51st European Rotorcraft Forum Thursday, September 11, 2025, 13:30-14:00

Airfoil Optimization and 3D Rotor Aerodynamics Exploration for Mars Helicopter using Direct Numerical Simulation

Seongjoong Park^{1*}, Gunther Wilke², Yoonpyo Hong², Kwanjung Yee¹

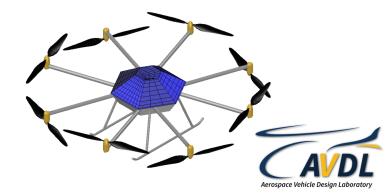
¹Seoul National University, South Korea

²German Aerospace Center (DLR), Germany

Contents

- Introduction
- Numerical Simulation Setup and Validation
- Optimization Framework
- Optimization Results
- 3D Rotor Aerodynamics with Optimized Airfoils
- Conclusion

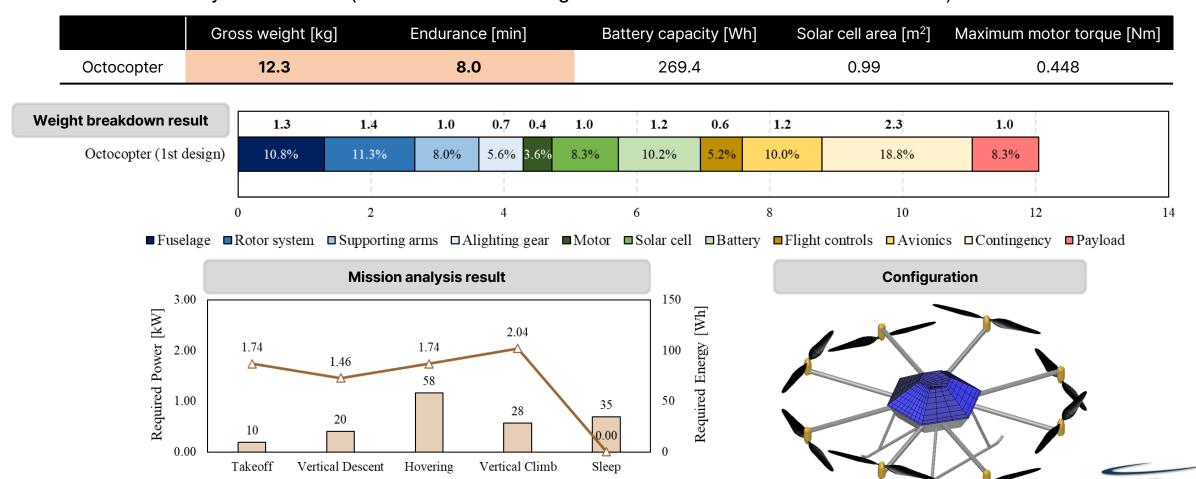
4 goals of Mars exploration



Motivation for developing Mars Airborne Explorer (MAE)

- Contributing to the realization of South Korean government's goal of developing a domestic Mars exploration vehicle by 2045

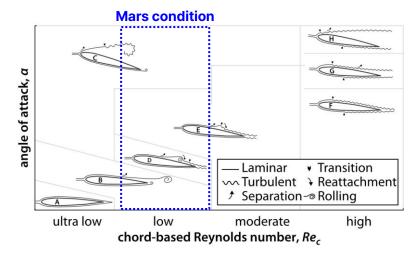
- The Mars Airborne Explorer (MAE) has been developed for pit crater exploration on Mars by conceptual design
- MAE frequently undergoes hovering during its exploration missions
- Enhancing hovering performance is crucial to increasing the endurance of MAE

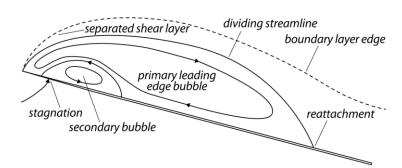


Conceptual Design Results of Mars Airborne Explorer (MAE)

Required Energy —Required Power

- Performed by RISPECT III (Rotorcraft Initial Sizing and Performance Estimation Toolkits III)[1]


Prediction by LES and RANS Models," Journal of Wind Engineering and Industrial Aerodynamics, 2014

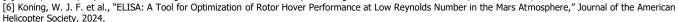

Introduction

Requirements for airfoil design optimization

- **Objective**: Enhance aerodynamic performance in hover through airfoil shape optimization
- Atmospheric Characteristics of Mars
 - ✓ Extremely low air density: 1.6% of Earth^[1] → Low Renolds number
 - ✓ Mainly composed of CO₂ (95 %) with small amount of other gases
 - → Low speed of sound : 240 m/s (70% of Earth)^[1]
- Aerodynamic Implications in Martian Atmosphere
 - ✓ Low Renolds number → Dominant viscous effects, large-scale flow structures, and separation bubble behavior
 - ✓ Low speed of sound → Higher local Mach numbers, leading to increased compressibility effects

▲ Schematic of flow structures around NACA 0012 airfoil for each Reynolds number regime^[2]

▲ Sketch of leading edge separation bubble on a flat plate^[3]


[1] Koning, W. J. F. et al., "Performance Optimization of Plate Airfoils for Martian Rotor Applications Using a Genetic Algorithm," 45th European Rotorcraft Forum, 2019

[2] Koning, W. J. F. et al., "Optimization of Low Reynolds Number Airfoils for Martian Rotor Applications Using an Evolutionary Algorithm," AIAA SciTech, 2020

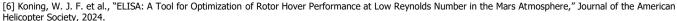
[3] Sasaki, G. et al., "Multi-Objective Optimization of Airfoil for Mars Exploration Aircraft Using Genetic Algorithm," TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2014

[5] Caros, L. et al., "Optimization of Triangular Airfoils for Martian Helicopters Using Direct Numerical Simulations," AIAA Journal, 2023

[7] Koning, W. J. F. et al., "Overview of Rotor Hover Performance Capabilities at Low Reynolds Number for Mars Exploration.", 50th European Rotorcraft Forum, 2024

Previous Research on Airfoil Optimizations for Low Reynolds number

- Single/Multi-objective airfoil optimization using Unsteady Reynolds-Averaged Navier-Stokes (URANS) [1-4]
 - ✓ Limitation: RANS simulations rely on turbulence models that approximate small-scale turbulent structures, making them insufficient for accurately capturing large-scale flow structures and separation bubble behavior in low Reynolds number environments
- Airfoil optimization using Direct Numerical Simulation (DNS) [5-6]
 - ✓ Limitation: Since these airfoils were designed based on 2D simulations, it is necessary to verify whether their optimized performance is retained when applied to 3D rotor blade
- 3D rotor analysis with optimized airfoils using a free wake model-based comprehensive analysis code [7]
 - ✓ Limitation: Because of the highly unsteady flow in low Reynolds number environment, it is need to analyze the rotor with high-fidelity CFD simulation
- Analyzed the enhanced performance of the optimized airfoil based on the same angle of attack or L/D [1-7]
 - ✓ Limitation: Lack of detail comparison between their performance under thrust-trimmed condition
 - 1. Perform 3D rotor CFD analysis with optimized airfoil
 - 2. Identify detail mechanism of their superior performance under thrust-trimmed condition


[1] Koning, W. J. F. et al., "Performance Optimization of Plate Airfoils for Martian Rotor Applications Using a Genetic Algorithm," 45th European Rotorcraft Forum, 2019

[2] Koning, W. J. F. et al., "Optimization of Low Reynolds Number Airfoils for Martian Rotor Applications Using an Evolutionary Algorithm," AIAA SciTech, 2020

[3] Sasaki, G. et al., "Multi-Objective Optimization of Airfoil for Mars Exploration Aircraft Using Genetic Algorithm," TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2014

[5] Caros, L. et al., "Optimization of Triangular Airfoils for Martian Helicopters Using Direct Numerical Simulations," AIAA Journal, 2023

[7] Koning, W. J. F. et al., "Overview of Rotor Hover Performance Capabilities at Low Reynolds Number for Mars Exploration.", 50th European Rotorcraft Forum, 2024

Previous Research on Airfoil Optimizations for Low Reynolds number

- 1. Perform 3D rotor CFD analysis with optimized airfoil
- 2. Identify detail mechanism of their superior performance under thrust-trimmed condition

IS) [1-4]

m insufficient

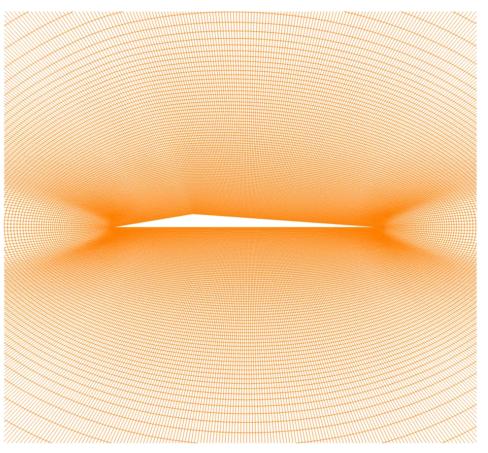
for accurately capturing large-scale flow structures and separation bubble behavior in low Reynolds number environments

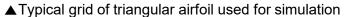
Research Objectives

using Direct Numerical Simulation (DNS) [5-6]

- Derive optimized airfoils that outperform baseline airfoils under Mars flight conditions using DNS
- **Identify the detail mechanism** behind the superior performance of the optimized airfoils under thrust-trimmed condition
- Investigate 3D rotor aerodynamics with the optimized airfoil, comparing it to the baseline rotor using DNS
 - Analyzed the enhanced performance of the optimized airfoil based on the same angle of attack or L/D [1-7]
 - ✓ Limitation: Lack of detail comparison between their performance under thrust-trimmed condition

2D Numerical Simulation Setup



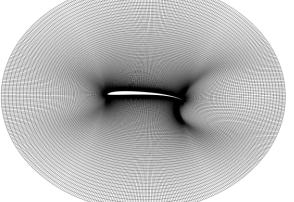

Numerical simulation setup for 2D FLOWer

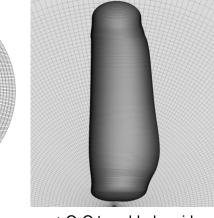
- 2D Direct Numerical Simulation (DNS)

Solver Details	
Solver	FLOWer ^[1]
Spatial Discretization Scheme	SLAU2 scheme (upwind), 3 rd order van Albada limiter
Time Integration Scheme	Physical time : BDF2 $\Delta t = 1/305ctu,50ctu\mathrm{run} = 15250\mathrm{time}\mathrm{steps}$ Pseudo time: 2 nd order Runge-Kutta $(\mathrm{target}\mathrm{residual} = 10^{-5},\mathrm{max}\mathrm{iter.} = 100)$
Turbulence Model	No turbulence model
Grid Details	
Gild Details	
Grid Type	O-grid
Minimum cell height	y+ < 1
Chordwise	609
Normal	120
Total number of cells 73,000	

^{*}ctu: convection time unit $(1ctu = 1/M_{\infty})$

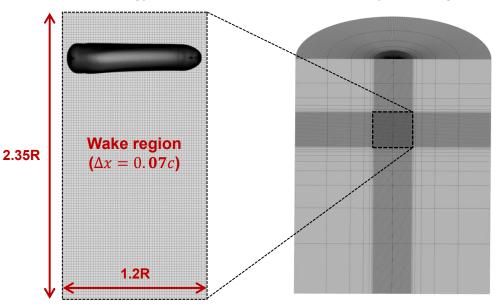
3D Numerical Simulation Setup [4] Chaderjian, N. M., "Quantitative Approach for the Accurate CFD Simulation of Hover in Turbulent Flow." International Conference on Computational Fluid Dynamics, 2022


[1] Raddatz J. et al., "Block Structured Navier-Stokes Solver FLOWer," MEGAFLOW - Numerical Flow Simulation for Aircraft Design,



- 3D Direct Numerical Simulation (DNS)

Solver Details	
Solver	FLOWer ^[1]
Spatial Discretization Scheme	SLAU2 scheme (upwind), 4th order van Albada limiter
Time Integration Scheme	Physical time : BDF2 $\Delta t = 0.25^{\circ} \text{ for last 5 revs / } \Delta t = 1^{\circ} \text{ for initial 25 revs}$ Pseudo time: BDF1 $(\text{CFL \# = 10, Target residual = } 10^{-5}, \text{ max iter. = 100})$ Matrix inversion: LU-SGS
Turbulence Model	No turbulence model


Grid Details	Generated by G-cube ^[2]
Grid Type	O-O grid
Minimum cell height	y+ < 1
Blade mesh cells	16.9 M (chordwise: 513, normal: 129, spanwise: 256)
Farfields/outer grid cells	67.6 M (periodic mesh)
Total number of cells	84.5 M

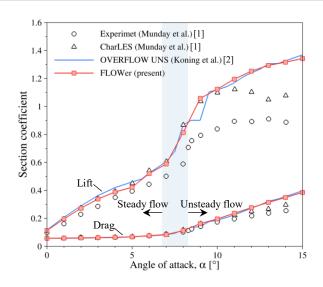
▲ Grid topology of airfoil section

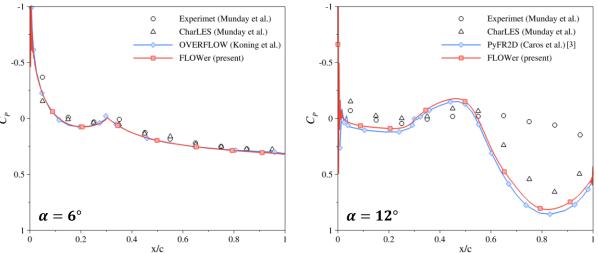
▲O-O type blade grid

▲Wake grids and overall background grids for 3D CFD hover calculations

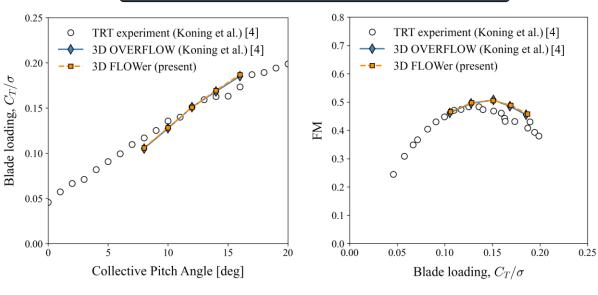
Similar grid parameter with previous research[3, 4]

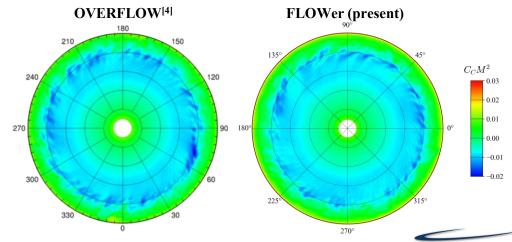
2D/3D Validation Results


[1] Munday, P. M. et al., "Nonlinear lift on a triangular airfoil in low-Reynolds-number compressible flow," Journal of Aircraft, 2015 [2] Koning, W. J. F. et al., "Optimization of Low Reynolds Number Airfoils for Martian Rotor Applications Using an Evolutionary Algorithm," AIAA SciTech, 2020


[3] Caros, L. et al., "Direct Numerical Simulation of Flow over a Triangular Airfoil Under Martian Conditions," AIAA Journal, 2022

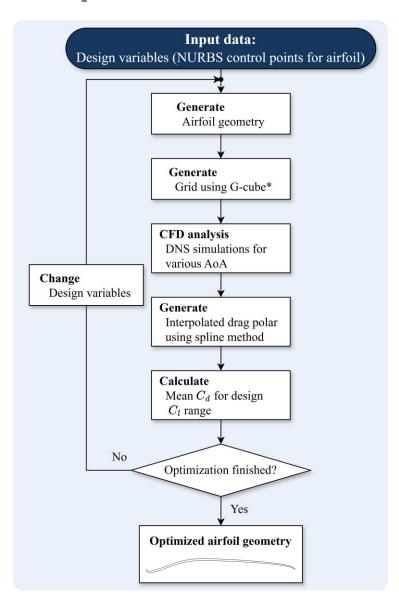
[4] Koning, W. J. F. et al., "Comparing 3D and 2D CFD for Mars Helicopter Ingenuity Rotor Performance Prediction," 49th European


2D Validation result



▲ Pressure coefficient Cp on the Suction surface of airfoil (time-averaged)

3D Validation result


▲ Rotor sectional axial (chord) force coefficient

Optimization Framework

- [1] Wilke, G., "POT (Powerful Optimization Tools with Surrogate Modeling)"
- [2] Wilke, G., "Variable-Fidelity Methodology for the Aerodynamic Optimization of Helicopter Rotors," AIAA Journal, 2019
- [3] Krige, D. G., "A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand," PhD thesis, 2015 [4] Storn, R. et al., "Differential Evolution A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces," Journal of Global Optimization, 1997
- [5] Hooke, R. et al., ""Direct Search" Solution of Numerical and Statistical Problems," J. ACM, 1961

▲ Overall optimization process

• Efficient Global Optimization (EGO) Framework (POT)[1, 2]

- Design of experiment : Central Voronoi Tessellation (CVT)
- Surrogate modeling : Kriging^[3]
 - ✓ Combination of a trend function (polynomial regression model) and radial basis function (RBF) approximation of the error

$$\hat{y}(\vec{x}) = \hat{f}_{trend}(\vec{x}) + \hat{\epsilon}_{rbf}(\vec{x}) \implies \hat{y}(\vec{x}) = \hat{f}_{v}(\vec{x})\vec{\beta} + \hat{\psi}_{v}(\vec{x})\vec{W}$$

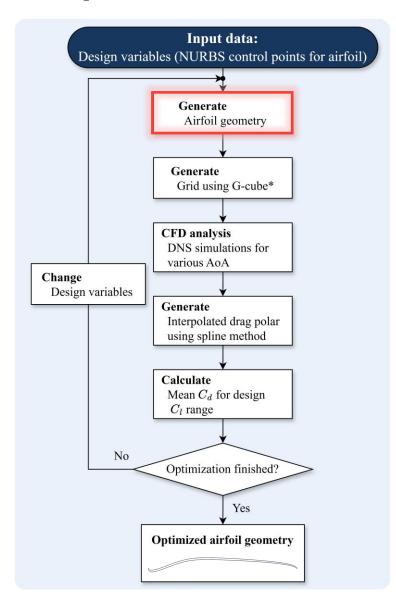
 $(\vec{\beta}: polynomial\ coefficient\ vector, \hat{\psi}_v: correlation\ vector, \overrightarrow{W}: weight\ vector)$

- Optimizer: Differential Evolutionary algorithm (DE)^[4] + Hooke and Jeeves^[5]
 - ✓ One dimension of the trial vertor of DE :

$$\vec{v}_i = \vec{x}_t + F(\vec{x}_r - \vec{x}_s)$$
 (r, s, t: arbitrary random integers, F: scaling factor)

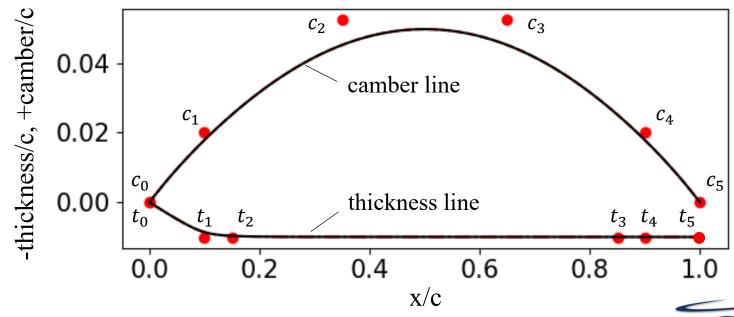
Value
150 points
8 updates with 4 points
8 iterations

▲ Description of the optimization framework setup



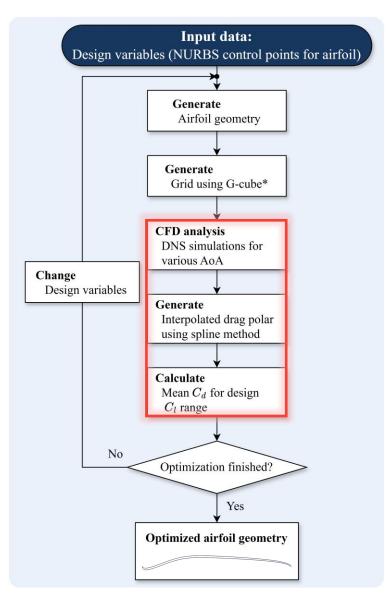
[2] Wilke, G., "AFRO (Airfoils for Rotor Optimization)"

[3] Koning, W. J. F. et al., "ELISA: A Tool for Optimization of Rotor Hover Performance at Low Reynolds Number in the Mars Atmosphere," Journal of the American Helicopter Society, 2024.


Optimization Framework

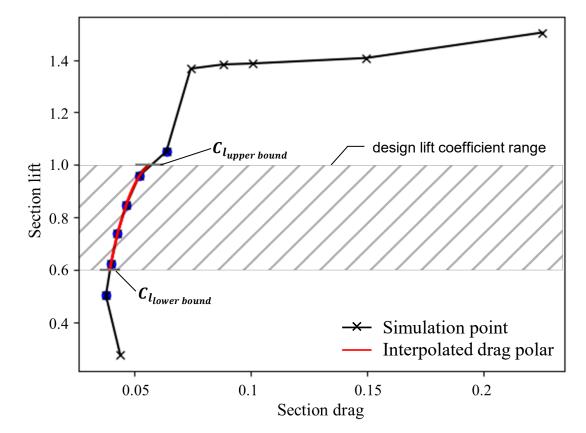
▲ Overall optimization process

Parameterization Method


- Improved geometric parameterization (IGP) with *NURBS^[1, 2]
 - ✓ Camber line expressed by NURBS with 6 control points : $c_i(x_i, y_i)$
 - ✓ Thickness line expressed by NURBS with 6 control points : $t_i(x_i, y_i)$
 - ✓ Can cover every geometries generated by other parameterization method ex) Bezier curve^[3], etc.

▲ Definition of NURBS for decoupled camber and thickness

Optimization Framework

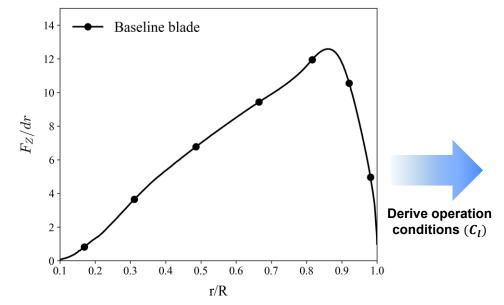


▲ Overall optimization process

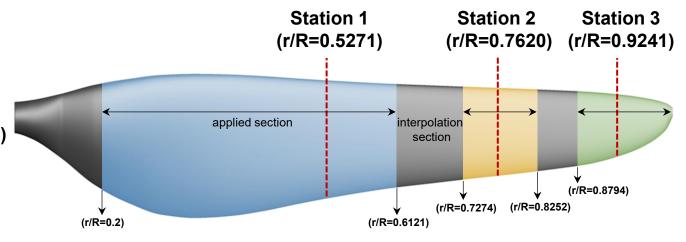
Evaluation of Objective Function

- Objective function : $minimize \ c_{d_{mean}}$
- Calculation process for $c_{d_{\it mean}}$
 - 1. CFD analysis
- 2. Generate interpolated drag polar
- 3. Calculate mean $c_{d_{mean}}$

Optimization Task


Single-Objective Efficient Global Optimization (EGO)

- Objective function : $minimize c_{d_{mean}}$


- Constraint : $t/c_{min} > t/c_{min, baseline}$

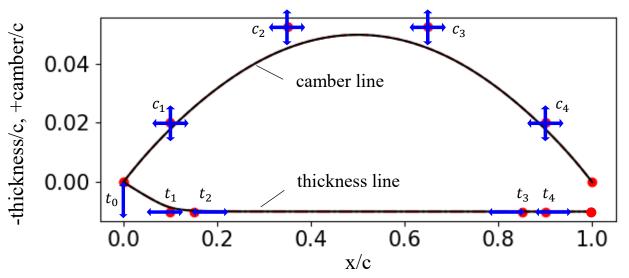
Target thrust = 7.35 N ($C_T/\sigma = 0.125$)

(required thrust for hovering derived from conceptual design)

▲ Sectional load distribution of baseline blade in hover

Station	r/R	Re_c	Mach	$\mathcal{C}_{l_{lower\ bound}}$	$C_{l_{upper\ bound}}$	$t/c_{min,baseline}$
1	0.5271	13790	0.40	0.6	1.0	0.51 %
2	0.7520	14845	0.58	0.55	0.95	0.68 %
3	0.9241	12822	0.70	0.45	0.85	0.96 %

lacktriangle Flow condition and evaluation range for fitness value ($c_{d_{mean}}$) of each Station


*thickness constraints are derived from OML CAD model of Ingenuity's rotor blade [1]

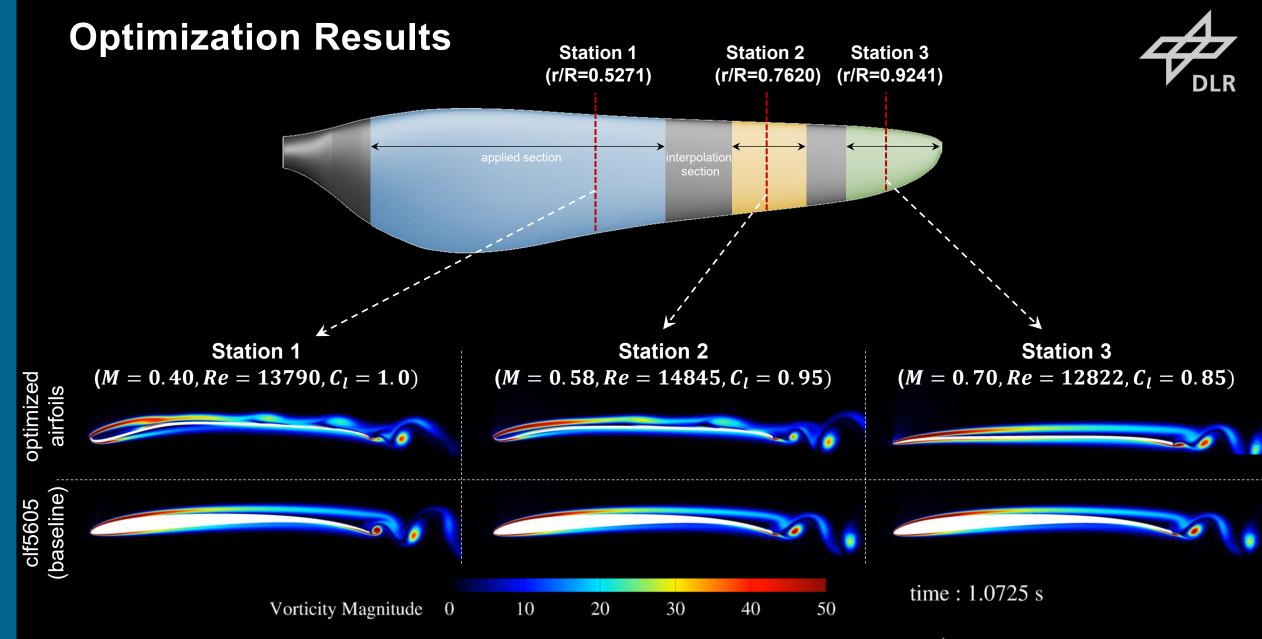
Optimization Task

Single-Objective Efficient Global Optimization (EGO)

- Number of design variables : 10

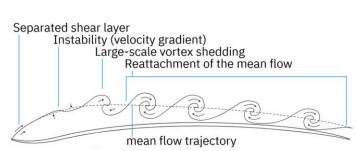
▲ Definition of NURBS for decoupled camber and thickness

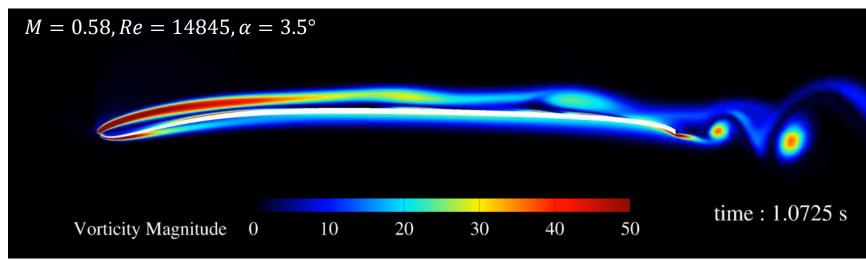
0.2	
0 01	
Camber, y/c	
Cam	
	Main airfoil of NASA's Ingenuity Mars Helicopter
-0.1	0 0.2 0.4 Chord, x/c 0.6 0.8 1

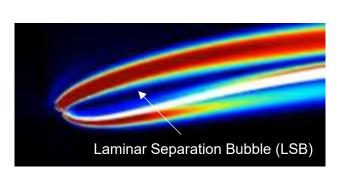

Value	Variable	Lower bound	Upper bound
DV_1	x_1 for c_1	0.01	0.1
DV_2	y_1 for c_1	-0.05	0.05
DV_3	x_2 for c_2	0.1	0.4
DV_4	y_2 for c_2	0	0.1
DV_5	x_3 for c_3	0.4	0.75
DV_6	x_4 for c_4	0.75	0.95
DV_7	y_4 for c_4	-0.05	0.05
DV_8	y_0 for t_0	-0.05	0.05
DV_9	x_1 for t_1	-0.05	0.05
DV_{10}	x_4 for t_4	-0.05	0.05

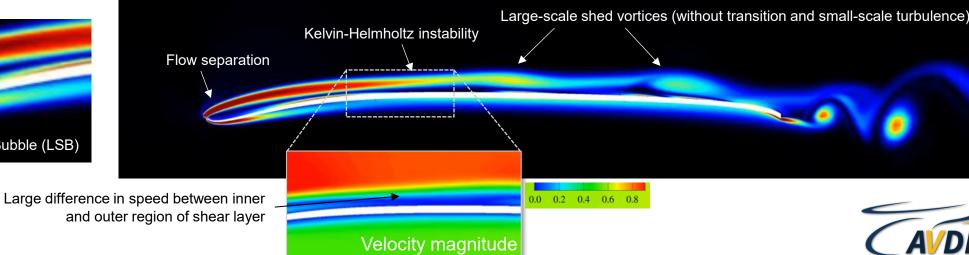
Variable	Earth (SLS)	MAE flight condition
Density, ρ [kg/m ³]	1.225	0.017
Temerature, T [K]	288.2	223
Gas constant, R [m²/s²/K]	287.1	188.9
Specific heat ratio, γ	1.4	1.289
Speed of sound, a [m/s]	340.35	220

▲ Flight condition of Mars Aerial Explorer

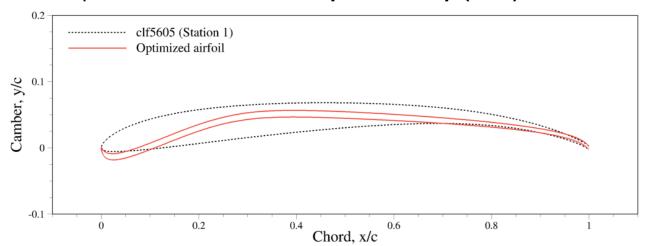




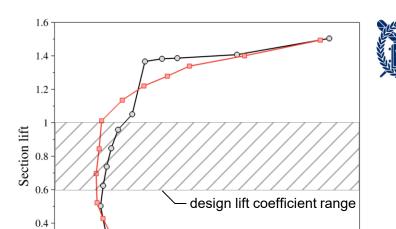

Flow physics of Sharp Raised Lip (SRL) airfoil



▲ Schematic flow physics over raised-lip LE airfoil [1]

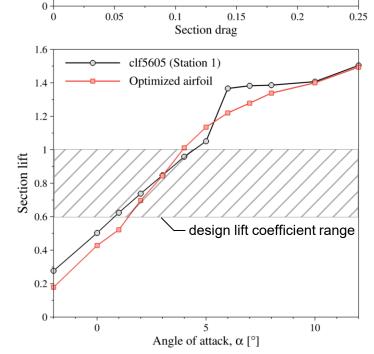


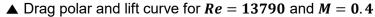
▲ Instantaneous flow field around SRL airfoil


- Station 1 (r/R = 0.5271)
 - Optimized airfoil has a Sharp Raised Lip (SRL)

Performance	Fitness ($C_{d_{mean}}^*$)	Improvement [%]
clf5605 (baseline)	0.0455	
Optimized airfoil	0.0359	21.1

Geometry	Max. Camber (f/c)	Max. Thickness (t/c)	Thickness (t/c) @ TE
clf5605 (baseline)	0.050	0.051	0.005
Optimized airfoil	0.051	0.010	0.005

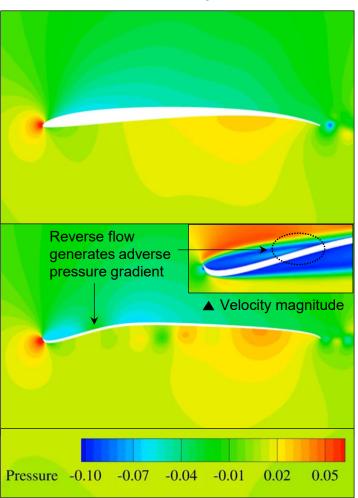

*range of $\emph{\textbf{C}}_{\emph{d}_{mean}}$: $0.6 < \emph{C}_{\emph{l}} < 1.0$

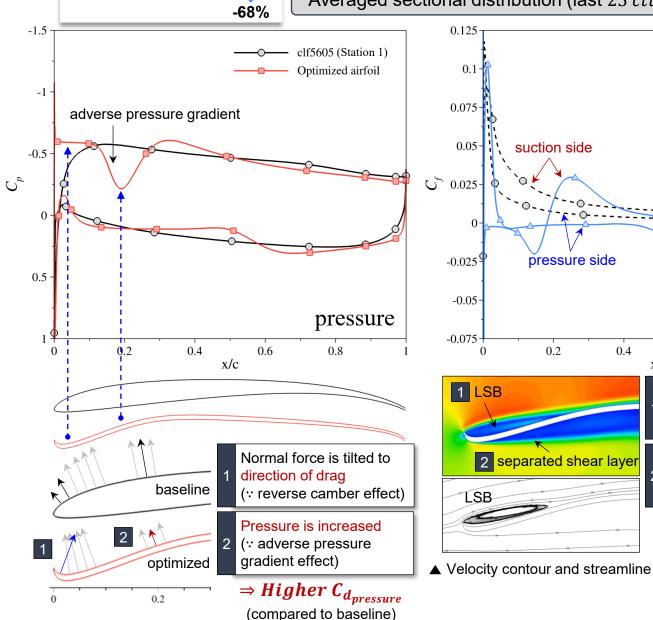


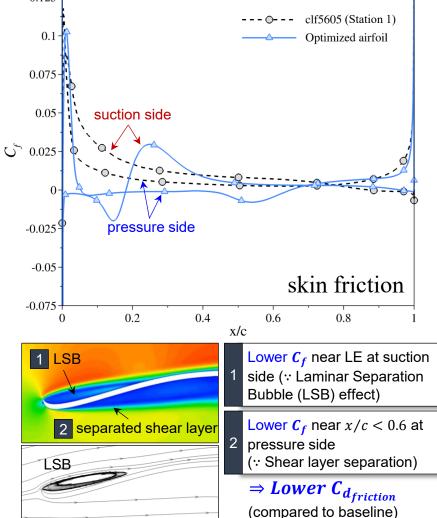
0.2

clf5605 (Station 1)

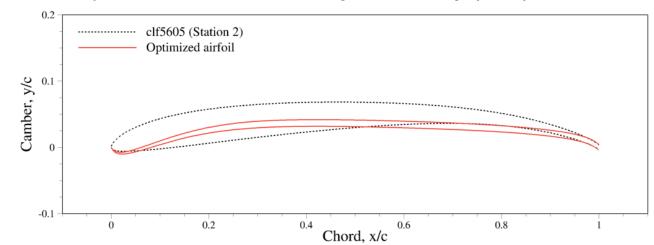
Optimized airfoil





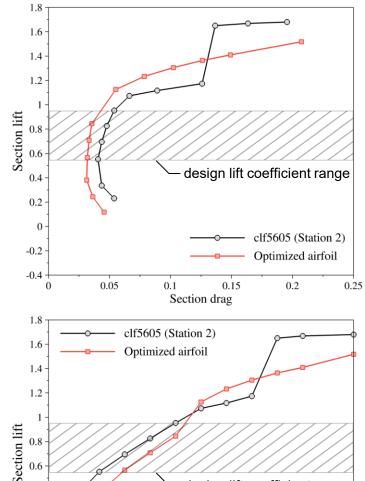

Averaged sectional distribution (last 25 ctu)

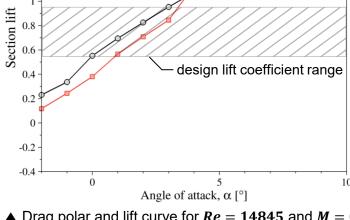
• Station 1 ($C_l = 0.6$)



▲ Instantaneous flow field (non-dimensional gage pressure)

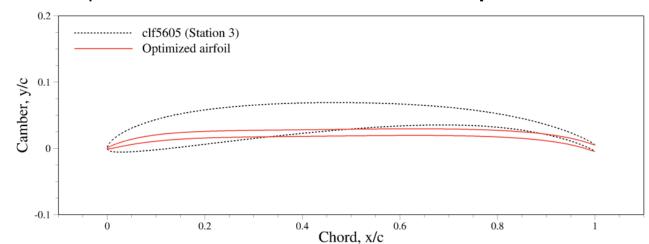
- Station 2 (r/R = 0.762)
 - Optimized airfoil has a **Sharp Raised Lip (SRL)**



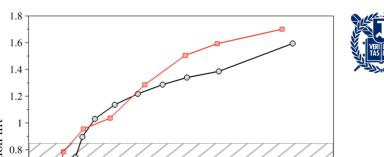

Performance	Fitness ($C_{d_{mean}}^*$)	Improvement [%]
clf5605 (baseline)	0.0458	
Optimized airfoil	0.0344	24.8

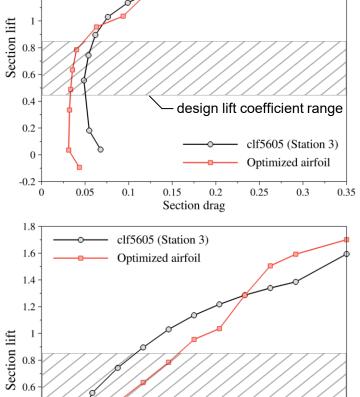
Geometry	Geometry Max. Camber (f/c)		Thickness (t/c) @ TE	
clf5605 (baseline)	0.050	0.051	0.007	
Optimized airfoil	0.037	0.010	0.009	

*range of $C_{d_{mean}}$: $0.55 < C_l < 0.95$



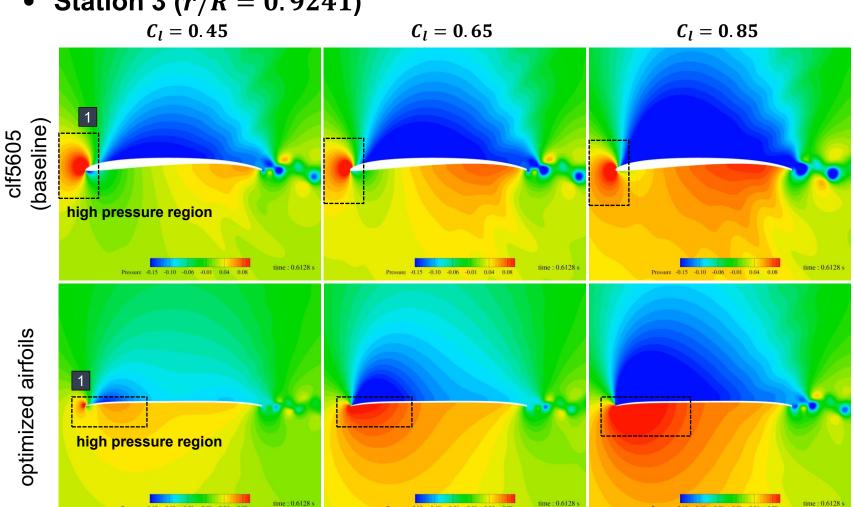
ightharpoonup Drag polar and lift curve for Re = 14845 and M = 0.58


- Station 3 (r/R = 0.9241)
 - Optimized airfoil has a thin-cambered shape


Performance	Fitness ($C_{d_{mean}}^*$)	Improvement [%]
clf5605 (baseline)	0.0517	
Optimized airfoil	0.0368	28.7

Geometry	Max. Camber (f/c)	Max. Thickness (t/c)	Thickness (t/c) @ TE	
clf5605 (baseline)	0.050	0.052	0.01	
Optimized airfoil	0.025	0.010	0.01	

*range of $\emph{\textbf{C}}_{d_{mean}}$: $0.45 < \emph{C}_{l} < 0.85$


 $\label{eq:Angle of attack, alpha of at$

- design lift coefficient range

Station 3 (r/R = 0.9241)

High pressure region moves to

(∵ extremely-thin cambered airfoil effect) → reduce drag

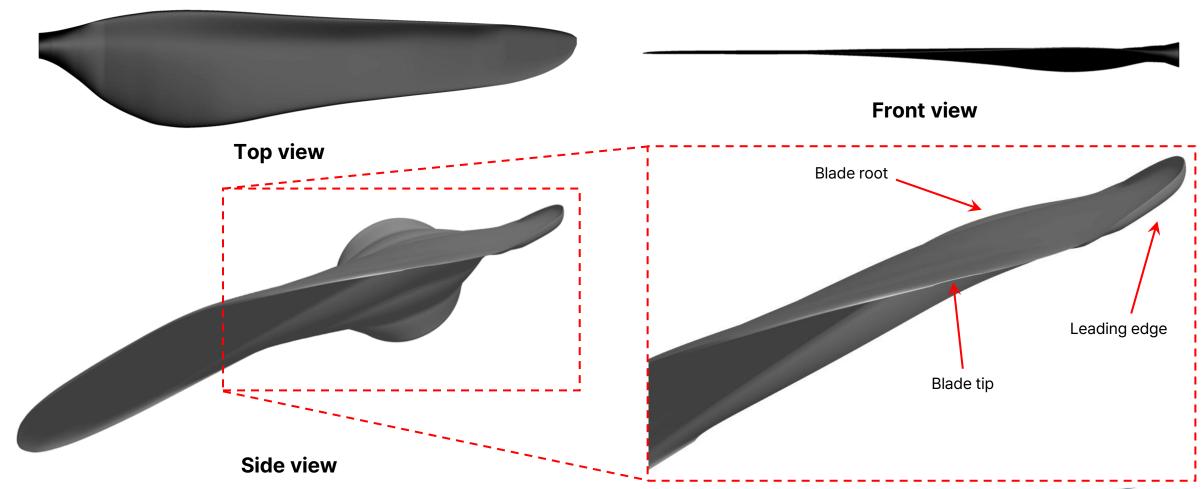
pressure side from leading edge

 \Rightarrow Lower $C_{d_{pressure}}$ (compared to baseline)

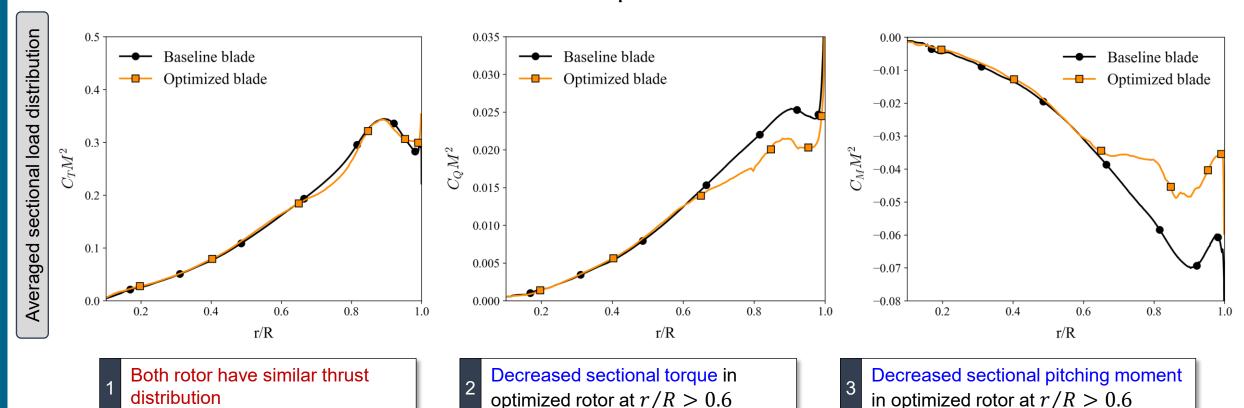
 $C_l = 0.85, \alpha = 3.38^{\circ}$ 2 optimized airfoil

> ▲ Instantaneous flow field (non-dimensional vorticity magnitude)

Absence of large-scale vortex shedding (: lower target C_l)

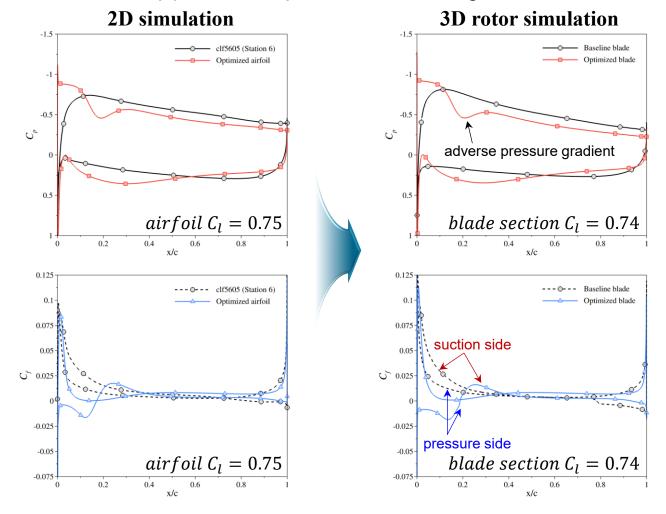

 \blacktriangle Instantaneous flow field (non-dimensional gage pressure: $\Delta \bar{p} = \bar{p} - \bar{p}_{\infty}$)

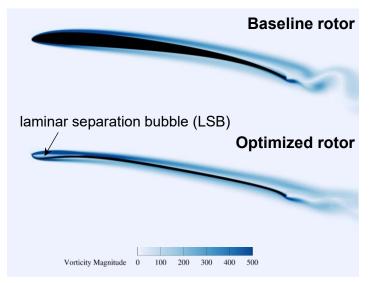
• Final Rotor Design with Optimized Airfoils



3D Rotor Aerodynamics for design thrust condition

- Baseline rotor (Ingenuity single rotor) and Optimized rotor (airfoil optimized) are trimmed to match design thrust

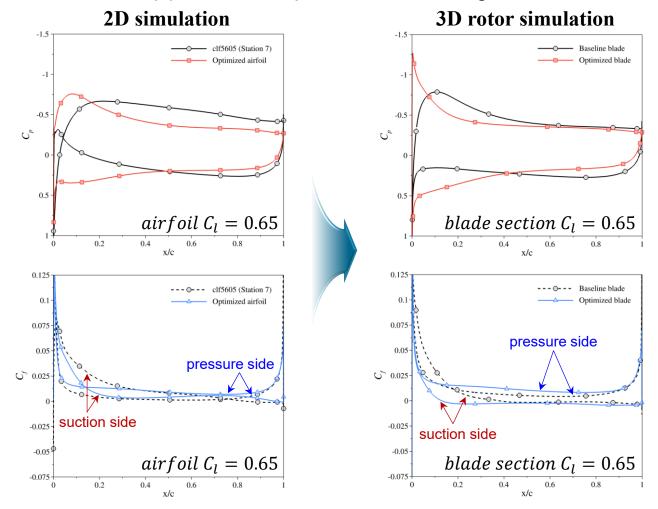

$$(C_T/\sigma = 0.125) \Rightarrow FM_{baseline\ rotor} = 0.549,\ FM_{optimized\ rotor} = 0.588,\ \%\Delta FM = +6.9\%$$

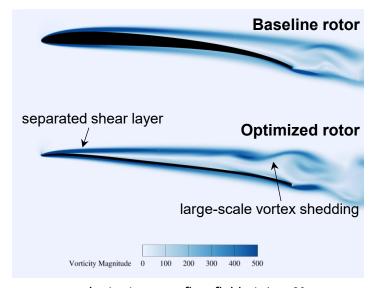


Comparing 2D and 3D Behavior of Optimized Airfoil

- Station 2 (r/R = 0.762): 2D data is averaged for last 25 ctu and 3D data is averaged for last 1 rev

▲ Instantaneous flow field at $\psi = 0^{\circ}$ (non-dimensional vorticity magnitude)


Exactly same pressure distribution and skin friction distribution are observed in 3D rotor

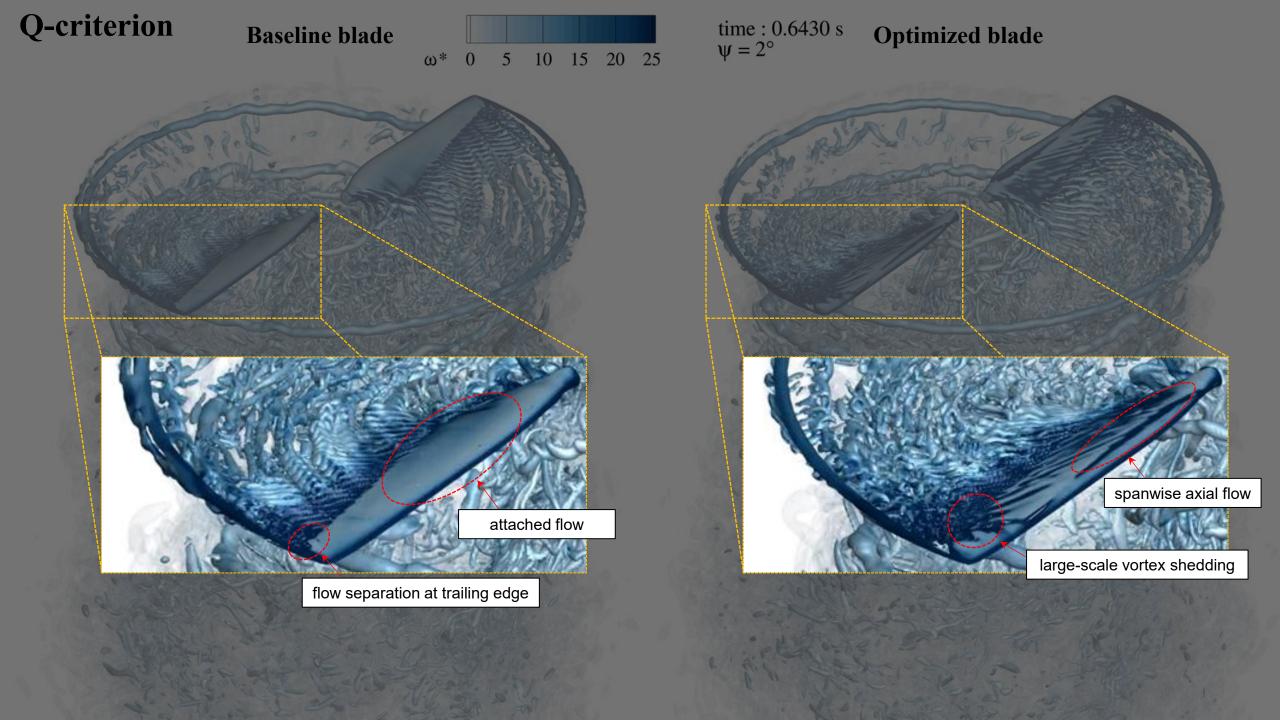


Comparing 2D and 3D Behavior of Optimized Airfoil

- Station 3 (r/R = 0.9241): 2D data is averaged for last 25 ctu and 3D data is averaged for last 1 rev

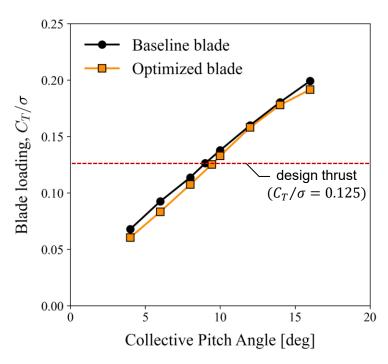
▲ Instantaneous flow field at $\psi = 0^{\circ}$ (non-dimensional vorticity magnitude)

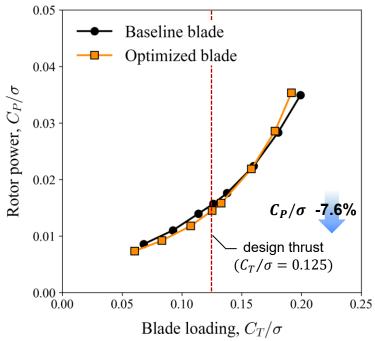
3D behavior is different with 2D behavior (onset of large-scale vortex shedding in 3D)

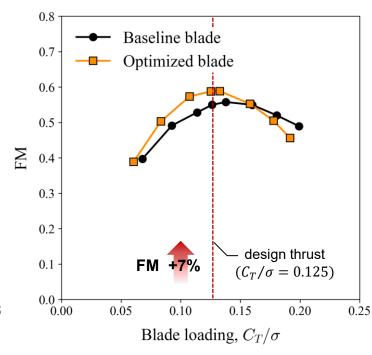

2 Skin friction at suction side decreased in 3D rotor

time: 0.6430 s $\psi = 2^{\circ}$

Optimized blade

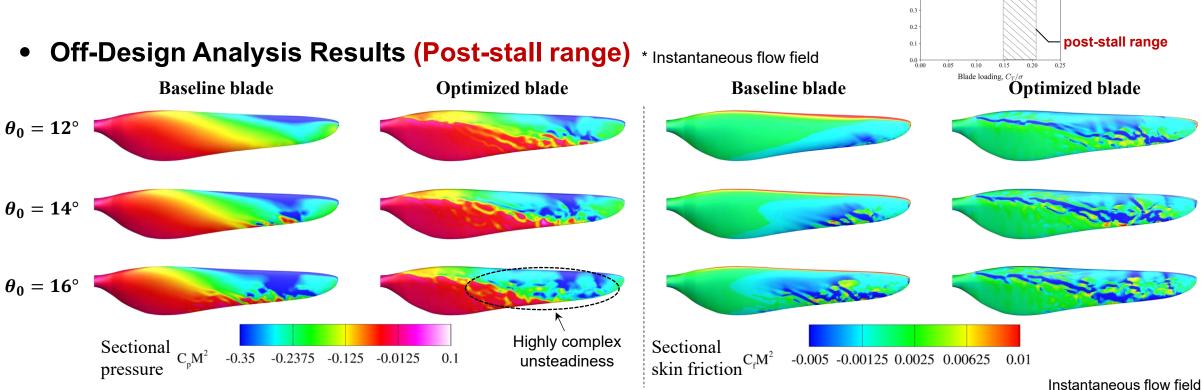






Off-Design Analysis Results

- Overall performance of baseline rotor (Ingenuity single rotor) and optimized rotor (airfoil optimized)



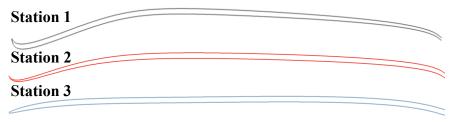
Less thrust at the same collective pitch (: reverse camber effect)

Figure of Merit increased about 7% near the design thrust

Margin between the design thrust and the maximum FM is decreased (∵ earlier onset of stall)

Optimized blade is underperforming the baseline over the $\theta_0 = 10^{\circ} \sim 16^{\circ}$ range

Highly complex unsteadiness and increased skin friction are observed in optimized rotor at every pitch angle


 Baseline blade Optimized blade

Conclusion

Conclusion

- Derived high-performance airfoils for three different stations
 - The drag of each optimized airfoil is reduced by 21–28% and compared to the baseline under the same C_l condition
- Identified the mechanism behind the superior aerodynamic performance of Sharp Raised-lip (SRL) airfoil and thin cambered airfoil
 - The SRL forces shear layer separation from the leading edge (LE), generating a LE laminar separation bubble (LSB)
 - Shear layer separation and LSB contribute positively to aerodynamic performance, as they **reduce skin friction drag**, which accounts for 10–50% of total drag in low Reynolds number conditions
- Explored rotor aerodynamics and airfoil behavior in a 3D rotor
 - Identified optimized performance within the pre-stall range, with a 7% increase in FM at the design thrust condition
 - Stations 3 exhibits different aerodynamic characteristics to 2D airfoil, while station 1 and 2 show similarity

Future work

- Iterative airfoil design optimization considering 3D effect in the blade tip section
- Verify manufacturability and design feasibility for the forward flight condition

51st European Rotorcraft Forum Thursday, September 11, 2025, 13:30-14:00

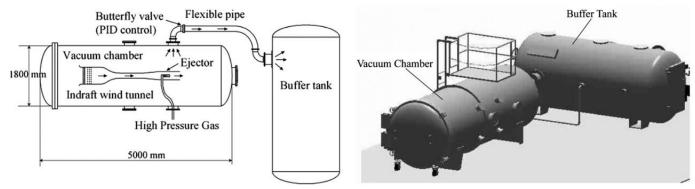
Thank you for your attention

Contact info:

Seongjoong Park eric2237@snu.ac.kr

This research was supported by the German Aerospace Center's (DLR) high-performance computing resources.

Appendix



[3] Caros, L., Buxton, O., Shigeta, T., Nagata, T., Nonomura, T., Asai, K., and Vincent, P., "Direct Numerical Simulation of Flow over a Triangular Airfoil Under Martian Conditions," AIAA Jour **Description of 2D Validation Case**

Triangular airfoil

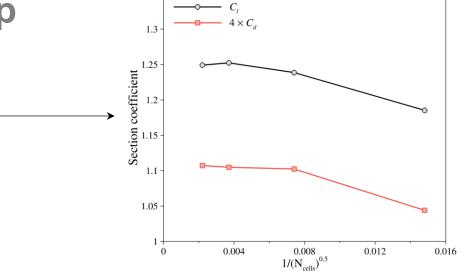
- Experiment data: Triangular airfoil test in the Mars Wind Tunnel (MWT) at Tohoku University (test section: 400 mm in length, 150 mm in height, and 100 mm in width) [1]
- CFD data: Unsteady RANS (OVERFLOW) [2] / ILES (PyFR) [3]

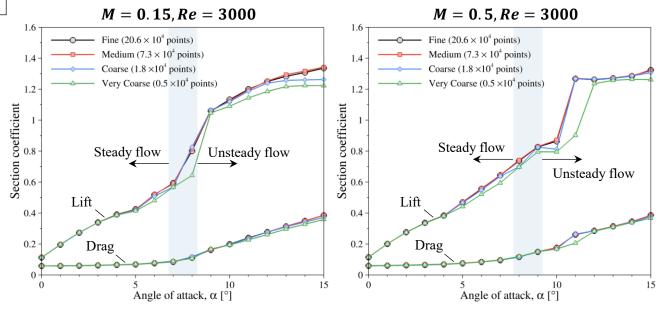
MWT at Tol	noku Univer	sity. Scher	matic of the	e MWT inte	rior (left) ar	nd exterior	(right) ^[1]
0.20							
0.10							
0.20 0.10 0.00 -0.10							
-0.10							
-0.20	-0.00	0.20	0.40	0.60	0.80	1.00	1.20
=		no	ondimension	nal chord, $x/$	c		
		▲ Triar	ngular airfo	il geometry	,		

Variable	Mars Wind Tunnel
Reynolds number	3000
Mach number	0.15, 0.5
Specific heat ratio, γ	1.4
Prandtl number	0.71

▲ Flow condition of experiment and CFD simulations

2D Numerical Simulation Setup


2D Grid Refinement Study


- Grid refinement study performed for $\alpha=12^{\circ}$ at M=0.15, Re=3000
- Calculated difference:

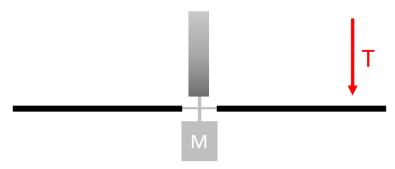
$$\Delta C_l = |C_l - C_{l,fine}|/C_{l,fine}$$

Grid size	c_l	ΔC_l [%]	C_d	ΔC_d [%]
Fine (20.6×10^4)	1.249	-	0.2768	-
Medium (7.3 × 10 ⁴)	1.252	0.253	0.2762	0.196
Coarse (1.8×10^4)	1.238	1.100	0.2756	0.121
Very Coarse (0.5×10^4)	1.185	4.268	0.2610	5.284

- Medium-resolution grid ($n_x = 609, n_y = 120$) has sufficient grid resolution
 - → selected as typical grid used for 2D simulation

▲ Grid refinement study for $\alpha = 0^{\circ} \sim 15^{\circ}$

Description of 3D Validation Case


Transonic Rotor Test (TRT)

Experiment data: Transonic Rotor Test (TRT) at the JPL Space Simulator (JPLSS) using CO2 as the driving gas [1] (Experiment rotor is a single rotor from NASA's Ingenuity Mars helicopter)

- CFD data: Laminar UNS 3D OVERFLOW (Koning, W.J.F. et al. [1])

▲ NASA's Ingenuity Mars Helicopter (NASA/JPL-Caltech)

TRT condition	1	2	3	4	5
M_{tip}	0.65	0.70	0.75	0.80	0.85
RPM	2,740	2,950	3,160	3,375	,3585

validation condition

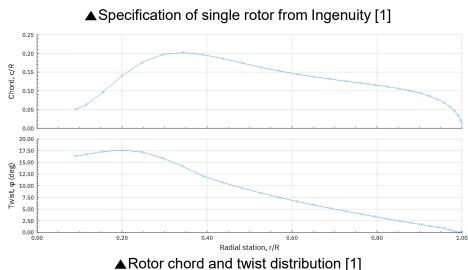
▲ TRT Test Conditions

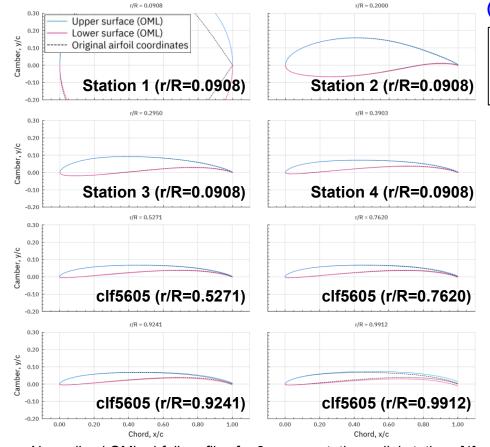
Variable	Earth (SLS)	TRT
Density, ρ [kg/m ³]	1.225	0.01
Temerature, T [K]	288.2	293.15
Gas constant, $R [m^2/s^2/K]$	287.1	188.9
Specific heat ratio, γ	1.4	1.289
Dynamic viscosity, μ [N·s/m²]	1.75·10-5	1.46·10 ⁻⁵
Speed of sound, a [m/s]	340.35	267.17

▲ Approximate JPLSS Test Conditions with Earth sea-level Standard (SLS) conditions

▲ The schematic experimental setup for the TRT test in the JPL Space Simulator

[2] Koning, W. J. F., and Dominguez, M., "Mars Helicopter Ingenuity Rotor Geometry," NASA/TM-20240001510, Ames Research Center, Moffett Field, California,

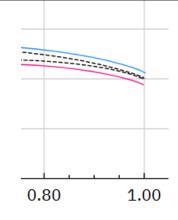

Description of 3D Validation Case



Transonic Rotor Test (TRT)

- Rotor geometry: extracted from the OML CAD model of Ingenuity's rotor blades

Parameter	Value
Rotor radius, R [m]	1.225
Disk area, A [m ²]	288.2
Blade area [m ²]	0.085
Solidity (thrust-weighted), σ	0.07391
Design RPM	2600



▲ Normalized OML airfoil profiles for 8 representative radial stations [1]

Ingenuity has 5 airfoils (Station 1~4, clf5605)

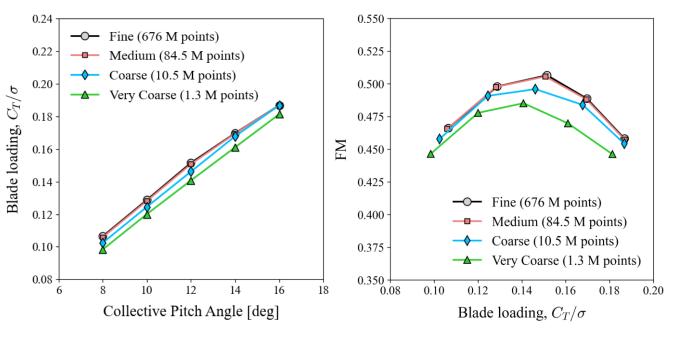
trailing edge thickness modified to around 0.5 mm (: manufacturability limits and structural constraints)

→ Using OML profiles for CFD simuliation

3D Numerical Simulation Setup

3D Rotor Grid Refinement Study

- Grid refinement study performed for $\theta_0 = 14^{\circ}$
- Calculated difference:


$$\Delta C_T/\sigma = |C_T/\sigma - C_{T,fine}/\sigma|/(C_{T,fine}/\sigma)$$

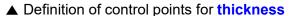
Grid size	C_T/σ	$\Delta C_T/\sigma$ [%]	C_P/σ	$\Delta C_P/\sigma[\%]$
*Fine (676.0×10^6)	0.170	-	0.0275	-
Medium (84.5 × 10 ⁶)	0.169	0.159	0.0275	0.120
Coarse (10.5×10^6)	0.168	1.110	0.0273	0.678
Very Coarse (1.3×10^6)	0.161	5.097	0.0264	3.824

^{*} Coefficients for fine grid are extrapolated using Richardson method

→ selected as typical grid used for 3D rotor simulation

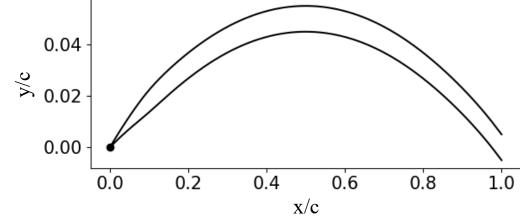
▲ Grid refinement study for $\theta_0 = 8^{\circ} \sim 16^{\circ}$

Optimization Framework


DIR


Parameterization Method

- Improved geometric parameterization (IGP) with *NURBS [1, 2]
 - ✓ Camber line expressed by NURBS with 6 control points : $c_i(x_i, y_i)$
 - ✓ Thickness line expressed by NURBS with 6 control points : $t_i(x_i, y_i)$


Control point	Variable	Value	Control point	Variable	Value
	x_0	0.0		x_0	0.0
c_0	y_0	0.0	t_0	y_0	DV_8
C	x_1	DV_1	+	x_1	DV_9
c_1	y_1	DV_2	t_1	y_1	0.01
Co	x_2	DV_3	t.	x_2	$x_2 = x_1 + 0.05$
c_2	y_2	DV_4	t_2	y_2	0.01
c_3	x_3	DV_5	t_3	x_3	$x_3 = x_4 - 0.05$
C 3	y_3	$y_3 = y_2$		y_3	0.01
c_4	x_4	DV_6	t_4	x_4	DV_{10}
C 4	y_4	DV_7	L 4	y_4	0.01
c_5	x_5	1.0	t_5	x_5	1.0
	y_5	0.0		y_5	0.0

▲ Definition of control points for **camber**

▲ Definition of NURBS for decoupled camber and thickness

▲ 5% cambered plate airfoil geometry generated by IGP with NURBS