, by subdividing iso-alkanes into
multiple subgroups, is expected to reduce these uncertainties
and improve accuracy. The SGMM operates independently of
large training fuel data sets, which makes it well suited for an
early stage integration of subgroup-level information. Despite
its simplicity, the modeling results were overall positive: the
introduction of subgroup-level analysis resolution led to
improved prediction accuracy, especially for fuel samples
dominated by highly branched subgroups. Moreover, the
prediction of distillation properties, which are strongly
correlated with the RI, was significantly improved.

Unexpectedly, the inclusion of subgroups led to both
improvements and deteriorations in the predictive accuracy
for paraffinic solvents. The reasons for these results are still
unclear and should be investigated in future work. Deterio-
rations were most notably for the cetane number prediction
accuracy, where a data-driven model capable of learning
nonlinear mixing behavior directly from experimental data
would likely benefit from the inclusion of subgroup descriptors.
Alternatively, implementing an empirical mixing rule, such as
that proposed by Ghosh and Jaffe44 and later refined by Creton
et al.,45 may improve the accuracy of the cetane number
predictions.

The utility of the subgroup framework for fuel prescreening
models could be further enhanced by extending its applicability
to additional hydrocarbon families, such as cyclo-alkanes and
aromatics. Additionally, expanding the data set of subgroup-
resolved samples is essential to strengthen the findings and
enable the use of standardized predictive capability metrics,
such as those proposed by Hall et al.15 A larger data set would

Figure 14. Subgroup-level deviations in cetane number predictions
relative to the Mean Matrix model. The horizontal zero line reflects
the baseline Mean Matrix assumptions; bars represent the absolute
differences introduced by the SGMM approach for each subgroup.

Energy & Fuels pubs.acs.org/EF Article

https://doi.org/10.1021/acs.energyfuels.5c02762
Energy Fuels 2025, 39, 18001−18012

18010

https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c02762?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c02762?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c02762?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c02762?fig=fig14&ref=pdf
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.5c02762?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


also enable the development and validation of more advanced
modeling techniques. As more samples with subgroup
information become available, the impact of subgroup
boundary selection and isomer distribution on prediction
accuracy should be evaluated.
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