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Quantum walk on a square lattice with identical particles
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We investigate quantum superposition effects in two-dimensional quantum walks of identical particles with
different statistics under particle exchange, starting from various different initial configurations. To characterize
interparticle correlation dynamics, we focus on joint properties such as two-particle coincidence probabilities
and the spread velocity of the interparticle distance. Regarding spatial modes as an environment for the particles
internal degrees of freedom, we study the role played by the particle statistics using standard entanglement
witnesses, showing that particles possessing fermionic statistics are more resistant to thermalize with their
environment. We analyze the presence of multipartite entanglement in the system’s degrees of freedom through
the Quantum Fisher Information, revealing that fermionic states generated during the walk are better suited to
perform quantum metrology tasks. Finally, we discuss the potential for implementing this model using integrated
photonic circuits by exploiting N-partite entanglement between individual photons.
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I. INTRODUCTION

Quantum walks [1–3] (QWs) have gained considerable at-
tention as a candidate model for achieving universal quantum
computation [4–6]. Among many other relevant applications,
QWs have revealed the potential for achieving quantum ad-
vantage respect to certain classical search-based [7–10] and
sampling [11] algorithms when implemented on quantum
processors.

Due to their versatility, QWs have been explored in a wide
range of scenarios, notably focusing on two-particle correla-
tions of QWs on a line [12–17], stochastic QWs [18–21], and
multiparticle QWs [22–25], to name a few. The dimensional-
ity of space where walkers are allowed to propagate plays a
pivotal role in the properties of the QW [26]. While QWs re-
stricted to one-dimensional (1D) geometries have been widely
studied, two-dimensional QWs (2DQWs) offer a much richer
landscape of geometries to explore interparticle interference
effects, and are known to be in close connection with Grover’s
search algorithm [27–30].

In recent decades, QWs on integrated photonic cir-
cuits [31–34] were one of the first testbeds for photonic
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quantum information processing [35–38]. This approach has
been supported by the great experimental success witnessed
in preparing entangled multiphoton states [39–48], where ex-
periments involving photonic QWs have mostly focused on
individual or polarization-entangled photon states [49–59].
Due to their relatively long coherent times and the high degree
of experimental control in the study of photon interference
effects [60], photonic processors are now being considered
as good candidates for developing quantum computers [61]
capable to simulate complex quantum systems [62–64]. A
promising application route for QW computing in integrated
photonics is to develop photonic quantum simulators that
mimic quantum interference effects in systems of identical
particles [65–67], allowing one to observe the role played by
particle statistics during the evolution of the walk [68–74].
Additionally, the potential to realize entangled multipho-
ton states [75,76] employing photonic quantum processors
opens up the possibility to explore fundamental questions
about quantum entanglement [77,78] in systems of identical
particles [79–81].

A setup where correlations between identical particles can
be extracted using photonic quantum simulators are discrete
QWs, where at each step of the walk a coin operation en-
tangles the particles internal degrees of freedom and their
spatial modes. In Ref. [68] a 1D, discrete-time QW of two
entangled particles having either boson or fermion statistics
was investigated, concluding that particle statistics have a
significant effect on joint properties during the evolution of the
walk. A natural extension of these results, which constitutes
the main motivation of this work, is to consider the situa-
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tion corresponding to a less spatially constrained geometry,
while increasing the number of walkers and allowing for the
particles to have intermediate exchange statistics ranging be-
tween bosons and fermions.

For particles prepared in a spatially constrained state,
subsequent steps of the walk will spread the wave function
through different spatial modes, which are regarded as an
environment. Another interesting question to address in this
context is how particle statistics affect the dynamics of en-
tanglement between the particles internal degrees of freedom
(system) and their spatial coordinates (environment), with the
goal to identify genuine entangled states resisting environ-
ment thermalization. In this context, thermalization should be
understood as how entangled the system degrees of freedom
become with the environment when the walkers propagate
over an infinitely extended spatial geometry.

Generating states whose system dynamics are nearly iso-
lated from the environment is of interest to perform quantum
metrology tasks. In particular, recent works on 1D QWs
of identical particles have reported the essential role played
by particle statistics in the Quantum Fisher Information
(QFI) [73], which characterizes the maximum achievable pre-
cision in phase parameter estimation under unitary evolution.
The direct relevance of the QFI to identify resourceful states
that can be generated by QWs is evident, given that the QFI
also is a genuine multipartite entanglement witness having
well-defined entanglement bounds [82].

The above questions are motivated not only from a fun-
damental point of view, but also regarding the experimental
feasibility of employing photonic quantum computing plat-
forms as simulators for systems of identical particles, and
how do these compare against an implementation on alterna-
tive quantum processor architectures, e.g., on superconducting
qubits hardware. The proposal to employ multilevel, multipar-
tite entanglement in integrated photonic circuits of QWs [65]
sets the basis to address these questions employing linear
optics, with time-bin encoding [83,84] methods offering a
promising route to realize the required multipartite scenario
of the photons.

In this work we address the QW of a state represent-
ing identical quantum particles allowed to move on a 2D
square lattice geometry. We study this construction using a
first quantization scheme, which naturally employs a mul-
tipartite setting of distinguishable particles for constructing
the full Hilbert space. The influence of the particle statistics
is analyzed in two different settings. First, with the goal to
characterize interparticle correlation dynamics, we develop
an efficient method for calculating joint properties from a
special set of initial states, allowing us to perform detailed
numerical simulations employing different initial configura-
tions of the walkers. In particular, we focus on the dynamics
of two-particle coincidence events, which is a quantity of
experimental relevance [65–67] and the two-particle spread
velocity [68], which is of interest from a theoretical point of
view in QWs with identical particles. Second, in the context
of system-environment thermalization, we conduct further
numerical simulations by looking at standard entanglement
witnesses between the spatial and the internal degrees of free-
dom of the walkers. In particular, we choose the von Neumann
entropy to characterize the entanglement between spatial and

internal degrees of freedom, and the purity of the reduced den-
sity matrix of the system as a measure of mixedness directly
related to separability of the state. In order to identify favor-
able statistics of the particles to perform quantum metrology
tasks and to characterize multipartite entanglement dynamics
during the walk, we look at the QFI. Since we are dealing
with identical particles and the QFI depends on the partic-
ular choice of the operator, a particularly relevant scenario
is to consider quantum metrology in the class of Ising-like
Hamiltonians.

The paper is structured as follows. In Sec. II, we introduce
the QW model, describing the Hilbert space structure, the ini-
tial state and the unitary evolution operator. We also comment
on the feasibility to experimentally simulate states describing
identical particles employing linear optics elements in this
section. In Sec. III, we give a brief description of the main
observables studied in this work, which includes joint two-
particle properties, entanglement witnesses and a generalized
Bell inequality. In Sec. IV we present the main results. Sec. V
concludes with a summary and we discuss open questions.

II. MODEL

A. Hilbert space

We consider N distinguishable quantum particles, each
labeled by an index j = 1, . . . , N . The quantum state asso-
ciated with particle j is |ψ j〉, living in a finite-dimensional
Hilbert space H j ; the total Hilbert space of the whole system
is H = H1 ⊗ H2 ⊗ · · · ⊗ HN . We consider the Hilbert space
of the jth particle to be the tensor product of the Hilbert space
S j associated with spatial coordinates of the particle, and the
space C j associated with their internal degree of freedom:

H j = S j ⊗ C j . (1)

We consider all H j to be equivalent regardless of the j index.
We restrict the spatial geometry in S j to a finite 2D square lat-
tice of dimension L × L with discrete spatial coordinates � :
(x, y)|x, y ∈ {0, 1, . . . , L − 1}; arbitrary positions in the lat-
tice � are represented by a vector �r = (x, y). The subspace C j

has local basis states |σ 〉 ∈ {| ↑〉, | ↓〉}, which will be regarded
as a spin-1/2 degree of freedom. The basis of states {|x, y, σ 〉}
spans any H j , with total dimension d = dim(H j ) = 2L2; the
total Hilbert space dimension dim(H) = dN . In what follows,
we will often refer to the Hilbert space C = C⊗N

j associated
only with the particles’ internal degrees of freedom as the sys-
tem, while interpreting the Hilbert space of spatial coordinates
S = S⊗N

j as the environment.

B. Initial state

We consider states describing N identical particles of the
form

|�0〉 = 1√
N!

∑
P

eiφP
∣∣ψ0

1P , . . . , ψ0
jP , . . . , ψ0

NP

〉
, (2)

where P labels a single element of the set contain-
ing all permutations of IN = {1, . . . , j, . . . , N}, with P =
{1P , . . . , jP , . . . , NP} ∈ SN (IN ), and jP ∈ IN ,∀ j. The phase
φP = 0 if the number of permutations associated with P is
even, whereas φP = φ ∈ [0, π ] if the number of permutations
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FIG. 1. (a) Different initial state configurations for the state |�0〉
defined in Eq. (2), for N = 4 particles on a square lattice of L × L
lattice sites with L = 4. Occupied spatial modes allocating particles
with σ =↑, ↓ internal degrees of freedom are filled in blue, whereas
empty spatial modes are represented by a white background circle.
The initial state |�0〉 incorporates different particle statistics through
the phase φ. (b) Illustration of the conditional hopping process de-
scribed in Eq. (4) for initial product states in the |x, y, σ 〉 basis;
hopping between nearest neighbors have been represented with lines,
and allowed spatial modes due to hopping processes have been
colored. The green regions represent spatially shared modes due to
shared hopping into that lattice position.

is odd. For φ = 0, Eq. (2) represents a state of particles obey-
ing boson statistics, whereas for φ = π the state in Eq. (2)
corresponds to particles obeying fermion statistics. The single
parameter φ tunes continuously between the two. For the
special cases φ = 0, π , the state is invariant under arbitrary
particle pair exchange. For φ ∈ (0, π ), the state picks up a
nonglobal phase under particle exchange.

For the initial conditions we consider product
states |ψ0

j 〉⊗ j formed from a set of N states S0 =
{|ψ0

1 〉, . . . , |ψ0
j 〉, . . . , |ψ0

N 〉}; we choose each |ψ0
j 〉 to be

an element of the {|x, y, σ 〉} basis, so that all states in S0 are
pairwise orthogonal. The initial state is constructed using
the N! permutations from the set S0 as in Eq. (2). Since the
state in Eq. (2) describes identical particles, it is not possible
to assign to any of the particles a definite initial condition
from S0.

We will consider four different initial configurations of
the particles, depicted in Fig 1. Configurations (I) and (II)
correspond to the case where the walkers initially do not share
any spatial modes; however, the two situations are rather dif-
ferent in that (I) has the spatial degrees of freedom completely
decoupled from the internal ones (any particle subspace has a
↑ internal degree of freedom), whereas (II) is not separable
from the environment due to the internal degrees of freedom
being different. In other words, spatial and internal degrees
of freedom in (II) are expected to be entangled, whereas in
(I) this is not the case. In configurations (III) and (IV) we
address the situation where at least two spatial modes are
initially shared. In (III) if spatial degrees of freedom are traced
out, the internal degrees of freedom for each particle pair are
highly entangled as in the case of Bell-like states (for each
filled spatial mode) including a relative phase φ. In contrast,

in (IV) we break this symmetric scenario by leaving a single
spatial mode to be shared between the walkers.

C. Unitary evolution operator

The dynamics of the state are determined by a unitary
operator Û acting on the composite Hilbert space of particles.
We consider a total unitary given by

Û = U ⊗N , (3)

i.e., each unitary U acts independently on each particle sub-
space. We consider a model for a discrete-time QW (DTQW)
on the square lattice geometry �, with U given by

U = USUC

= [e−iH‖ ⊗ | ↑〉〈↑ | + e−iH⊥ ⊗ | ↓〉〈↓ |]︸ ︷︷ ︸
=US

× IS ⊗ [cos(θ )(P↑↑ − P↓↓) + sin(θ )(P↑↓ + P↓↑)]︸ ︷︷ ︸
=UC

, (4)

where we have defined Pσ,σ ′ = |σ 〉〈σ ′|, with σ, σ ′ ∈ {↑,↓}.
The unitary UC acts on the internal degrees of freedom of
particles (with IS being the identity for the S subspace) as a
coin operation depending on the parameter θ ; in what follows,
we fix θ = π/4. The unitary US is a conditional step oper-
ator, where H⊥, H‖ represent two nearest-neighbor hopping
Hamiltonians along vertical and horizontal directions of the
lattice, respectively. The conditional shift process is then as
follows: If the internal degree of freedom of the walker is
in the | ↓〉 state, then the walker evolves under a unitary
operator with Hamiltonian given by H⊥, which contains only
nearest-neighbor hoppings along the vertical direction of the
lattice; otherwise, if the internal state is | ↑〉, the Hamiltonian
governing the step includes hoppings along the horizontal
directions of the lattice. In the basis of S , the exponents are
the Hermitian operators given by

H⊥ = t
∑
x,y

|x, y + 1〉〈x, y| + H.c.,

H‖ = t
∑
x,y

|x + 1, y〉〈x, y| + H.c. (5)

The parameter t tunes the hopping amplitude. A small value
of t corresponds to a nearly adiabatic evolution of the walkers
after application of Û , with the emergent interference effects
due to different particle statistics becoming more evident
compared to the case t = 1, which will contribute having
amplitudes between very distant spatial points. Unless oth-
erwise stated, for all numerical results we consider open
boundary conditions in the lattice, e.g., H⊥ contains a term
|x, L〉〈x, L − 1| + H.c., but not a term |x, L〉〈x, 0| + H.c. In
more detail, we always make sure that for the system sizes
and the value of the parameter t employed, boundaries are
never reached (see Fig. 9 in Appendix B). This way, the
situation is equivalent to particles evolving in an infinitely
extended spatial grid. When periodic boundary conditions are
considered, the model enjoys translational symmetry and can
be solved exactly. The exact eigenvalues and eigenvectors of
U for the case of periodic boundary conditions are included
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in Appendix A. We note that in Eq. (4), Û involves complex
amplitudes.

The model presented in Eq. (4) differs significantly from
standard QW models found in the literature, in particular
regarding the so called split-step walks that are relevant for
the exploration of topological properties [85,86]. For compar-
ison purposes, we have included results corresponding to a
split-step walk in Appendix D. One of the main motivations
to choose such a model for states given by Eq. (2) is that
it introduces changes in the relative complex phases during
the walk, while keeping the binary nature of the conditional
step operator. The model in Eq. (4) belongs to a class of
models where the standard left or right shift operators present
in 1D QWs are substituted by more generic unitaries, whose
associated Hamiltonian might have a physical origin. In this
sense, the model describes a situation reminiscent of systems
experiencing time-reversal symmetry breaking, with opposite
internal degrees of freedom evolving under different Hamilto-
nians. A physically relevant scenario of such situation is that
of 2D systems in the presence of magnetic fields, which can
also be realized with polarized beam splitters in optics.

The quantum state after n steps of the walk is given by

|�(n)〉 = Û n|�0〉
= 1√

N!

∑
P

eiφPU n
∣∣ψ0

1P

〉 ⊗ · · · ⊗ U n
∣∣ψ0

NP

〉
. (6)

D. Multipartite entanglement over replica configurations
employing linear optics

Recent experimental advances in integrated photonic ar-
chitectures have shown how to exploit multilevel, multipartite
entanglement in order to generate states of identical particles
with arbitrary exchange statistics employing elements from
linear optics [65], i.e., single photons, providing these are
entangled beforehand (which constitutes itself an experimen-
tal challenge). The key idea is to employ N replicas of a
given mode transformation (any unitary evolution operator
for the particles), one for each of the photons, so that each
replica subspace (regarded as the H j subspaces) contains one
particle. Each of the particles of the replicas is entangled
to each other employing an experimentally controllable pa-
rameter φ for simulating states with different statistics upon
particle exchange; that is, simulating states of indistinguish-
able particles. We stress that although the particles employed
in the experiment to construct such state have always well de-
fined statistics (in the case of photons having bosonic nature),
the above state can be potentially realized in experiments
for instance, employing time-bin encoding of photons. This
constitutes the fundamental basis for creating a quantum sim-
ulator employing single photons [65], the requirement being
the preparation of entangled-photon states in the multipartite
setting scenario.

For QWs consisting of two walkers, polarization degrees of
freedom of the photons is sufficient to recreate identical parti-
cle statistics states [65]. For more than two walkers, additional
degrees of freedom are needed to generate the multipartite
setting. In this direction, photonic time-bin encoding [83,84]
presents a promising route to realize the required encoding
over extended Hilbert spaces.

III. OBSERVABLES

A. Two-particle distribution

A quantity commonly explored in multiparticle QW ex-
periments [49,52,53,65] is the two-particle correlation at
arbitrary points �r1, �r2 in the lattice �. They are defined at the
nth step of the walk by

Cσ1,σ2 (�r1, �r2, n) = 〈�(n)|P̂i,�r1σ1 P̂j,�r2σ2 |�(n)〉, (7)

where i, j indicate any pair of particle subspaces, and P̂i,�r1σ1 is
the projector for particle i at lattice site �r1 and internal degree
σ1. Since |�(n)〉 describes identical particles, the choice of
i, j is arbitrary. The correlation Cσ1,σ2 (�r1, �r2, n) gives the joint
probability density for any pair of particles. Assuming orthog-
onal states in the set S0, these distributions can be calculated
using the approach described in Appendix B.

The explicit expression for the joint probability density
distribution is given by

P(�r1, �r2, n) = C↑,↑(�r1, �r2, n) + C↓,↓(�r1, �r2, n)

+C↑,↓(�r1, �r2, n) + C↓,↑(�r1, �r2, n). (8)

The probability of a two-particle coincidence event at time
step n can be obtained from Eq. (8) as

Pdiag(n) =
∑

�r
P(�r, �r, n). (9)

B. Average interparticle distance

The average interparticle distance 	12(n) is defined as

	12(n) =
∑
�r1,�r2

√
(x1 − x2)2 + (y1 − y2)2P(�r1, �r2, n),

�r1 = (x1, y1), �r2 = (x2, y2). (10)

This quantity represents the average separation of any two
particles in the system at any step n of the walk. Since this
is a joint property, knowledge of the full joint distribution
P(�r1, �r2, n) is required. This quantity has been reported to
scale linearly with the number of steps n for a QW of two
entangled particles on a 1D line [68].

If linear behavior of 	12(n) is expected in the limit
L → ∞, the asymptotic behavior is characterized by a spread-
ing parameter:

vφ = 	12(τ )

τ
, τ = nt, (11)

where t is the hopping parameter in Eq. (5), and vφ is the
average separation speed between particles dependent on the
phase φ, i.e., the particle statistics.

C. Quantum Fisher Information, entanglement
entropy, and purity

The Quantum Fisher Information [87] (QFI) of a general
state ρ respect to the observable O is given by

FQ[ρ,O] = 2
∑
k,l

(λk − λl )2

λk + λl
|〈k|O|l〉|2, (12)

where λk and |k〉 are the eigenvalues and eigenvectors of ρ,
respectively. Tracing out all spatial degrees of freedom, we
consider the reduced density matrix of the particles internal
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degrees of freedom at any time step n:

ρC = TrS (|�(n)〉〈�(n)|), (13)

where we omit the explicit step dependence in ρC for notation
convenience. Since we are dealing with a state of identical par-
ticles in ρC and we are interested in joint properties between
any particle pairs, a multipartite operator O ∈ C⊗N where
particle statistics effects are expected to be of relevance is the
uniform Ising Hamiltonian:

O =
∑
j<k

σ z
j σ

z
k , (14)

where σ z
j is the z-Pauli matrix for the jth particle subspace

index.
As a witness of bipartite entanglement between the system

and the environment, we employ the von Neumann entropy
for the reduced density matrix ρC :

SC = −Tr(ρC log2(ρC )). (15)

The degree of mixedness of ρC with the environment can
be obtained from the purity:

PC = Tr
(
ρ2
C
)
. (16)

The purity is related to the linear entropy, a lower approxima-
tion of the von Neumann entropy (15). For a system of N = 4
walkers, ρC has dimension 16 × 16, and thus min(PC ) = 1

16 .

D. Bell test

Bell inequalities establish bounds on the classical nature of
correlations in a given system [77]. We follow Refs. [88,89]
and write the general Bell inequality for an N qubit
configuration [89]:

ζ � 2−N
∑

s1,...,sN = ±1

∣∣∣∣∣ ∑
k1,...,kN = 1,2

N∏
j=1

s
k j−1
j E ({k j})

∣∣∣∣∣, (17)

with E ({k j}) defined in Appendix C. Any value ζ > 1 that
violates the inequality signals the presence of purely quantum
correlations unable to be explained by local realism. For any
set of recorded measurements, general Bell inequalities can be
obtained employing linear programming techniques [90].

We consider the set of operators A = {A0, A1} and B =
{B0, B1} with

A0 = I ⊗ σ z, A1 = I ⊗ σ x,

B0 = I ⊗
(−σ z − σ x

√
2

)
, B1 = I ⊗

(
σ x − σ z

√
2

)
, (18)

where I represents the identity operator in the spatial subspace
S . Such a test belongs to the class of Bell inequalities for
higher-dimensional systems [91,92]. To perform the Bell test,
we assign the set A to m particles and the set B to N − m
particles. For N = 4, we set m = 2. We refer to Appendix C
for additional details on these expressions.

IV. RESULTS

In Fig. 2 we have represented the probability for two-
particle coincidence events Eq. (9), for the four different initial
configurations in Fig. 1 and different values of φ. As expected,

FIG. 2. The two-particle coincidence probability as defined in
Eq. (9), for different values of the particle exchange statistics pa-
rameter φ. Bosons tend to occupy equal spatial modes during the
evolution, leading to pronounced peaks in the probability of coin-
cidence events. For fermions, such coincidences are less likely due
to the Pauli exclusion, although peaks might still develop as in (II).
Data corresponds to the different initial conditions (I), (II), (III), and
(IV) from Fig. 1, with L = 16, t = 0.05 and a total of n = 50 time
steps, with τ = nt .

particles with φ = 0 have a higher probability of coincidence
than particles with φ = π , since the later experience Pauli ex-
clusion principle. Particles with φ = 0 experience pronounced

FIG. 3. Average speed repulsion vφ for the interparticle distance
	12 as defined in Eq. (11), for different values of the statistical
parameter φ and number of walkers N = 4 using the initial con-
ditions (I), (II), (III), and (IV) from Fig. 1. As expected, particles
with fermion statistics (φ = π ) tend to repel each other faster than
bosons (φ = 0) as a consequence of the Pauli exclusion principle.
The value of vφ depends on the initial configuration of particles,
sharing qualitative behavior in (I) and (IV) [(II) and (III)]. We used
L = 40 in all cases.
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FIG. 4. Quantum Fisher Information from Eq. (12) for the initial
conditions in Fig. 1, for the state ρC defined in Eq. (13). For (II),
particles with φ = 0 retain a higher value for the QFI than particles
with φ = π . In contrast, in configurations (III) and (IV) evolution of
the QW leads to an increment in the QFI for particles with φ = π ,
whereas for particles with φ = 0 the QFI tends to decrease. Data
correspond to t = 0.05, a total of 50 time steps, and L = 40.

peaks due to boson bunching. We observe that for configura-
tion (IV), the coincidence probability for a pair of fermions
with φ = π always decreases for this configuration, contrary
to (I) and (II) where peaks develop. For configuration (III), all
φ values show a similar decay of the coincidence rates, with
φ = π showing a slightly faster decay.

In Fig. 3 we have extracted through linear fitting the slope
vφ defined in Eq. (11), for different values of φ and the initial
configurations of Fig. 1 [93]. We observe that the statistics
of particles influence the repulsion speed considerably in all
configurations, with fermions φ = π presenting the largest
separation speeds in all cases. Interestingly, configurations (I)
and (IV) [(II) and (III)] present a similar dependence with the
φ angle. We stress that vφ is a joint property of the particles.

In Fig. 4 we represent for each of the initial configurations
the QFI defined by Eq. (12), corresponding to the state defined
in Eq. (13) and operator Eq. (14). We observe that while
configurations (I) and (II) present quite similar results for
different values of φ, configurations (III) and (IV) show that
while for φ = 0 the QFI oscillates evolving towards a zero
value, for φ = π we find monotonic increment towards finite
values. This indicates that for the Hamiltonian in Eq. (14),
fermions are better suited to perform quantum metrology tasks
after several time steps during the walk, given that the QFI
sets a lower bound on the achievable precision for parameter
estimation employing quantum states [94]. The results show
that in the internal degrees of freedom subspace, multipartite
entanglement increases (decreases) for fermions (bosons) dur-
ing the evolution of the walk.

In Fig. 5 we have represented the von Neumann entan-
glement entropy as defined in Eq. (15). We observe that in
all cases the entanglement between spatial and spin degrees

FIG. 5. Entanglement entropy from Eq. (15) for the initial con-
ditions in Fig. 1 for the state ρC defined in Eq. (13). Note that states
(II), (III), and (IV) have initially significant entanglement. The von
Neumann entanglement entropy grows with increasing the number
of steps, signaling thermalizing behavior of the internal degrees of
freedom with the environment. Note that specially for cases (III) and
(IV), statistics of particles play a significant role in the reach value.
Data correspond to t = 0.05, a total of 50 time steps, and L = 40.

of freedom characterized by SC increases monotonically after
several steps of the QW, eventually saturating its value. The
effect of particle statistics is more pronounced in configura-
tions (III) and (IV), where particles having fermion statistics
(φ = π ) tend to become less entangled with their spatial de-
grees of freedom than particles possessing boson statistics
(φ = 0), signaling absence of thermalization for the fermions
in these cases. We stress that thermalization in this context
refers to the amount of entanglement between the internal and
the spatial degrees of freedom (i.e., the environment). Bosons
tend to occupy equal spatial modes, eventually reaching a
completely random reduced density matrix, i.e., a maximally
mixed state, which is a classical state. On the other hand,
fermions are restricted to the Pauli exclusion principle, which
effectively reduces the dimensionality of available trajecto-
ries. It is therefore expected that their reduced density matrix
is not a maximally mixed state.

The purity for the different initial configurations is repre-
sented in Fig. 6. In accordance with results of Fig. 5, fermions
reach less mixing with their environment than bosons. This
can be intuitively understood from the Pauli exclusion prin-
ciple, which precludes equal spin occupation on a single
spatial mode for fermions, thus effectively reducing the en-
vironment in which their internal degrees of freedom are
embedded. This effect is expected to become more visible
if more than one particle occupies the same spatial mode,
as it is the case in (III) and (IV), where results suggest a
complete absence of thermalization for φ � π/2. This behav-
ior is in stark contrast with what is observed in Fig. 3, which
shows that the average interparticle distance speed is always
higher for particles having closer to fermion statistics than for
particles closer to bosons. Intuitively, a higher interparticle
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FIG. 6. Purity from Eq. (16), for the initial conditions in Fig. 1,
for the state ρC defined in Eq. (13). In accordance with Fig. 5,
thermalizing behavior for bosons with φ = 0 leads to a maximally
mixed (classical) state, whereas for fermions φ = π the purity re-
mains above the maximally mixed state bound PC = 1/16. Note the
different vertical axes values. Data correspond to t = 0.05, a total of
50 time steps, and L = 40.

separation speed is associated with a faster thermalization rate
over spatial modes; yet results in Fig. 4 suggest the opposite.
This absence (presence) of thermalization for φ = π (φ = 0)
is also manifesting in the amount of multipartite entangle-
ment developing (decaying) through the QFI in Fig. 4, since
fully thermalized states converge to a classical mixture of
states.

Finally, we present results on the performed Bell tests
in Fig. 7. We observe that configurations (I), (II), and (IV)
have ζ < 1 at any times, and therefore can be in principle
described by local realism. Configuration (III) violates the
general Bell inequality in Eq. (C3) during the initial steps of
the walk (except for φ = π/2). Configuration (I) corresponds
to a product state between internal degrees of freedom and the
spatial degrees of freedom, rendering the state in the internal
degrees of freedom purely classical. Configuration (II) can be
regarded as a particular instance of two (I) configurations with
N = 2 each having opposite spins, therefore a local realism
description is also expected in this case. Configuration (III)
constitutes a pair of Bell states distantly separated from each
other, constituting an initial quantum state with no classical
description of correlations, except for φ = π

2 where ζ = 1
initially. Finally, configuration (IV) consists of a Bell state and
two classical separated spins. In that case, performing a Bell
test would yield a combination from a maximal violation of
the inequality and the most classical value of ζ , resulting on
average in a value below the ζ = 1 classical bound.

V. SUMMARY AND OUTLOOK

In this work, we have investigated a multiparticle, dis-
crete time QW on a 2D square lattice geometry, employing
a system of N identical particles prepared on different initial
configurations. By tuning a single parameter φ associated with

FIG. 7. Performed Bell tests for the four different initial condi-
tions in Fig. 1. Only condition (III) shows a violation of the Bell
inequality in Eq. (C3) during the initial time steps, except for φ = π

2 ,
where the inequality is satisfied. The classical bound at ζ = 1 has
been represented by a dashed grey line. Data correspond to 30 time
steps, t = 0.05 and L = 40.

the particle statistics, we have reported results in joint prop-
erties and entanglement witnesses that could be potentially
addressed in linear optics experiments employing multipartite
entanglement between distinguishable photons as described
in Sec. II D. Our work lies in the context of multiparticle
interference properties and the possibility to employ QWs of
correlated photons [65–67,83,84] to simulate these processes.
The results reported here could be explored on current inte-
grated photonic circuits, complementing theoretical grounds
for photonic quantum simulators.

Through the QFI we have shown that certain initial con-
figurations of the particles allow to prepare states that are
relevant for quantum metrology when the statistical nature
of the particles is taken into consideration. In particular, for
initial states sharing spatial modes between the particles, we
report fermions to show a lower precision bound than bosons
for parameter estimation of the all-to-all Ising model Hamilto-
nian. These results share context with recent works on the QFI
in 1D continuous QWs of identical particles [73]. In the con-
text of system-environment thermalization, we have shown
that the particle statistics have a strong effect under certain
initial preparations, concluding that contrary to bosons with
φ = 0, fermions with φ = π do not always thermalize with
their spatial degrees of freedom. Additionally, we have also
investigated the nature of quantum correlations in the internal
degrees of freedom, and whether these violate the general Bell
inequality for N qubits depending on the exchange statistics of
particles.

There are several questions left open for future research.
These include employing different model realizations for
the unitary evolution, alternative coin operators, different
lattice geometries and initial configurations, or introducing
interactions between particles. There is an evident connection
of the model presented in this work with split-step models
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known to be relevant for exploring topological phases employ-
ing QWs [85,86]. Identifying the associated split-step model
for the QW presented here while investigating the presence
or absence of nontrivial topological phases also constitutes
an interesting avenue for future research. From the quantum
metrology perspective, it is of interest to determine the role
played by particle statistics during the evolution of the QW
when more general operators O are employed in Eq. (12).

Our results address fundamental properties about the
nature of quantum correlations in ensembles of identical par-
ticles subjected to a QW, particularly regarding entanglement
properties in the context of system-bath thermalization of
the internal degrees of freedom into spatial degrees of free-
dom. Employing photonic quantum simulators to engineer
states that exploit particle statistics and entanglement to re-
sist thermalization constitutes an interesting avenue for future
research.
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APPENDIX A: EIGENSTATES
OF THE UNITARY OPERATOR

The Hamiltonians in Eq. (5) can be both regarded as sets of
parallel tight binding chains along the vertical and horizontal
directions of the lattice. Thus, they have a diagonal represen-
tation in momentum �k = (kx, ky) space:

H‖ =
∑
kx,ky

εkx |kx, ky〉〈kx, ky|,

H⊥ =
∑
kx,ky

εky |kx, ky〉〈kx, ky|, (A1)

where we used that a lattice coordinate state with �r = (x, y)
can be expanded as

|x, y〉 = 1

L

∑
�k

ei�k.�r |�k〉, (A2)

and where we defined

εkx,y = + 2t cos(kx,y), kx,y = 2πnx,y

L
nx,y = 0, 1, . . . , L − 1, (A3)

assuming periodic boundary conditions along the x, y direc-
tions. The unitary operator consists of two terms:

U = e−iH‖ ⊗
(

cos θ sin θ

0 0

)

+ e−iH⊥ ⊗
(

0 0
sin θ − cos θ

)
. (A4)

Note that U is block diagonal in the |�k, σ 〉 basis, therefore
each fixed �k subspace can be diagonalized independently.
Since H‖, H⊥ are diagonal in �k space, we write for a fixed
�k = (kx, ky) the state:

|λ�k〉 =
∑

α=↑,↓
�(�k, σ )|�k, σ 〉. (A5)

Applying the unitary to |λ�k〉,
U |λ�k〉 = �(�k,↑) e−iH‖ cos θ |�k,↑〉

+�(�k,↓) e−iH‖ sin θ |�k,↑〉
−�(�k,↓) e−iH⊥ cos θ |�k,↓〉
+�(�k,↑) e−iH⊥ sin θ |�k,↓〉. (A6)

We look now for solutions of the equation

U�k

(
�(�k,↑)
�(�k,↓)

)
= λ�k

(
�(�k,↑)
�(�k,↓)

)

U�k =
(

e−iεkx cos θ e−iεkx sin θ

e−iεky sin θ −e−iεky cos θ

)
. (A7)

The resulting eigenvalue equation is

λ2
�k − λ�k cos θ (e−iεkx − e−iεky ) − e−i(εkx +εky ) = 0. (A8)

The eigenvalues are

λ±
�k = τ (θ, �k) ±

√
e−i(εkx +εky ) + τ (θ, �k)2,

τ (θ, �k) = cos(θ )
(
e−iεkx − e−iεy

)
2

. (A9)

Since each U�k is unitary, these eigenvalues can be expressed

as a phase λ±
�k = eiϕ±

�k . The eigenvector components satisfy

�±(�k,↑) = sin θ�(�k,↓)

λ±
�k eiεkx − cos θ

. (A10)

Normalizing we obtain the eigenstates for a fixed �k = (kx, ky)
value:

|λ±
�k 〉 =

⎛
⎜⎜⎝

sin θ√
2−2 cos θ cos(ϕ±

�k +εkx )

e
i(ϕ±

�k +εkx )−cos θ√
2−2 cos θ cos(ϕ±

�k +εkx )

⎞
⎟⎟⎠ =

(
u±

�k
v±

�k

)
. (A11)

Note that the above decomposition corresponds to a lin-
ear combination in the {|�k,↑〉, |�k,↓〉} basis with coefficients
u±

�k , v±
�k :

|λ±
�k 〉 = u±

�k |�k,↑〉 + v±
�k |�k,↓〉. (A12)

Due to having distinct eigenvalues and Û�k being unitary, these
eigenvectors are orthogonal to each other.

If we evolve an initial state |ψ0〉 = |�r0, σ 〉 by the unitary
U n, we obtain

U n|ψ0〉 = 1

L

∑
�k,τ=±

einλτ
�k +i�k.�r0

(
uτ

�k δσ,↑ + vτ
�k δσ,↓

)∣∣λτ
�k
〉
. (A13)
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Two-particle return amplitude

Having full knowledge of the eigenvectors and eigenvalues
of the walk, we can obtain amplitudes from arbitrary initial
state configurations. As an example, consider the two-particle
QW given by the initial state:

|�0〉 = 1√
2

(|�r0,↑〉 ⊗ |�r0,↓〉 + eiφ|�r0,↓〉 ⊗ |�r0,↑〉). (A14)

We calculate the return amplitude:

A0 = 〈�0|Û n|�0〉. (A15)

This amplitude can be expressed in terms of the coefficients:

A0 = 1

L4

⎛
⎝∑

�k,τ

∣∣uτ
�k
∣∣2

einλτ
�k

⎞
⎠

⎛
⎝∑

�k,τ

∣∣vτ
�k
∣∣2

einλτ
�k

⎞
⎠

+ cos(φ)

L4

⎛
⎝∑

�k,τ

uτ
�k v

∗,τ

�k einλτ
�k

⎞
⎠

⎛
⎝∑

�k,τ

u∗,τ

�k vτ
�k einλτ

�k

⎞
⎠. (A16)

The second term is the only one depending on the par-
ticle statistics parameter φ. Since uτ

�k and vτ
�k correspond

respectively to spin up and down coefficients in the eigen-
states (A11), particle statistics affect only transition ampli-
tudes between these sectors for the state in Eq. (A14).

APPENDIX B: TWO-PARTICLE CORRELATIONS

Since all particles forming the state |�(n)〉 are identical,
we can select any pair of subspaces to carry out the compu-
tation of the two-particle correlations (coincidence events).
For instance, consider single-particle projectors P̂1, P̂2 with
P̂1 ≡ P̂1,�r1,σ1 , P̂2 ≡ P̂2,�r2,σ2 . These operators act on the sub-
spaces H1,H2 and thus correspond to operators that are local
from the distinguishable particles point of view. The explicit
formula for correlations after unitary evolution U reads

C12(n) =
∑
p,p′

Ap,p′ 〈ψ1p′ |(U †)nP̂1U
n|ψ1p〉

× 〈ψ2p′ |(U †)nP̂2U
n|ψ2p〉

×
N∏

q=3

〈ψqp′ |ψqp〉, Ap,p′ = ei(φp−φp′ )

N!
. (B1)

In Eq. (B1) the index p labels all possible permutations result-
ing from the set of initial states S0 defined in Sec. II B. There
is a total of (N!)2 terms in the sum. The product of brackets
will cancel many terms when all initial conditions in S0 are
orthogonal to each other. The values of Ap,p′ = 1

N! come from
a symmetric permutation of both the ket and bra. From the
rest of particles, there are (N − 2)! combinations. From the
two chosen subspaces, we have 2CN

2 possible combinations,
where CN

2 is the binomial coefficient. From the other particles’
permutations, there is an equal number of phases with 0 or
φ terms.

For convenience, we change the notation now and call the
combined ket of initial states from particles 1 and 2 |l, k〉, i.e.,
both l, k label one of the N initial conditions in the set S0, l
corresponding to particle 1 and k corresponding to particle 2
(see main text for details). The only possible nonzero overlaps
occur when the bra 〈l ′, k′| contains the same values as in l, k,

FIG. 8. Benchmarked calculation for two-particle correlations on
a square lattice of L × L dimensions, with L = 3, t = 0.1, N = 4
particles and 40 total steps, for different values of φ in the initial state.
The solid lines correspond to the exact numerical calculation by act-
ing directly with the operators on the full state of dimension (2L2)N ,
whereas crosses indicate the values calculated with Eq. (B2) using
the single-particle wave function coefficients. The N = 4 particles
are initialized at (x, y, σ ) ≡ (0, 0, ↑), (0, 2, ↓), (2, 0, ↓), (2, 2, ↑).
The correlation is calculated for σ1, σ2 =↑, ↓ and �r1 = �r2 = (2, 2).

i.e., l ′, k′ ∈ {l, k}. We also note that for any pair (l, k), there is
either a 1 or a phase eiφ . Thus, we can write the correlations
for arbitrary single particle indices 1 and 2 as

C12(n) =
∑

l,k,l ′,k′
wlkl ′k′ 〈l ′|(U †)nP̂1U

n|l〉〈k′|(U †)nP̂2U
n|k〉,

wlkl ′k′ =
⎧⎨
⎩

fN , l = l ′, k = k′,
fN e−iφ, (l, k) �= (l ′, k′) ∧ l < k,

fN e+iφ, (l, k) �= (l ′, k′) ∧ l > k,

fN = 1

N (N − 1)
. (B2)

We note that this is independent of any geometry of the lattice,
and that for the case of a single-particle Hilbert space with
dimension d = 2L2 (with states labeled by the l, k indices),
there is a total of (

d
N

)
= d!

N!(d − N )!
(B3)

possible choices of the initial configuration with different
(l, k) indices pairs. A benchmark calculation of Eq. (B2) is
shown in Fig. 8. This allows to obtain in an efficient way
joint properties like 	12 while addressing large system sizes,
as shown in Fig. 9.

Note that the total number of particles (walkers) influence
is twofold: it appears in the prefactor, but also in the sum
over the set of single-particle indices (l, k, l ′, k′) specifying
each of the initial conditions. We also note that for n = 0
(initial condition), C12(0) is independent of the phase φ, since
only combinations with l = l ′, k = k′ can occur (P̂1 and P̂2 are
projectors on single-particle states). This in turn implies that
at initialization, simultaneous measurement of two-particle
coincidences is independent of the particles statistics, which
is easily verified.
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FIG. 9. System size scaling of the interparticle distance 	12 for
the QW with initial configuration given by (III) in Fig. 1, with
φ = π , τ = nt with t = 0.05. The deviation from linear behavior
observed for smaller system sizes corresponds to boundary effects
from particles reaching the edges of the lattice. The slope of 	12 in
the linear behavior region determines the propagation speed vφ . The
slope vφ is extracted in the region delimited by the dashed lines.

We can define the quantity:

CF
12(n) = 〈�(n)|P̂1|�(n)〉〈�(n)|P̂2|�(n)〉. (B4)

Subtracting CF
12(n) from Eq. (B2) modifies only the diagonal

weights as

w̄lkl ′k′ =
⎧⎨
⎩

1
N3−N2 , l = l ′, k = k′,
fN e−iφ, (l, k) �= (l ′, k′) ∧ l < k,

fN e+iφ, (l, k) �= (l ′, k′) ∧ l > k.

In the case of initial product states (i.e., a state repre-
senting distinguishable particles), the two-particle correlation
becomes

C̄12(n) = 〈l|(U †)nP̂1U
n|l〉〈k|(U †)nP̂1U

n|k〉. (B5)

Since particles are distinguishable in that case, the choice of
(l, k) pairs from the set S0 is relevant for each subspace and
leads to different results.

APPENDIX C: BELL INEQUALITY FOR N QUBITS

If we trace over the spatial degrees of freedom for each
particle subspace, the system becomes equivalent to a system
of N spin-1/2 state, where particle statistics are contained in
the resulting complex coefficients. The reduced density matrix
at time step n is

ρn = Tr�r (|�(n)〉〈�(n))| =
∑
p,p′

ei(φp−φp′ )

N!
Ap,p′,n,

Ap,p′,n = ρ
pp′n
1 ⊗ · · · ⊗ ρ

pp′n
N ,

ρ
pp′n
j =

(∑
�r

φ
p
n,�r,σ j

φ
∗,p′
n,�r,σ ′

j

)
|σ j〉〈σ ′

j |. (C1)

Note that the Ap,p′,n carry projectors in the spin degrees of
freedom for each subspace j, therefore they are operators of
dimension 2N × 2N . Note the state in Eq. (C1) will be in gen-
eral a mixed state, because the spatial and spin subspaces S, C
are mixed due to the initial entangled states and subsequent
unitary evolution.

We consider the general expression for a Bell inequality of
N spin-1/2 systems following Ref. [89]. In particular, we con-
sider a set of Aj (nkj ) with k j = 1, 2 for each particle subspace
j. The averaged outcome of experiments is given by

E (k1, . . . , kN ) := E ({k j}) =
〈

N∏
j=1

Aj (nkj )

〉
. (C2)

The expectation value is taken respect to the reduced density
matrix in the spin subspaces of the model, i.e., it lives on the
Hilbert space C⊗N .

The general expression for Bell inequalities of N qubits
reads [89]

∑
s1,...,sN =±1

∣∣∣∣∣ ∑
k1,...,kN =1,2

N∏
j=1

s
k j−1
j E ({k j})

∣∣∣∣∣ � 2N . (C3)

We restrict to the special case where [compare Eq. (18)]

Aj (n1) = σ z, Aj (n2) = σ x, j � N/2,

Aj (n1) = − 1√
2

(σx + σz ), j > N/2,

Aj (n2) = 1√
2

(σx − σz ), j > N/2. (C4)

Defining

ζ = 2−N
∑

s1,...,sN =±1

∣∣∣∣∣ ∑
k1,...,kN =1,2

N∏
j=1

s
k j−1
j E ({k j})

∣∣∣∣∣, (C5)

the condition for local realism description of correlations
becomes

ζ � 1. (C6)

APPENDIX D: COMPARISON WITH A SPLIT-STEP
QUANTUM WALK

In this Appendix, we show results when comparing the QW
model employed in this work with a split-step version of the
QW models found in Refs. [85,86]. We consider the unitary:

Û = U⊗N , U = UyUCUxUC,

Ux =
∑
x,y

∑
s=±1

|x + s, y, σs〉〈x, y, σs|,

Uy =
∑
x,y

∑
s=±1

|x, y + s, σs〉〈x, y, σs|, (D1)

where UC is given in Eq. (4) and we have defined σs = 1 ≡↑ and
σs = −1 ≡↓. We set θ = π/4 and employ the initial configu-
ration for the particles given in Fig. 1. Note that this model
does not include a hopping parameter t , and that two coin
operations are performed on a single application of the unitary
Û over the state [see Eq. (5) in Ref. [86] for a direct com-
parison]. For simplicity on the implementation, we consider

052416-10



QUANTUM WALK ON A SQUARE LATTICE WITH … PHYSICAL REVIEW A 111, 052416 (2025)

FIG. 10. The same figure as Fig. 2, for the model described in
Eq. (D1). Data correspond to a total of 50 time steps, and L = 40.
Note that the time axes have been scaled by a factor t = 0.05, with
τ = nt , for comparison purposes.

periodic-boundary conditions (PBC), which folds the spatial
lattice into a torus geometry.

In Figs. 10 and 11 we have represented the coincidence
probabilities and the spread velocities, to allow for a direct
comparison with Figs. 2 and 3. The main thing to note is that
for the model in Eq. (D1), particle statistics become irrelevant
if particles do not share any spatial modes in the chosen
initial configurations. On the contrary, configurations (III) and
(IV) experience coincidence events at the initial steps, until
particles start separating from each other. From Fig. 11, we
conclude that for configurations (I) and (II), particles spread at

FIG. 11. The same figure as Fig. 4, for the model described in
Eq. (D1). Data correspond to a total of 12 time steps, and L = 40.
In this case, no scaling of the x axes was performed to extract the
velocities, i.e., vφ is obtained by setting t = 1 in Eq. (11).

equal paces independent on the statistics, in accordance with
Fig. 10. Configurations (III) and (IV) have spread velocities vφ

dependent on the particle statistics parameter φ, with fermions
(φ = π ) experiencing the fastest separation.

Direct comparison with results obtained from the model
in Eq. (4) shows that introducing complex amplitudes (with
small t = 0.05) using the unitary evolution operator in Eq. (4)
leads to a richer dynamical structure of correlations. Indeed,
the appearance of complex phases in the tunneling amplitudes
leads to modifications in the relative phases present in the
quantum state, resulting in emergent correlations not seen for
the real-valued unitary operator in Eq. (D1).
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[15] M. Štefaňák, S. M. Barnett, B. Kollár, T. Kiss, and I. Jex,
Directional correlations in quantum walks with two particles,
New J. Phys. 13, 033029 (2011).

[16] C. Liu and N. Petulante, One-dimensional quantum random
walks with two entangled coins, Phys. Rev. A 79, 032312
(2009).

052416-11

https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.34133/icomputing.0097
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1126/science.1229957
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1103/PhysRevA.70.022314
https://doi.org/10.1103/PhysRevA.78.012310
https://doi.org/10.1038/ncomms11511
https://doi.org/10.1103/PhysRevA.68.020301
https://doi.org/10.1088/0305-4470/39/48/009
https://doi.org/10.1103/PhysRevA.75.032351
https://doi.org/10.1088/1367-2630/13/3/033029
https://doi.org/10.1103/PhysRevA.79.032312


CAMACHO, MEINECKE, AND WOLTERS PHYSICAL REVIEW A 111, 052416 (2025)

[17] L. Rigovacca and C. Di Franco, Two-walker discrete-time quan-
tum walks on the line with percolation, Sci. Rep. 6, 22052
(2016).

[18] J. D. Whitfield, C. A. Rodríguez-Rosario, and A. Aspuru-
Guzik, Quantum stochastic walks: A generalization of classical
random walks and quantum walks, Phys. Rev. A 81, 022323
(2010).

[19] F. Caruso, Universally optimal noisy quantum walks on com-
plex networks, New J. Phys. 16, 055015 (2014).

[20] L. C. G. Govia, B. G. Taketani, P. K. Schuhmacher, and F. K.
Wilhelm, Quantum simulation of a quantum stochastic walk,
Quantum Sci. Technol. 2, 015002 (2017).

[21] P. K. Schuhmacher, L. C. G. Govia, B. G. Taketani, and
F. K. Wilhelm, Quantum simulation of a discrete-time quantum
stochastic walk, Europhys. Lett. 133, 50003 (2021).

[22] P. P. Rohde, A. Schreiber, M. Štefaňák, I. Jex, and C. Silberhorn,
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