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 A B S T R A C T

Low-frequency vibration isolation is crucial for engineering structures and devices susceptible 
to low-frequency vibrations. Traditional linear isolators fail to provide effective low-frequency 
isolation without compromising static load capacity. At the same time, quasi-zero-stiffness 
designs struggle with load adaptability, maintaining zero-stiffness over a large displacement 
range, or require active components to achieve the former. Combining all of these features, this 
study investigates rolling-lobe air spring isolators as a passive vibration isolation alternative, 
aiming to achieve zero-stiffness across a wide displacement range under varying loads. To 
identify factors affecting vibration isolation performance in rolling-lobe isolators, this research 
examines various design parameters, including isolator geometry, internal pressure, external 
volume and membrane behavior. These parameters’ influence on the stiffness and damping 
characteristics is investigated through a rapid prototyping approach employing 3D-printing 
to fabricate and test 86 unique isolator configurations. The experimental data informs a 
predictive model based on a Duffing oscillator, which is then applied in single degree-of-
freedom simulations to assess isolation efficiency across different loads and excitation levels. 
The simulation results demonstrate effective isolation from close to 2Hz onwards for the most 
promising configuration. Key findings are that higher internal pressures, controlled membrane 
deformation, and the addition of external volumes greatly enhance isolation performance. 
These insights provide valuable guidelines for designing rolling-lobe isolators capable of 
achieving zero-stiffness under varying loads and excitation levels, making them suitable for 
applications demanding robust passive vibration isolation over a broad range of operating
conditions.

. Introduction to advanced vibration isolation techniques

Linear vibration isolators begin to effectively isolate at frequencies exceeding 
√

2 times their natural frequency, which is 
rimarily determined by the isolator’s stiffness [1]. Achieving a low natural frequency significantly enhances isolation quality [2] 
ut requires extremely low stiffness, leading to large static deformations under the system’s own weight [1,3]. This trade-off limits 
he effectiveness of linear isolators in applications requiring both high static load support and low dynamic stiffness, as encountered 
n aerospace, automotive and robotic systems [2,4].
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1.1. Quasi-zero-stiffness isolators

Addressing the limitations of linear isolators, quasi-zero-stiffness (QZS) systems present a promising alternative. These systems 
are engineered to attain a state of close to zero-stiffness by aligning positive and negative stiffness components in a parallel 
configuration [5,6]. The design principle allows for the neutralization of one stiffness type by the other, aiming for a combined 
effect that approaches zero-stiffness, as shown in Fig.  1(a). This unique combination is achieved through the alignment of positive 
stiffness elements, such as coil springs, which exhibit a linear response, with negative stiffness mechanisms, such as buckling beams, 
that display fundamentally nonlinear behavior. Although overall zero-stiffness is not sought after, as this would lead to an unstable 
system, QZS systems exploit their nonlinear nature to create a state where zero-stiffness is flanked by regions of positive stiffness, 
providing stability [7,8]. This results in high static stiffness necessary for supporting large static loads, while maintaining low 
dynamic stiffness to extend the frequency range of effective isolation towards lower frequencies.

The landscape of QZS system designs includes both passive and active configurations [6,8]. Passive QZS systems use fixed 
mechanical setups tailored to specific applications, typically optimized for isolating a single load within a narrow displacement 
range. Although some designs can adapt to varying loads [9–13], these are predominantly active systems. Active QZS systems 
employ closed-loop control to adjust dynamically to load changes, offering greater versatility but at the cost of added complexity, 
as they require sensors, actuators, and control algorithms. While both passive and active QZS systems achieve effective vibration 
isolation, their load sensitivity, and, for active systems, complex design emphasize the need for a passive vibration isolation solution 
that can maintain zero-stiffness across a wide displacement range and accommodate varying loads.

1.2. Pneumatic isolators

Industrially available pneumatic cylinders offer a potential solution for achieving low stiffness passively across varying loads. By 
attaching a large external volume relative to the cylinder’s internal volume, these actuators can approximate zero-stiffness, yielding 
a nearly constant-force characteristic. However, they are unsuitable for low-frequency vibration isolation due to the stick-slip effect 
caused by changing friction between the sealing ring and cylinder wall [14]. This effect leads to erratic motion, especially at low 
frequencies, disrupting the constant-force characteristic, as shown in Fig.  1(b).

To address the stick-slip effect in pneumatic cylinders, several options exist. Advanced piston-cylinder configurations employing 
hydrostatic air bushings to support the cylinder rod offer extremely low friction but require a continuous air supply, making 
them unsuitable for passive operation [15]. Alternatively, the piston seal is replaced with a flexible membrane [1], which can 
take various forms, including flat, bellow, or rolling-lobe. However, all membrane types inherently introduce additional stiffness, 
which complicates achieving the desired zero-stiffness characteristic (Fig.  1(c)). Flat membranes, often used in vibration isolation 
tables [16], provide minimal stiffness due to small membrane deformations at large volumes and low pressures, which in turn 
hinders compact designs. Bellow-type membranes, while much more compact, tend to exhibit significant stiffness due to undesirable 
increases in effective area during loading [17]. While rolling membranes also show such behavior, the membrane stiffness can be 
counteracted with additional design features. Thus, truly passive operation with minimized friction in a compact form factor is most 
effectively achieved using rolling membrane designs.

Rolling-lobe air spring vibration isolators achieve zero-stiffness by balancing positive and negative stiffness. In principle, this 
is similar to QZS systems, but achieved through different mechanisms. Rolling-lobe vibration isolators operate using a flexible 
membrane that rolls over a piston as the isolator is displaced. Negative stiffness arises from changes in the effective area during this 
motion, achieved by guiding the flexible membrane through piston and external guide geometry. Notably, this negative stiffness 
can be achieved over the entire displacement range of the air spring unlike in QZS systems. By combining the area-based negative 
stiffness with the positive stiffness of the membrane and the compressible gas, rolling-lobe air springs can be engineered to closely 
approximate zero-stiffness overall.

Fig. 1. Force-displacement curves of different passive zero-stiffness approaches: QZS (a), pneumatic cylinder with external volume (b) and rolling-lobe air spring 
with external volume (c). The horizontal gray line displays the ideal zero-stiffness property.
2 
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1.3. Objective of this paper

This paper demonstrates how rolling-lobe air springs can be adjusted for low-frequency vibration isolation through the strategic 
balance of their positive and negative stiffness elements. By analyzing each component affecting stiffness, namely the gas spring, 
membrane behavior and geometry of the external guide and piston, this study reveals how these elements can be tailored to achieve 
zero-stiffness over a wide displacement range and for varying loads. Through a combination of theoretical analysis, experimental 
testing, and modeling, the paper establishes practical design guidelines that make rolling-lobe air springs a viable alternative to state-
of-the-art QZS isolators, overcoming limitations in load adaptability and effective isolation displacement range. The results provide 
insights for the development of adaptable, high-performance rolling-lobe isolators that enable passive, zero-stiffness operation for 
low-frequency vibration isolation.

The main contributions of this paper to the existing literature on vibration isolation systems are as follows:

1. Explicit derivation of rolling-lobe stiffness terms, highlighting positive and negative elements that align with QZS isolators.
2. Systematic exploration of how isolator configuration changes impact nonlinear stiffness, damping, and overall isolation 
performance.

3. Provision of design guidelines for achieving zero-stiffness over a large displacement range with load adaptability.
4. Modeling of experimental rolling-lobe isolator behavior using a Duffing oscillator model.
5. Demonstration of practical manufacturability using 3D-printing for customized isolator designs.

The remainder of this paper is structured as follows: In Section 2, the theoretical principles underlying the behavior of ideal 
air springs are outlined, providing a foundation for understanding their performance characteristics. This is followed by a detailed 
account of the design and fabrication process of 3D-printed air springs in Section 3, where design considerations and geometric 
optimizations are discussed. The methodology used to assess the performance of these 3D-printed rolling-lobe isolators is then 
presented in Section 4, covering both experimental setups and analytical approaches. The results of these approaches are analyzed 
in Section 5, focusing on modeling the actuator and its vibration isolation capabilities. A discussion of the implications of these 
findings along with gathered design guidelines is provided in Section 6. Finally, the paper concludes with an overview of the key 
outcomes and suggests avenues for future research in Section 7.

2. Theory of ideal air springs

To understand rolling-lobe isolator behavior and achieve zero-stiffness, it is essential to begin with an idealized model of air 
springs. This model clarifies the fundamental control mechanisms necessary for zero-stiffness. In this context, the membrane’s 
stiffness, geometry and gas dynamics are investigated to maintain zero-stiffness across various load cases.

In an idealized model, the total stiffness 𝑘𝑡 of an air spring arises from two primary components: the stiffness of the gas spring 
𝑘𝑔 and the stiffness of the membrane 𝑘𝑚. These contributions sum up to determine the overall stiffness 𝑘𝑡, as expressed by 

𝑘𝑡 = 𝑘𝑔 + 𝑘𝑚 . (1)

For a zero-stiffness air spring design, 𝑘𝑡 has to be zero. This requires that the negative stiffness component introduced by the gas 
spring precisely counterbalances the positive stiffness contributed by the membrane.

Determining the factors influencing the gas spring stiffness 𝑘𝑔 necessarily begins by looking at the force 𝐹  exerted by the gas 
spring 

𝐹 = 𝑝 ⋅ 𝐴 . (2)

Here, 𝑝 is the pressure in the system, and 𝐴 is the area on which the pressure acts. Both 𝑝 and 𝐴 are functions of the displacement 
𝑧, making the force dependent on the spring’s displacement. The stiffness of the gas spring is derived by differentiating Eq. (2) with 
respect to the displacement 𝑧

𝑘𝑔 = d𝐹
d𝑧

=
d𝑝
d𝑧

𝐴(𝑧) + d𝐴
d𝑧

𝑝(𝑧) . (3)

If solving above equation for the spring geometry d𝐴d𝑧 , an expression for the change in pressure 
d𝑝
d𝑧  is needed. Here, the ideal gas law 

𝑝𝑉 𝑛 = const. (4)

is used, where 𝑉  is the volume and 𝑛 the polytropic exponent. The polytropic exponent 𝑛 describes the thermodynamic behavior 
of the gas, which depends on the excitation frequency. Generally the following behavior can be assumed: quasi-static operation 
(up to 0.01Hz) is isothermal, dynamic operation (from 1Hz and higher) is adiabatic, and intermediate frequencies are described by 
a polytropic process [18]. In air, the polytropic exponent varies between 1 (isothermal process) and 1.4 (adiabatic process) [19]. 
Differentiating both sides of Eq. (4) with respect to 𝑧 yields 

𝑝 ⋅ 𝑛 d𝑉 + 𝑉 𝑛 ⋅
d𝑝

= 0 . (5)

d𝑧 d𝑧

3 
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The volume change d𝑉  occurring during a small piston displacement d𝑧 depends on the area 
d𝑉 = −𝐴(𝑧) ⋅ d𝑧. (6)

Substituting Eq. (6) into Eq. (5) and rearranging for d𝑝d𝑧  yields 
d𝑝
d𝑧

= 𝑛
𝑝(𝑧)
𝑉 (𝑧)

𝐴(𝑧) . (7)

Finally, substituting Eq. (7) into Eq. (3), a formulation for the gas spring stiffness is derived 

𝑘𝑔 = 𝑛
𝑉 (𝑧)

𝐴(𝑧)2 + d𝐴
d𝑧

= 𝑘𝑝 + 𝑘𝐴 , (8)

where 𝑘𝑝 and 𝑘𝐴 are the two components of the gas spring stiffness 𝑘𝑔 accounting for the stiffness due to the change in pressure and 
area, respectively. From Eqs. (6) and (8) a system of differential equations with state variables 𝑉  and 𝐴 can be obtained to solve 
for the spring area 𝐴(𝑧) that yields a constant stiffness 𝑘𝑔 .

To illustrate the behavior of a zero-stiffness air spring, Eq. (8) is solved for initial conditions of unit pressure, volume, and 
area under two different polytropic exponents, 𝑛 = 1 and 𝑛 = 1.4. Fig.  2 shows the resulting variations in pressure and area over 
displacement. The figure highlights that maintaining a constant-force characteristic requires different area adjustments depending 
on the polytropic exponent. This implies that distinct air spring configurations may be needed for quasi-static (𝑛 = 1) and dynamic 
(𝑛 = 1.4) operation.

Next to the polytropic exponent, the volume 𝑉 , including the external volume 𝑉ext, plays a critical role in determining gas spring 
stiffness. Larger volumes reduce the pressure change d𝑝d𝑧  during displacement, as shown in Eq. (7), thereby decreasing the stiffness 
contribution 𝑘𝑝. In the same vein, a lower 𝑘𝑝 minimizes the required reduction in stiffness 𝑘𝐴 through variations in 𝐴(𝑧), simplifying 
the achievement of zero-stiffness. Large external volumes also reduce the spring’s sensitivity to changes in the polytropic exponent, 
helping maintain a near-constant-force characteristic across different excitation frequencies. Therefore, employing a large external 
volume is beneficial, if not even necessary, in order to achieve zero-stiffness.

Contrary to polytropic exponent and volume, the initial pressure 𝑝0 does not appear in Eq. (8), indicating that the zero-stiffness 
condition is unaffected by variations in 𝑝0. This in turn enables a single spring geometry to achieve zero-stiffness for different load 
cases.

In above derivation two key assumptions are made. First, the area 𝐴(𝑧) is assumed to follow the geometry of the spring precisely. 
This ideal behavior requires sufficient internal pressure to ensure that the flexible membrane remains in contact with the piston and 
external guide contours. Second, the membrane stiffness 𝑘𝑚 is assumed to be zero, focusing solely on the gas spring stiffness 𝑘𝑔 .

While membrane stiffness is neglected in the idealized model, its influence on overall spring stiffness cannot be ignored in 
practical designs [20]. Wu et al. [21] provide an analytical approach where membrane stiffness is proportional to the cube of 
the membrane thickness and inversely proportional to the cube of the lobe radius. Given the complexity of accurately modeling 
membrane behavior, an experimental approach is chosen to evaluate overall spring stiffness in this study.

To summarize, the ideal model of air springs demonstrates the potential for achieving zero-stiffness by controlling geometry and 
external volume, assuming constant membrane stiffness. This approach allows for a constant-force output across different load cases. 
However, practical designs must accurately account for membrane stiffness. Due to the challenges of modeling membrane stiffness, 
the next sections adopt an experimental approach to evaluate the influence of geometry, external volume, and membrane behavior 
on overall stiffness and isolation performance of rolling-lobe isolators.

3. Design of 3D-printed vibration isolators

To evaluate the influence of different design parameters on isolation performance, this study designs multiple isolators, which 
are experimentally investigated. Using 3D-printing to fabricate custom, smaller-scale prototypes enables rapid and cost-effective 

Fig. 2. Pressure, area and force of a zero-stiffness air spring starting with unit pressure, volume and area for different polytropic exponents 𝑛.
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iteration, as well as easier handling and testing. The flexibility of 3D-printing, already proven effective in developing QZS 
isolators [22], allows the exploration of complex geometries tailored for improving isolation performance. This section focuses 
on the design of the rolling-lobe air spring isolator components and their manufacturing.

The 3D-printed isolator, shown in Fig.  3, is an adaptation of industrial rolling-lobe vibration isolators. The isolator consists of a 
membrane, a base plate, a piston, an external guide and an extension, as illustrated in Fig.  4. The base plate, produced from Grey 
V4 resin using a Formlabs 3+ stereolithography printer for airtightness, includes an air inlet and a locating feature to center the 
isolator during testing. The membrane, made from BASF Ultrafuse TPU 95A, is 3D printed on a Prusa MK4 fused filament fabrication 
printer in vase mode, which involves a single continuous extrusion in a spiral pattern, and is vapor smoothed with tetrahydrofuran 
for airtightness. The membrane is first attached to the piston with cyanoacrylate adhesive, then turned inside out, and joined to 
the base plate. Next, the extension cylinder is glued to the piston. Finally, the external guide is pressed onto the base plate. The 
key dimensions include a maximum membrane diameter of 48mm, a maximum piston diameter of 40mm, a membrane thickness 
of 0.4mm, and a membrane length of 20mm participating in the rolling motion. Additional dimensions are provided in Fig.  A.1. A 
pneumatic fitting with a G 1∕8 ′′ thread is incorporated, with the threads manually cut after the 3D-printing process. In this study, 
one isolator assembly – consisting of a base plate, piston, and membrane – has been printed, along with three different external 
guides. By exchanging these guides, three distinct physical isolator configurations are created.

The piston geometry can be adjusted to alter the stiffness of the isolator by changing the effective area throughout the isolator’s 
stroke. In a rolling-lobe air spring, the membrane’s diameter decreases from the outer base to the internal piston diameter, resulting 
in a change in membrane circumference that must fit onto the piston. For a zero-stiffness design, the membrane diameter is larger 
than the piston diameter, which, if directly translated to circumference, causes the membrane to bunch up at certain points on the 
piston. This localized bunching reduces the gap between the piston and membrane, leading to higher curvature. Higher curvature 
increases stress in the membrane and thus is assumed to increase stiffness.

To avoid the issue of the membrane bunching up on the piston, the piston geometry is modified to achieve a larger circumference 
while maintaining the same cross-sectional area. In its default state, all piston cross sections are circular. These circular cross sections 
are then modified by superimposing a sine wave onto them. The amplitude 𝑎(𝑧) of the sine wave is optimized to yield the same 
circumference in the piston as in the membrane along the displacement 𝑧 as shown in Fig.  5. The optimized amplitude is then 
fitted with a root function which in turn is used to generate the geometry of the piston parametrically. The full derivation of the 
optimization problem is given in Appendix  B.

Along with the piston, the external guide is used to control the effective area of the air spring. In this study, the guide angle 𝑠
refers to the angle at which the guide opens, as shown in Fig.  A.1. A constant opening angle is used, resulting in a linear change in the 
guide’s diameter over displacement 𝑧. Although more complex guide designs could be employed for custom stiffness characteristics, 
this study focuses on guide angles of 0◦ (straight cylinder), 10◦, and 20◦ to gather first insights into the influence of the guide angle 
on isolation performance.

4. Methods for assessing isolator performance

This section outlines the methodology used to evaluate the performance of 3D-printed rolling-lobe isolators through experimental 
and theoretical approaches. The main experimental objective is to measure the isolator’s stiffness and damping characteristics. Thus, 

Fig. 3. Rolling-lobe isolator assembled and depressurized. From left to right: without external guide, with external guide, piston extended.

Fig. 4. Individual components of the rolling-lobe isolator. From left to right: base, membrane, piston with extension, external guide.
5 
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Fig. 5. Optimized amplitude 𝑎 from parametric Eq. (B.1) to match given piston area and membrane circumference at each displacement 𝑧. The data is fitted 
with a root function. Additionally, the resulting cross sections are shown.

the experimental setup covers the pneumatic system’s design, along with the integration of the actuator into a universal testing 
machine. The experimentally obtained stiffness and damping values are used in mathematical models and simulations to predict 
and analyze the isolator’s vibration isolation performance under various operating conditions. These methods provide the foundation 
for understanding the isolator’s capabilities in practical applications.

4.1. Experimental setup

To operationalize the 3D-printed isolator, a pneumatic system is assembled. The isolator connects to a central tee fitting, which 
splits the system into two key components: a pressure sensor (Festo SPAN-P10R) monitoring the system’s pressure and a pressure 
tank. The pressure tank is linked to a manual pressure regulator through a valve. This setup allows the regulator to control the 
system pressure from a pressurized air source, while the valve can isolate the system for passive operation. Airflow is directed 
through tubing with an outer and inner diameter of 8mm and 5.5mm, respectively. The tubing length between isolator and pressure 
tank is about 30 cm. During pretests, no influence of shorter tubes on the force-displacement curves could be observed. Fig.  6(a) 
illustrates how these components interact with the isolator.

Once the pneumatic system is set up, the isolator is mounted in the universal testing machine (see Fig.  6(b)) for performance 
evaluation under sinusoidal excitation. The Zwick HC-25 servohydraulic fatigue testing machine, which can measure forces up to 
25 kN, is used for this purpose. The isolator is placed on compression platens: the lower platen, made from solid PLA and 3D-printed, 
includes a locating pin to ensure proper alignment of the isolator. This platen also rests on the force sensor. The upper platen, made 
of steel, is attached to the machine’s crosshead, completing the setup needed to test the isolator under load.

Fig. 6. Experimental setup of the pneumatic circuit (a) and the pressurized isolator mounted in the universal testing machine (b).
6 
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Various parameter combinations were tested to assess their impact on the isolator’s vibration isolation performance. A full 
factorial design was used to explore combinations of the following variables:

amplitude 𝑍 ∶ {0.5, 2.5, 5, 10, 15} mm
frequency 𝑓 ∶ {1} Hz
pressure 𝑝 ∶ {1, 2, 3, 4} bar

external volume 𝑉ext ∶ {0, 0.75} dm3

guide angle 𝑠 ∶ {0, 10, 20}◦
Testing was primarily conducted at an excitation frequency of 1Hz. This value is considered the lower limit for pneumatic 

isolators, even for advanced designs [1]. Given that current QZS designs also achieve isolation at this frequency range, it serves 
as a meaningful benchmark for evaluating isolation performance. Some parameter combinations were not tested due to the risk of 
rupturing the isolator membrane, particularly at high pressures, large amplitudes and no external volume attached. Additionally, the 
effect of excitation frequency was examined by testing the parameter combination 𝑝 = 3 bar, 𝑉ext = 0.75 dm3, 𝑠 = 10◦ at 0.2, 1.5, 2, 3 Hz
and varying amplitudes. Higher frequencies limited the maximum amplitudes due to constraints of the testing machine. Table  A.1 
lists all the experiments conducted.

The test procedure starts by positioning the unpressurized isolator within the universal testing machine and connecting it to the 
pneumatic circuit. The force sensor on the testing machine is zeroed. The machine’s crosshead is then adjusted so that the isolator’s 
piston is close to, but does not touch, the upper compression platen. Following this, the pressure regulator is used to set the desired 
pressure level, causing the piston to extend to the upper platen.

Once the isolator is pressurized, the crosshead is moved to the central isolator position, which is designated as the zero relative 
position for the test. This position is established by bottoming out the unpressurized isolator and then moving the crosshead 17mm
upwards. After reaching the central position, the valve is closed to isolate the system and to ensure no pressure regulation occurs 
during testing.

With the setup complete, a digital output on the test machine is activated, triggering the recording of pressure sensor data via 
the HBM QuantumX MX440B data acquisition system. The cyclic loading test then begins, using specified frequency and amplitude 
values. The test procedure includes 10 ramp-up cycles, during which the amplitude is gradually increased until the target value is 
reached. The main test consists of 150 cycles (unless noted otherwise) to allow the force-displacement curves to stabilize, indicating 
that the isolator has adapted to the applied load. After the main test, 10 ramp-down cycles are performed, followed by deactivating 
the digital output to stop the external pressure measurement.

4.2. Single-degree-of-freedom simulation

Characterizing the isolator’s stiffness and damping alone is insufficient for assessing isolation performance. Isolation performance 
must be evaluated with the isolator supporting a load. The simplest case is a single-degree-of-freedom (SDOF) system, where a mass 
is coupled to the isolator. In this study, simulations of a SDOF system are used to evaluate isolation performance across different 
loads and excitation levels, offering a faster approach compared to conducting individual experiments for each case.

There are two situations in which the vibration isolation performance of a SDOF can be assessed. During base excitation, the 
ground where spring and damper are attached to is displaced under harmonic motion with a given displacement amplitude. The 
displacement of the mass compared to the displacement of the base describes the transmissibility of external motion into the system. 
On the other hand, during force excitation, a force of given amplitude is applied to the mass. The transmissibility is now determined 
by the amplitude of force that is transferred through spring and damper into the rigid base compared to the excitation force 
amplitude. Both options produce the same results for a linear system [23] but differ for nonlinear ones. In this work, the force 
transmissibility is chosen as a metric.

For a linear SDOF system under force excitation, the equation of motion is 
𝑚𝑧̈ + 𝑐𝑧̇ + 𝑘1𝑧 = 𝐹𝑒 cos(𝜔𝑡) , (9)

where 𝑚 is the mass, 𝑐 is the damping coefficient, 𝑘1 is the linear stiffness coefficient, 𝐹𝑒 is the force excitation amplitude, and 𝜔 is 
the angular frequency of excitation. The force transmissibility 𝑇 (𝛺) of such a linear system is given by [24] 

𝑇 (𝛺) =

√

1 + 4𝜁2𝛺2

(1 −𝛺2)2 + 4𝜁2𝛺2
, (10)

where 𝜁 = 𝑐∕(2 𝑚𝜔𝑛), 𝜔𝑛 =
√

𝑘1∕𝑚, and 𝛺 = 𝜔∕𝜔𝑛.
To accurately capture the nonlinear dynamics of rolling-lobe isolators, a linear model, as represented by Eq. (9), is insufficient. 

Wu et al. [21] demonstrate that the membrane of a rolling-lobe air spring introduces a significant cubic stiffness contribution, 
highlighting the need for a model that captures this effect. Consequently, a Duffing oscillator model, which incorporates both linear 
(𝑘1) and cubic (𝑘3) stiffness coefficients, is deemed appropriate for representing the dynamic behavior of a rolling-lobe isolator. This 
model aligns with the nonlinear characteristics inherent in QZS systems while remaining analytically and computationally tractable, 
making it a widely adopted approach in the literature [23,25].

The equation of motion for a Duffing oscillator is gained by extending Eq. (9) with the cubic stiffness 𝑘3 [23] 
𝑚𝑧̈ + 𝑐𝑧̇ + 𝑘 𝑧 + 𝑘 𝑧3 = 𝐹 cos(𝜔𝑡) . (11)
1 3 𝑒
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Normalizing Eq. (11) with respect to 𝑚 simplifies it to 
𝑧̈ + 𝛿𝑧̇ + 𝛼𝑧 + 𝛽𝑧3 = 𝛾 cos(𝜔𝑡) , (12)

where 𝛿 = 𝑐∕𝑚, 𝛼 = 𝑘1∕𝑚, 𝛽 = 𝑘3∕𝑚, and 𝛾 = 𝐹𝑒∕𝑚. Approximating the solution of the steady-state response of the nonlinear system 
via the first-order harmonic balance method yields [23] 

(𝛼𝑍 + 3
4
𝛽𝑍3 − 𝜔2𝑍)2 + (𝛿𝜔𝑍)2 = 𝛾2 , (13)

where 𝑍 is the amplitude of steady-state vibration. Due to Eq. (13) being quadratic with regards to 𝜔, solving for same has two 
solutions: 

𝜔1,2 =

[

(

𝛼 + 3
4
𝛽𝑍2 − 𝛿2

2

)

± 1
𝑍

√

𝛾2 − 𝛿2𝑍2
(

𝛼 − 𝛿2
4

+ 3
4
𝛽𝑍2

)

]1∕2

. (14)

To compute the transmissibility 𝑇 , the ratio between the transmitted force amplitude 𝐹𝑡 and the excitation force amplitude 𝐹𝑒
is needed. The mass normalized force 𝐹𝑡 transmitted into the ground consists of the spring and damping components of Eq. (11)

𝐹𝑡 = 𝛿𝑧̇ + 𝛼𝑧 + 𝛽𝑧3 . (15)

Applying the first order harmonic balance method to Eq. (15) yields the mass normalized transmitted force amplitude 

𝐹𝑡 = 𝑍

√

(

𝛼 + 3
4
𝛽𝑍2

)2
+ 𝛿2𝜔2 . (16)

Weighting 𝐹𝑡 by the mass normalized excitation amplitude 𝛾 gives the force transmissibility 

𝑇1,2 =
𝐹𝑡
𝛾

= 𝑍
𝛾

⋅

√

(

𝛼 + 3
4
𝛽𝑍2

)2
+ 𝛿2𝜔2

1,2 . (17)

5. Results

In this section, a detailed analysis of the experimental data collected of the isolators under various conditions is presented. The 
results are organized into several subsections, each representing a step towards developing a simulation model for predicting isolator 
behavior. An examination of the force-displacement relationships is conducted to understand the effects of different parameter 
combinations. It is then validated that the large external volume ensures approximately linear pressure behavior. Following this, 
key parameters, such as stiffness and damping coefficients, are extracted, which are essential for constructing the isolator simulation 
model. The influence of excitation frequency on these parameters is assessed. Finally, transmissibility is computed using the 
developed model to evaluate the spring’s isolation performance.

5.1. Force-displacement data

The first step in evaluating isolator performance involves examining the raw generated experimental data, specifically the force-
displacement curves. Fig.  7 demonstrates that the isolator requires time to settle in, but the force-displacement curves eventually 
converge. Between 100 and 150 cycles, the changes in the curves are minimal, indicating that the system is approaching a steady 
state, though minor changes likely continue beyond this point. This behavior is consistent across all tested isolators.

Given the extensive data from 86 individual runs, the force-displacement curves in Fig.  8 illustrate the diverse behavior of the 
isolator under varying parameter combinations listed in Table  A.1. To compare the curves across different parameter combinations, 
the forces and displacements for each curve have been normalized to lie between −1 and 1, yielding 𝐹  and 𝑧̂. For example, sample 32 

Fig. 7. Force-displacement curves for different cycles of sample 85 (𝑍 = 10mm, 𝑝 = 4 bar, 𝑠 = 10◦ , 𝑓 = 1Hz).
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(𝑍 = 15mm, 𝑝 = 2 bar, 𝑠 = 20◦) demonstrates a pinched curve at negative displacement, leading to predominantly positive stiffness 
for 𝑧 < 0 and negative stiffness for 𝑧 > 0. This behavior is consistent with other large amplitude samples at pressures equal to or 
exceeding 2 bar, stemming from the membrane leaving the guide at large negative displacements. In contrast, sample 27 (𝑍 = 15mm, 
𝑝 = 1 bar, 𝑠 = 20◦) reveals a meandering curve likely due to insufficient pressure to guide the membrane, a trend also observed at 
different guide angles and an amplitude 𝑍 = 10mm. As a comparison, sample 85 (𝑍 = 10mm, 𝑝 = 4 bar, 𝑠 = 10◦) shows a smooth 
curve with negative stiffness achieved over a large displacement range. Additionally, sample 44 (𝑍 = 2.5mm, 𝑝 = 3 bar, 𝑠 = 10◦) 
exhibits positive stiffness but very linear behavior, typical for curves where 𝑍 ≤ 2.5mm.

A more general overview is given in Fig.  A.2, where the force-displacement curves for all tested isolator configurations at a 
fixed volume of 𝑉 = 0.75 dm3 and frequency 𝑓 = 1Hz is shown. The curves reveal several clear trends. Higher internal pressures 
result in increased forces and enable greater negative stiffness. At higher amplitudes, the curve at negative displacement is pinched, 
breaking the central symmetry observed at lower amplitudes. Additionally, stiffness decreases with increasing amplitude, as seen in 
the clockwise rotation of curves at higher amplitudes for the same pressure and shroud angle. Higher shroud angles generate greater 
forces at the same pressure, likely due to the membrane’s increased expansion and the resulting larger effective diameter and thus 
area of the isolator. Overall, these curves effectively highlight the impact of different parameter combinations on the isolator’s 
performance, showing that both positive and negative stiffnesses can be achieved, thereby indicating the concept’s feasibility.

5.2. Pressure data

In addition to force and displacement, pressure data was recorded to gain further insights into the behavior of the isolators. 
While not of primary interest in modeling isolator behavior, pressure measurements offer valuable information on relative changes 
in volume and potential flow losses within the tubing. Ideally, with an infinitely large external volume and no flow losses, the 
pressure would not change at all during the sinusoidal excitation of the isolator. However, this is not achievable in practice and 
thus the next best case is the pressure following the sinusoidal excitation proportionally, which indicates linear system behavior.

Fig.  9 illustrates the pressure response of an isolator over the time 𝑡 of one excitation cycle at 1Hz. This is shown for an isolator 
configuration with parameters 𝑍 = 10mm, 𝑝 = 2 bar, 𝑠 = 10◦ and 𝑓 = 1Hz, comparing cases with and without an attached external 
volume of 0.75 dm3 (samples 20 and 57). To indicate linearity, the pressure data is fitted using the sine function 

𝑝sin = 𝜇1 sin (2𝜋𝑓 (𝑡 + 𝜇2)) + 𝜇3, (18)

where the parameters 𝜇1, 𝜇2, 𝜇3 and 𝑓 describe the amplitude, phase shift, pressure offset and frequency of the sinusoidal wave, 
respectively.

A least squares fitting method was employed to match the recorded measurements. If no external volume is attached, the 
sinusoidal model underpredicts the maximum pressure and overpredicts the minimum pressure, indicating that the pressure does not 
vary proportionally with the sinusoidal excitation. In contrast, if the external volume is attached, the sinusoidal fit closely follows 
the experimental data, indicating linear system behavior. This suggests that the external volume is sufficiently large to prevent 
non-linear pressure increase and that pressure losses are negligible. It also shows that only by employing the external volume, gas 
spring stiffness remains low enough for zero-stiffness to be possible, as explained in Section 2. Thus, from here on out, only samples 
with an external volume attached are investigated.

5.3. Stiffness and damping coefficients extraction

To model isolator behavior as described by Eq. (11), the linear and cubic stiffness coefficients 𝑘1 and 𝑘3 and the viscous damping 
coefficient 𝑐 need to be extracted from the experimental data. For the stiffness coefficients 𝑘1 and 𝑘3 parameter extraction is carried 
out via least squares curve fitting. During curve fitting, the experimental force-displacement data is compared to the force predicted 

Fig. 8. Force-displacement curves of representative samples of all tested configurations.
9 



M. Sprengholz and C. Hühne Journal of Sound and Vibration 608 (2025) 119061 
Fig. 9. Pressure over time of one excitation cycle for sample 85 and 57 (𝑍 = 10mm, 𝑝 = 2 bar, and 𝑠 = 10◦) with and without external volume attached.

by the model (Eq. (15)). The viscous damping constant 𝑐 is determined through optimization to match the enclosed area of the 
experimental data.

Exemplary for all other samples, the extracted parameters for sample 20 (𝑍 = 10mm, 𝑝 = 2 bar, 𝑠 = 10◦, 𝑓 = 1Hz) are plotted in 
Fig.  10. This figure shows the experimental data and the curve-fitted model (Eq. (15)). Additionally, the forces resulting from the 
linear stiffness 𝑘1𝑧, and from the combined linear and cubic stiffness 𝑘1𝑧+𝑘3𝑧3 are plotted individually. Instead of the absolute force 
𝐹 , the relative force 𝛥𝐹 = 𝐹 − 𝐹0 is used, which is obtained by subtracting the mean force 𝐹0 at 𝑧 = 0mm from 𝐹 . As is evident, 
the experimental data is lacking central symmetry.

The isolator exhibits fundamentally asymmetric force-displacement behavior for designs with a guide angle 𝑠 > 0. Additionally, 
the membrane may unintentionally exit the guide at large negative displacements, which leads to much more pronounced 
asymmetries (see sample 32 in Fig.  8). Yet, the used Duffing oscillator model is inherently symmetric. To symmetrize the data, 
only data where 𝑧 > 0 is chosen because the membrane is always confined by the guide in this case. Using a symmetric model for 
asymmetric data explains why the fitted curves approximate the isolator’s behavior well for 𝑧 > 0 but differ visibly for 𝑧 < 0. This 
asymmetry is particularly evident when the stiffness nonlinearity is significant, especially at amplitudes 𝑍 > 2.5mm.

Damping of the isolator is determined by the area enclosed by the force-displacement hysteresis loop. Viscous damping 𝑐 is 
determined through optimization, which involves minimizing the difference between the area of the experimental curve for 𝑧 > 0
(shown as the shaded area in Fig.  10) and the simulated system. During this optimization, the values for 𝑘1 and 𝑘3 are arbitrary, as 
only 𝑐 influences the enclosed area. Thus, determining the damping coefficient is done before extracting the stiffness coefficients.

The stiffness coefficients 𝑘1 and 𝑘3 are determined using a least squares curve fit method, which leverages many data points 
for greater accuracy. For amplitudes 𝑍 ≤ 2.5mm, the isolators exhibit mostly linear behavior, making 𝑘3 ≈ 0. In this case, 𝑘1 is 
determined using a curve fit where 𝑘3 is set to zero beforehand. This is done to combat the low sensitivity of the fit w.r.t 𝑘3 which 
would result in physically implausible values otherwise. For larger amplitudes, 𝑘3 is not set to zero beforehand and is determined 
during the curve fitting process.

Data was extracted in this manner for all experiments, and the individual parameters are compiled in Table  A.1. The extracted 
parameters form the basis for fitting a model that describes individual isolator configurations during operation at different 
amplitudes.

Fig. 10. Experimental curve (exp) and fitted model (fit) with linear and cubic stiffness force for sample 20 (𝑍 = 10mm, 𝑝 = 2 bar, 𝑠 = 10◦). The shaded area is 
used for damping calculation.
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5.4. Isolator model building

Understanding the behavior of the isolator requires knowledge of its stiffness and damping behavior across all operating 
conditions. In the previous subsection, stiffness and damping coefficient were determined for all tested samples at specific amplitudes 
𝑍, guide angles 𝑠, pressures 𝑝 and excitation frequencies 𝑓 . To extend this understanding to configurations that have not been 
experimentally tested, a model is developed in this subsection. This model uses the extracted parameters to predict stiffness and 
damping coefficients for untested amplitudes.

The variation of the linear stiffness coefficient 𝑘1 with amplitude 𝑍 is critical in understanding the isolators’ behavior. Fig.  11 
shows 𝑘1 plotted against 𝑍 for different guide angles 𝑠 and pressures 𝑝, where the points represent the extracted values and the 
lines represent the fitted functions using a least squares regression applied to the following reciprocal function 

𝑘1 =
𝜈1

(𝑍 − 𝜈2)
+ 𝜈3 , (19)

where 𝜈1, 𝜈2 and 𝜈3 are the fitted parameters. As 𝑍 increases, 𝑘1 decreases monotonically, following a reciprocal relationship. The 
crossing region refers to the amplitude range where the stiffness curves for different pressures intersect, typically occurring at lower 
amplitudes for larger 𝑠. This region is valuable indicator as the more this region moves towards lower amplitudes, the lower the 
achievable 𝑘1 at higher amplitudes. Pressure plays a crucial role in influencing 𝑘1, particularly above the crossing region, where 
higher pressures lead to a more pronounced reduction in 𝑘1, especially for larger 𝑠. This behavior confirms the theoretical prediction 
that a change in effective area, occurring for guide angles 𝑠 > 0◦, influences the stiffness of the isolator.

Instead of analyzing 𝑘3 directly, 𝑘̂3 = 𝑘3 ⋅𝑍3 is used to obtain a curve that more plausibly approaches zero for small amplitudes, 
which aligns with the physical behavior of the isolator (nonlinearities vanish at small amplitudes) and the assumptions made during 
parameter extraction. The normalized coefficient 𝑘̂3 exhibits an initial rise, and peaks around 10mm amplitude if 𝑝 ≤ 2 bar. While 
higher pressures generally result in larger 𝑘̂3 within each guide angle category, the influence of guide angle on 𝑘̂3 remains uncertain 
due to the lack of consistent correlation. To approximate 𝑘̂3 across varying conditions, linear interpolation between data points (Fig. 
12) is employed, providing a practical representation for later model building.

Contrasting with the complexity of predicting the cubic stiffness coefficient 𝑘3, the damping coefficient 𝑐 shows a clear trend 
with amplitude 𝑍. Generally, 𝑐 decreases as 𝑍 increases, but notably peaks around 𝑍 ≈ 2.5mm for most curves, especially under 
higher pressures and larger guide angles. Despite this peak, an overall linear approximation effectively describes the trend of 𝑐
over 𝑍. This linear model provides a reasonable fit for the majority of data points at different amplitudes. Fig.  13 illustrates this 
relationship with extracted data points and linear model fits for the three tested guide angles.

Fig. 11. Fit of linear stiffness coefficient 𝑘1 over amplitude 𝑎, markers denote extracted experimental values.

Fig. 12. Fit of normalized cubic stiffness coefficient 𝑘̂3, markers denote extracted experimental values.
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Fig. 13. Fit of viscous damping coefficient 𝑐, markers denote extracted experimental values.

5.5. Influence of excitation frequency on extracted parameters

In the experiments using the universal testing machine, multiple excitation frequencies were investigated. However, so far only 
data from tests conducted at 1Hz have been presented. To assess the influence of frequency on stiffness and damping coefficients, 
experiments for one isolator configuration (𝑠 = 10◦, 𝑝 = 3 bar) have been carried out at different excitation frequencies. Three new 
plots in Fig.  14 compare the prior extracted parameters 𝑘1, 𝑘̂3, and 𝑐 at 1Hz to the same parameters at differing frequencies. The 
baseline at 1Hz is marked with a curve, as in the previous figures, while the data points at frequencies other than 1Hz are shown 
only as points.

Frequency exerts minimal influence on 𝑘1, with a slight proportionality observed primarily at lower amplitudes. Significant 
decreases in 𝑘̂3 are evident at higher amplitudes below 1Hz, while more data points are needed above 1Hz for a comprehensive 
assessment. Conversely, 𝑐 demonstrates a pronounced inverse relationship with frequency, particularly below 1Hz, where damping 
increases notably.

5.6. Transmissibility from isolator model

The developed stiffness and damping model is applied to evaluate the transmissibility of the different isolator configurations 
over a range of excitation frequencies and force amplitudes. The isolator is simulated as part of a single-degree-of-freedom system, 
as outlined in Section 4.2. First, the transmissibility and displacement amplitude of a single isolator configuration are evaluated to 
illustrate its isolation performance. Then, the frequency at which isolation initially occurs is determined for all tested configurations, 
highlighting the impact of the design parameters on isolation effectiveness.

Fig.  15(a) illustrates force transmissibility 𝑇  over frequency 𝑓 for the isolator configuration 𝑝 = 4 bar, 𝑠 = 10◦. For small excitation 
force amplitudes, the nonlinear terms vanish, resulting in nearly linear behavior, as shown by the dashed line representing linear 
transmissibility with 𝑘1 and 𝑐 extracted from the model for 𝑍 = 0mm. As excitation forces increase, amplitudes 𝑍 rise, causing 

Fig. 14. Influence of frequency 𝑓 on the extracted parameters of the isolator configuration 𝑝 = 3 bar, 𝑠 = 10◦.
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the isolator to soften, shifting the peak towards lower frequencies and decreasing transmissibility in the resonance region. Further 
increasing the force amplitude to 10N eliminates solutions for 𝜔2 from Eq. (14), while the 𝜔1 branch extends towards 0Hz. This 
results in two observable peaks: a shallow peak near the resonance region of the lower force excitation levels and an inverted peak 
towards lower frequencies. The shallow peak reaches above 𝑇 = 1 but decreases with further force amplitude increases, whereas 
the inverted peak grows.

All curves converge at frequencies around 6Hz, regardless of excitation force amplitude. The transmissibility of the isolators 
is lower in the resonance region compared to the idealized linear case, but becomes larger from about 3Hz onwards. Fig.  15(b) 
shows corresponding displacement amplitude plots, indicating that higher force amplitudes result in higher displacement amplitudes. 
Generally, these amplitudes remain below 1mm, except near resonance and a force excitation amplitude of 10N.

Isolation performance can be evaluated by identifying the frequency 𝑓 to the right of the resonance peak where 𝑇 = 1 for each 
excitation force amplitude. Fig.  16 illustrates this extracted frequency across different isolator configurations and force excitation 
amplitudes, providing a single metric for isolator design. The results generally show a trend of higher pressures and guide angles 
reducing transmissibility. An exception is observed with the 20◦ guide angle, which initially shows the highest transmissibility but 
falls below the values of all other guide angles at 𝑝 = 3 bar, likely due to the membrane not properly contacting the guide at lower 
pressures.

6. Discussion

The results offer valuable insights on isolator behavior but require a closer examination to assess their implications. This 
discussion focuses on evaluating the experimental data quality, as well as the accuracy of the stiffness, damping, and transmissibility 
models. Understanding these aspects helps to inform practical design guidelines for optimizing rolling-lobe isolators in low-frequency 
vibration isolation applications.

6.1. Experimental data quality and measurement consistency

The experiments generated data of high resolution, allowing for detailed measurements of force and displacement. This level of 
detail is crucial for capturing the nuances of isolator behavior, particularly at small amplitudes. Specifically, the force resolution 

Fig. 15. Force transmissibility 𝑇  and amplitude 𝑍 over frequency 𝑓 for different excitation levels 𝐹𝑒 of the isolator configuration 𝑝 = 4 bar, 𝑠 = 10◦.

Fig. 16. Extracted Frequency 𝑓 at 𝑇 = 1 for different combinations of pressures 𝑝 and guide angles 𝑠 and force excitation amplitudes 𝐹𝑒. Lines connecting data 
points are drawn for enhanced visual clarity not valid data interpolation.
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was below 0.1N, which proved adequate for all tests conducted. However, at small amplitudes, the minimal overall change in force 
led to stairstepping effects in the data. These effects were mitigated by applying a least squares fit to accurately determine the 
coefficients taking all the data into account.

For the testing of each isolator the starting conditions have to remain comparable. After changing isolator configurations, manual 
repositioning of the universal test machine’s crosshead to the central isolator position was required. The accuracy of this operation 
was limited to 0.1mm. Additionally, uncertainties in internal pressure measurements (±0.15 bar resolution) influenced the effective 
starting area due to pressure induced membrane deformation. Since the guide angle of the tested isolator is constant and the extracted 
parameters depended on the relative change in force, small shifts impacting the starting conditions are assumed to have had minimal 
impact.

6.2. Isolator model validity

The displacement amplitudes in the design of experiments were selected based on their potential to achieve overall zero-stiffness, 
thus placing less emphasis on smaller amplitudes. However, outside the resonance region, the transmissibility model indicates that 
displacement amplitudes are much lower than those investigated experimentally. This discrepancy increases the model’s reliance on 
accurately predicting stiffness and damping at small amplitudes, potentially reducing prediction accuracy. This primarily affects the 
estimates of linear stiffness 𝑘1 and damping 𝑐 coefficients at low amplitudes. Their general impact on transmissibility is discussed 
in the next subsection.

Additionally, internal pressures 𝑝 ≤ 3 bar can prevent the membrane from following the intended guide geometry at guide angles 
𝑠 ≥ 0◦. This results in mislabeled data, where different configurations are incorrectly grouped under a single guide angle. This 
mislabeling explains the wider crossing region of pressure curves at a guide angle of 𝑠 = 20◦ in Fig.  11. Although this affects 
the accuracy of isolation performance predictions for these specific configurations, the higher-pressure configurations, which show 
better isolation performance, remain unaffected.

Modeling the linear stiffness behavior of rolling-lobe air springs over displacement amplitude using a reciprocal function is well 
established in the literature [18,21]. However, this approach addresses only the linear stiffness component of the model. The higher 
order cubic stiffness term, required in the Duffing oscillator model, is more challenging to model, particularly since this aspect 
remains unexplored in the existing literature on rolling-lobe isolators.

Another restriction associated with the Duffing oscillator model is its assumption of central symmetry in the isolator’s behavior. 
Yet, in practice, the isolator exhibits inherent asymmetry at non-zero guide angles. This asymmetry primarily arises from the 
changing piston and external guide diameter with displacement, which introduces a quadratic influence on the force (𝐹 = 𝑝 ⋅ 𝐴 ∝
𝑝 ⋅ 𝑑2). Consequently, the model’s assumption of a purely cubic non-linear stiffness is insufficient to capture the full behavior of the 
system, especially at larger amplitudes where asymmetry becomes more pronounced.

To enforce the model’s symmetry requirement, only one side of the force-displacement data is used during model fitting. This 
approach leads to noticeable differences between the model and experimental data at larger amplitudes, where the effects of 
asymmetry are more significant. Nonetheless, the model provides reliable predictions for the positive displacement across all tested 
amplitudes. For larger amplitudes, where asymmetry significantly influences behavior, an updated model that accounts for the 
quadratic influence could enhance predictive accuracy.

In summary, future work could explore advanced isolator modeling to better capture the isolator’s asymmetric dynamics. 
Furthermore, optimizing the isolator’s design to reduce asymmetry may simplify modeling and improve the Duffing oscillator’s 
predictive accuracy. While the current Duffing model serves as a practical baseline for analyzing the isolator’s performance under 
low-asymmetry conditions, extensions are required to account for asymmetric effects at larger amplitudes. Notably, refining the 
isolator’s design through the parameters outlined in Section 2 could inherently mitigate asymmetry, thereby enhancing the predictive 
capability of the already employed Duffing oscillator model.

6.3. Transmissibility model validity

As the transmissibility model is based on the predictions generated by the isolator model, it also inherits its limitations. The 
transmissibility curves are thus primarily influenced by the isolator model, which is experimentally validated at higher amplitudes 
and a fixed frequency of 1Hz. Although these validations increase confidence in the model at these specific conditions, the model’s 
accuracy at smaller amplitudes and differing frequencies remains untested due to limited experimental data. While the effect of 
frequency is considered less significant than that of amplitude, the model does not currently account for it.

A frequency-dependent model would generally alter the transmissibility curve in both directions from the fixed frequency 
measurements taken at 1Hz. Below 1Hz, increased damping and reduced linear stiffness lead to a more gradual decline in 
transmissibility and lower the frequency at which isolation begins. Above 1Hz, decreased damping results in a sharper drop in 
transmissibility, while increased linear stiffness raises transmissibility overall. These trends suggest lower transmissibility with slower 
decay in the sub-1Hz range, and higher transmissibility with a faster decline above 1Hz. Additionally, reduced cubic stiffness below 
1Hz produces less tilted resonance peaks, indicating reduced isolator softening, while a slight increase in cubic stiffness above 1Hz
leads to more tilted peaks in that range.

Under certain excitation conditions, the model may predict nonphysical behavior. This is illustrated by the negative transmis-
sibility peak observed in Fig.  15(a) at an excitation force amplitude of 10N. Since the force amplitudes remain within the model’s 
valid range [23], this negative peak reflects system instability caused by the linear stiffness coefficient 𝑘  becoming negative due 
1
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to isolator softening at large amplitudes. Notably, the displacement amplitudes at the negative peak align with those where 𝑘1
first turns negative. In reality, this condition would cause system vibration to cease, but the model does not predict this outcome, 
resulting instead in implausible behavior. These nonphysical results from the harmonic balance method highlight the importance 
of carefully considering the data used to build the model.

To achieve more accurate predictions that can actively inform the isolator design process, several options can improve upon the 
current model. The most straightforward approach is to expand the experimental dataset by collecting more data across a broader 
frequency and amplitude range. Additional data points at frequencies below 1Hz would better capture damping behavior, while 
extending data collection above 1Hz would refine predictions for cubic stiffness.

Another method to improve the accuracy of transmissibility measurements involves experimentally exciting an SDOF system, 
comprising the isolator and its load, with a shaker. Excitation can be either harmonic at discrete frequencies or employ a swept-sine 
excitation over a continuous frequency range. This data can be directly used to generate transmissibility curves without relying 
on model-based calculations. Additionally, a swept-sine approach provides insights into the transient behavior of the isolator. Such 
methods offer two key advantages: higher-fidelity transmissibility data that directly inform design decisions, as demonstrated by Lee 
and Kim [26], and the ability to capture higher harmonics and asymmetric behaviors [27], both of which significantly influence 
vibration isolation performance. Despite these advantages, a shaker-based setup introduces considerable complexity, particularly 
when working with variable loads. Achieving the required static load often necessitates either a large mass or a second actuator. 
Supporting large masses requires a stabilizing fixture, which can impact measurement accuracy. Employing a second actuator in 
a tandem configuration adds further complexity and assumes the availability of a second actuator of the same type [18]. As a 
result, the experimental approach adopted in this work – characterizing stiffness and damping and simulating transmissibility using 
analytical models – remains a widely used methodology for evaluating QZS isolators [12,28,29].

Next to physical experiments, finite element simulations offer a viable addition. They enable predictions of stiffness and damping 
trends across amplitude and frequency ranges that may be challenging to capture experimentally. While simulations can operate 
independently, combining them with experimental data for validation strengthens model accuracy. With a finite element model, the 
entire isolator system can be optimized virtually, allowing adjustments to parameters like membrane stiffness [20,21] or external 
volume to achieve specific performance goals, such as zero-stiffness across different operating ranges. Thus it appears beneficial to 
include simulation tools if obtaining specific isolator properties is desired.

6.4. Factors driving vibration isolation performance

Following the evaluation of data and model validity, the focus shifts to identifying the parameters that most significantly impact 
rolling-lobe air spring isolation performance. Which factors shape effective isolation, and how can these insights inform the design of 
rolling air springs for low-frequency applications? This analysis centers on the adjustable isolator parameters, such as geometry, size 
of external volumes and membrane behavior due to internal pressure influence, while also considering given external conditions, 
including excitation frequencies, amplitudes, and the role of transient vibrations.

The primary geometric feature influencing the stiffness of the rolling-lobe air spring is the external guide, which introduces a 
source of negative stiffness to the spring’s design. This feature is central to achieving overall zero or even negative stiffness, with 
stronger negative stiffness effects generally resulting from higher guide angles 𝑠. However, this effect relies on the assumption that 
the membrane consistently deforms to remain in contact with the guide, which may not always occur, as observed at 𝑠 = 20◦ under 
pressures below 2 bar. This indicates that the change in guide radius must be carefully managed to stay within feasible limits. This 
constraint limits the maximum achievable negative stiffness, underscoring the importance of complementary mechanisms increasing 
the magnitude of negative stiffness while decreasing positive stiffness at the same time.

In addition to the external guide, the piston geometry offers another adjustable parameter. In this study, the piston is primarily 
contoured to guide membrane deformation, although it can also influence overall stiffness. Visual observations during testing 
indicate that the membrane closely follows the piston contour, effectively eliminating localized bunching. This design likely 
contributes to a more uniform strain distribution across the membrane, which could reduce the isolator’s positive stiffness. Moreover, 
similar to the external guide, the piston geometry can alter the effective cross-sectional area of the spring, further reducing its 
negative stiffness component. Although this effect is less pronounced due to the piston’s smaller cross-section, it avoids the contact 
limitations associated with the external guide. Optimizing piston geometry to reduce stiffness may allow for a smaller external 
guide angle, thus minimizing contact issues there and enhancing overall performance. In this way, the piston shape influences both 
positive stiffness by improving membrane strain distribution and negative stiffness through area adjustments.

The positive stiffness of the isolator is mainly influenced by two factors: the stiffness of the gas inside the isolator and the stiffness 
of the membrane. The membrane’s material TPU exhibits three distinct characteristics: non-linear hyperelasticity, time dependence 
and softening during cyclic loading [30]. Thus the membrane’s stiffness heavily depends its deformation state and history, which 
in turn is affected by internal pressure and vibration amplitude. Since vibration amplitude cannot be controlled through design, 
only the internal pressure can be adjusted. Higher pressures lead to increased stress in the membrane, in turn reducing membrane 
stiffness due to non-linear stress-strain behavior [30]. Thus, higher pressures enable more compact designs of the same load bearing 
capability with improved isolation performance.

Additionally, the cyclic softening property of the membrane material introduces a conditioning period before the isolator reaches 
steady-state isolation performance. This conditioning means the isolator requires a certain number of cycles to stabilize, as illustrated 
in Fig.  7. Any sudden changes in vibration amplitude or frequency could restart this conditioning process, affecting the isolator’s 
15 



M. Sprengholz and C. Hühne Journal of Sound and Vibration 608 (2025) 119061 
immediate effectiveness in applications with varying vibration frequencies and amplitudes. For this reason, steady-state operation 
is preferred with this type of isolator to ensure consistent performance.

In rare cases, membrane rupture caused the isolator to cease operation, typically occurring at high internal pressure, large 
amplitudes and without an external volume attached. While such conditions do not achieve zero-stiffness and are less relevant for 
vibration isolation, they underscore the importance of properly sizing both the membrane and the external guide. Membrane rupture 
was usually preceded by external guide failure, which allowed the membrane to expand uncontrollably and exceed its allowable 
stress. Reinforcing the external guide, such as by increasing wall thickness, prevents membrane rupture without altering isolator 
properties. Additionally, membrane thickness must be carefully selected to balance low stiffness and reliability. A conservative 
estimate for membrane stress can be obtained by modeling the membrane as a 180◦ cylindrical arc under tangential stress 𝜎𝑡 = 𝑝𝑅

𝑡 , 
where 𝑝 is the internal pressure, 𝑅 is the local radius of curvature, and 𝑡 is the membrane thickness. This formula is equivalent 
to the hoop stress formula of a thin-walled cylindrical pressure vessel [31]. Ensuring 𝜎𝑡 remains below the allowable stress under 
peak operating conditions allows for thinner membranes to reduce stiffness while mitigating rupture risks. In the tested isolator 
configurations, 𝜎𝑡 remained well below the membrane’s ultimate strength, confirming that rupture occurred due to external guide 
failure.

Reducing the positive stiffness of the gas inside the isolator is achieved by attaching an external volume to the isolator, as shown 
theoretically in Section 2. This reduction in gas spring stiffness is independent of internal pressure, maintaining its effect consistently 
across various supported loads. Consequently, adjusting the external volume provides a reliable means to counteract the variable 
membrane stiffness, which changes with internal pressure, vibration amplitude, and frequency. By tuning the external volume, the 
overall isolator stiffness can be brought back to zero, balancing out the membrane’s changing stiffness under different operating 
conditions. This capability enables a single isolator design with fixed geometry to support multiple load scenarios while achieving 
zero-stiffness. Although experimental adjustments to the external volume were not made with the goal of reaching zero-stiffness, 
the results support the theoretical relationship between external volume and stiffness modification.

To design a rolling-lobe air spring optimized for low-frequency vibration isolation, certain principles should be followed. First, 
incorporating an external guide is essential to introduce the necessary negative stiffness. To mitigate contact issues between the 
membrane and external guide, the piston geometry should also contribute to producing negative stiffness, thereby reducing the 
required guide angle on the external guide. Minimizing the system’s positive stiffness components helps reduce the required negative 
stiffness, which in turn decreases the external guide angle and piston contouring needed, alleviating contact issues and asymmetric 
isolator behavior. To lower membrane stiffness, a high-pressure, compact design is recommended. Adding an external volume 
reduces gas stiffness, linearizes spring behavior, and thus prevents the introduction of higher harmonics during vibration isolation. 
Therefore, a large external volume is beneficial. Otherwise, a trade-off between volume size and isolation performance may be 
necessary to achieve optimal results.

6.5. Comparison with existing QZS isolators

Comparing the rolling-lobe isolator design with other passive QZS isolators presented in the literature is challenging, as isolation 
performance metrics are not always reported. Consequently, this comparison is limited to studies that provide transmissibility data 
and use experimental methods to derive these metrics, either directly or indirectly.

For instance, Shuai et al. [12] employ multiple commercial bellow-type air springs in a QZS configuration to isolate a 1000 kg
mass from vibrations starting at approximately 1.5Hz. Similarly, Shi et al. [13] use multiple air springs in a QZS arrangement to 
achieve isolation from 2Hz and higher of a 60 kg mass. Vo et al. [28] combine an air spring with a wedge-and-roller cam mechanism 
to isolate a 4.7 kg mass beginning at 0.3Hz. In contrast, Wang et al. [32] and Kim et al. [29] utilize purely mechanical systems, 
achieving isolation at approximately 2.5Hz for a 10 kg mass and 2Hz for a 0.76 kg mass, respectively.

These findings show that the rolling-lobe isolator, which achieves isolation from approximately 3Hz and supports masses ranging 
from 15 kg to 65 kg, operates in the same frequency range as other passive QZS systems. Moreover, it accommodates vibration 
amplitudes of up to 15mm - significantly higher than those reported in comparable literature. Furthermore, pneumatic isolators 
(as highlighted in this work and in other’s [12,13]) excel at isolating larger loads due to their higher force density compared to 
mechanical springs while being adaptable to varying loads.

6.6. Cost and scalability considerations

While this study relies on 3D-printing to produce multiple prototype isolators efficiently, the same geometrical concepts can 
be scaled up or transferred to more conventional manufacturing processes. Industrial processes such as injection molding and 
rubber vulcanization are commonly employed for high-volume air spring manufacturing, making them economically viable for 
large-scale commercial applications. These methods can accommodate the intricate piston geometries proposed in this study without 
significant cost penalties, especially once tooling is established. By contrast, for specialized or low-volume runs, the flexibility of 
3D-printing may remain appealing, as it eliminates expensive tooling and enables rapid design iterations. Notably, the same printing 
technology used in this study can scale the isolator up by an order of magnitude in dimension, enabling approximately two orders of 
magnitude higher load-bearing capacity. Consequently, cost considerations depend largely on production volume, part complexity, 
and customization needs, rather than on any inherent limitation of the rolling-lobe isolator concept itself.
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7. Conclusion

This study explores the design and performance of rolling-lobe air springs in the context of vibration isolation. The herein 
presented air springs are passive vibration isolators, composed of few parts. These parts are fabricated using 3D-printing allowing 
for precise control over the isolators’ geometry while enabling rapid prototyping. The isolators’ performance is evaluated through 
experimental testing under harmonic excitation at various amplitudes and frequencies. Data is collected for a range of isolator 
configurations, differing in geometry and applied internal pressure. The force-displacement data obtained from these experiments 
serves as the basis for developing a predictive isolator model capable of evaluating isolator behavior across a range of excitation 
amplitudes and frequencies.

Using this model, rolling-lobe air spring vibration isolation performance is assessed, with force transmissibility serving as the 
key metric. The results indicate a strong influence of isolator geometry, internal pressure and excitation amplitude on the isolation 
performance. Out of all tested parameter combinations, the most promising isolator configuration achieves effective isolation from 
close to 2Hz onwards.

This study has demonstrated distinct advantages of rolling-lobe isolators. Rolling-lobe isolators can achieve zero or even negative 
stiffness within a vibration isolation context. Unlike QZS systems, the rolling-lobe air spring operates as a single unit, reducing the 
number of components and simplifying construction. Additionally, its load-bearing capability can be adjusted by altering the internal 
pressure, offering flexibility in its application while still enabling passive operation. The results show that the isolator’s stiffness 
can be tuned by modifying its geometry, allowing for the potential of zero-stiffness across a large displacement range. Due to the 
membrane material TPU exhibiting non-linear hyperelastic behavior, large amplitude operation positively impacts the air springs’ 
ability in achieving zero-stiffness.

The findings also reveal that next to amplitude, the membrane’s behavior is additionally influenced by internal pressure. Contrary 
to the idealized theory of air spring behavior where stiffness is pressure-independent, the experiments uncover that higher internal 
pressures lead to a reduction in stiffness. This effect is caused by the non-linear hyperelasticity of TPU. Additionally, TPU’s cyclic 
softening property introduces a conditioning period necessary for the isolator to reach steady-state performance. This conditioning 
implies that isolation performance might need several cycles to be fully realized.

Overall, the rolling-lobe air spring remains a promising vibration isolator design, characterized by its simplicity in construction, 
passive operation, and high tunability – features, which are sought after in mounting solutions for transport and industrial machinery. 
These findings pave the way for designing an isolator that achieves true zero-stiffness across varied load cases and displacements, 
for refining performance through high-pressure configurations, and for targeting applications with steady-state isolation needs to 
fully leverage the isolators’ conditioning characteristics.
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Appendix A. Figures and tables

Table A.1
Overview of all tested samples.
Sample 𝑍 𝑓 𝑝 𝑉 𝑠 𝑘1 𝑘3 𝑐 𝐹0

mm Hz bar dm3 ◦ N∕mm N∕mm3 Ns∕mm N

2 0.5 1 1 0.75 0 5.3588 0 0.1404 142.0
3 2.5 1 1 0.75 0 3.4698 0 0.1350 143.4
4 5 1 1 0.75 0 2.4338 0.014 0.1230 143.9
5 10 1 1 0.75 0 1.5209 0.0029 0.1010 144.7
1 15 1 1 0.75 0 1.1562 0.0004 0.0578 144.1

12 0.5 1 1 0.75 10 4.6871 0 0.1205 147.6
13 2.5 1 1 0.75 10 3.6474 0 0.1284 148.2
14 5 1 1 0.75 10 2.6746 0.0094 0.1249 148.6
15 10 1 1 0.75 10 1.7506 0.0013 0.1104 149.2
16 15 1 1 0.75 10 1.4046 −0.0006 0.0954 150.1
22 0.5 1 1 0.75 20 6.2720 0 0.1603 142.7
23 0.5 1 1 0.75 20 6.2720 0 0.1603 142.7
24 2.5 1 1 0.75 20 4.6835 0 0.1669 143.7
25 5 1 1 0.75 20 3.3468 0.0167 0.1613 144.5
26 10 1 1 0.75 20 2.1414 0.0052 0.1426 145.6
27 15 1 1 0.75 20 1.7002 −0.0005 0.1266 147.0
6 0.5 1 2 0.75 0 5.6541 0 0.1587 291.6
7 0.5 1 2 0.75 0 5.6541 0 0.1587 291.6
8 2.5 1 2 0.75 0 3.6563 0 0.1625 291.5
9 5 1 2 0.75 0 2.3979 0.0132 0.1480 291.5

10 10 1 2 0.75 0 1.3319 0.0043 0.1174 291.6
11 15 1 2 0.75 0 1.0002 0.0009 0.0959 291.7
17 0.5 1 2 0.75 10 5.1309 0 0.1608 311.2
18 2.5 1 2 0.75 10 3.5135 0 0.1855 311.5
19 5 1 2 0.75 10 2.0798 0.0105 0.1759 311.8
20 10 1 2 0.75 10 0.7192 0.0035 0.1438 312.9
21 15 1 2 0.75 10 0.1699 0.0009 0.1191 314.2
28 0.5 1 2 0.75 20 7.6098 0 0.2189 320.8
29 2.5 1 2 0.75 20 4.9665 0 0.2608 321.7
30 5 1 2 0.75 20 3.0255 0.0119 0.2601 322.6
31 10 1 2 0.75 20 0.8629 0.0058 0.2183 325.5
32 15 1 2 0.75 20 0.0624 0.0013 0.1809 328.6
38 0.5 1 3 0.75 0 7.2376 0 0.2401 441.0
39 2.5 1 3 0.75 0 3.8543 0 0.2441 440.8
40 5 1 3 0.75 0 2.0948 0.0203 0.2105 440.5
41 10 1 3 0.75 0 0.8098 0.007 0.1564 439.8
42 15 1 3 0.75 0 0.4853 0.003 0.1278 439.2
43 0.5 1 3 0.75 10 6.9922 0 0.2456 478.1
44 2.5 1 3 0.75 10 3.4328 0 0.2824 478.7
45 5 1 3 0.75 10 1.3606 0.0159 0.2583 479.3
46 10 1 3 0.75 10 −0.4151 0.0071 0.1974 480.2
47 15 1 3 0.75 10 −1.0085 0.0031 0.1584 481.4
48 15 1 3 0.75 10 −1.0085 0.0031 0.1584 481.4
33 0.5 1 3 0.75 20 7.1977 0 0.2933 507.0
34 2.5 1 3 0.75 20 3.8323 0 0.3378 507.8
35 5 1 3 0.75 20 1.2701 0.0154 0.3180 509.0
36 10 1 3 0.75 20 −1.1794 0.0081 0.2522 512.3
37 15 1 3 0.75 20 −2.1879 0.0033 0.2042 516.9
82 0.5 1 4 0.75 10 7.1753 0 0.3040 637.1
83 2.5 1 4 0.75 10 3.1206 0 0.3380 637.2
84 5 1 4 0.75 10 0.6329 0.0255 0.3002 637.1
85 10 1 4 0.75 10 −1.3244 0.0103 0.2307 637.1
86 15 1 4 0.75 10 −1.9323 0.004 0.1838 635.9
67 0.5 0.2 3 0.75 10 6.4853 0 1.2025 474.9
68 2.5 0.2 3 0.75 10 2.9150 0 1.2947 474.8
69 5 0.2 3 0.75 10 1.1045 0.0169 1.2011 474.8
70 10 0.2 3 0.75 10 −0.3408 0.0065 0.9411 475.1
71 15 0.2 3 0.75 10 −0.9525 0.0023 0.7580 475.4
72 0.5 1.5 3 0.75 10 6.8627 0 0.1852 475.0
73 2.5 1.5 3 0.75 10 3.8848 0 0.2106 475.0
74 5 1.5 3 0.75 10 1.4969 0.014 0.1864 475.1
75 10 1.5 3 0.75 10 −0.3709 0.0074 0.1410 476.0
77 0.5 2 3 0.75 10 7.9475 0 0.1430 475.7
78 2.5 2 3 0.75 10 3.9645 0 0.1640 475.6
79 5 2 3 0.75 10 1.4340 0.0193 0.1460 475.7
80 0.5 3 3 0.75 10 7.7987 0 0.0958 475.5
81 2.5 3 3 0.75 10 4.1878 0 0.1102 475.6
49 0.5 1 1 0 10 – – – –
50 2.5 1 1 0 10 – – – –
51 5 1 1 0 10 – – – –
52 10 1 1 0 10 – – – –
53 15 1 1 0 10 – – – –
58 0.5 1 2 0 0 – – – –
59 2.5 1 2 0 0 – – – –
60 5 1 2 0 0 – – – –
61 5 1 2 0 0 – – – –
62 10 1 2 0 0 – – – –
54 0.5 1 2 0 10 – – – –
55 2.5 1 2 0 10 – – – –
56 5 1 2 0 10 – – – –
57 10 1 2 0 10 – – – –
63 0.5 1 2 0 20 – – – –
64 2.5 1 2 0 20 – – – –
65 5 1 2 0 20 – – – –
66 10 1 2 0 20 – – – –
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Fig. A.1. Dimensions of rolling-lobe air spring isolator components in mm.

Fig. A.2. Force-displacement curves of all experimentally tested isolator configurations as shown in Table  A.1 with 𝑉 = 0.75 dm3 and 𝑓 = 1Hz.

Appendix B. Derivation of optimized piston geometry

To avoid the issue of the membrane bunching up on the piston, the piston geometry is modified to achieve a larger circumference 
while maintaining the same cross-sectional area. This is accomplished by superimposing a sine wave onto a circle with radius 𝑟𝑝. 
The resulting parametric equations in terms of parameter 𝑢 are 

𝑥 = (𝑟𝑝 + 𝑎 sin(𝑓𝑠𝑢)) cos(𝑢)

𝑦 = (𝑟𝑝 + 𝑎 sin(𝑓𝑠𝑢)) sin(𝑢)

𝑢 ∈ [0; 2𝜋) ,

(B.1)

where 𝑓𝑠 is the frequency and 𝑎 is the amplitude of the sine wave, with 𝑥 and 𝑦 representing the coordinates of the curve. 
The frequency 𝑓𝑠 is determined based on the initial diameter of the isolator and remains constant to ensure smooth transitions 
between cross-sections. A higher 𝑓  improves the distribution of membrane deformation and increases the achievable circumference. 
𝑠
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However, a higher frequency also complicates manufacturing due to the smaller feature sizes. In this study, 𝑓𝑠 was set to 20 to balance 
these factors.

The change of the radius 𝑟𝑝 plays a crucial role in controlling the air spring’s stiffness. To simplify the design, both the membrane 
and piston radius change angles were set to 10◦. This angle choice balances the need for a large rolling radius, which reduces 
membrane stiffness, against the necessity to limit the increase in membrane circumference. This compromise helps to minimize 
the extent of modification required for the piston geometry, thereby reducing the risk of membrane bunching. The functions for 
membrane and piston radius are thus defined as

𝑟𝑚(𝑧) = 20mm + tan(10◦)𝑧 (B.2)

𝑟𝑝(𝑧) = 20mm − tan(10◦)𝑧 . (B.3)

With the radius function 𝑟𝑝(𝑧) defined, the only free parameter left is the amplitude 𝑎. This parameter is optimized across different 
cross-sections. The objective function for optimization is the difference between the length of the sine curve 𝐿 and the circumference 
of the membrane’s circular cross-section at each displacement 𝑧

obj(𝑎, 𝑧) = 𝐿(𝑎) − 2𝜋𝑟𝑚(𝑧) . (B.4)

The length L of the parametric curve is computed by 

𝐿(𝑎) = ∫

2𝜋

0

√

( d𝑥
d𝑡

)2
+
(

d𝑦
d𝑡

)2
d𝑢 . (B.5)

The necessary derivatives derived from Eq. (B.1) are
d𝑥
d𝑢

= −𝑎(𝑧)𝑓 sin(𝑓𝑠𝑢) cos(𝑢) − 𝑎(𝑧) sin(𝑓𝑠𝑢) sin(𝑢) + 𝑟𝑝 cos(𝑢) (B.6)

d𝑦
d𝑢

= 𝑎(𝑧)𝑓 sin(𝑓𝑠𝑢) sin(𝑢) − 𝑎(𝑧) sin(𝑓𝑠𝑢) cos(𝑢) + 𝑟𝑝 sin(𝑢) . (B.7)

The optimization is performed using a root-finding algorithm, which yields the optimized amplitudes for each cross-section along 
𝑧. These points are then fitted using a least squares method with a root function of the form 

𝑎(𝑧) = 𝜆1 ⋅ 𝑧
1∕𝜆2 (B.8)

where 𝜆1 ≈ 0.3146 and 𝜆2 ≈ 2.2835 are determined. The fitted amplitude function is plotted in Fig.  5, where also the shape of the 
cross sections is shown.

To generate the piston geometry, the function 𝑎(𝑧) is substituted into the surface equation derived from Eq. (B.1)
𝑥 = (𝑟𝑝 − 𝑎(𝑧) + 𝑎(𝑧) sin(𝑓𝑠𝑢)) cos(𝑢)

𝑦 = (𝑟𝑝 − 𝑎(𝑧) + 𝑎(𝑧) sin(𝑓𝑠𝑢)) sin(𝑢)

𝑧 = 𝑣

𝑢 ∈ [0; 2𝜋)

𝑣 ∈ [0; 1]

(B.9)

where 𝑢 and 𝑣 are the surface parameters. This equation defines the surface of the piston, which is then used to create a 3D mesh. 
The mesh is generated using the Sverchok add-on for Blender and subsequently exported as an STL file.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jsv.2025.119061.

Data availability

The experimental data, the 3D design files as well as the source code to generate the herein presented results are available at 
https://zenodo.org/doi/10.5281/zenodo.13777799.
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