
Quantum walk on a square lattice with identical particles

Gonzalo Camacho,1, ∗ Jasmin Meinecke,2, 3 and Janik Wolters2, 4, 5, 6

1Department High-Performance Computing, Institute of Software Technology,
German Aerospace Center (DLR), 51147 Cologne, Germany

2Institute of Physics and Astronomy, Technische Universität Berlin, 10623 Berlin, Germany
3Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
4Institute of Optical Sensor Systems, German Aerospace Center (DLR), 12489 Berlin, Germany

5Einstein Center Digital Future (ECDF), Wilhelmstraße 67, 10117 Berlin, Germany
6AQLS UG (haftungsbeschränkt), Guerickestraße 12, 10587 Berlin, Germany

(Dated: May 12, 2025)

We investigate quantum superposition effects in two-dimensional quantum walks of identical par-
ticles with different statistics under particle exchange, starting from various different initial con-
figurations. To characterize interparticle correlation dynamics, we focus on joint properties such
as two-particle coincidence probabilities and the spread velocity of the interparticle distance. Re-
garding spatial modes as an environment for the particles internal degrees of freedom, we study the
role played by the particle statistics using standard entanglement witnesses, showing that particles
possessing fermionic statistics are more resistant to thermalize with their environment. We analyze
the presence of multipartite entanglement in the system’s degrees of freedom through the Quantum
Fisher Information, revealing that fermionic states generated during the walk are better suited to
perform quantum metrology tasks. Finally, we discuss the potential for implementing this model
using integrated photonic circuits by exploiting N -partite entanglement between individual photons.

I. INTRODUCTION

Quantum walks [1–3](QWs) have gained considerable
attention as a candidate model for achieving universal
quantum computation [4–6]. Among many other rele-
vant applications, QWs have revealed the potential for
achieving quantum advantage respect to certain classical
search-based [7–10] and sampling [11] algorithms when
implemented on quantum processors.

Due to their versatility, QWs have been explored in
a wide range of scenarios, notably focusing on two-
particle correlations of QWs on a line [12–17], stochastic
QWs [18–21] and multiparticle QWs [22–25], to name a
few. The dimensionality of space where walkers are al-
lowed to propagate plays a pivotal role in the properties
of the QW [26]. While QWs restricted to one dimen-
sional (1D) geometries have been widely studied, two di-
mensional QWs (2DQWs) offer a much richer landscape
of geometries to explore interparticle interference effects,
and are known to be in close connection with Grover’s
search algorithm [27–30].

In recent decades, QWs on integrated photonic cir-
cuits [31–34] were one of the first testbeds for photonic
quantum information processing [35–38]. This approach
has been supported by the great experimental success
witnessed in preparing entangled multiphoton states [39–
48], where experiments involving photonic QWs have
mostly focused on individual or polarization-entangled
photon states [49–59]. Due to their relatively long co-
herent times and the high degree of experimental control
in the study of photon interference effects [60], photonic
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processors are now being considered as good candidates
for developing quantum computers [61] capable to simu-
late complex quantum systems [62–64]. A promising ap-
plication route for QW computing in integrated photon-
ics is to develop photonic quantum simulators that mimic
quantum interference effects in systems of identical par-
ticles [65–67], allowing one to observe the role played by
particle statistics during the evolution of the walk [68–
74]. Additionally, the potential to realize entangled mul-
tiphoton states [75, 76] employing photonic quantum pro-
cessors opens up the possibility to explore fundamental
questions about quantum entanglement [77, 78] in sys-
tems of identical particles [79–81].

A setup where correlations between identical particles
can be extracted using photonic quantum simulators are
discrete QWs, where at each step of the walk a coin oper-
ation entangles the particles internal degrees of freedom
and their spatial modes. In Ref. [68], a 1D, discrete-time
QW of two entangled particles having either boson or
fermion statistics was investigated, concluding that par-
ticle statistics have a significant effect on joint properties
during the evolution of the walk. A natural extension of
these results, which constitutes the main motivation of
this work, is to consider the situation corresponding to a
less spatially constrained geometry, while increasing the
number of walkers and allowing for the particles to have
intermediate exchange statistics ranging between bosons
and fermions.

For particles prepared in a spatially constrained state,
subsequent steps of the walk will spread the wavefunction
through different spatial modes, which are regarded as an
environment. Another interesting question to address in
this context is how particle statistics affect the dynamics
of entanglement between the particles internal degrees of
freedom (system) and their spatial coordinates (environ-
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ment), with the goal to identify genuine entangled states
resisting environment thermalization. In this context,
thermalization should be understood as how entangled
the system degrees of freedom become with the envi-
ronment when the walkers propagate over an infinitely
extended spatial geometry.

Generating states whose system dynamics are nearly
isolated from the environment is of interest to perform
quantum metrology tasks. In particular, recent works
on 1D QWs of identical particles have reported the es-
sential role played by particle statistics in the Quantum
Fisher Information (QFI) [73], which characterizes the
maximum achievable precision in phase parameter esti-
mation under unitary evolution. The direct relevance of
the QFI to identify resourceful states that can be gen-
erated by QWs is evident, given that the QFI also is a
genuine multipartite entanglement witness having well-
defined entanglement bounds [82].

The above questions are motivated not only from a
fundamental point of view, but also regarding the exper-
imental feasibility of employing photonic quantum com-
puting platforms as simulators for systems of identical
particles, and how do these compare against an imple-
mentation on alternative quantum processor architec-
tures, e.g. on superconducting qubits hardware. The
proposal to employ multilevel, multipartite entanglement
in integrated photonic circuits of QWs [65] sets the basis
to address these questions employing linear optics, with
time-bin encoding [83, 84] methods offering a promising
route to realize the required multipartite scenario of the
photons.

In this work we address the QW of a state represent-
ing identical quantum particles allowed to move on a 2D
square lattice geometry. We study this construction us-
ing a first quantization scheme, which naturally employs
a multipartite setting of distinguishable particles for con-
structing the full Hilbert space. The influence of the par-
ticle statistics is analyzed in two different settings. First,
with the goal to characterize interparticle correlation dy-
namics, we develop an efficient method for calculating
joint properties from a special set of initial states, al-
lowing us to perform detailed numerical simulations em-
ploying different initial configurations of the walkers. In
particular, we focus on the dynamics of two-particle co-
incidence events, which is a quantity of experimental rel-
evance [65–67] and the two-particle spread velocity [68],
which is of interest from a theoretical point of view in
QWs with identical particles. Second, in the context of
system-environment thermalization, we conduct further
numerical simulations by looking at standard entangle-
ment witnesses between the spatial and the internal de-
grees of freedom of the walkers. In particular, we choose
the von Neumann entropy to characterize the entangle-
ment between spatial and internal degrees of freedom,
and the purity of the reduced density matrix of the sys-
tem as a measure of mixedness directly related to separa-
bility of the state. In order to identify favourable statis-
tics of the particles to perform quantum metrology tasks
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FIG. 1. (a) Different initial state configurations for the state
|Ψ0⟩ defined in Eq. (2), for N = 4 particles on a square lattice
of L× L lattice sites with L = 4. Occupied spatial modes al-
locating particles with σ =↑, ↓ internal degrees of freedom are
filled in blue, whereas empty spatial modes are represented
by a white background circle. The initial state |Ψ0⟩ incor-
porates different particle statistics through the phase ϕ. (b)
Illustration of the conditional hopping process described in
Eq. (4) for initial product states in the |x, y, σ⟩ basis; hopping
between nearest neighbors have been represented with lines,
and allowed spatial modes due to hopping processes have been
colored. The green regions represent spatially shared modes
due to shared hopping into that lattice position.

and to characterize multipartite entanglement dynamics
during the walk, we look at the QFI. Since we are deal-
ing with identical particles and the QFI depends on the
particular choice of the operator, a particularly relevant
scenario is to consider quantum metrology in the class of
Ising-like Hamiltonians.
The paper is structured as follows. In Sec. II, we intro-

duce the QW model, describing the Hilbert space struc-
ture, the initial state and the unitary evolution operator.
We also comment on the feasibility to experimentally
simulate states describing identical particles employing
linear optics elements in this section. In Sec. III, we give
a brief description of the main observables studied in this
work, which includes joint two-particle properties, entan-
glement witnesses and a generalized Bell inequality. In
Sec. IV we present the main results. Sec. V concludes
with a summary and we discuss open questions.

II. MODEL

A. Hilbert space

We considerN distinguishable quantum particles, each
labeled by an index j = 1, ..., N . The quantum state as-
sociated with particle j is |ψj⟩, living in a finite dimen-
sional Hilbert space Hj ; the total Hilbert space of the
whole system is H = H1 ⊗ H2 ⊗ ... ⊗ HN . We consider
the Hilbert space of the j-th particle to be the tensor
product of the Hilbert space Sj associated with spatial
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coordinates of the particle, and the space Cj associated
with their internal degree of freedom:

Hj = Sj ⊗ Cj . (1)

We consider all Hj to be equivalent regardless of the j
index. We restrict the spatial geometry in Sj to a fi-
nite 2D square lattice of dimension L × L with discrete
spatial coordinates Λ : (x, y)|x, y ∈ {0, 1, ..., L − 1}; ar-
bitrary positions in the lattice Λ are represented by a
vector r⃗ = (x, y). The subspace Cj has local basis states
|σ⟩ ∈ {| ↑⟩, | ↓⟩}, which will be regarded as a spin-1/2
degree of freedom. The basis of states {|x, y, σ⟩} spans
any Hj , with total dimension d = dim(Hj) = 2L2; the
total Hilbert space dimension dim(H) = dN . In what

follows, we will often refer to the Hilbert space C = C⊗N
j

associated only with the particles internal degrees of free-
dom as the system, while interpreting the Hilbert space
of spatial coordinates S = S⊗N

j as the environment.

B. Initial state

We consider states describing N identical particles of
the form:

|Ψ0⟩ =
1√
N !

∑
P
eiϕP |ψ0

1P , ..., ψ
0
jP , ..., ψ

0
NP

⟩, (2)

where P labels a single element of the set containing
all permutations of IN = {1, ..., j, ..., N}, with P =
{1P , ..., jP , ..., NP} ∈ SN (IN ), and jP ∈ IN ,∀j. The
phase ϕP = 0 if the number of permutations associated
with P is even, whereas ϕP = ϕ ∈ [0, π] if the number
of permutations is odd. For ϕ = 0, Eq. (2) represents
a state of particles obeying boson statistics, whereas for
ϕ = π the state in Eq. (2) corresponds to particles obey-
ing fermion statistics. The single parameter ϕ tunes con-
tinuously between the two. For the special cases ϕ = 0, π,
the state is invariant under arbitrary particle pair ex-
change. For ϕ ∈ (0, π), the state picks up a nonglobal
phase under particle exchange.

For the initial conditions we consider product
states |ψ0

j ⟩⊗j formed from a set of N states S0 =

{|ψ0
1⟩, ..., |ψ0

j ⟩, ..., |ψ0
N ⟩}; we choose each |ψ0

j ⟩ to be an
element of the {|x, y, σ⟩} basis, so that all states in S0

are pairwise orthogonal. The initial state is constructed
using the N ! permutations from the set S0 as in Eq. (2).
Since the state in Eq. (2) describes identical particles, it
is not possible to assign to any of the particles a definite
initial condition from S0.
We will consider four different initial configurations of

the particles, depicted in Fig 1. Configurations (I) and
(II) correspond to the case where the walkers initially
do not share any spatial modes; however, the two sit-
uations are rather different in that (I) has the spatial
degrees of freedom completely decoupled from the inter-
nal ones (any particle subspace has a ↑ internal degree

of freedom), whereas (II) is not separable from the en-
vironment due to the internal degrees of freedom being
different. In other words, spatial and internal degrees
of freedom in (II) are expected to be entangled, whereas
in (I) this is not the case. In configurations (III) and
(IV) we address the situation where at least two spatial
modes are initially shared. In (III), if spatial degrees of
freedom are traced out, the internal degrees of freedom
for each particle pair are highly entangled as in the case
of Bell-like states (for each filled spatial mode) including
a relative phase ϕ. In contrast, in (IV) we break this
symmetric scenario by leaving a single spatial mode to
be shared between the walkers.

C. Unitary evolution operator

The dynamics of the state are determined by a uni-
tary operator Û acting on the composite Hilbert space of
particles. We consider a total unitary given by:

Û = U⊗N , (3)

i.e. each unitary U acts independently on each particle
subspace. We consider a model for a discrete time QW
(DTQW) on the square lattice geometry Λ, with U given
by:

U = USUC

=
[
e−iH∥ ⊗ | ↑⟩⟨↑ |+ e−iH⊥ ⊗ | ↓⟩⟨↓ |

]︸ ︷︷ ︸
=US

× IS ⊗ [cos(θ)(P↑↑ − P↓↓) + sin(θ)(P↑↓ + P↓↑)]︸ ︷︷ ︸
=UC

,(4)

where we have defined Pσ,σ′ = |σ⟩⟨σ′|, with σ, σ′ ∈ {↑, ↓}.
The unitary UC acts on the internal degrees of freedom
of particles (with IS being the identity for the S sub-
space) as a coin operation depending on the parameter
θ; in what follows, we fix θ = π/4. The unitary US
is a conditional step operator, where H⊥, H∥ represent
two nearest-neighbour hopping Hamiltonians along ver-
tical and horizontal directions of the lattice, respectively.
The conditional shift process is then as follows: If the
internal degree of freedom of the walker is in the | ↓⟩
state, then the walker evolves under a unitary opera-
tor with Hamiltonian given by H⊥, which contains only
nearest-neighbor hoppings along the vertical direction of
the lattice; otherwise, if the internal state is | ↑⟩, the
Hamiltonian governing the step includes hoppings along
the horizontal directions of the lattice. In the basis of S,
the exponents are the Hermitian operators given by:

H⊥ = t
∑
x,y

|x, y + 1⟩⟨x, y|+H.c.,

H∥ = t
∑
x,y

|x+ 1, y⟩⟨x, y|+H.c.. (5)

The parameter t tunes the hopping amplitude. A small
value of t corresponds to a nearly adiabatic evolution of
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the walkers after application of Û , with the emergent
interference effects due to different particle statistics be-
coming more evident compared to the case t = 1, which
will contribute having amplitudes between very distant
spatial points. Unless otherwise stated, for all numerical
results we consider open boundary conditions in the lat-
tice, e.g., H⊥ contains a term |x, L⟩⟨x, L− 1|+H.c., but
not a term |x, L⟩⟨x, 0| + H.c.. In more detail, we always
make sure that for the system sizes and the value of the
parameter t employed, boundaries are never reached (see
Fig. 9 in Appendix B). This way, the situation is equiv-
alent to particles evolving in an infinitely extended spa-
tial grid. When periodic boundary conditions are consid-
ered, the model enjoys translational symmetry and can
be solved exactly. The exact eigenvalues and eigenvec-
tors of U for the case of periodic boundary conditions
are included in Appendix A. We note that in Eq. (4), Û
involves complex amplitudes.

The model presented in Eq. (4) differs significantly
from standard QW models found in the literature, in
particular regarding the so called split-step walks that
are relevant for the exploration of topological proper-
ties [85, 86]. For comparison purposes, we have included
results corresponding to a split-step walk in Appendix D.
One of the main motivations to choose such a model for
states given by Eq. (2) is that it introduces changes in
the relative complex phases during the walk, while keep-
ing the binary nature of the conditional step operator.
The model in Eq. (4) belongs to a class of models where
the standard left or right shift operators present in 1D
QWs are substituted by more generic unitaries, whose
associated Hamiltonian might have a physical origin. In
this sense, the model describes a situation reminiscent of
systems experiencing time-reversal symmetry breaking,
with opposite internal degrees of freedom evolving under
different Hamiltonians. A physically relevant scenario of
such situation is that of 2D systems in the presence of
magnetic fields, which can also be realized with polar-
ized beam splitters in optics.

The quantum state after n steps of the walk is given
by:

|Ψ(n)⟩ = Ûn|Ψ0⟩

=
1√
N !

∑
P
eiϕPUn|ψ0

1P ⟩ ⊗ ...⊗ Un|ψ0
NP

⟩.(6)

D. Multi-partite entanglement over replica
configurations employing linear optics

Recent experimental advances in integrated photonic
architectures have shown how to exploit multilevel, mul-
tipartite entanglement in order to generate states of iden-
tical particles with arbitrary exchange statistics employ-
ing elements from linear optics [65], i.e. single photons,
providing these are entangled beforehand (which consti-
tutes itself an experimental challenge). The key idea is
to employ N replicas of a given mode transformation

(any unitary evolution operator for the particles), one
for each of the photons, so that each replica subspace
(regarded as the Hj subspaces) contains one particle.
Each of the particles of the replicas is entangled to each
other employing an experimentally controllable parame-
ter ϕ for simulating states with different statistics upon
particle exchange; that is, simulating states of indistin-
guishable particles. We stress that although the particles
employed in the experiment to construct such state have
always well defined statistics (in the case of photons hav-
ing bosonic nature), the above state can be potentially
realized in experiments for instance, employing time-bin
encoding of photons. This constitutes the fundamental
basis for creating a quantum simulator employing single
photons [65], the requirement being the preparation of
entangled-photon states in the multipartite setting sce-
nario.
For QWs consisting of two walkers, polarization de-

grees of freedom of the photons is sufficient to recreate
identical particle statistics states [65]. For more than
two walkers, additional degrees of freedom are needed
to generate the multipartite setting. In this direction,
photonic time-bin encoding [83, 84] presents a promis-
ing route to realize the required encoding over extended
Hilbert spaces.

III. OBSERVABLES

A. Two particle distribution

A quantity commonly explored in multiparticle QW
experiments [49, 52, 53, 65] is the two-particle correla-
tion at arbitrary points r⃗1, r⃗2 in the lattice Λ. They are
defined at the n-th step of the walk by:

Cσ1,σ2
(r⃗1, r⃗2, n) = ⟨Ψ(n)|P̂i,r⃗1σ1

P̂j,r⃗2σ2
|Ψ(n)⟩, (7)

where i, j indicate any pair of particle subspaces, and
P̂i,r⃗1σ1

is the projector for particle i at lattice site r⃗1
and internal degree σ1. Since |Ψ(n)⟩ describes identical
particles, the choice of i, j is arbitrary. The correlation
Cσ1,σ2

(r⃗1, r⃗2, n) gives the joint probability density for any
pair of particles. Assuming orthogonal states in the set
S0, these distributions can be calculated using the ap-
proach described in Appendix B.

The explicit expression for the joint probability density
distribution is given by:

P (r⃗1, r⃗2, n) = C↑,↑(r⃗1, r⃗2, n) + C↓,↓(r⃗1, r⃗2, n)

+ C↑,↓(r⃗1, r⃗2, n) + C↓,↑(r⃗1, r⃗2, n). (8)

The probability of a two-particle coincidence event at
time step n can be obtained from Eq. (8) as:

Pdiag(n) =
∑
r⃗

P (r⃗, r⃗, n). (9)
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FIG. 2. The two-particle coincidence probability as defined in
Eq. (9), for different values of the particle exchange statistics
parameter ϕ. Bosons tend to occupy equal spatial modes dur-
ing the evolution, leading to pronounced peaks in the proba-
bility of coincidence events. For fermions, such coincidences
are less likely due to the Pauli exclusion, although peaks might
still develop as in (II). Data corresponds to the different initial
conditions (I), (II), (III) and (IV) from Fig. 1, with L = 16,
t = 0.05 and a total of n = 50 time steps, with τ = nt.

B. Average inter-particle distance

The average interparticle distance ∆12(n) is defined as:

∆12(n) =
∑
r⃗1,r⃗2

√
(x1 − x2)2 + (y1 − y2)2P (r⃗1, r⃗2, n),

r⃗1 = (x1, y1), r⃗2 = (x2, y2). (10)

This quantity represents the average separation of any
two particles in the system at any step n of the walk.
Since this is a joint property, knowledge of the full joint
distribution P (r⃗1, r⃗2, n) is required. This quantity has
been reported to scale linearly with the number of steps
n for a QW of two entangled particles on a 1D line [68].

If linear behavior of ∆12(n) is expected in the limit
L → ∞, the asymptotic behavior is characterized by a
spreading parameter:

vϕ =
∆12(τ)

τ
, τ = nt, (11)

where t is the hopping parameter in Eq. (5), and vϕ is the
average separation speed between particles dependent on
the phase ϕ, i.e., the particle statistics.

0 0.25 0.5 0.75 1
/

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

v

(I)
(II)
(III)
(IV)

FIG. 3. Average speed repulsion vϕ for the interparticle dis-
tance ∆12 as defined in Eq. (11), for different values of the
statistical parameter ϕ and number of walkers N = 4 using
the initial conditions (I),(II),(III) and (IV) from Fig. 1. As
expected, particles with fermion statistics (ϕ = π) tend to re-
pel each other faster than bosons (ϕ = 0) as a consequence of
the Pauli exclusion principle. The value of vϕ depends on the
initial configuration of particles, sharing qualitative behavior
in (I) and (IV) [(II) and (III)]. We used L = 40 in all cases.

C. Quantum Fisher Information, entanglement
entropy and purity

The Quantum Fisher Information [87] (QFI) of a gen-
eral state ρ respect to the observable O is given by:

FQ[ρ,O] = 2
∑
k,l

(λk − λl)
2

λk + λl
|⟨k|O|l⟩|2, (12)

where λk and |k⟩ are the eigenvalues and eigenvectors of
ρ, respectively. Tracing out all spatial degrees of freedom,
we consider the reduced density matrix of the particles
internal degrees of freedom at any time step n:

ρC = TrS(|Ψ(n)⟩⟨Ψ(n)|), (13)

where we omit the explicit step dependence in ρC for no-
tation convenience. Since we are dealing with a state of
identical particles in ρC and we are interested in joint
properties between any particle pairs, a multipartite op-
erator O ∈ C⊗N where particle statistics effects are ex-
pected to be of relevance is the uniform Ising Hamilto-
nian:

O =
∑
j<k

σz
jσ

z
k, (14)

where σz
j is the z-Pauli matrix for the j-th particle sub-

space index.
As a witness of bipartite entanglement between the sys-

tem and the environment, we employ the von Neumann
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entropy for the reduced density matrix ρC :

SC = −Tr (ρC log2(ρC)) . (15)

The degree of mixedness of ρC with the environment
can be obtained from the purity:

PC = Tr(ρ2C). (16)

The purity is related to the linear entropy, a lower ap-
proximation of the von Neumann entropy (15). For a
system of N = 4 walkers, ρC has dimension 16× 16, and
thus min (PC) =

1
16 .

D. Bell test

Bell inequalities establish bounds on the classical na-
ture of correlations in a given system [77]. We follow
Refs. [88, 89] and write the general Bell inequality for an
N qubit configuration [89]:

ζ ≤ 2−N
∑

s1,...,sN=±1

∣∣∣∣ ∑
k1,...,kN=1,2

N∏
j=1

s
kj−1
j E({kj})

∣∣∣∣,
(17)

with E({kj}) defined in Appendix C. Any value ζ > 1
that violates the inequality signals the presence of purely
quantum correlations unable to be explained by local re-
alism. For any set of recorded measurements, general
Bell inequalities can be obtained employing linear pro-
gramming techniques [90].

We consider the set of operators A = {A0, A1} and
B = {B0, B1} with:

A0 = I ⊗ σz, A1 = I ⊗ σx,

B0 = I ⊗
(
−σz − σx

√
2

)
, B1 = I ⊗

(
σx − σz

√
2

)
,(18)

where I represents the identity operator in the spatial
subspace S. Such a test belongs to the class of Bell
inequalities for higher-dimensional systems [91, 92]. To
perform the Bell test, we assign the set A to m particles
and the set B to N − m particles. For N = 4, we set
m = 2. We refer to Appendix C for additional details on
these expressions.

IV. RESULTS

In Fig. 2, we have represented the probability for two-
particle coincidence events Eq. (9), for the four different
initial configurations in Fig. 1 and different values of ϕ.
As expected, particles with ϕ = 0 have a higher prob-
ability of coincidence than particles with ϕ = π, since
the later experience Pauli exclusion principle. Particles
with ϕ = 0 experience pronounced peaks due to boson
bunching. We observe that for configuration (IV), the

0
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[
,

]

(I) (II)

0 1 2
0

10

20

30

[
,

]
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/ = 0.25
/ = 0.50
/ = 0.75
/ = 1.00

0 1 2

(IV)

FIG. 4. Quantum Fisher Information from Eq. (12) for the
initial conditions in Fig. 1, for the state ρC defined in Eq. (13).
For (II), particles with ϕ = 0 retain a higher value for the QFI
than particles with ϕ = π. In contrast, in configurations (III)
and (IV) evolution of the QW leads to an increment in the
QFI for particles with ϕ = π, whereas for particles with ϕ = 0
the QFI tends to decrease. Data corresponds to t = 0.05, a
total of 50 time steps, and L = 40.
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FIG. 5. Entanglement entropy from Eq. (15) for the initial
conditions in Fig. 1 for the state ρC defined in Eq. (13). Note
that states (II), (III) and (IV) have initially significant en-
tanglement. The von Neumann entanglement entropy grows
with increasing the number of steps, signaling thermalizing
behavior of the internal degrees of freedom with the environ-
ment. Note that specially for cases (III) and (IV), statistics
of particles play a significant role in the reach value. Data
corresponds to t = 0.05, a total of 50 time steps, and L = 40.

coincidence probability for a pair of fermions with ϕ = π
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FIG. 6. Purity from Eq. (16), for the initial conditions in
Fig. 1, for the state ρC defined in Eq. (13). In accordance
with Fig. 5, thermalizing behavior for bosons with ϕ = 0 leads
to a maximally mixed (classical) state, whereas for fermions
ϕ = π the purity remains above the maximally mixed state
bound PC = 1/16. Note the different vertical axes values.
Data corresponds to t = 0.05, a total of 50 time steps, and
L = 40.

always decreases for this configuration, contrary to (I)
and (II) where peaks develop. For configuration (III), all
ϕ values show a similar decay of the coincidence rates,
with ϕ = π showing a slightly faster decay.

In Fig. 3, we have extracted through linear fitting the
slope vϕ defined in Eq. (11), for different values of ϕ and
the initial configurations of Fig. 1 [93]. We observe that
the statistics of particles influence the repulsion speed
considerably in all configurations, with fermions ϕ = π
presenting the largest separation speeds in all cases. In-
terestingly, configurations (I) and (IV) [(II) and (III)]
present a similar dependence with the ϕ angle. We stress
that vϕ is a joint property of the particles.

In Fig. 4 we represent for each of the initial configura-
tions the QFI defined by Eq. (12), corresponding to the
state defined in Eq. (13) and operator Eq. (14). We ob-
serve that while configurations (I) and (II) present quite
similar results for different values of ϕ, configurations
(III) and (IV) show that while for ϕ = 0 the QFI os-
cillates evolving towards a zero value, for ϕ = π we find
monotonic increment towards finite values. This indi-
cates that for the Hamiltonian in Eq. (14), fermions are
better suited to perform quantum metrology tasks after
several time steps during the walk, given that the QFI
sets a lower bound on the achievable precision for pa-
rameter estimation employing quantum states [94]. The
results show that in the internal degrees of freedom sub-
space, multipartite entanglement increases (decreases)
for fermions (bosons) during the evolution of the walk.

In Fig. 5 we have represented the von Neumann entan-

glement entropy as defined in Eq. (15). We observe that
in all cases the entanglement between spatial and spin
degrees of freedom characterized by SC increases mono-
tonically after several steps of the QW, eventually satu-
rating its value. The effect of particle statistics is more
pronounced in configurations (III) and (IV), where par-
ticles having fermion statistics (ϕ = π) tend to become
less entangled with their spatial degrees of freedom than
particles possessing boson statistics (ϕ = 0), signaling
absence of thermalization for the fermions in these cases.
We stress that thermalization in this context refers to
the amount of entanglement between the internal and the
spatial degrees of freedom (i.e. the environment). Bosons
tend to occupy equal spatial modes, eventually reaching
a completely random reduced density matrix, i.e. a max-
imally mixed state, which is a classical state. On the
other hand, fermions are restricted to the Pauli exclusion
principle, which effectively reduces the dimensionality of
available trajectories. It is therefore expected that their
reduced density matrix is not a maximally mixed state.

The purity for the different initial configurations is rep-
resented in Fig. 6. In accordance with results of Fig. 5,
fermions reach less mixing with their environment than
bosons. This can be intuitively understood from the
Pauli exclusion principle, which precludes equal spin oc-
cupation on a single spatial mode for fermions, thus effec-
tively reducing the environment in which their internal
degrees of freedom are embedded. This effect is expected
to become more visible if more than one particle occupies
the same spatial mode, as it is the case in (III) and (IV),
where results suggest a complete absence of thermaliza-
tion for ϕ ≥ π/2. This behavior is in stark contrast with
what is observed in Fig. 3, which shows that the average
interparticle distance speed is always higher for parti-
cles having closer to fermion statistics than for particles
closer to bosons. Intuitively, a higher interparticle sep-
aration speed is associated with a faster thermalization
rate over spatial modes; yet, results in Fig. 4 suggest the
opposite. This absence (presence) of thermalization for
ϕ = π(ϕ = 0) is also manifesting in the amount of multi-
partite entanglement developing (decaying) through the
QFI in Fig. (4), since fully thermalized states converge
to a classical mixture of states.

Finally, we present results on the performed Bell tests
in Fig. 7. We observe that configurations (I), (II) and
(IV) have ζ < 1 at any times, and therefore can be in
principle described by local realism. Configuration (III)
violates the general Bell inequality in Eq. (C3) during the
initial steps of the walk (except for ϕ = π/2). Configura-
tion (I) corresponds to a product state between internal
degrees of freedom and the spatial degrees of freedom,
rendering the state in the internal degrees of freedom
purely classical. Configuration (II) can be regarded as a
particular instance of two (I) configurations with N = 2
each having opposite spins, therefore a local realism de-
scription is also expected in this case. Configuration (III)
constitutes a pair of Bell states distantly separated from
each other, constituting an initial quantum state with
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FIG. 7. Performed Bell tests for the four different initial con-
ditions in Fig. 1. Only condition (III) shows a violation of
the Bell inequality in Eq. (C3) during the initial time steps,
except for ϕ = π

2
, where the inequality is satisfied. The clas-

sical bound at ζ = 1 has been represented by a dashed grey
line. Data correspond to 30 time steps, t = 0.05 and L = 40.

no classical description of correlations, except for ϕ = π
2

where ζ = 1 initially. Finally, configuration (IV) consists
of a Bell state and two classical separated spins. In that
case, performing a Bell test would yield a combination
from a maximal violation of the inequality and the most
classical value of ζ, resulting on average in a value below
the ζ = 1 classical bound.

V. SUMMARY AND OUTLOOK

In this work, we have investigated a multiparticle, dis-
crete time QW on a 2D square lattice geometry, em-
ploying a system of N identical particles prepared on
different initial configurations. By tuning a single pa-
rameter ϕ associated with the particle statistics, we have
reported results in joint properties and entanglement
witnesses that could be potentially addressed in linear
optics experiments employing multipartite entanglement
between distinguishable photons as described in Sec. IID.
Our work lies in the context of multiparticle interference
properties and the possibility to employ QWs of corre-
lated photons [65–67, 83, 84] to simulate these processes.
The results reported here could be explored on current
integrated photonic circuits, complementing theoretical
grounds for photonic quantum simulators.

Through the QFI we have shown that certain initial
configurations of the particles allow to prepare states that
are relevant for quantum metrology when the statistical
nature of the particles is taken into consideration. In par-
ticular, for initial states sharing spatial modes between

the particles, we report fermions to show a lower preci-
sion bound than bosons for parameter estimation of the
all-to-all Ising model Hamiltonian. These results share
context with recent works on the QFI in 1D continu-
ous QWs of identical particles [73]. In the context of
system-environment thermalization, we have shown that
the particle statistics have a strong effect under certain
initial preparations, concluding that contrary to bosons
with ϕ = 0, fermions with ϕ = π do not always thermal-
ize with their spatial degrees of freedom. Additionally,
we have also investigated the nature of quantum corre-
lations in the internal degrees of freedom, and whether
these violate the general Bell inequality for N qubits de-
pending on the exchange statistics of particles.
There are several questions left open for future re-

search. These include employing different model realiza-
tions for the unitary evolution, alternative coin operators,
different lattice geometries and initial configurations, or
introducing interactions between particles. There is an
evident connection of the model presented in this work
with split-step models known to be relevant for explor-
ing topological phases employing QWs [85, 86]. Iden-
tifying the associated split-step model for the QW pre-
sented here while investigating the presence or absence
of nontrivial topological phases also constitutes an in-
teresting avenue for future research. From the quantum
metrology perspective, it is of interest to determine the
role played by particle statistics during the evolution of
the QW when more general operators O are employed in
Eq. (12).
Our results address fundamental properties about the

nature of quantum correlations in ensembles of identical
particles subjected to a QW, particularly regarding en-
tanglement properties in the context of system-bath ther-
malization of the internal degrees of freedom into spatial
degrees of freedom. Employing photonic quantum sim-
ulators to engineer states that exploit particle statistics
and entanglement to resist thermalization constitutes an
interesting avenue for future research.
The data supporting the findings of this study are

available from Zenodo [95] and also on request from the
corresponding author.
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|kx, ky⟩⟨kx, ky|,

H⊥ =
∑
kx,ky

εky
|kx, ky⟩⟨kx, ky|, (A1)
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assuming periodic boundary conditions along the x, y di-
rections. The unitary operator consists of two terms:

U = e−iH∥ ⊗
(
cos θ sin θ
0 0

)
+ e−iH⊥ ⊗

(
0 0

sin θ − cos θ

)
. (A4)

Note that U is block diagonal in the |⃗k, σ⟩ basis, therefore
each fixed k⃗ subspace can be diagonalized independently.

Since H∥, H⊥ are diagonal in k⃗ space, we write for a fixed

k⃗ = (kx, ky) the state:

|λk⃗⟩ =
∑

α=↑,↓

Φ(k⃗, σ)|⃗k, σ⟩. (A5)

Applying the unitary to |λk⃗⟩:

U |λk⃗⟩ = Φ(k⃗, ↑) e−iH∥ cos θ|⃗k, ↑⟩

+ Φ(k⃗, ↓) e−iH∥ sin θ|⃗k, ↑⟩
− Φ(k⃗, ↓) e−iH⊥ cos θ|⃗k, ↓⟩
+ Φ(k⃗, ↑) e−iH⊥ sin θ|⃗k, ↓⟩ (A6)

We look now for solutions of the equation:

Uk⃗

(
Φ(k⃗, ↑)
Φ(k⃗, ↓)

)
= λk⃗

(
Φ(k⃗, ↑)
Φ(k⃗, ↓)

)
Uk⃗ =

(
e−iεkx cos θ e−iεkx sin θ
e−iεky sin θ −e−iεky cos θ

)
.(A7)

The resulting eigenvalue equation is:

λ2
k⃗
− λk⃗ cos θ(e

−iεkx − e−iεky )− e−i(εkx+εky ) = 0.

(A8)

The eigenvalues are:

λ±
k⃗

= τ(θ, k⃗)±
√
e−i(εkx+εky ) + τ(θ, k⃗)2,

τ(θ, k⃗) =
cos(θ)

(
e−iεkx − e−iεy

)
2

. (A9)

Since each Uk⃗ is unitary, these eigenvalues can be ex-

pressed as a phase λ±
k⃗

= eiφ
±
k⃗ . The eigenvector compo-

nents satisfy:

Φ±(k⃗, ↑) =
sin θΦ(k⃗, ↓)

λ±
k⃗
eiεkx − cos θ

. (A10)

Normalizing we obtain the eigenstates for a fixed k⃗ =
(kx, ky) value:

|λ±
k⃗
⟩ =


sin θ√

2−2 cos θ cos(φ±
k⃗
+εkx )

e
i(φ

±
k⃗

+εkx
)
−cos θ√

2−2 cos θ cos(φ±
k⃗
+εkx )

 =

(
u±
k⃗
v±
k⃗

)
. (A11)

Note that the above decomposition corresponds to a lin-

ear combination in the {|⃗k, ↑⟩, |⃗k, ↓⟩} basis with coeffi-
cients u±

k⃗
, v±

k⃗
:

|λ±
k⃗
⟩ = u±

k⃗
|⃗k, ↑⟩+ v±

k⃗
|⃗k, ↓⟩. (A12)

Due to having distinct eigenvalues and Ûk⃗ being unitary,
these eigenvectors are orthogonal to each other.
If we evolve an initial state |ψ0⟩ = |r⃗0, σ⟩ by the unitary

Un, we obtain:

Un|ψ0⟩ =
1

L

∑
k⃗,τ=±

einλ
τ

k⃗
+i⃗k.r⃗0

(
uτ
k⃗
δσ,↑ + vτ

k⃗
δσ,↓

)
|λτ

k⃗
⟩.

(A13)

1. Two-particle return amplitude

Having full knowledge of the eigenvectors and eigenval-
ues of the walk, we can obtain amplitudes from arbitrary
initial state configurations. As an example, consider the
two-particle QW given by the initial state:

|Ψ0⟩ =
1√
2

(
|r⃗0, ↑⟩ ⊗ |r⃗0, ↓⟩+ eiϕ|r⃗0, ↓⟩ ⊗ |r⃗0, ↑⟩

)
.

(A14)

We calculate the return amplitude:

A0 = ⟨Ψ0|Ûn|Ψ0⟩. (A15)

This amplitude can be expressed in terms of the coeffi-
cients:

A0 =
1

L4

∑
k⃗,τ

|uτ
k⃗
|2einλ

τ

k⃗

∑
k⃗,τ

|vτ
k⃗
|2einλ

τ

k⃗


+

cos(ϕ)

L4

∑
k⃗,τ

uτ
k⃗
v∗,τ
k⃗
einλ

τ

k⃗

∑
k⃗,τ

u∗,τ
k⃗
vτ
k⃗
einλ

τ

k⃗

 .

(A16)

The second term is the only one depending on the par-
ticle statistics parameter ϕ. Since uτ

k⃗
and vτ

k⃗
correspond

respectively to spin up and down coefficients in the eigen-
states Eq. (A11), particle statistics only affect transi-
tion amplitudes between these sectors for the state in
Eq. (A14).

Appendix B: Two-particle correlations

Since all particles forming the state |Ψ(n)⟩ are identi-
cal, we can select any pair of subspaces to carry out the
computation of the two-particle correlations (coincidence
events). For instance, consider single-particle projectors

P̂1, P̂2 with P̂1 ≡ P̂1,r⃗1,σ1
, P̂2 ≡ P̂2,r⃗2,σ2

. These operators
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FIG. 8. Benchmarked calculation for two-particle correlations
on a square lattice of L× L dimensions, with L = 3, t = 0.1,
N = 4 particles and 40 total steps, for different values of ϕ
in the initial state. The solid lines correspond to the exact
numerical calculation by acting directly with the operators on
the full state of dimension (2L2)N , whereas crosses indicate
the values calculated with Eq. (B2) using the single-particle
wavefunctions coefficients. The N = 4 particles are initialized
at (x, y, σ) ≡ (0, 0, ↑), (0, 2, ↓), (2, 0, ↓), (2, 2, ↑). The correla-
tion is calculated for σ1, σ2 =↑, ↓ and r⃗1 = r⃗2 = (2, 2).
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FIG. 9. System size scaling of the inter-particle distance ∆12

for the quantum walk with initial configuration given by (III)
in Fig. 1, with ϕ = π, τ = nt with t = 0.05. The devia-
tion from linear behavior observed for smaller system sizes
corresponds to boundary effects from particles reaching the
edges of the lattice. The slope of ∆12 in the linear behavior
region determines the propagation speed vϕ. The slope vϕ is
extracted in the region delimited by the dashed lines.

act on the subspaces H1,H2, and thus correspond to op-
erators that are local from the distinguishable particles

point of view. The explicit formula for correlations after
unitary evolution U reads:

C12(n) =
∑
p,p′

Ap,p′⟨ψ1p′ |(U†)nP̂1U
n|ψ1p⟩

× ⟨ψ2p′ |(U†)nP̂2U
n|ψ2p⟩

×
N∏
q=3

⟨ψqp′ |ψqp⟩, Ap,p′ =
ei(ϕp−ϕp′ )

N !
. (B1)

In Eq. (B1), the index p labels all possible permuta-
tions resulting from the set of initial states S0 defined
in Sec. II B. There is a total of (N !)2 terms in the sum.
The product of brackets will cancel many terms when all
initial conditions in S0 are orthogonal to each other. The
values of Ap,p′ = 1

N ! come from a symmetric permutation
of both the ket and bra. From the rest of particles, there
are (N − 2)! combinations. From the two chosen sub-
spaces, we have 2CN

2 possible combinations, where CN
2

is the binomial coefficient. From the other particles per-
mutations, there is an equal number of phases with 0 or
ϕ terms.
For convenience, we change the notation now and call

the combined ket of initial states from particles 1 and 2
|l, k⟩, i.e. both l, k label one of the N initial conditions
in the set S0, l corresponding to particle 1 and k corre-
sponding to particle 2 (see main text for details). The
only possible non-zero overlaps occur when the bra ⟨l′, k′|
contains the same values as in l, k, i.e. l′, k′ ∈ {l, k}. We
also note that for any pair (l, k), there is either a 1 or a
phase eiϕ. Thus, we can write the correlations for arbi-
trary single particle indices 1 and 2 as:

C12(n) =
∑

l,k,l′,k′

wlkl′k′⟨l′|(U†)nP̂1U
n|l⟩⟨k′|(U†)nP̂2U

n|k⟩,

wlkl′k′ =


fN , l = l′, k = k′,

fNe
−iϕ, (l, k) ̸= (l′, k′) ∧ l < k,

fNe
+iϕ, (l, k) ̸= (l′, k′) ∧ l > k,

fN =
1

N(N − 1)
. (B2)

We note that this is independent of any geometry of the
lattice, and that for the case of a single-particle Hilbert
space with dimension d = 2L2 (with states labelled by
the l, k indices), there is a total of:(

d
N

)
=

d!

N !(d−N)!
(B3)

possible choices of the initial configuration with different
(l, k) indices pairs. A benchmark calculation of Eq. (B2)
is shown in Fig. 8. This allows to obtain in an efficient
way joint properties like ∆12 while addressing large sys-
tem sizes, as shown in Fig. 9.
Note that the total number of particles (walkers) influ-

ence is two-fold: it appears in the pre-factor, but also in
the sum over the set of single-particle indices (l, k, l′, k′)
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specifying each of the initial conditions. We also note
that for n = 0 (initial condition), C12(0) is independent
of the phase ϕ, since only combinations with l = l′, k = k′

can occur (P̂1 and P̂2 are projectors on single-particle
states). This in turn implies that at initialization, si-
multaneous measurement of two-particle coincidences is
independent of the particles statistics, which is easily ver-
ified.

We can define the quantity:

CF
12(n) = ⟨Ψ(n)|P̂1|Ψ(n)⟩⟨Ψ(n)|P̂2|Ψ(n)⟩. (B4)

Subtracting CF
12(n) from Eq. (B2) modifies only the di-

agonal weights as:

w̄lkl′k′ =


1

N3−N2 , l = l′, k = k′,

fNe
−iϕ, (l, k) ̸= (l′, k′) ∧ l < k,

fNe
+iϕ, (l, k) ̸= (l′, k′) ∧ l > k.

In the case of initial product states (i.e. a state repre-
senting distinguishable particles), the two-particle corre-
lation becomes:

C̄12(n) = ⟨l|(U†)nP̂1U
n|l⟩⟨k|(U†)nP̂1U

n|k⟩. (B5)

Since particles are distinguishable in that case, the choice
of (l, k) pairs from the set S0 is relevant for each subspace
and leads to different results.

Appendix C: Bell inequality for N qubits

If we trace over the spatial degrees of freedom for each
particle subspace, the system becomes equivalent to a
system of N spin-1/2 state, where particle statistics are
contained in the resulting complex coefficients. The re-
duced density matrix at time step n is:

ρn = Trr⃗ (|Ψ(n)⟩⟨Ψ(n)) | =
∑
p,p′

ei(ϕp−ϕp′ )

N !
Ap,p′,n,

Ap,p′,n = ρpp
′n

1 ⊗ ...⊗ ρpp
′n

N ,

ρpp
′n

j =

(∑
r⃗

ϕpn,r⃗,σj
ϕ∗,p

′

n,r⃗,σ′
j

)
|σj⟩⟨σ′

j |. (C1)

Note that the Ap,p′,n carry projectors in the spin degrees
of freedom for each subspace j, therefore they are oper-
ators of dimension 2N × 2N . Note the state in Eq. (C1)
will be in general a mixed state, because the spatial and
spin subspaces S, C are mixed due to the initial entangled
states and subsequent unitary evolution.

We consider the general expression for a Bell inequality
of N spin-1/2 systems following Ref. [89]. In particular,
we consider a set of Aj(nkj

) with kj = 1, 2 for each par-
ticle subspace j. The averaged outcome of experiments
is given by:

E(k1, ..., kN ) := E({kj}) = ⟨
N∏
j=1

Aj(nkj
)⟩. (C2)

The expectation value is taken respect to the reduced
density matrix in the spin subspaces of the model, i.e. it
lives on the Hilbert space C⊗N .
The general expression for Bell inequalities of N qubits

reads [89]:

∑
s1,...,sN=±1

∣∣∣∣ ∑
k1,...,kN=1,2

N∏
j=1

s
kj−1
j E({kj})

∣∣∣∣ ≤ 2N . (C3)

We restrict to the special case where (compare Eq. (18)):

Aj(n1) = σz, Aj(n2) = σx, j ≤ N/2,

Aj(n1) = − 1√
2
(σx + σz), j > N/2,

Aj(n2) =
1√
2
(σx − σz), j > N/2. (C4)

Defining:

ζ = 2−N
∑

s1,...,sN=±1

∣∣∣∣ ∑
k1,...,kN=1,2

N∏
j=1

s
kj−1
j E({kj})

∣∣∣∣,
(C5)

the condition for local realism description of correlations
becomes:

ζ ≤ 1. (C6)

Appendix D: Comparison with a split-step quantum
walk
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FIG. 10. Same figure as Fig. 2 in the main text, for the
model described in Eq. (D1). Data corresponds to a total of
50 time steps, and L = 40. Note that the time axes have
been scaled by a factor t = 0.05, with τ = nt, for comparison
purposes.



15

0 0.25 0.5 0.75 1
/

0.95

1.00

1.05

1.10

1.15

v

(I)
(II)
(III)
(IV)

FIG. 11. Same figure as Fig. 4 in the main text, for the
model described in Eq. (D1). Data corresponds to a total
of 12 time steps, and L = 40. In this case, no scaling of
the x axes was performed to extract the velocities, i.e. vϕ is
obtained by setting t = 1 in Eq. (11).

In this Appendix, we show results when comparing
the quantum walk model employed in this work with a
split-step version of the quantum-walk models found in
Refs. [85, 86]. We consider the unitary:

Û = U⊗N ,

U = UyUCUxUC ,

Ux =
∑
x,y

∑
s=±1

|x+ s, y, σs⟩⟨x, y, σs|,

Uy =
∑
x,y

∑
s=±1

|x, y + s, σs⟩⟨x, y, σs|, (D1)

where UC is given in Eq. (4) and we have defined σs=1 ≡↑
and σs=−1 ≡↓. We set θ = π/4 and employ the ini-
tial configuration for the particles given in Fig. 1. Note
that this model does not include a hopping parameter t,
and that two coin operations are performed on a single
application of the unitary Û over the state (see Eq.(5)
in Ref. [86] for a direct comparison). For simplicity on
the implementation, we consider periodic-boundary con-
ditions (PBC), which folds the spatial lattice into a torus
geometry.

In Figs. 10, 11 we have represented the coincidence
probabilities and the spread velocities, to allow for a di-
rect comparison with figures 2 and 3 in the main text.
The main thing to note is that for the model in Eq. (D1),
particle statistics become irrelevant if particles do not
share any spatial modes in the chosen initial configu-
rations. On the contrary, configurations (III) and (IV)
experience coincidence events at the initial steps, until
particles start separating from each other. From Fig. 11,
we conclude that for configurations (I) and (II), particles
spread at equal paces independent on the statistics, in
accordance with Fig. 10. Configurations (III) and (IV)
have spread velocities vϕ dependent on the particle statis-
tics parameter ϕ, with fermions (ϕ = π) experiencing the
fastest separation.

Direct comparison with results obtained from the
model in Eq. (4) shows that introducing complex ampli-
tudes (with small t = 0.05) using the unitary evolution
operator in Eq. (4) leads to a richer dynamical struc-
ture of correlations. Indeed, the appearance of complex
phases in the tunneling amplitudes leads to modifications
in the relative phases present in the quantum state, re-
sulting in emergent correlations not seen for the real-
valued unitary operator in Eq. (D1).
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