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Abstract—This paper considers random walk-based decentral-
ized learning, where at each iteration of the learning process,
one user updates the model and sends it to a randomly chosen
neighbor until a convergence criterion is met. Preserving data
privacy is a central concern and open problem in decentralized
learning. We propose a privacy-preserving algorithm based on
public-key cryptography and anonymization. In this algorithm,
the user updates the model and encrypts the result using a distant
user’s public key. The encrypted result is then transmitted through
the network with the goal of reaching that specific user. The key
idea is to hide the source’s identity so that, when the destination
user decrypts the result, it does not know who the source
was. The challenge is to design a network-dependent probability
distribution (at the source) over the potential destinations such
that, from the receiver’s perspective, all users have a similar
likelihood of being the source. We introduce the problem and
construct a scheme that provides anonymity with theoretical
guarantees. We focus on random regular graphs to establish
rigorous guarantees.

I. INTRODUCTION

Machine learning models have the potential to provide sig-
nificant benefits in a wide range of areas, including intelligent
healthcare [1], [2], Internet of Things (IoT) [3] or Internet
of Vehicles [4], [5]. However, the success of the models
relies heavily on access to large and comprehensive datasets.
Distributed learning in its various forms, e.g., federated and de-
centralized learning, emerged as a new paradigm for accessing
massive amounts of personalized and private data generated by
participating clients.

In federated learning [6], users maintain their data locally
and only share locally updated models with the federator,
who orchestrates the training process. Decentralized learning
eliminates the need for a central authority. Instead, users take
an active role in distributing model updates among themselves.
The users can be modeled as vertices in a graph. Users who
can communicate are connected with an edge. Two main types
of algorithms are studied in the literature: (i) gossip algorithms,
e.g., [7]-[13], in which at every iteration, all users update the
model locally and share their update with all their neighbors;
and (ii) random walk-based algorithms, e.g., [14]-[18], in
which at every iteration, one designated user updates the model
locally and shares the update with one of its neighbors chosen
at random. In both cases, the algorithm proceeds until certain
convergence criteria are met. We focus on random walk-based
algorithms due to their low communication cost incurred per
iteration. The name random walk-based algorithm stems from
the machine learning model being passed sequentially among
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neighboring nodes, thus drawing a random walk (RW) on the
graph.

Despite users’ data being kept locally, privacy is not imme-
diately preserved. For instance, users can infer updates to the
model by comparing its state to the point where the RW was
last observed. The current model might exhibit a bias towards
the data of the user who recently updated it. By accumulating
such observations, a user may potentially glean information
about the other users’ data, cf. [19], [20].

The main approach to conceal individual data updates is
through the application of differential privacy [21], as done
in [17], by injecting carefully designed random noise into the
model updates. However, this comes at the cost of a trade-off
between privacy and model precision [22]. The noise needed to
ensure privacy grows with the number of updates that will be
observed [23]. Therefore, without proper care, a large amount
of noise may be needed, significantly reducing the algorithm’s
utility. While homomorphic encryption, as introduced in [24],
presents a promising alternative as it allows for computation on
encrypted data, the computational overhead of such algorithms
often renders them impractical for handling large datasets or
complex functions (see, for example [25]).

This paper introduces a novel privacy-preserving model that
does not require differential privacy mechanisms and whose
practicality surpasses homomorphic solutions. The core idea is
to use public-key encryption and source anonymity as follows.
The user updating the model encrypts it using the public key
of the destination user. The model is transmitted through the
graph in a way that, when reaching the destination, the identity
of the transmitting user will be concealed. This model achieves
two goals simultaneously: (i) high utility, the destination can
decrypt the model and use it plainly; and (ii) privacy, by
concealing the identity of the transmitter, the eavesdropping
users would not be able to map the information they inferred to
other users’ data. Note that our privacy-preserving mechanism
is compatible with differential privacy. Noise can be inserted
into the model before encryption. The noise level needed here
may be lower since concealing the identity of the user hinders
the composition of multiple observations.

The main challenge in this model is to carefully design
a choice of the destination node among all nodes to ensure
that the identity of the transmitting user is concealed. We
term this property ‘“source anonymity”, inspired by similar
studies in other contexts, such as wireless sensor networks,
e.g., [26], [27]. To the best of our knowledge, this work is the
first to tackle anonymity for random walk-based learning. We
investigate random regular graphs in which a rigorous analysis
of our method can be carried out. We study the privacy leakage,



i.e., how well the source anonymity can be guaranteed under
probabilistic guarantees. All proofs are deferred to an extended
version and can be found in [28].

II. MODEL AND ANONYMITY NOTION

Consider a collaborative setup consisting of N users, also
referred to as nodes. Each user 7 with i € [N] £ {1,..., N},
possesses a local dataset D; and is capable of communicating
with a subset of the other users N; C [IV], called its neighbors.
We represent the users as vertices in a graph G = (V, £), where
the set of vertices V = [N] corresponds to the users, and the
edges & represent the communication links between them. The
degree of a node 7 € V is defined as the number of neighbors
it has, ie., deg(z) = {7 €V : (i,7) € E} = |Ni|.

We sketch a potential learning algorithm that serves as
motivation for our work, noting that our methods can be applied
to any RW-based decentralized system that processes sensitive
individual data. Starting with a random model wy € R? and
a designated node iy € V, the following procedure takes place
at every iteration g > 0. Node i, updates the model using
(stochastic) gradient descent based on a predefined loss function
F(w,D;,) on its local data D;_, i.e., the model update reads
Wgy1 = Wy —1VEF(wy, D;, ). The updated model is then sent
to a random neighbor iy, € N;,. The process repeats until
certain convergence criteria are met.

The described learning approach implicitly leaks informa-
tion about the nodes’ private data through the shared model
updates. The privacy problem becomes most pronounced when
eavesdropping nodes can obtain information about the model
update of the targeted neighbors. For instance, consider a
situation where, at iteration g, a node 7, sends the model
update to a neighbor iy, 1 € N, , who updates the model and
then chooses ig1o = iy € Mg .. as the next destination. In
this case, node i, can directly obtain the local model update
(gradient) VF (w1, Dy, ) of node iy 1, and from this infer
information about node ¢41’s local data D;__ ;.

We propose a modification of this learning algorithm that
does not allow model updates conducted by direct members and
further hides the identity of the updating node. In particular,
node i441 should not know the identity of the predecessor
i4, thereby providing a new notion of privacy through source
anonymity. We focus on a single iteration in the following and
hence drop the iteration index g.

We assume that each node generates a cryptographic key
pair and publishes its public key. Upon updating the model,
the current node ¢ € V selects a destination node 7 € V \ {i}
according to a predefined distribution pp,. This distribution
may be both node-dependent and time-varying. The current
node then encrypts the model using the public key of the
destination node j. The RW continues independently moving
on the graph, but no update is performed until the destination
node is reached. Once the RW reaches node j, the model can
be decrypted using node j’s private key. After updating the
model, the learning process proceeds. The time it takes for the
RW to transition from node ¢ to node j is known as the first
hitting time, denoted by Ty (4, 7). We define the first hitting
time distribution as p;_,;(¢), which represents the probability
that the RW reaches node j for the first time at time ¢, starting

from node 7. The return time Tgg (%) is the time it takes for an
RW to return to a node ¢ after leaving the node.

By encrypting the model for a designated destination node
and choosing appropriate distributions pp,, we ensure that the
destination node cannot determine the identity of the source
node, thereby preserving the source node’s anonymity. While
the first hitting time distribution is assumed to be known to
all parties, the time of the previous model update at node i
is unknown to the destination and can only be statistically
estimated to infer the source identity. This inherently provides
a stronger anonymity than if the previous update times were
known. Our formal privacy notion is defined as follows.

Definition 1. Let H denote the entropy function. We say that
an RW-learning model, as described above, ensures o-privacy
if, for intervals I, ; £ [E; ; — 6, E; j + 0] and fixed § > 0,
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Imagine that node j € V receives the RW and attempts

where o > 0 and E; ; > 0 for all i,j € V.
to estimate the identity of the source node. To facilitate this,
node j estimates the time interval for an RW to move from
a source node to itself, denoted as E; ;. This estimation can
be accomplished through various means, including computing
average values or incorporating supplementary side informa-
tion. For every node i € V' \ {j}, and an estimated path length
around E; ;, node j calculates the probability that node ¢ was
the sender. If the entropy over all possible source nodes is high,
node j will struggle to distinguish the true source node from
other nodes. In the optimal scenario, the possible source nodes
appear uniformly distributed to the destination node, making
it impossible to identify the true source. Finally, note that this
condition must hold for every possible destination node j € V.
Concealing the source of an update incurs a cost in terms
of increased runtime. Unlike the classical approach, where the
model is updated at every time step, our method updates the
model only when the RW reaches the designated destination
node. On average, the first hitting time is given by

Z E[TFH(l7J)]P(2)pDL(j)’
1,JEV,i#]
where P(i) represents the likelihood of the RW being in
node ¢ € V. In practice, choosing suitable distributions pp,
requires balancing two competing goals: achieving a high level
of anonymity while also minimizing the runtime overhead.

E[TFH] =

III. OPTIMAL SOURCE ANONYMITY

To elucidate the implications of the privacy notation outlined
in the previous section, we examine the specific instance of
Random Regular Graphs (RRG). The uniform structure of
RRGs enables a thorough and precise analysis, leveraging
analytical expressions for the first hitting time and return time
of the RWs. This characteristic makes RRGs a more accessible
and illustrative choice for demonstrating our model, compared
to other, more complex random graphs. We show in this section
how to select the distributions pp, such that, in the absence
of additional side information, our model yields an optimal



privacy guarantee; i.e., that the potential source nodes appear
uniformly distributed from the perspective of the destination
node. We therefore give a concise introduction to RRGs and
their associated first hitting time distribution. We then address
the topic of source node anonymity within this context.

A. On the First Hitting Time of RRGs

RRGs are characterized by a degree distribution, that, for
all nodes, is a degenerate probability density function, such
that P(k) = 1. (k), where c is the degree of the RRG, and
13 (k) = 1iff ¢ = k and 0 else. Hence, every node within the
graph exhibits a uniform degree. We focus on RRGs in which
the degree parameter ¢ > 3, for which the graph consists of a
single, connected component if /V is large enough [29].

For RRGs, the authors of [30] presented approximate ex-
pressions for the first hitting time distribution. Notably, they
considered two distinct cases for the RW between two nodes. In
the shortest path (SP) scenario, the RW follows the direct path
between node ¢ and node j. This includes scenarios in which the
RW may backtrack some of its steps or even recede. Formally,
a path belongs to this case if the subnetwork consisting of the
nodes and edges along the trajectory forms a tree network, and
the distance between node ¢ and node j in this subnetwork is
the same as in the entire network. All other paths belong to the
opposite case, denoted as —SP.

We are interested in the first hitting time between nodes @
and j, which, in an RRG, only depends on their distance ¢
(i.e., the length of the shortest path). According to [30], we
have P(TFH = t‘g) = P(TFH = tw, SP)P(SPM) + P(TFH =
t|¢,—SP)P(—SP|¢), where the hitting time distributions con-
ditioned on the two distinct cases SP and —SP are given by
P(Ten = t|€,SP) = £(.L) (1 — cil)%c%t for (t — £) even
and ’

4

P(Ty = |0, —SP) = (e% _ 1) <5 )

for t > ¢, where ¢ is defined as ¢ £ (¢ —2)/(c — 1). The
probabilities for each case are given by

¢
1 1
P(SP|¢) = <1> + N and P(—SP|¢) =1 — P(SP|{).
Additionally, we can express the expected value of the
first hitting time distribution, conditioned on the distance
between two nodes, as E[Tgy|l] = E[Tu|¢, SP]P(SP|¢) +
E[TFH‘& _‘SP}P(_‘SPM) with E[TFHM,SP} = ¢ and

c—2

1
E[Tjy|¢, ~SP| = + ——
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In the non-shortest path scenario, we applied the more
accurate result [30, Eq. 54] for P(Tgg > t|¢, —SP) to calculate
the expectation, yielding a result that differs marginally from
the original expression in [30, Eq. 70].

B. Source Anonymity in Light of RRGs

We demonstrate how to select the distributions pp, to achieve
optimal a-privacy, where optimal refers to a value of « equal to
the entropy of a uniform distribution. For simplicity, we assume
that all distributions pp, are time-invariant. Furthermore, due
to the regular structure of the graph, we posit that for an

arbitrary node 4, the probability distribution pp,(j) depends
solely on the distance between nodes i and j. Let A(¢) be
the number of nodes situated at distance ¢ > 1, which we
assume is constant for every node ¢. We can then equivalently
express the distribution pp, as pp,(j) = %, where p denotes
a probability distribution over node distances. To achieve high-
probability control in arbitrary cases, we constrain the support
of p by excluding direct neighbors. Denote the resulting support
of p as [(1, {5], where {5 is bounded from above by the diameter
of the graph.

Initially, we consider a scenario in which the node lacks
any supplementary side information beyond the graph’s struc-
ture and the distributions (pp,);ey. Under these conditions, a
natural choice for E; ; in (1) is the expected first hitting time
E, ; = E[Teu (1, j)] from node 7 to node j. Notably, in an RRG,
the expected first hitting time E; ; depends solely on the nodes’
distance ¢. The integral in the numerator of (1) simplifies to

E[Trn (i,5)]+6 p(0) E[Ten|0)+6
[ o s de=50 > P T =t @)
E[Tu (4,5)]—0 ( )t:E[TFHw]—a

When computing the sum in (4), we focus on the hitting
time probability within an interval centered around the ex-
pected time. However, as a consequence of (3), it follows that
E[Ttu|f] > E[Tiu|l, ~SP|P(=SP|¢) ~ (I + &) P(=SP|¢) and
hence, E[Tq|¢] > . For values of ¢ in this regime, we have
P(Tyy = t|¢,SP) € O(t~2e~7) with y = log(c) — L log(c —
1) — log(2) > 0, which, for all ¢ becomes asymptotically
negligible compared to the contribution from the non-shortest
path. This observation justifies the following simplification.

Assumption 1. The first hitting time distribution within the
interval Iy = [E[Try|l] — 6, E[Try|l] + 0] is dominated by the
non-shortest path scenario for all £ € [{1,05], i.e., we assume
that Pr(Tpy = t|0) £ Pr(Tpy = t|¢, —SP) Pr(=SP|¢) for every
te Ig,f € [61762].

Under this assumption, the integral presented in (4) admits
a closed-form solution. To simplify the notation, let

P(—-SP|/ s st e
K(;(E)é(A(@l)(eN—l)e N

Lemma 1. Let i,j € V be two nodes within distance { €
[¢1,0s] and let 6 > 0 be fixed. Under Assumption 1, the integral
in (4) is given by

E[Trul€]+6
/ p
E[Tru|€]—6

where Es(l) = Ks({)e™®

72841
—c/ 2041
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D; (J)pisj (t)dt = p(£) Es(£)
ElTggle)

We find that the privacy notion now only depends on the
distance ¢ between two nodes. Consequently, in the context of
RRGs, our privacy notion requires that the distribution

p(6)Es(€)
Ws(l) & =———
O S OB @)
on ¢ € [¢1, 5] remains sufficiently close to a uniform distribu-

tion over all possible values of ¢. Notably, this security notion
is particularly satisfied when p(¢) E5(¢) remains constant across



all values of ¢ € [¢1, {5]. The following choice of p(¢) achieves
optimal privacy in the sense of (1) for RRGs.

Lemma 2. Let 6 > 0. For every { € [¢1,{2], choose p({) as

1
HOE

= ¢
E5 (6) [/2221 ﬁ

and p5(£) = 0 elsewhere. Then W; is uniform on the support
[¢1, 03] and consequently H(Ws) = log(fe — €1 + 1).

This choice of p(¢) guarantees the destination node cannot
identify the source node with better accuracy than by simply
choosing uniformly at random from all possible nodes. This
demonstrates how to achieve optimal a-privacy with the max-
imal value of «, if no further side information is available.

Remark 1. For RRGs, we analyze the distributions over dis-
tances. Equivalently, the entropy can be formulated expanding
each distance { with all source nodes in distance /.

IV. SOURCE ANONYMITY UNDER SIDE INFORMATION

In practice, the situation is more complex than initially
described. A node can gather side information about the first
hitting time by recalling the most recent visit of the RW.
This additional information can, in turn, affect the node’s
ability to accurately infer the identity of the source node.
This consideration becomes particularly crucial when the return
time between two visits of the RW is short, as it effectively
eliminates certain nodes as potential sources. If the model was
re-encrypted between two returns to node j, and node j is
the designated destination, the return time represents an upper
bound on the first hitting time. If the distributions pp, were
chosen as before, the destination node could indeed make a
more informed guess about the source node, surpassing the
uniform case. To alleviate this problem, users can choose
pp, such that even with this additional side information, the
deviation from the uniform distribution remains bounded with
high probability. To optimize the model for such cases, the user
selects a design parameter x as an upper bound for the first
hitting time. Following this, F; ; in Definition 1 can be chosen
as E; ; = E[Tpu|l, Trn < k]. We will first demonstrate how to
choose pp, in this setting and then analyze the probabilistic
guarantees when a different value '’ is observed during a
random walk, where &' refers to the return of the random walk
used as side information by the destination node as described
above. In line with Assumption 1, we assume the following.

Assumption 2. E[Tpy|l, Try < k'] is dominated by the
non-shortest path scenario, that is E[Tpg|l,Try < K'| =
E[TFHw) _\SP7 TFH S K‘,/] PI‘(_‘SPM7 TF]-[ S KZ/).

The expected value obtained under additional side informa-
tion can be calculated as follows.

Proposition 1. For every k' > {, we have

4 1
1 — e—¢ /N —£) + 1—e¢/N°

E[TFH‘£7 ﬁSP, TFH S Iil] =

The following generalization of Lemma 1 gives a closed-
form expression for the corresponding modification of (4) with
additional side information.

Lemma 3. Ler 1,5 € V be two nodes within distance { €
[¢1,03]. Let § > 0 be fixed and assume that it is known
that the first hitting time is restricted by ' € (£,00). Under
Assumption 1, we have

E[Try| €, Trn<r'l+6
/ PpD; (j)piﬁj(t)dt = p(f)E&M (f)7
E

[Tru |, Trn<rk']—8

where Es ./ (£) = Kg(ﬁ)e_c,E[TFHM}VTFHSH L

We refine the solution given in Lemma 2 for the optimal
distribution of pj(¢) to the case where certain side information
k' = k is assumed. Afterwards, we provide guarantees on
privacy when the actual side information x’ differs from the
design parameter . Given x, we choose the destination node

distributions as follows.

Lemma 4. Let k,6 > 0. For every £ €[ly, 5], choose p({) as

. s 1
pn,é(g)

f— - é
Esn(l) " Esn(0) X0y 5t

)

and py; 5(¢) = 0 elsewhere. With W .+ defined as
o) & PraOFs (0
K Z@l p2)6(£/)Eé,5/(€/) I

we have that W ., i.e., Ws ./ (£) for k' = K, is uniform on the
support [{1,ls] and consequently H (W; ,.) = log(ly — {1+ 1).

&)

Let p; 5(¢) be the optimal distribution for the case x’ = k.
To analyze the privacy for k' # k, we study the distribution
W, (£), which inherits the support [¢1,f5] from pf 5. Our
objective is to show that, with high probability, the deviation
between Ws v and the uniform distribution of W ,; is bounded,
facilitating a bound for the a-privacy guarantee. Using Propo-
sition 1, we can bound the total variation and the entropy as
follows.

Theorem 1. Let x,x',6 > 0. For Ws s as in (5), we have

o ,
d W, ! W, K < %‘PEZ(’@K/) -1
v(Won|l 6,)_527&2(6 )
=0
1 1
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where e¢(k, k') = ¢ ’ T gy and ¢ =

PI‘(—|SP|£2, TFH S lil).

Theorem 2. Let p £ dry(Wsw||Wsx). For pf s5(0) as in
Eq. (5), the entropy of W, is lower bounded by

H (Ws.,0) > (1 —p)log(fa — €1+ 1) + plog(p) — p.

The distribution of x’ is captured by the first return time
of the RW. The deliberate choice of the destination node does
not affect the stochasticity of the RW, and hence the return
time is independent of our method. Let £ C N be such that
Pr(k’ € K) > 1 — ¢ Our goal is that for a given J, a desired
probability 1 — ¢’ and a chosen K C N, we optimize

min max H(Ws,.) —H(Ws,or) |
K R'E

T 1_—e—<¢/Nx-6 |

We make the following assumption on the first return time of
an RW on an RRG, which can be separated into retroceding
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Fig. 1. RW-model for N = 300 nodes and degree ¢ = 3 optimized for
Kk = 634 and § = 5. We compare the entropies over varying side information
', with and without Assumption 1, compared with no countermeasure and the
theoretical guarantee from Theorem 3 using §’ = 0.3. Uniform distribution
supported on [¢1, £2] = [2, 6] has entropy log(¢2 — ¢1 + 1) ~ 1.61.

0.8

(RETRO) and non-retroceding trajectories (—mRETRO). The
distributions are known from [31].

Assumption 3. The first return time on RRGs is dominated
by non-retroceding scenarios, i.e., Pr(Trr = t) = Pr(Tpg =
t|=RETRO), which is described by Pr(Tpg > t|-RETRO) =
e N2 for t > 3 and Pr(Tpg > t|-RETRO) = 1 otherwise.

We further have E[Tjg|-RETRO] = 2 + (1 — ¢~¢ %)=L,
By the choice of p(¢) supported on [¢1, {5], each node selects
the destination node in a distance of at least ¢;. Hence, at any
destination node, the minimal observed return time is Tggr >
2¢; and hence the probability that a destination node observes
a return time of Tgg > ¢ > 2/¢; is given by

s t—20q

PI‘(TFR > t|_‘RETRO,TFR > 261) = ¢ N2, (6)

We justify Assumption 3 by the fact that we are interested
in first return times of at least 2¢;. In this case, the proba-
bility Pr(—RETRO) = 1/(¢ — 1) diminishes further, making
Pr(RETRO|Trr > 2¢;) the dominating component. With this
at hand, we have the following main result of our paper that
quantifies a-privacy under a probabilistic guarantee.

Theorem 3. Let &' > 0 and d £ 05 — 0. Then, there exists
a value for k such that with probability at least 1 — §' for a
certain K s.t. Pr(k’ € K) > 1 — &', the entropy observed by
every destination node j is bounded by

— p)log(d +1) + plog(p) — p,

[e3%

max min H (Ws /) > (1

Kk KEK

where, for ¢ = Pr(=SP|la, Try < k'),

1 Lo (bat1)pe _ ,Sclipe
- o( Dee et

d €3NP — 1

and the asymptotic behavior of € is given by

The result above is based on selecting an optimal value for x
that minimizes the upper bound on the entropy. When optimal
uniformity of W, for ' = k on [¢1, £2] should be achieved
for the average return time, and hence x = E[Tgr|-RETRO],
we have the following result. The result also holds for x — oo,
which corresponds to the case studied in Section III.

—— Entropies for pj; 5(¢) under Assumption 1 |

0.8 4 Entropies for pj”j(() without Assumption 1
—— Entropies for uniform p(¢) without Assumption 1 \

0.6 4~ Theoretical guarantee for ¢’ = 0.3, cf. Theorem 3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1-¢

Fig. 2. a-privacy over probabilistic guarantee for N = 300, c =3 and § = 5
with and without Assumption 1, compared with no countermeasure and the
theoretical guarantee from Theorem 3.

Corollary 1. When choosing p; 5(@) to match the average case,
ie, for kK = E[Tpg|-RETRO)|, and for k — oo, Theorem 3
holds with ¢ replaced by 2¢.

V. NUMERICAL EVALUATIONS

We evaluate our methods and theoretical guarantees on an
RRG with N = 300 nodes and degree ¢ = 3. Therefore, we
consider the parameters § = 5, &’ = 0.3, along with the choice
of k = 634 and p} 5(¢) resulting from Theorem 3 as well
as /1 = 2 and ¢y = 6. We approximate Pr(—SP|ls, Ty <
k') = Pr(=SP|¢3) for all x’. In Fig. 1, we compare the
entropy in Definition 1 for various side information x’ under
Assumption 1 to the case where the optimal solution is found
based on Lemma 4 using the exact properties of RRGs, i.e.,
without the relaxation in Assumption 1. As a baseline, we
plot the source node anonymity without any countermeasure,

e., for choosing ps(¢) uniformly on [¢,¢5], and we also
show our worst-case bound provided by Theorem 3. For the
same choice of k, we plot in Fig. 2 the minimum entropy
resulting from Theorem 3 as a function of the probability
1 —¢’, illustrating how anonymity degrades as this probability
varies. With approximately 90% probability, our method still
achieves near-optimal anonymity. Lastly, we analyze source
node anonymity for K = k over the mean iteration time
To, 4y = Zz ¢, P s(O)E[TEn|¢] determined by the choice of
Pk 5(£) and the average first hitting times E[Try|¢]. We observe
an almost linear increase of « in Ty, ¢, (cf. [18]).

VI. CONCLUSION

We considered the problem of privacy in decentralized
random walk-based learning algorithms. Instead of resorting
to only applying differential privacy guarantees, we formulated
a new privacy notion based on revealing the model update, but
concealing the identity of the owner of the revealed update.
To that end, public key cryptography is used by the sender
to encrypt the update with the public key of a designated
destination, ensuring that no intermediate node can decrypt
the model update. The choice of the destination is the key
component. We designed a probability distribution over the
choice of the destination that ensures that with high probability,
the destination will not be able to guess the identity of the
source.
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