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ABSTRACT: Thunderstorms have significant social and economic impacts due to heavy precipitation, hail, lightning, and
strong winds, necessitating reliable forecasts. Thunderstorm forecasts based on numerical weather prediction (NWP) often
rely on single-level surrogate predictors, like convective available potential energy and convective inhibition, derived from
vertical profiles of three-dimensional atmospheric variables. In this study, we develop Signature-Based Approach of Identi-
fying Lightning Activity using Machine Learning (SALAMA) 1D, a deep neural network which directly infers the proba-
bility of thunderstorm occurrence from vertical profiles of 10 atmospheric variables, bypassing single-level predictors. By
training the model on convection-permitting NWP forecasts, we allow SALAMA 1D to flexibly identify convective pat-
terns, with the goal of enhancing forecast accuracy. The model’s architecture is physically motivated: Sparse connections
encourage interactions at similar height levels while keeping model size and inference times computationally efficient,
whereas a shuffling mechanism prevents the model from learning nonphysical patterns tied to the vertical grid. SALAMA
1D is trained over central Europe with lightning observations as the ground truth. Comparative analysis against a baseline
machine learning model that uses single-level predictors shows SALAMA 1D’s superior skill across various metrics and
lead times of up to at least 11 h. Moreover, expanding the archive of forecasts from which training examples are sampled
improves skill, even when the training set size remains constant. Finally, a sensitivity analysis using saliency maps indicates
that our model relies on physically interpretable patterns consistent with established theoretical understanding, such as ice
particle content near the tropopause, cloud cover, conditional instability, and low-level moisture.

SIGNIFICANCE STATEMENT: This work aims to improve thunderstorm forecasting by applying machine learning
to vertical atmospheric profiles from numerical weather prediction. We developed a model that incorporates physical
considerations, resulting in more accurate yet computationally efficient predictions compared to conventional methods.
Additionally, the model provides insights into how it identifies thunderstorm occurrence, fostering interpretability and
trust. Our research demonstrates how to enhance the skill of machine learning systems in severe weather forecasting,
which is crucial for supporting timely, informed decision-making in situations that impact public safety and the
economy.

KEYWORDS: Deep convection; Thunderstorms; Numerical weather prediction/forecasting; Postprocessing;
Machine learning; Model interpretation and visualization

1. Introduction accurate and timely forecasts of thunderstorm occurrence in
the future.

Thunderstorm forecasts based on the extrapolation of re-
mote sensing data (nowcasts) become less reliable beyond an
hour (Leinonen et al. 2023); therefore, numerical weather pre-
diction (NWP) is routinely used for the longer lead times re-
quired in many critical decision-making processes. Invoking
mathematical models and current observations, NWP simu-

lates the future atmospheric state encoded in terms of meteo-

Thunderstorms can have devastating impacts on society and
the economy due to accompanying phenomena such as light-
ning, intense precipitation (including graupel and hail), and
strong winds. Severe thunderstorms may lead to flash floods,
which can result in significant damage and endanger lives
(Ntelekos et al. 2007; Piper et al. 2016). Additionally, thunder-
storms cause harm to crops and livestock, resulting in consid-
erable economic losses (Holle 2014). Moreover, thunderstorm

occurrence affects aviation and logistics, causing costly delays
and heightened safety risks (Gerz et al. 2012; Borsky and
Unterberger 2019). Although the global impact of climate
change on thunderstorm frequency remains highly uncertain
and varies regionally, studies suggest that thunderstorms
will become more frequent in many European countries
(Diffenbaugh et al. 2013; Rédler et al. 2019; Taszarek et al.
2021). This trend underscores the growing importance of
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rological variables (Bauer et al. 2015; Palmer 2017). In this
study, we use a convection-permitting NWP model, which al-
lows convection to be resolved without convection parameter-
izations (Yano et al. 2018).

The identification of thunderstorms in NWP model output is
complicated by the fact that no single variable directly indicates
thunderstorm occurrence. Instead, one simultaneously considers
multiple predictors, which act as surrogate indicators of thunder-
storm occurrence (Sobash et al. 2011; Kober et al. 2012; Simon
et al. 2018). These predictors are motivated by a combination of
experience, physical models, and domain knowledge. Examples
include convective available potential energy (CAPE),
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precipitation rate, and relative humidity at 700 hPa. The
occurrence of thunderstorms is then inferred from these
surrogate fields based on the forecasters’ expertise.

Recently, machine learning (ML) techniques have become
increasingly popular for this purpose, leveraging methods
such as fuzzy logic (Lin et al. 2012; Li et al. 2021), random for-
ests (Herman and Schumacher 2018; Loken et al. 2020), and
neural networks (Sobash et al. 2020; Geng et al. 2021; Zhou
et al. 2022; Jardines et al. 2024), with the latter often proving
more effective (Herman and Schumacher 2018; Ukkonen and
Maikeld 2019). ML involves training algorithms to recognize
patterns and make predictions based on labeled data, which
serve as the ground truth. For thunderstorm forecasting, these
labels are often obtained from observational data sources
such as lightning detection networks (Ukkonen and Mikela
2019; Geng et al. 2021) and radar imagery (Gagne et al. 2017;
Burke et al. 2020). We recently introduced the feedforward
neural network model Signature-Based Approach of Identify-
ing Lightning Activity using Machine Learning (SALAMA),
which infers the probability of thunderstorm occurrence from
21 NWP predictors related to thunderstorm activity, outper-
forming classification based only on NWP reflectivity for lead
times up to at least 11 h (Vahid Yousefnia et al. 2024).

The predictors that have been used by ML models for infer-
ring thunderstorm occurrence are single-level variables; i.e., they
assign a single value to each horizontal grid point on the NWP
model domain. Most single-level predictors can be derived from
the vertical profiles of three-dimensional meteorological varia-
bles. For example, CAPE is determined by the vertical profiles
of pressure, temperature, and specific humidity (Markowski and
Richardson 2010). There are additional processes and effects
outside the scope of vertical profiles, e.g., orography, or solar ra-
diation, which are possible sources of lift which forecasters con-
sider when predicting convection initiation. In what follows,
however, we restrict ourselves to single-level predictors that are
derived from vertical profiles. Importantly, the information con-
tained in a set of such single-level predictors is inherently pre-
sent in the corresponding vertical profiles, though in a more
complex, encoded form. Consequently, an ML model trained di-
rectly on vertical profiles should, at a minimum, match the per-
formance of one trained on single-level predictors. Given that a
model based on vertical profiles has greater flexibility to detect
patterns in NWP data, we hypothesize that such a model would
outperform one using only single-level predictors—this is the
primary focus of the present study.

In this work, we introduce SALAMA 1D, a deep neural
network trained on vertical profiles of three-dimensional me-
teorological variables from a convection-permitting NWP
model. We thereby—and in contrast to the original SALAMA
model, to which we refer as SALAMA 0D in this work—bypass
the conventional use of single-level predictors. To our knowledge,
this is the first study to apply neural networks directly to vertical
profiles of convection-permitting forecasts for the purpose of pre-
dicting thunderstorm occurrence. Just like for the original model,
we use data from the Icosahedral Nonhydrostatic-D2-Ensemble
Prediction System (ICON-D2-EPS) (Zingl et al. 2015; Reinert
et al. 2020), a convection-permitting NWP ensemble model for
central Europe with a horizontal resolution of ~2 km and
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65 vertical levels, operationally run by the German Meteo-
rological Service (Deutscher Wetterdienst) (DWD). Lightning
observations from the lightning detection network (LINET)
(Betz et al. 2009) serve as the ground truth. On the other
hand, processing vertical profiles instead of single-level pre-
dictors requires an adjustment of the SALAMA 0D archi-
tecture to account for the increased input dimensionality.
To keep model complexity in check, we are guided by physi-
cal principles in the design of SALAMA 1D. Specifically, a
sparse layer reduces the number of parameters by promoting
interactions within the same height levels, while a shuffling
mechanism discourages the model from learning patterns re-
lated to the vertical grid structure. This shuffling also acts as
a form of regularization, helping to prevent overfitting. Our re-
sults demonstrate that SALAMA 1D achieves superior perfor-
mance compared to SALAMA 0D, highlighting the advantage
of training directly on vertical profiles.

A major issue of ML models concerns the interpretability of
their output (Flora et al. 2024; Yang et al. 2024; Dramsch et al.
2025). In this work, we conduct a sensitivity analysis using sa-
liency maps to explore how the model processes the input verti-
cal profiles. As this analysis will reveal, our model rediscovers
patterns that align with established theoretical understandings
of thunderstorm development and occurrence.

Our work demonstrates the potential of applying deep neural
network models directly to complex, minimally processed input
data, as opposed to relying on lower-dimensional, feature-
engineered inputs fed into shallow ML models. Furthermore,
we illustrate how incorporating physical constraints can enhance
the model’s robustness and computational efficiency, while also
emphasizing the importance of gaining interpretability—and
thus trust—through techniques such as saliency maps. These ad-
vancements are particularly crucial for enabling ML models to
reliably assist in critical decision-making processes in severe
weather forecasting.

The structure of this work is as follows: In section 2, we pro-
vide details on the NWP data used, the lightning observations,
and the methodology for compiling ML training sets. Section 3
describes our ML model, including its architecture and train-
ing process. In section 4, we report our results, including the
sensitivity analysis, while section 5 summarizes our work and
elaborates on its implications with possible future research
avenues.

2. Data

Our objective is to train an ML model—SALAMA 1D—for
inferring the conditional probability of thunderstorm occur-
rence given an array & € RVN: of Nymeteorological variables
at N, height levels. As a baseline for comparison, we will also
train a separate ML model (SALAMA 0D; section 3c) which
infers the probability of thunderstorm occurrence from
Ni = 21 single-level meteorological variables. The ML task is
known as binary classification. ML models for this task are
trained with datasets of examples. In our case, an example is a
tuple (&, y), where the label y € {0, 1} denotes the class to
which the sample & belongs (class 1: thunderstorm occurrence
and class 0: no thunderstorm occurrence). We first collect an
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FIG. 1. Study region for this work, shown in a parallel projection.
The polygon vertices are listed counterclockwise from the bottom
left: (44.7°N, 1.2°E), (44.7°N, 15.8°E), (56.3°N, 17.8°E), and (56.3°N,
1.8°W).

archive of NWP forecasts of £ (section 2a) and the correspond-
ing labels y from lightning observations (section 2b). We then
randomly draw examples from the archive to compile datasets
for training, validation, and testing (section 2c).

Data are collected for a region which encompasses Germany,
as well as parts of its neighboring countries, as shown in Fig. 1.
This region roughly corresponds to the NWP model domain,
which we cropped at the borders by approximately 80 km to re-
duce boundary computation errors.

a. NWP data

The operational runs of ICON-D2-EPS are initialized eight
times daily, starting at 0000 UTC, and produce forecasts with
a time resolution of 1 h. For each full hour of the day, we col-
lect only the latest (and, therefore, most accurate) available
forecast, which is at most 2 h old. We gather forecasts for sev-
eral summer months in 2021 (June-August), 2022 (May-July),
and 2023 (July-August). ICON-D2-EPS comprises 20 ensem-
ble members, which reflect the NWP uncertainty in the initial
conditions, model error, and boundary conditions (Reinert
et al. 2020). We collect the forecasts for all members of the en-
semble system.

For SALAMA 1D, we extract the Ny variables given in
Table 1 from the forecasts; these variables correspond to the
fields which are operationally available in ICON-D2-EPS on
vertical levels. We keep the fields on their native grid (vertically:
N, = 65 nonequidistant levels and horizontally: spherical trian-
gles) to avoid interpolation errors. For SALAMA 0D, we ex-
tract the corresponding single-level predictors (Vahid Yousefnia
et al. 2024).

b. Lightning observations

To reconstruct the timing and location of past thunder-
storm occurrences in our study region, we consult observation
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TABLE 1. (Instantaneous) vertical ICON-D2-EPS field profiles
used in this study.

ICON variable Description

U Zonal wind speed

|4 Meridional wind speed
T Temperature

P Pressure

Qv Specific humidity

QC Cloud water mixing ratio
QI Cloud ice mixing ratio
QG Graupel mixing ratio
CLC Cloud cover

w Vertical wind speed

data from the LINET (Betz et al. 2009). We choose lightning
observations as the ground truth for thunderstorm occurrence
due to their high and uniform detection efficiency (=95% for
LINET) and spatial accuracy (150 m for LINET), similarly to
Ukkonen and Mikel4 (2019) and Vahid Yousefnia et al. (2024).

Given an NWP grid point at horizontal position x and time ¢,
we consider a thunderstorm to occur at (x, ¢) if a flash of light-
ning is detected at any x;, t; with

Ix — x|l <Ar and |r— ] <At (1)
where || || denotes the great-circle distance between x and x,
on a perfect sphere of Earth with a radius of 6371.229 km, as
assumed in the ICON-D2-EPS model (Reinert et al. 2020).
The spatial and temporal thresholds used in this study read
Ar = 15 km and Az = 30 min.

¢. ML dataset compilation

At this stage, we have gathered a dataset archive of tuples
(&, y). Here, & denotes the NWP data for a particular ensemble
member at a particular grid point and time and y denotes the
corresponding ground truth. We compile datasets for training,
validation, and testing, by randomly drawing tuples from the
archive. We provide a summary of the compiled datasets in
Table 2 (the model configuration in the table will be intro-
duced in this section). When compiling the datasets, there are
two issues to be taken into consideration, as we will discuss
next.

First, to reduce correlations between the datasets, we en-
sure temporal separation, which is common practice (Ravuri
et al. 2021; Geng et al. 2021; Jardines et al. 2024). To this end,
the data of 2021 and 2022 are used for training, even days of
2023 are used for testing and odd days of 2023 are used for
validation. To partition the data from 2023, we let each day
begin at 0800 UTC, which we identified to be the hour of least
lightning activity in our observations. The reason for shifting
the start of the day is to minimize the risk of dataset correla-
tions caused by thunderstorms which persist after 0000 UTC
(Vahid Yousefnia et al. 2024).

The second issue that arises is high-class imbalance (observ-
ing the class “thunderstorm occurrence” is climatologically
less likely than observing the opposite class). We estimate the
relative frequency g of thunderstorm occurrence expected for
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TABLE 2. Summary of the datasets used for training, testing, and validation of the ML model configurations used in this study.

SALAMA 1D-2021

SALAMA 1D-2022 SALAMA 0D

Training set
Time period June-August 2021
Dataset size 4 X 10°
Class imbalance 1:1
Validation set
Time period July-August 2023 (odd days)
Dataset size 10°
Class imbalance Climatologically consistent
Test set
Time period July—August 2023 (even days)
Dataset size 10°
Class imbalance Climatologically consistent

June-August 2021, May-July 2022

July—-August 2023 (odd days)
s
Climatologically consistent
July—August 2023 (even days)

Climatologically consistent

June-August 2021
4 X 10° 4 X 10°
1:1 1:1

July—August 2023 (odd days)
10° 10°
Climatologically consistent

July—August 2023 (even days)
10° 10°
Climatologically consistent

the test set by evaluating lightning observations for July and
August from 2018 to 2022 as follows: We first assign labels to
the observations by applying Eq. (1) for each full hour and
each grid point in the study region. Next, we average over the
study region and each month, obtaining 10 samples of g (one
for each July and August of the 5 years above). Finally, we gen-
erate 200 bootstrap resamples of the 10-sample dataset, which
yields g = 1.937 05 X 107 as estimate of the median and the
symmetric 90% confidence interval. The problem with such a
small value of g is that the model might not see enough exam-
ples of the minority class during training to learn meaningful
patterns. To ensure that the model is presented with sufficiently
many positive examples, we compile a class-balanced training
set, which contains an equal number of positive and negative
examples. We arrange class balance by randomly drawing tu-
ples from the archive and keeping a negative example only if
the current number of negative examples does not exceed
half of the dataset target size. Thereby, we randomly under-
sample the majority class, as is common practice (Hasanin
and Khoshgoftaar 2018; Mohammed et al. 2020; Vahid Yousefnia
et al. 2024). The validation and test sets, however, are com-
piled in a climatologically consistent manner. The reason for
this choice is to ensure that we evaluate our model in a realis-
tic setting in which thunderstorms rarely occur. When a
model trained on balanced data is used with climatologically
consistent datasets, we need to calibrate the raw model out-
put p’ using the following formula to obtain a well-calibrated
probability p (Vahid Yousefnia et al. 2024):

_ 194
P v (-9 =p) @

Finally, to examine whether extending the study period from
which to gather examples enhances skill, we compile two
training sets for SALAMA 1D: In addition to a training set
consisting of examples from 2021 and 2022 (yielding a model
configuration to which we refer as SALAMA 1D-2022), we
compile a second training set made up of examples from only
2021 (SALAMA 1D-2021). The models are tested, however,
on the same test set. The training set for the baseline model is
equally made up of examples from only 2021, making it read-
ily comparable to SALAMA 1D-2021. Since SALAMA 0D is

trained on a different set of atmospheric variables, we cannot
use the same test set as for the SALAMA 1D models. To en-
sure comparability, we compile the baseline model test set such
that each sample corresponds to the same forecast, retrieved at
the same grid point and from the same ensemble member, as
its counterpart in the SALAMA 1D test set. This guarantees
that any differences in model performance can be attributed to
the choice of input variables.

3. Methods

In this section, we present the architecture used for
SALAMA 1D and give training details. In addition, we sum-
marize the main aspects of our baseline model SALAMA 0D,
which infers thunderstorm occurrence from derived single-
level predictors.

a. Model description

Given an input sample & of NWP predictors (for a given mem-
ber, grid point, and forecast time), we aim to develop a model
that predicts the corresponding probability of thunderstorm oc-
currence. Our model constitutes a lead-time-independent
postprocessing framework for NWP forecasts. To obtain, for
example, an 8-h forecast of the probability of thunderstorm
occurrence, one needs to apply our model to an 8-h forecast of
NWP predictors. While we train on forecasts with a lead time
of at most 2 h, we examine in section 4 whether the patterns
learned by the ML model generalize to longer lead times.

We use an artificial neural network model R¥*N. — (0, 1)
to describe the relationship between the input sample & and the
corresponding probability of thunderstorm occurrence. The ar-
chitecture of SALAMA 1D, as illustrated in Fig. 2, combines
dense layers with a sparse layer strategically designed to reduce
the number of parameters. This approach addresses challenges
such as overfitting and the high computational demands typi-
cally associated with large ML models. Instead of using the
pruning technique (LeCun et al. 1989; Frankle and Carbin
2019), we incorporate physical aspects and symmetry considera-
tions to achieve a reduction in parameters. Because transla-
tional symmetry is broken along the z direction, weight sharing,
as in convolutional layers, cannot be applied effectively. In-
stead, we implement sparse connections, allowing interactions
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FIG. 2. Change in input size during a forward pass in SALAMA
1D. The sparse layer (section 3b) reduces dimensionality and shuf-
fles the data to prevent the model from learning dependencies tied
to the vertical grid structure. Additionally, the shuffling acts as a
regularization technique, helping to limit overfitting. Input fields
are scaled to order 1. We use rectified linear units as activation
functions after the flattened sparse layer and each dense layer and
a sigmoid function to map the output layer to the open interval
(0, 1). The sparse layer has 8100 trainable parameters, and the
other layers add 13226 parameters. SALAMA 1D is lightweight
with a computational complexity (Sovrasov 2018) of roughly
22kMAC (multiply accumulate operations). SALAMA 0D
(section 3c) requires 1.3kMAC.

only between field values at similar height levels (section 3b).
Dense layers further downstream then construct dependencies
between more distant field values. Additionally, we introduce
a shuffling mechanism to ensure that the model does not rely
on the vertical grid structure, forcing it to infer vertical orien-
tation from the data itself. This design allows the model to, for
instance, associate the formation of ice particles with the
height of the tropopause temperature inversion rather than a
fixed height level, such as level 11. It turns out that shuffling
also regularizes the model, limiting overfitting issues further.
Training is then performed analogously to Vahid Yousefnia
et al. (2024): Evaluating the training set, we scale the input
fields to have zero mean and unit variance before minimizing
binary cross-entropy loss via the Adam optimizer (Kingma
and Ba 2014). Using minibatches of size 1000, we train for

Ny
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300 epochs. After training, we inspect the validation loss as a
function of epoch and select the smallest epoch for which the
loss no longer decreases. Equation (2) is applied with the sam-
ple climatology value found in section 2¢ whenever the model
is used on climatologically consistent datasets.

b. Sparse connections

In this section, we provide technical details on the sparse
layer implementation, an illustration of which is provided by
Fig. 3. The input layer is given by an array of shape (N, N,)
with a field dimension (iterating over the Ny field profiles)
and a height dimension (iterating over the N, vertical levels).
Now, we consider a block of shape (N, k), where k is the
size of the block along the height dimension. We densely
connect the nodes within this block to 4 nodes in the follow-
ing layer. Next, we slide the block by s nodes along the
height dimension and, again, densely connect the corre-
sponding nodes to h subsequent nodes of the following
layer. Starting with a block at the bottom of the input layer,
we repeat this procedure until reaching the top of the input
layer. Provided that N, — k is divisible by s, this procedure
leads to Ny = (N, — k + s)/s blocks and produces N, X h
nodes in the following layer. We incorporate a shuffling
mechanism that randomly permutes the order of the blocks
for each example during training.

In contrast to a convolutional layer with a sliding kernel, all
N blocks in our sparse layer have their own set of free parame-
ters. In total, the sparse layer contributes Ny X (NyX k + 1) X h
parameters to the model. We have studied a large variety
of (k, s, h) combinations and found that skill depends
barely on the particular sliding block configuration as long
as a sufficiently large number of parameters are exceeded.
Setting k = 8, s = 3, and h = 5, which corresponds to
the smallest model configuration with saturating skill, we

Ny
OB

FIG. 3. Tllustration of the connections (lines between bold dots) between the input layer of shape (Nj; N,) and the
following layer of shape (4, Ni). (a) A block of nodes of shape (N, k) in the input layer is connected to a row of 4 no-
des in the following layer. (b) Then, the block is shifted upward by s nodes and rewired with the next row of 4 nodes
of the following layer. The input layer is shown in two dimensions to help visualize each vertical field profile, but there
is no spatially extended structure beyond the vertical z direction. Equally, we show the following layer in two dimen-
sions to illustrate the yield of each group of connections in a separate row; however, this layer is flattened further
downstream (Fig. 2). For better readability, the layer sizes and hyperparameter settings used in this illustration do not

correspond to those in the actual model.
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obtain N, = 20 blocks and 8100 trainable parameters. In
comparison with a fully dense layer, the parameter size is
reduced by around 90%.

¢. Baseline model

To study the potential benefit of postprocessing vertical
NWP profiles instead of derived single-level predictors, we
implement the ML model from Vahid Yousefnia et al. (2024),
which we refer to as SALAMA 0D in the following (in con-
trast to SALAMA 1D, which processes one-dimensional ver-
tical profiles). SALAMA 0D uses a set of 21 established
predictors related to thunderstorm activity to infer calibrated
probabilities of thunderstorm occurrence. The predictors are
mapped to a single node via three dense layers with 20 nodes
each. The architecture of SALAMA 0D is the result of a hy-
perparameter study with increasingly many layers and nodes
per layer until we observed saturation in terms of validation
loss (Vahid Yousefnia et al. 2024). Therefore, SALAMA 0D
skill is not limited by model architecture, and any difference
in skill between SALAMA 1D and SALAMA 0D can be at-
tributed to input data differences. Furthermore, both models
operate point by point, which allows for a direct and fair com-
parison. We train SALAMA 0D with training data from
2021 which matches the NWP model, the study region, and
study period, used for SALAMA 1D (section 2). In con-
trast to the original paper, we feed the NWP data to SAL-
AMA 0D on its native horizontal grid, reducing potential
interpolation errors.

4. Results

We intend to investigate two aspects concerning the model
skill of SALAMA 1D. First, we compare SALAMA 1D to
the introduced baseline model, studying the potential benefit
of considering vertical profiles (instead of derived single-level
predictors) for the prediction of thunderstorm occurrence. On
the other hand, we are interested in examining whether ex-
tending the study period from which to gather training exam-
ples enhances skill. Therefore, we show the results for two
configurations of SALAMA 1D:

o SALAMA 1D-2021: SALAMA 1D, trained with data from
2021.

e SALAMA 1D-2022: SALAMA 1D, trained with data from
2021 and 2022.

The baseline model, SALAMA 0D, has been trained with
data from 2021; it can, therefore, be readily compared with
SALAMA 1D-2021. Note that while SALAMA 1D-2022 is
trained on data from a longer study period than the two other
models, the size of the training set does not change. Potential
improvements in skill with respect to SALAMA 1D-2021 can,
therefore, be unambiguously attributed to increased data vari-
ability. The results from the model comparison are given in
section 4a. Furthermore, we study how sensitively SALAMA
1D-2022 reacts to small input changes. The results, shown in
section 4b, offer insight into how the model infers thunder-
storm occurrence from the input.

VOLUME 4

a. Model comparison

To get a first idea of the skill of the three models, we consider
two cases with thunderstorm activity in central Europe, namely,
1700 UTC 24 July 2023 (case A) and 1200 UTC 2 August 2023
(case B). These two cases were chosen since they display multi-
ple simultaneous convective regions of varying size. In Fig. 4,
we show maps of the probability of thunderstorm occurrence
for central Europe as produced by the three models and com-
pare them with lightning observations. The probability maps
have been computed by retrieving the latest NWP forecast for
each target time (case A: the 2-h forecast of the 1500 UTC
model run and case B: 0-h forecast of the 1200 UTC run) and
applying the SALAMA models to them. The ML models can
be applied to all NWP ensemble members individually, produc-
ing separate probability output for each member. We show the
results for only a single member. For both cases, we also show
raw NWP output to see where the NWP model likely produces
convection. To this end, we consider the column-maximal radar
reflectivity product of ICON-D2-EPS. Specifically, for a given
pixel, we compute the fraction of pixels within a radius of
15 km which exceed a threshold of 37 dBZ (e.g., Theis et al.
2005; Roberts and Lean 2008). Exceedance probabilities of
reflectivity with thresholds between 30 and 40 dBZ have
also been used in previous studies to identify thunderstorm
occurrence (e.g., Mueller et al. 2003; Leinonen et al. 2022;
Ortland et al. 2023).

Case A is characterized by intense thunderstorm activity from
the Alps to northern Germany, with roughly 10 convective ob-
jects of different sizes. Most lightning contours are predicted by
all three models. However, SALAMA 0D produces a significant
number of false alarms. SALAMA 1D-2021 corrects many of
them, especially in southern Germany. SALAMA 1D-2022
tends to make its predictions more confidently than the other
models, resulting in more contours that are filled out with high-
probability pixels. On the other hand, the model seems to pro-
duce slightly more false alarms than SALAMA 1D-2021.

Thunderstorm activity in case B occurs primarily over the
Benelux, while two smaller thunderstorms are observed over
the North Sea. The latter two events are missed by the three
models, though SALAMA 1D-2022 only misplaces the storms
toward the south. The thunderstorm over the Benelux is cap-
tured to some extent by all the models. However, the SALAMA
1D models are more confident in their predictions, producing
high-probability pixels almost everywhere within the thunder-
storm contour. On the other hand, they overestimate the size of
the thunderstorm, resulting in false alarms directly outside the
contour. SALAMA 0D predicts a wide band of thunderstorm
activity over France and southwestern Germany, which was not
confirmed by lightning observations. This region of false alarms
is significantly reduced by the two SALAMA 1D models, with
SALAMA 1D-2022 reducing the region to essentially zero.

The ML models, overall, align with raw NWP structures,
with the highest ML probability output being collocated with a
high likelihood of exceeding 37 dBZ. On the other hand, the
ML models tend to correct the areal size of simulated convec-
tion, with SALAMA 1D-2022 producing the least false alarms.
Remarkably, the SALAMA 1D models can also produce
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FIG. 4. Model probability of thunderstorm occurrence for the three models of this study, evaluated for (top) 1700 UTC 24 Jul 2023 and
(bottom) 1200 UTC 2 Aug 2023. The filled contours with varying shading display the result for the first ensemble member of ICON-D2-EPS,
whereas lightning labels (section 2b) are shown as black contours. None of the dates have been used for training. NWP forecast lead times are
2 h for (top) and 0 h for (bottom) (noting that 0-h forecasts have limited operational utility, as they become available only after the valid time
has passed). (fourth column) The probability of exceeding a reflectivity threshold of 37 dBZ for the first ensemble member of
ICON-D2-EPS. To this end, we compute for each pixel the fraction of pixels within a radius of 15 km at which the column-maximal

radar reflectivity product of ICON-D2-EPS exceeds the threshold.

high-probability output when lightning occurred but no con-
vection has been triggered in the NWP model, as can be seen
for the lightning regions over France for case A, which sug-
gests that our ML models, SALAMA 1D-2022 in particular,
may be able to correct for NWP model biases.

To compare the models quantitatively, we use the test set
from section 2c. The first instrument which we use for compar-
ing model skill is a reliability diagram (Wilks 2011; Brocker and
Smith 2007). Partitioning the range (0, 1) of possible model
probabilities into N, equidistant bins, we distribute the test ex-
amples among the bins according to the model probability they
have been assigned. For each bini = 1,2, ..., N,, we extract the
observed relative frequency o, of thunderstorm occurrence, the
bin-averaged model probability p;, and the number N; of exam-
ples per bin. A reliability diagram then consists of a calibration
function and a refinement distribution. The calibration function
is a plot of 0, against p; and measures whether the model proba-
bilities are consistent with the observed relative frequency of
thunderstorm occurrence, a characteristic known as reliability.
A well-calibrated model exhibits a calibration function close to
the 1:1 diagonal. The refinement distribution corresponds to the
distribution of model probabilities. Skillful models are capable
of producing well-calibrated model probabilities larger than cli-
matology, which is referred to as resolution.

In the upper panels in Fig. 5, we show for each of our models
the corresponding reliability diagram with N, = 10 bins. All
models display a similar degree of high reliability. We reiterate
here that it is important to apply the analytic model calibration
(2); otherwise, high reliability could not be expected. The refine-
ment distributions, as well, look similar. However, the model
resolutions differ significantly: Following Vahid Yousefnia et al.
(2024), we introduce the binwise contributions to resolution and
reliability:

1/Ap N,

_ i N2
_ Udp N,
REL, - g(1 _ g) N (pi Oi) g (4)

where Ap = 1/N,, denotes bin width. The binwise contributions
of RES; to resolution are positively oriented (“the higher, the
better”), while the contributions of REL; to reliability are neg-
atively oriented. In consequence, the area between RES; and
REL,; as a function of p; serves as a positively oriented mea-
sure of skill. According to Murphy (1973), this area is equiva-
lent to the Brier skill score (BSS) if a random model based on
climatology (section 2c) is applied as a reference. The lower
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FIG. 5. Reliability diagram for (left) SALAMA 0D, (center) SALAMA 1D-2021, and (right) SALAMA 1D-2022. (top) The calibration
curve and the refinement distribution and (bottom) binwise resolution and reliability [Eqs. (3) and (4)]. The uncertainty on the calibration
curve is obtained from 10* bootstrap resamples, using daywise block resampling, and shows the symmetric 90% confidence interval. The
area enclosed by binwise resolution and reliability corresponds to the BSS with climatology as reference. The BSS differences between

the models are significant on a 90% confidence level, as we check in Table 3.

panels in Fig. 5 display binwise reliability and resolution, re-
vealing that the increase in skill, measured by the BSS, for
the two SALAMA 1D models is attributed to improved reso-
lution. For SALAMA 1D-2021, both low- and high-probability
examples enhance resolution, while for SALAMA 1D-2022,
all bins with p; > 0.3 contribute additional improvements to
resolution.

In Table 3, we summarize the performance of the three mod-
els using several additional skill scores established for problems
with class imbalance (Wilks 2011; Saito and Rehmsmeier 2015;
Vahid Yousefnia et al. 2024). These scores are positively ori-
ented and bounded by unity. Across all skill scores, the
SALAMA 1D models consistently outperform SALAMA 0D,
with SALAMA 1D-2022 showing higher skill than
SALAMA 1D-2021.

So far, we have worked with a test set that consists of ex-
amples from NWP forecasts with a lead time of at most 2 h
(section 2a). Next, we examine systematically how model skill
depends on NWP forecast lead time. For this purpose, we gen-
erate test sets in which the examples result from NWP forecasts
with a fixed lead time. Just like before, these test sets with fixed
lead times are sampled in a climatologically consistent manner

and consist of 10° examples. The target times are drawn from
the same test days as in section 2c.

The lead-time dependence of skill is shown in the upper
panel of Fig. 6. While we measure skill in terms of the BSS,
we have checked that the results of this section do not qualita-
tively change when considering a different skill score. All
three models exhibit an approximately exponential decrease
in skill. The rate at which skill decreases is very similar for the
three models. This suggests that the decrease in skill is not
model-specific but results from an increasing NWP forecast
uncertainty, which is consistent with previous work (Vahid
Yousefnia et al. 2024). As a consequence, the SALAMA 1D
models’ superior skill for low lead times is passed on to longer
lead times. In the lower panel of Fig. 6, we show the differ-
ence in skill as a function of lead time for all model pairs.
Again, we find that the SALAMA 1D models consistently
outperform SALAMA 0D at a confidence level of 90%, with
SALAMA 1D-2022 showing higher skill than SALAMA 1D-
2021.

It is worth noting that the decrease in skill of SALAMA 0D
is stronger than reported in Vahid Yousefnia et al. (2024).
There, the initial skill decreased by at most 30% after 11 h,

TABLE 3. Scores for classification skill, as defined in, e.g., Vahid Yousefnia et al. (2024), evaluated on the test set. All scores
except BSS and area under the precision-recall curve (PR-AUC) require setting a decision threshold to convert probabilities to
binary output. The threshold is chosen for each model such that the average fraction of examples classified as thunderstorms is equal
to the observed fraction of thunderstorm examples. For this threshold, recall equals precision, and the F; score, such that only recall
is reported here. Uncertainties are obtained from 10* bootstrap resamples, using daywise block resampling, and show the symmetric
90% confidence interval. The last three columns evaluate the distribution of difference in skill between the models [score(A) —
score(B) for model pair (A, B)], obtained from the bootstrap resamples, and show that all differences are significant on a 90%
confidence level.

Skill score 0D 1D-21 1D-22 1D-21,0D  1D-22,1D-21  1D-22, 0D
BSS with climatology as reference 0.2347 0037 0.261* 0% 0.2817 0% 0.027+ 3013 0.020* 2058 0.0475 0014
PR-AUC 0.397790%5 04397088 04527007 0.0437 002 0.0127 91 0.0555030%
Recall 0.41470%5 045270080 04651000 0.0387 0917 0.0147 0509 0.0527 0020
Critical success index (CSI) 02615007 02925055 03031505 003120013 0.0127 037 0.0431 0013

Equitable threat score (ETS)

0.035
0.250% 003

0.033
0.2817 0%

0.2931 095

.013
0.0317 001

0.00
0.0127 5567

0.0431 0013
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FIG. 6. Lead-time dependence of model skill, quantified by the
BSS with climatology as reference. (top) The BSS for the individ-
ual models and (bottom) the skill difference ABSS = BSS(A) —
BSS(B) between model pair (A, B). Uncertainties are obtained
from 10* bootstrap resamples, using daywise block resampling, and
show the symmetric 90% confidence interval.

while the decrease here is approximately twice as much. This
may result from using a more diverse training set in this study
(we use twice as many days to compile the training set).

b. Interpretability study

For the remainder of this section, we focus on SALAMA 1D-
2022, referring to it simply as SALAMA 1D. Our goal is to gain
insight into how our model classifies input. We start by inspect-
ing how the vertical profiles of the SALAMA 1D input fields
look like on average for test set samples to which our model as-
signs a particularly high or low probability of thunderstorm oc-
currence. Figure 7 shows the average vertical profiles for the top
and bottom probability percentiles of test set samples. Shaded
bands denote the symmetric 50% confidence interval. Note that
we converted specific humidity to dewpoint temperature 7, for
a more straightforward comparison with temperature. For better
orientation within the panels, we also plot the average tropo-
pause height, which we compute according to the WMO defini-
tion (lowest level where the lapse rate drops to =2 K km ™!, with
the average lapse rate within 2 km above remaining =2 K km™;
WMO 1957).

The first column of panels in Fig. 7 shows temperature and
dewpoint temperature 7, for the 2 percentiles. The top per-
centile troposphere displays more moisture than the bottom
percentile, in particular in the 2-5-km height. This is consis-
tent with the documented importance of moisture for thun-
derstorm development, as the buoyancy of rising air parcels is
otherwise reduced by dry-air entrainment (Zhang et al. 2003;
Peters et al. 2023; Marquis et al. 2023). In the second column

VAHID YOUSEFNIA ET AL. 9

in Fig. 7, we show average profiles of mixing ratios of cloud wa-
ter (QC), cloud ice (QI), and graupel (QG). The column sug-
gests that the model uses nonvanishing profiles of QI and
QG to discriminate between the top and the bottom percen-
tiles. For high-probability samples, ice particle content peaks
close to the tropopause at a height of 10-12 km, consistent
with measurements of vertical hydrometeor distributions (e.g.,
Vivekanandan et al. 1999; Hubbert et al. 2018). The third col-
umn in Fig. 7 displays the average profiles of cloud cover
(CLCQ). In general, our model associates nonvanishing CLC with
a high probability of thunderstorm occurrence. In particular,
close to the tropopause, CLC tends to be 100%. This is consis-
tent with anvil cloud-top levels (Markowski and Richardson
2010). In the fourth column in Fig. 7, we show vertical profiles
of the three wind components U, V, and W. It is noteworthy
that high-probability samples tend to have southwesterly wind
profiles, whereas samples from the bottom percentile display
northwesterly winds. This is consistent with studies on the typi-
cal propagation direction of thunderstorms in central Europe
(Hagen et al. 1999). On the other hand, vertical profiles of W
vanish for both percentiles. We presume that due to convection
displacement errors in the NWP model, the updraft regions
within simulated deep convection rarely match observed light-
ning observations. Therefore, SALAMA 1D may have learned
not to rely on W for inferring thunderstorm occurrence. The last
column of Fig. 7 shows the average profiles of pressure. Both pro-
files appear to be essentially hydrostatic. Surface pressure tends to
be lower for the top percentile than for the bottom percentile.
Comparing the average profiles of the SALAMA 1D input
fields for the 2 percentiles is useful to get a first idea of whether
our model separates the thunderstorm class from the majority
class in a physically interpretable manner. On the other hand,
this analysis does not inform about the relative importance of
the individual atmospheric variables. Therefore, we conduct a
linear sensitivity analysis of the conditional probability f of
thunderstorm occurrence (SALAMA 1D model output) with
respect to the input. The general idea is to consider for a given
input sample & = (§ij) € RM*N. the partial derivatives of f:

®)

The term S;() constitutes a measure of how much f reacts to
changes in &; and, therefore, quantifies the importance of §; to
the outcome. The term S;(£) is commonly referred to as sa-
liency in the ML literature (Simonyan et al. 2014; Li et al. 2022),
while meteorologists might know it as adjoint sensitivity (Errico
1997; Warder et al. 2021).

In order for saliency values S;(£) to be comparable across all
indices i and j, we need to scale the input fields appropriately.
This scaling accounts for the fact that the fields have different
units and vary differently from one sample to another. Consider
an unscaled input field £(z) (e.g., pressure), which we take as a
function of height z above ground. We define the correspond-
ing scaled fields as

_ @) — i)

&(z) o)

, ()
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FIG. 7. Average vertical field profiles for the (top) top probability percentile of test set samples
and (bottom) the bottom percentile, with annotated levels of the tropopause. We convert aver-
age specific humidity to dewpoint temperature 7, for a comparison with 7. Shaded bands corre-
spond to the symmetric 50% confidence interval.

where ug(z) and o¢z) encode a characteristic background
climatology for £(z). We define them as

Mg(z) = Pso[é(Z)L (7)

Py[&(2)] — P, [E(2)]

- : ®)

o (2) =

where P, stands for the nth percentile of the variable in the
brackets, evaluated for the training set. We then compute sa-
liency with respect to the scaled fields.

While saliency varies from one sample to another and can
be used to interpret individual predictions, we propose averag-
ing over the top probability percentile to obtain more robust
insight into the input fields and height levels which contribute
most to high-probability output. To this end, we compute
[(S;)], where the angle brackets denote averaging over the top
percentile samples. We take the absolute value (absolute sa-
liency), as we consider feature importance to be linked to the
(sample-averaged) intensity of the ML model’s linear re-
sponse, irrespective of whether this response is positive or neg-
ative. In what follows, we refer to |(S;)| simply as saliency, i.e.,
with sample averaging and taking the absolute value being im-
plicitly implied unless stated otherwise. The resulting saliency
map for the top percentile is shown in Fig. 8. Note that average
saliencies of the different fields are stacked on top of each
other. As a consequence, the saliency envelope quantifies how
much individual height levels affect the model outcome.

The saliency envelope displays two distinct peaks, at z = 12 km
and z = 5 km, respectively. The upper-level peak receives the
most contributions by horizontal wind speed. Indeed, the salien-
cies of U and V are maximal near the tropopause, where the av-
erage horizontal wind velocity difference between the top and
bottom percentiles is greatest (Fig. 7). This suggests that the
model relies to a considerable extent on the learned climato-
logical propagation direction of thunderstorms. Conversely,

W saliency is approximately one order of magnitude smaller
than the saliencies of U and V. QI saliency is maximal at the
top of the troposphere, contributing significantly to the upper-
level peak, as well. QI is present only at this height (Fig. 7),

tropopause

0.0 0.2

0.4 0.6
avg. saliency / 107!

0.8

FIG. 8. Vertical profiles of average saliency for the top percentile
of test set samples (based on model probability), with annotated
levels of the tropopause, as well as the LFC and EL of a mixed-
layer parcel. Saliencies for the different fields are stacked on top of
each other in the order given in Table 1.
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which suggests that the model actively takes ice particle con-
tent into consideration to infer thunderstorm occurrence. The
only other hydrometeor field with significant nonvanishing sa-
liency is specific humidity (QV). QV saliency peaks near the
LFC, coinciding with the vicinity of maximal tropospheric mois-
ture (Fig. 7). Similarly, CLC saliency is low but nonvanishing at
all heights with nonzero CLC (Fig. 7).

Next, we turn to the midlevel peak. Apart from horizontal
wind velocity, the midlevel peak receives most contributions
from temperature. This may be partly due to convection feeding
back to the temperature field. However, since pressure saliency
is nonvanishing only at the midlevel peak and near the surface,
we hypothesize that the ML model also reconstructs lapse rates.
To understand this, note that our model is not informed about
the height of individual vertical levels; rather, these levels are
randomly shuffled (section 3a). Thus, our model can reliably in-
fer height levels—and in particular level spacings—only from
pressure, which monotonously decreases with height (Fig. 7).
Therefore, we expect pressure saliency to be a proxy for how
much the model relies on vertical gradients. Finally, as pressure
saliency contributes to the midlevel peak and temperature sa-
liency is high, we conjecture that our model reconstructs midle-
vel lapse rates. This is supported by the fact that the midlevel
peak is bounded by the LFC and the equilibrium level (EL) of
parcels lifted from the mixed layer, meaning that such parcels
are buoyant for height levels in the vicinity of the midlevel
peak. Positive buoyancy occurring in a conditionally unstable
troposphere is known to be a crucial ingredient for thunder-
storm development (Doswell et al. 1996) and constitutes the ba-
sis for several traditional thunderstorm predictors, such as
CAPE.

To test whether SALAMA 1D considers midlevel lapse rates,
we show in Fig. 9a the distribution of 500-300-hPa lapse rates
for the top and bottom probability percentiles. Indeed, essen-
tially all high-probability samples are associated with condition-
ally unstable midlevel lapse rates, whereas the bottom percentile
distribution extends further into absolutely stable midlevel lapse
rates. On the other hand, the distributions of the 2 percentiles
show a significant overlap, which implies that considering midle-
vel lapse rates alone is not sufficient to infer a high probability
of thunderstorm occurrence.

Complementary to midlevel lapse rates, we show the distribu-
tions of CAPE for the 2 percentiles in Fig. 9c. Most samples in
both percentiles have a low value of CAPE, with around 50%
of the high-probability samples and 90% of the low-probability
samples falling into the lowest bin. Nevertheless, the top per-
centile distribution has a longer tail, toward higher CAPE val-
ues, than the bottom percentile distribution does. The low
CAPE values of the bottom percentile samples are consistent
with conditional instability failing to develop. As for the top
percentile samples, we expect CAPE to be considerably re-
duced inside the core of a convective cell, whereas some CAPE
is expected to remain in lightning regions of less intense precipi-
tation, producing the long tail of the top percentile distribution.

As pressure saliency is nonvanishing also near the surface,
we show in Fig. 9b distributions of near-surface (10-1000 m)
lapse rates. Indeed, the distributions differ for the 2 percen-
tiles. In contrast to the midlevel peak, near-surface lapse rates
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for the top percentile tend to be lower, and mostly absolutely
stable, whereas lapse rates for the bottom percentile are mostly
conditionally unstable. Figure 9d shows the corresponding dis-
tributions of convective inhibition (CIN). While most samples
of both percentiles fall into the lowest bin, the top percentile
distribution has a longer tail toward higher values of CIN. This
might seem surprising as this result seems to suggest that more
stable low-level lapse rates (or higher values of CIN) favor
thunderstorm occurrence. However, the reduction in CIN is
only conducive to thunderstorm development if sufficient
CAPE has been able to build up beforehand. The bottom
percentile samples are essentially from environments with
low CAPE and low CIN, which suggests that in these cases,
the constantly low CIN (due to, e.g., continuous mixing of
low-level air) caused any instabilities aloft to be released
prematurely, preventing CAPE from building up or thun-
derstorms from forming (Carlson et al. 1983; Tuckman et al.
2023). As for the top percentile samples, CIN is expected to
be mostly removed within storm centers, while some CIN
can be expected to remain in the less intense regions of con-
vective precipitation or for samples with simulated convec-
tion occurring nearby or in the near future. This effect
likely produces the longer tail of the top percentile distribu-
tion of CIN.

In summary, SALAMA 1D appears to rely on two catego-
ries of patterns. One category consists of patterns related to

e tropopause ice particle content, or
e cloud cover.

These patterns pertain to regions within ongoing convec-
tion, in which precipitation is most intense. In contrast, we
identify a category of patterns related to

e horizontal wind direction,
¢ midlevel and near-surface lapse rates, or
¢ low-level moisture.

We refer to the latter patterns as mesoscale since the un-
derlying fields, such as temperature and pressure, vary
more slowly in the horizontal than the fine-grained hydro-
meteor variables do. Conversely, we refer to the former
patterns as submesoscale. Mesoscale patterns in the above
sense tend to be characteristic of regions with sufficient dis-
tance to the convective cores such that precipitation is less
intense and some CAPE remains to be released. SALAMA
1D is sensitive to both categories to identify thunderstorm
occurrence. While submesoscale patterns are useful for the
identification of convective storm centers, the sensitivity to
mesoscale patterns could explain the ML model’s skill at
increasing the areas of simulated convection observed in
the case study (Fig. 4), namely, by accounting for modestly
precipitating regions with low-level moisture and leftover
CAPE.

5. Discussion and conclusions

Bypassing the traditional use of derived single-level pre-
dictors from NWP data, we developed SALAMA 1D, an
ML model for predicting the probability of thunderstorm
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FIG. 9. (a) Distribution of midlevel lapse rates, (b) near-surface lapse rates, (c) mixed-layer CAPE, and (d) mixed-layer
CIN for the top and bottom probability percentiles of test set samples.

occurrence on a pixelwise basis by processing vertical
profiles of three-dimensional variables from convection-
permitting NWP forecasts. The model’s architecture was
motivated by physical considerations. In particular, a sparse
layer reduces parameter size by encouraging interactions at
similar height levels, while a shuffling mechanism prevents
the model from learning patterns tied to the vertical grid
structure. The latter also adds a form of regularization that
limits overfitting.

In comparison to SALAMA 0D, an ML baseline model
that infers thunderstorm occurrence from derived single-level
features, our model demonstrated higher skill across a wide
range of metrics and for lead times up to at least 11 h. This re-
sult indicated that information relevant to thunderstorm oc-
currence, while intricately encoded in vertical profiles, can be
successfully extracted by machine learning, resulting in an im-
proved ability to recognize thunderstorm occurrence in NWP
forecasts. Notably, our model remains lightweight in terms of
computational complexity, making it just as suitable for real-
time operational use as SALAMA 0D is. Case studies sug-
gested that SALAMA 1D is capable of correcting the raw
NWP output when convective areas are of incorrect size or
when NWP fails to produce convection in the first place. Fur-
thermore, doubling the number of days used to compile the
training set (while keeping the training set size constant) also
increased skill, underscoring the importance of a large and di-
verse database of NWP data. We anticipate further skill im-
provements with the collection of more NWP data.

A sensitivity analysis based on saliency maps revealed that
many learned patterns are physically interpretable. For in-
stance, our results suggested that SALAMA 1D has learned
the climatological propagation direction of thunderstorms in
the study region and relies on fine-grained (submesoscale)
structures, such as ice particle content near the tropopause,
or cloud cover, to identify high-precipitation regions of on-
going convection. Conversely, mesoscale patterns related to

atmospheric instability and moisture are used, possibly to ac-
count for regions with less intense precipitation and leftover
CAPE. We hypothesized that mesoscale patterns are instru-
mental in correcting the areal size of simulated convection.

To improve the ML model’s capability of correcting for
NWP-related biases, it may be beneficial to adapt the model
in such a way that horizontally extended input, or several
forecast times around the target time, is processed. This
would allow for improvement on correcting location and tim-
ing errors of convection. Furthermore, one could train the
model in such a way that it can process all ensemble members
simultaneously in one forward pass, which would enable the
ML model to account for the NWP forecast uncertainty.

In closing, we stress that the methodology applied in this
work may be useful for machine learning (ML) topics beyond
the identification of thunderstorm occurrence in NWP data.
Our approach demonstrates how incorporating physical con-
straints and symmetry principles can lead to more robust and
computationally efficient ML models. Additionally, our use of
saliency maps highlights a path toward more interpretable
ML models, fostering greater trust as we gain insight into how
models arrive at their predictions. As ML continues to play a
growing role in severe weather forecasting, ensuring that
these models are both accurate and transparent will be key to
enhancing their operational utility in critical decision-making
processes.
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