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 a b s t r a c t

With the growing number of forecasting techniques and the increasing significance of forecast-based operation, 
particularly in the rapidly evolving energy sector, selecting the most effective forecasting model has become a 
critical task. In this context, the superiority of a forecasting model over its alternatives will, in general, hold—if 
at all—only on average (over time or across scenarios), and model selection typically results in a single static 
decision. Instead, enabling real-time decision making in the energy and building context, we introduce the con-
cept of 𝑒-values-based decisions, which has recently gained massive attention in the field of statistics. We obtain 
continuous-time, method-blind, data-dependent decision rules, which take and revise their decisions along with 
the incoming information of forecast errors. Nevertheless, they still provide statistical guarantees, including a 
fixed decision risk over the whole period of time. We extend the use of 𝑒-values for times where no procedure is 
significantly superior to its competitor by developing a simple persistence approach that dynamically combines 
input forecasts to generate new fused predictions. To demonstrate the performance of our method, we apply it 
to building electricity demand forecasts based on different artificial intelligence-based models. Our 𝑒-selection 
procedure enhances our forecast accuracy by 16.3% compared to the deviation of a single forecast to an all-
knowing forecaster. Additionally, it improves the reliability of the forecast in a dynamic environment, offering 
a valuable tool for real-time decision-making in the energy sector.

1.  Introduction

Due to the rising share of weather-dependent renewable energy in 
most energy systems, the scheduling and dispatch problem is getting 
more complex and relies on forecasts for both demand and generation. 
Especially in building energy management, forecasts play a major role 
in scheduling and optimizing the decentralized resources like energy 
storage, heat pumps, electric vehicles, and other flexible consumers [1]. 
Since energy management is mostly based on the respective day-ahead 
electricity market, the 24h forecast horizon is highly relevant in the 
building context [2]. Prediction-based demand side management is able 
to harness available decentral flexibility potentials [3] and enable, e.g., 
load shifting, etc. [4]. The quality of predictions is of great importance 
for the operational optimization under uncertainty in the building sec-
tor, as Schmitz et. al. show exemplarily in Schmitz et al. [5], optimiz-
ing the operation of a district heat pump. This results in two main re-
search areas: The development of high-quality forecasting algorithms 
in general, and subsequently choosing the best forecasting method for 
a specific application over all or online. Many different forecasting 
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methodologies exist with varying advantages and disadvantages. Statis-
tical approaches like standardized load profiles [6], ARIMA [7], or naive 
persistence approaches typically have small computational cost but 
are often outperformed by more sophisticated approaches like Support
Vector Regression (SVR) [8] and Artificial Neural Networks (ANNs) such 
as Long Short Term Memory (LSTM) [9], which on the other hand risk 
to be computationally very expensive. A recent study showed the ap-
plication of different Reservoir Computing (RC) techniques for energy 
demand forecasting in the building context with high forecast quality 
and small computational effort [10]. Also, functional models are used 
to predict, e.g., the electricity price [11] or electricity demands [12]. 
Besides computational cost and forecasting quality, the need for expert 
knowledge or required amounts of data are additional criteria for evalu-
ating the methodologies. Especially in the building context, every build-
ing has unique characteristics for instance, due to individual behavioral 
patterns in the residential context and vastly differing appliances and 
energy demands in commercial and industrial buildings, depending on 
the business model. Additionally, there can be many time-dependent 
changes in demands, e.g., daily patterns (morning to afternoon to
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List of symbols

Symbol Description
𝛼 significance level
𝔼ℙ conditional expectation with respect to distribution 

ℙ
𝑡 𝜎-algebra given the information up to time 𝑡
(𝑝𝑡), (𝑞𝑡) forecast sequences
0(𝑝, 𝑞) null hypothesis: forecast (𝑞𝑡) is not better than (𝑝𝑡)
𝐸𝜆(𝑡), 𝐸∗

𝜆 (𝑡) 𝑒-process for 0(𝑝, 𝑞) or 0(𝑞, 𝑝)
𝔭𝑡, 𝔭∗𝑡 𝑝-process corresponding to the 𝑒-process
𝛿𝑡, 𝛿𝑡 (empirical) score differentials
Δ𝑡, Δ̂𝑡 (empirical) average score differentials
𝛿𝑡, Δ̃𝑡 bounded empirical (average) score differentials
𝜔 number of past observations. Symbols indexed by 𝜔

use the last 𝜔 observations
𝑉𝑡 variance process of the score differentials
𝜓(𝜆) 𝜓-function
𝑢𝛼∕2 uniform boundary at significance level 𝛼∕2
𝐶𝛼 (1 − 𝛼) confidence interval
𝜃𝑡 prediction using the 𝑒-procedure
𝑤𝑝,𝑡, 𝑤𝑞,𝑡 weights for forecasts (𝑝𝑡) and (𝑞𝑡)
𝑓 (𝑥) sigmoid function to bound score differentials

nighttime), weekly rhythms due to changes from weekends to work-
ing days, or seasonal changes affecting the time spent indoors and in 
the northern hemisphere, especially heating demands. The heat demand 
data shown in Schmitz et al. [5] shows this very well with a vanishing 
space heating demand during the summer time and high demands in 
the winter with pronounced daily patterns due to the night-time reduc-
tion of indoor temperatures. With sector coupling technologies like heat 
pumps, this significantly affects the electricity demands. Thus, there is 
no best “one fits all” forecasting model for the building sector in terms 
of energy or electricity demands. Instead, forecasting models with dif-
ferent characteristics are competing against each other, but the model 
selection procedure tends to be a complicated multi-criteria decision 
process which we want to focus on in this paper.  Despite being highly 
non-trivial, the model selection in the energy sector  is mostly carried 
out ex-post by choosing the model simply with the smallest forecasting 
error. Such ex-post selection strategies have been pursued, e.g.,—for a 
variety of different error measures—in the review paper [13], as well 
as for predicting heating demands [14]. However, energy management 
in real-world systems like buildings is usually performed as a process 
in real-time, e.g., using model predictive control as in Kwak et al. [15]. 
Real time in the building context mostly refers to continuous time in-
tervals of 15 min, depending on the respective electricity markets. For 
further examples of real-time energy management problems, see also 
Guo et al. [16], who perform real-time energy management for plug-
in electric vehicles (EV), and Quan et al. [17], where a fuel cell EV is 
considered. This emphasizes the need for continuous real-time model 
selection of competing forecast techniques. Additionally, it is important 
to be able to quantify and limit the risk of decision-making for one or 
the other forecasting model in real-world energy management. Other-
wise, a false decision—especially with unknown decision risk—could 
have negative economic implications for the different stakeholders, like 
distribution grid operators or the building owners. In the following sub-
section, a brief overview of existing model selection methods for com-
peting forecasters is outlined.

1.1.  Model selection methodologies

Compared to research on new forecasting methodologies, which 
is extensive throughout different domains of application, research on 
model selection approaches for competing forecasts has not yet gained 
a similar level of attention. This is particularly apparent in the field of 

applied research, and—in the perception of many applied scientists—
has been lacking clear-cut principled guidelines to some extent [18].

Model selection in general can be framed and categorized in several 
respects. On the top level, one may distinguish model selection prob-
lems, where a given forecaster is to be enhanced by taking in additional 
information, and selection problems, where a set of forecasters is given 
and one wants to select the best among them. The former class of prob-
lems needs insights into the (structure of the) forecasters to be improved. 
In the machine learning context, this is closely related to transfer learn-
ing, see Pan and Yang[19]. We do not pursue this in this paper and 
rather take the competing forecasters as given and produce a series of 
rankings among them. So, to some extent, one might term this type of 
model selection as model ranking. For these rankings, we only use the 
past forecasts and the corresponding real values to select the best among 
them in real time. This allows us to be completely model-agnostic as to 
the competing forecasters.

Note that such a ranking decision among given forecasters does not 
make a direct judgment on the actual performance of the forecasters – 
if forecaster 𝐴 is better than forecaster 𝐵, this does not imply that 𝐴 is 
a good forecaster. For the scope of this paper, we assume that the set of 
competing forecasters has been chosen carefully so that one may expect 
at least one of these forecasters to perform well in absolute terms, too.

Within this ranking problem, we can distinguish settings according 
to the number of competing forecasters. To better convey the main ideas, 
this paper is limited to the case of two competitors, but we indicate pos-
sible extensions in the outlook of this paper. In case of ties, we may 
differentiate between “crisp” decisions and decisions where a fusion or 
combination of forecasts is allowed. Crisp in this context means search-
ing or identifying the best alternative. Fusing forecasts for improved per-
formance, on the other hand, is closely related to the general concept of 
ensemble methods, e.g., Wu and Levinson[20], Kumar et al. [21]. Our 
strategies ii) and iii) defined in Section 2.6 below could in fact be seen 
as particular ensemble methods. However, the framework pursued in 
this paper enhances these combined procedures by probability guaran-
tees on the errors, which is (usually) not in the scope/focus of ensemble 
methods. Finally, the last distinction considered here concerns the type 
of decisions taken: Do we head for one selection (or fusion) decision once 
for all time, or for a stream of decisions which is allowed to sequentially 
take into consideration incoming information on prior forecast errors 
of the procedures? The main contribution of this paper is to head for 
general sequential decision streams combined with simultaneous error 
control, which is outlined in detail in Section 1.2.

As already mentioned above, most publications that perform model 
selection in the energy context compare error measures ex-post on 
a given test data set, which can be considered a naive benchmark 
method. However, due to the limited data availability at time 𝑡 in the 
operation, this approach is not really applicable for real-time model 
selection. To overcome this, the authors in Swanson and White[22] 
use out-of-sample forecast-based model selection criteria for real-time
macroeconomic forecasting. The Akaike information criterion (AIC) and 
the Bayesian information criterion (BIC) are also often used for model 
selection as in Billah et al. [23]. Besides the AIC, the authors of Liu 
et al. [24] additionally use the Pearson and Spearman correlation index 
for model selection.

Given the stochastic nature of the observations underlying model se-
lection through a thorough approach would aim to control the stochastic 
uncertainty by means of probabilistic guarantees, such as specifying a 
significance or confidence level 𝛼. In a model selection context, such a 
guarantee means to select the forecast model with smaller error based 
on past average performance of a given time period while controlling 
the probability of a false selection.

Traditionally, these guarantees relied on strong structural assump-
tions on the distribution of the observations, such as stationarity, er-
godicity, typically along with assumptions controlling the decay of de-
pendence over time, such as mixing conditions or weak dependence
conditions, as laid out in great generality in e.g. Bertail et al. [25].
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In energy forecasting, though, typical seasonal effects and intra-
day patterns indicate that stationarity cannot hold for the original 
observations– obviously, in Northern/Central Europe, in winter more 
energy is need for heating than in summer, and in private houses, you 
have daily recurrent peaks in demand when most people get up on busi-
ness days and less energy demand when children are at school and adults 
to large extent are at work. You have well-predictable patterns distin-
guishing between workdays and bank holidays [6]. All these patterns 
can occur at fixed lags (e.g., if work routinely starts at 8 a.m.) or with 
stochastic periodicity (e.g., covering some persistent weather phenom-
ena). Preprocessing techniques like detrending and deseasonalization 
can mitigate some of these violations, but other assumptions, such as 
ergodicity or weak dependence, remain challenging and hard to rigor-
ously test.

Moreover, we are not heading for only one model selection decision 
“once for all” to be taken retrospectively and to be based on a fixed set 
of observations, but rather for continuous model selection in the same 
rhythm as the incoming new observations, which can be seen as a se-
quential decision approach as brought up in Wald’s seminal paper [26]. 
Such approaches inherently must consider information simultaneously 
along a path of observations, which seems to suggest the need for even 
stronger structural assumptions, thus narrowing the application scope. 
Nevertheless, in particular settings, such continuous-time decision pro-
cedures have found their way to practical applications, as in the well-
known CUSUM-type control charts (e.g., Vivancos et al. [27, Figure 2]) 
of stochastic quality control. However, when applied to dynamic settings 
with time-dependent observations, as in energy forecasting, the struc-
tural assumptions mentioned above traditionally could not be dispensed 
with.

With the recent advent of many new powerful procedures based on 
so-called “𝑒-values”, see Ramdas et al. [28], Shafer et al. [29], the neces-
sity of these structural assumptions could almost entirely be dropped. 
Methods based on 𝑒-values are now also covering arbitrarily non-
stationary situations in time-dynamic settings, therefore enabling con-
tinuous or real-time1 Model selection of competing forecasting models. 
Additionally, 𝑒-values provide strong probabilistic guarantees, which so 
far has been out of scope for machine learning tools. Methods based 
on 𝑒-values were brought to continuous-time model selection in Henzi 
and Ziegel [30], Choe and Ramdas[31]. Contrary to Wald’s setting [26], 
however, these methods head for streams of local decisions, valid only 
for the one-step ahead forecast, i.e., one does not stop (as Wald’s 
procedure) after a taken decision but continues collecting the incom-
ing evidence and revises former decisions continuously. Without go-
ing through the proofs of the validity of the procedures in Henzi and 
Ziegel [30], Choe and Ramdas[31], this makes it plausible why, for this 
purpose, stationarity is not needed, while for decisions on superiority 
valid “for all time” one evidently will have to ensure that non-stationary 
behaviour can be extrapolated well to a yet unseen future.

Technically, though, such methods amount to controlling whether a 
certain evidence measure remains within or crosses certain (simultane-
ous) control bounds, much the same way as in the mentioned control 
charts of CUSUM-type.

Despite the obvious advantages of continuous-time model selection, 
𝑒-values so far have not been applied in the context of building en-
ergy management to the best of our knowledge. In addition, so far, 
𝑒-values-based model selection as in Henzi and Ziegel [30], Choe and 
Ramdas[31] has been limited to predicting binary outcomes. So, in this 
sense, extending the applicability of 𝑒-values-based CUSUM-like charts 

1 Strictly speaking our procedure described below comes in two phases: A cal-
ibration phase for tuning the hyperparameters (Step 1. in Section 2.6), which 
can be done offline, and a second phase (Steps 2. and 3.) with fixed hyperpa-
rameters, which can be done real-time, or more specifically in the same rhythm 
as the incoming forecasts, as the computation of the 𝑒-value-based decisions is 
cheap in terms of computation time.

for forecast model selection to the prediction of continuous outcomes 
like energy demand should be welcome.

When it comes to error assessment, the approach laid out in this work 
easily allows for quite general loss functions, including mean squared 
error (MSE), mean average error (MAE), and many more. This flexibility 
as to the choice of the loss does not say that the actual choice of the loss 
does not matter—to the contrary: different losses in general will lead 
to different rankings of forecasts. Therefore, it is crucial to use a loss 
function reflecting the needs of the decision makers in the respective 
domain, which is particularly true in the energy and building context. 
In this paper, we use MAE for the sake of reference and for ease of 
comparison to prior work in the context of building energy management, 
see Coignard et al. [32]. This choice does not imply any statement as to 
the preferability of MAE compared to other losses.

1.2.  Contribution of this study

In this work, we make the following contributions to the field:

• We apply e-values for dynamic model selection in the building en-
ergy context for the first time to the best of our knowledge. With 
that, we are able to continuously rank two competing forecasting 
models while still providing statistical guarantees for our decisions. 
Note that in Section 6, we outline possibilities on how to extend the 
methodology to be able to rank 𝑘 > 2 competing forecasters. Doing 
so, we are able to choose between forecasters in an online setting 
based only on available information in real-time. This is of high im-
portance for real-world building energy management systems and 
the enhancement of their performance, since individually best fore-
casters can be chosen for each building for each time step.

• We propose and discuss three different strategies on how to combine 
forecasts when the 𝑒-values do not favor one of the considered mod-
els with significance. Two of these strategies can be seen as ensemble 
approaches themselves while still providing error control and fixed 
decision risks over the whole period of time.

• In a case study, we apply the proposed methodology for contin-
uous model selection using two forecasting models, namely LSTM 
and Next Generation Reservoir Computing (NG-RC), which were ap-
plied on a publicly available electricity demand dataset on residen-
tial buildings in a previous study [10].

We stress the fact that the proposed model evaluation methodology 
does not come with any assumptions on the forecast methodologies and 
hence covers any forecasting techniques, including ensemble models. 
With regards to the considered forecasting models, 𝑒-values are com-
pletely model-agnostic. Additionally, the approach is very flexible with 
respect to the error measure for model evaluation and only needs very 
few assumptions. Due to the proposed approach being highly adaptable 
in terms of forecast models and error measures, it is of high importance 
for the building energy sector, where each building shows unique char-
acteristics and users or residents have unique preferences or behavioral 
patterns.

As indicated, the key benefit of the approach is the probabilistic er-
ror guarantees for a given significance level 𝛼. Of course, the warranty 
given by the e-values comes with a price, and we cannot exclude that 
other decision tools might in some scenarios show better forecast per-
formance, but then, based on the same available information, they can-
not offer a probabilistic guarantee in the form of a (permanent and si-
multaneous) level 𝛼 control. Despite this price, in the sequel, we will 
show that our procedure can be tuned to be competitive. Providing 
statistical guarantees in the context of building energy management is 
highly relevant for enabling respective business models in real-world
systems.

This paper is structured as follows. First, in Section 2, we begin by 
introducing the mathematical concept of 𝑒-values, along with relevant 
definitions and notations from existing literature. We then detail the 
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construction of a sequential hypothesis test, which also leads to the de-
velopment of confidence sequences for a given significance level. Build-
ing on this foundation, we introduce the 𝑒-selection procedure, which 
extends the sequential test to generate new predictions by dynamically 
combining the compared forecasting methods. Afterwards, in Section 3, 
we present the electricity demand time series data used in our applica-
tion, along with the forecasting techniques employed. We also discuss 
data transformation methods and provide benchmark scores for com-
parison. In Section 4 we present the results of our study, including the 
performance of the 𝑒-selection procedure and an analysis of computa-
tional runtime. Finally, in Section 5, Finally, we discuss the limitations 
of our proposed procedure and provide further insights into the guar-
antees it offers. We also offer a brief outlook on potential directions for 
future research in Section 6.

2.  Methodology

In this section, we briefly introduce the mathematical theory of 𝑒-
processes, which provides a framework for so-called Safe Anytime-Valid 
Inference (SAVI). SAVI refers to statistical inference (i.e., tests, confi-
dence bands, decisions) along with probabilistic error control in a se-
quential (possibly even continuous-time) setting, often without relying 
on distributional assumptions of the observed entities (in our case The 
“Anytime-Valid” in SAVI alludes to the key feature that 𝑒-processes allow 
for optional stopping, which is essential for the task to choose between 
two candidate forecast procedures in a continuous time setting under 
probabilistic error control as in Henzi and Ziegel [30]. Here, optional 
stopping refers to the fact that we monitor an evidence measure contin-
uously over time along with the incoming observations, and optionally
stop and make a decision, at a random time that is not known when 
monitoring starts, when sufficient evidence has accumulated so that the 
probability for a false decision can be kept controlled. In the context 
of continuous-time model selection, this decision will determine which 
forecast is superior to the other.

We begin by formally introducing 𝑒-values in Section 2.1. Subse-
quently, we set up corresponding test statistics based on scores for the 
competing forecasts in Section 2.4. These test statistics are used to dis-
tinguish formal hypotheses introduced in Section 2.5, leading to an 𝑒-
selection procedure in Section 2.6.

2.1.  Fundamentals for e-values

An 𝑒-process (𝐸𝑡) is a nonnegative stochastic process2 whose ex-
pected value 𝔼𝑃 [𝐸𝜏 ] is upper bounded by one for any arbitrary stop-
ping time3 𝜏 under a given null hypothesis 0 [28]. Formally, this is 
expressed as:
𝔼𝑃 [𝐸𝜏 ] ≤ 1 (1)

for all stopping times 𝜏 and 𝑃 ∈ 0.

Apart from Eq. (1), no further assumptions on the distribution or on 
the (stochastic) dependence of (𝐸𝑡) over time are made, which makes 𝑒-
processes particularly appealing for our time-dependent, non-stationary 
sequences of electricity demands.

A realization of an 𝑒-process is called 𝑒-value. This concept originates 
from the term, betting score“ by Shafer in Shafer[34].

2.2.  Relation to p-values

While a 𝑝-value represents the probability, under the assumption 
the null hypothesis holds, to observe, in a new experiment, a value for 

2 For our purposes, a stochastic process is a stream of possibly time-dependent 
random variables indexed by their observation time 𝑡, and 𝑡 may range in an 
ordered set of time points  ,   discrete or continuous. Klenke[33]
3 A stopping time is a random time 𝜏, for which for each time 𝑡, the accumu-

lated information 𝑡 at time 𝑡 is sufficient to decide whether 𝜏 ≤ 𝑡. Klenke[33]

the test statistic being at least as large as the one observed, an 𝑒-value 
measures the accumulation of evidence against this hypothesis, grow-
ing rapidly when the hypothesis is violated [28,30]. As expectations, 
𝑒-values can simply be combined by averaging them, with the average 
remaining an 𝑒-value, which is an important advantage over 𝑝-values in 
a sequential setting, compare [35].

2.3.  Relevance of e-values

The relevance of 𝑒-values for testing lends to Ville’s inequality, which 
entails the following bound valid for any 𝑒-process (𝐸𝑡)
𝑃 (𝐸𝜏 ≥ 1∕𝛼) ≤ 𝛼 (2)

for all stopping times 𝜏 and 𝑃 ∈ 0.

By means of Eq. (2), any 𝑒-process (𝐸𝑡) can be translated into a sequen-
tial hypothesis test controlling the (familywise4) Type I error for a given 
null hypothesis 0, compare [28,37]. More specifically, we can reject 
the null hypothesis 0 at a familywise significance level of 𝛼 as soon as 
𝐸𝜏 surpasses the value 1∕𝛼 from below. While providing anytime-valid 
inference [28,30], 𝑒-values-based methods typically result in lower sta-
tistical power compared to those designed for fixed sample sizes (of-
ten called pointwise), but of course the pointwise error guarantee then 
only is valid for one time point, and combining pointwise guarantees for 
several time points bears the risk of alpha error cumulation [38]. The 
connection to 𝑝-values is given by the fact that, by taking
𝔭𝜏 = min(1, 1∕𝐸𝜏 ), (3)

any 𝑒-value can be converted into a conservative 𝑝-value [35].
As indicated, these 𝑒- and 𝑝-values are used to make decisions about 

which forecaster to prefer. To do so, we formally introduce the compet-
ing forecasts, the scores assessing their accuracy, and a (sequence of) 
test statistics based on the differences of these scores. In this dynamic 
setting, we must also carefully specify the amount of information avail-
able for the test statistics at a given time instant 𝑡. Much of this layout 
closely follows [31], who consider continuous time superiority testing 
for binary predictions. In fact, one contribution of ours is to extend their 
setting to superiority decisions for unbounded scores such as the mean 
absolute error (MAE).

2.4.  Definitions and formalizations

Following the formulations in Choe and Ramdas[31], we start with 
two procedures issuing forecasts, denoted as (𝑝𝑡), (𝑞𝑡), indexed by a time 
index 𝑡 ∈ {1,… , 𝑇 } ⊂ ℕ, along with the corresponding outcomes (𝑦𝑡)
generated from the real distributions (𝑟𝑡). We make no assumptions on 
the sample rate or require equidistant observations over time. To sim-
plify notation, we drop the interpretation of 𝑡 as a unit of time. Instead, 
𝑡 serves as a counting index for the considered predictions, and the time 
span between 𝑡 − 1 and 𝑡 is not used in the analysis.

2.4.1.  Information sets
To specify the available information at time 𝑡 for a specific process, 

we use the filtrations defined in Choe and Ramdas[31]. A filtration 𝑡
formally represents an information set containing all observable events 
or random variables available up to and including time 𝑡. For instance, 
𝑡 represents the oracle filtration, which reflects complete knowledge of 
all relevant information up to time 𝑡.

4 The familywise error rate (FWER) is a key concept in multiple testing / simul-
taneous inference, compare [36]. It denotes the probability, under 0, to falsely 
reject at least one of the multiple hypotheses; this corresponds to simultaneous 
confidence intervals giving a probabilistic guarantee that the intervals simul-
taneously cover the unknown parameter or outcome with a given level. FWER 
control implies the weaker form of false discovery rate (FDR) control, which only 
warrants that the ratio of falsely rejected hypotheses stays below a given bound.
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2.4.2.  Error assessment
Our approach allows for quite general loss functions to assess fore-

cast errors. This includes absolute error, relative error, squared error, or 
even asymmetric weights for positive and negative errors. In fact, the 
only requirement to enable a fair, method-blind comparison and rank-
ing of forecasts is that the loss function be quasi-convex in the sense 
of De Finetti [39]. It implies that the further a competitor is from the 
optimum, the larger the loss. Ultimately, though, for our simultaneous 
confidence bounds below, we do need boundedness of the loss func-
tion, but wrapping a possibly unbounded quasi-convex loss (like, e.g., 
absolute error) by a suitable, bounded, strictly isotone function, such as 
unboundedness can be mitigated, see page 10 below.

As noted above, this flexibility does not imply that the resulting rank-
ing of forecasts is independent of the chosen loss function. Rather, dif-
ferent losses in general will lead to different rankings; so it is crucial to 
use a loss function reflecting the needs of the decision makers.

As indicated in this paper, we use the MAE, but we are well aware 
that in other contexts, other loss functions will better reflect domain-
specific needs. Examples might cover monetary values associated with 
forecast errors.

2.4.3.  Scoring functions / scoring rules
In our setting, where we consider point forecasts, the loss function 

is called scoring function in the terminology of Gneiting[40], and is a 
function 𝑆(𝑥, 𝑦) where 𝑥 is the value of the forecast and 𝑦 is the actual 
outcome. More specifically, in the case of the MAE, 𝑆(𝑥, 𝑦) = |𝑥 − 𝑦|. 
If instead of point forecasts, one heads for probabilistic forecasts, the 
loss function is called scoring rule in the terminology of Gneiting and 
Raftery[41], and argument 𝑥 is the distribution-valued probabilistic 
forecast. In the case of a binary output, a probabilistic forecast can 
be summarized by a real-valued success probability. Consequently, the 
distinction between a scoring rule and a scoring function becomes mi-
nor and can be neglected, as was done in Choe and Ramdas[31]. Still, 
one should note that in the binary-outcome setting of Choe and Ram-
das[31], 𝑆(𝑥, 𝑦) = |𝑥 − 𝑦| would not be proper, meaning that the perfect 
probabilistic forecast given by the true success probability can be beaten 
in this rule. However, this does not negatively impact our application, 
which deals with continuous outcomes.

The evidence for a specific forecast is evaluated through the empir-
ical score differences, defined as

𝛿𝑡 ∶= 𝑆(𝑝𝑡, 𝑦𝑡) − 𝑆(𝑞𝑡, 𝑦𝑡), (4)

which comes with a forecast counterpart

𝛿𝑡 ∶= 𝔼[𝑆(𝑝𝑡, 𝑦𝑡) − 𝑆(𝑞𝑡, 𝑦𝑡)|𝑡−1],

taking into account the conditional expectation given the information 
up to time 𝑡 − 1. Following Choe and Ramdas[31], instead of focusing 
on the varying sequence ̂𝛿𝑡, we want to base our decisions on the average 
empirical score differentials

Δ̂𝑡 ∶=
1
𝑡

𝑡
∑

𝑖=1
𝛿𝑖 (5)

together with the unobservable sequence of the average expected score 
differentials Δ𝑡 = 1

𝑡
∑𝑡
𝑖=1 𝛿𝑖. The sequence Δ𝑡 indicates whether one fore-

cast outperforms the other one on average. Since the MAE is a negatively 
oriented scoring rule, negative score differentials indicate a preference 
for forecast (𝑝𝑡).

Now in the approach in Choe and Ramdas[31] and also in most tech-
niques discussed in Howard et al. [42], for powerful tests and hence 
efficient model selection, it is crucial to be able to use some expo-
nential concentration bounds constructed in a similar manner as the 
Hoeffding or the Bernstein inequality. To this end, we require that 
the empirical score differentials 𝛿𝑡 should be bounded, meaning we

assume

|𝛿𝑡| ≤
1
2
for all 𝑡 ≥ 1.5 (6)

Eq. (6) in general is violated for the MAE. To address this issue, we 
obtain bounded scores by transforming our empirical score differentials 
𝛿 using an appropriate sigmoid function 𝑓 in Section 3.4.

2.4.4.  Test statistics
To construct a suitable 𝑒-process, we follow the approach of Choe 

and Ramdas[31] based on Howard et al. [43], which involves using a 
cumulative sum process 𝑀𝑡, whose deviations from 0 we want to con-
trol over time. In our case 𝑀𝑡 =

∑𝑡
𝑖=1 𝛿𝑖 − 𝛿𝑖, respectively, or after trans-

formation, 𝑀𝑡 =
∑𝑡
𝑖=1 𝛿𝑖 − 𝔼[𝛿𝑖 |𝑖−1]. From now on, we only work with 

the transformed score differences and drop the notational distinction 
between the transformed and untransformed score differences, and for 
better reference, we rather use the notation for the untransformed ones 
taken from Choe and Ramdas[31], Howard et al. [43].

A natural way to generate an 𝑒-process is through the exponential 
transform6

𝐸𝜆(𝑡) = exp
(

𝜆𝑀𝑡 − 𝜓(𝜆)𝑉𝑡
)

, (7)

with appropriate choices for 𝑉𝑡, 𝜆, 𝜓(𝜆). In this formulation

• 𝑉𝑡 is the variance process for 𝑀𝑡 and can be interpreted as a measure 
of intrinsic time to quantify the deviations of 𝑀𝑡 from zero. In our 
setting, we adopt the default variance process defined by Choe and 
Ramdas[31], which is given by:

𝑉𝑡 =
𝑡

∑

𝑖=1
(𝛿𝑖 − Δ̂𝑖−1)2, (8)

where 𝛿𝑖 and Δ̂𝑖−1 are defined in Eqs. (4) and (5). An illustrative 
example of the process 𝑉𝑡 is shown in Fig. 1 (left).

• 𝜆 > 0 is a hyperparameter that controls the growth rate of the 𝑒-
process 𝐸𝜆(𝑡). It adjusts the impact of the deviations 𝑀𝑡 by assigning 
them a weight. Specifically, larger values of 𝜆 increase the weights of 
extreme deviations. Therefore, 𝜆 also controls the willingness to take 
risk, compare [42,43]. Note that the procedure returns valid proba-
bilistic guarantees for any 𝜆 > 0, which allows the user to adjust the 
procedure to domain-specific needs.

• 𝜓(𝜆) is a cumulant-generating like function (CGF-like), that deter-
mines the rate at which the process 𝑀𝑡 can grow in relation to the 
intrinsic time 𝑉𝑡. In Howard et al. [43], several useful 𝜓-functions are 
discussed, but we focus on the sub-exponential function given by:
𝜓𝐸 (𝜆) = − log (1 − 𝜆) − 𝜆 (9)

for all 𝜆 ∈ [0, 1).

In Fig. 1 (right) are shown the sub-exponential 𝜓-function 𝜓𝐸 along 
with the sub-gaussian function 𝜓𝑁  which is described in Choe and 
Ramdas[31], Howard et al. [43].

2.5.  Sequential tests using e-Processes

Our goal is to sequentially test if one forecast outperforms the other 
on average, with a given significance level 𝛼. This means we want to 
test whether the sequence Δ𝑡 is positive or negative for all timesteps 𝑡. 
Formally, the null hypothesis is defined as
0(𝑝, 𝑞) ∶ Δ𝑡 ≤ 0 ∀ times 𝑡 ≥ 1. (10)

5 In the original reference, Eq. (6) is spelt out as |𝛿𝑡| ≤ 𝑐∕2for some𝑐 ∈ (0,∞), 
but we use 𝑐 = 1 and adapt the equations accordingly.
6 Mathematically, if 𝑀𝑡 forms a martingale, the exponential transform 𝑒𝜆𝑀𝑡

results in a submartingale due to Jensen’s inequality. This submartingale can be 
transformed into a supermartingale 𝑒𝜆𝑀𝑡−𝜓(𝜆)𝑉𝑡  for appropriate choices of 𝜓 and 
𝑉𝑡. By the definition of this supermartingale [33], 𝐸𝜆(𝑡) forms an 𝑒-process [43].
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Fig. 1. Visualization of the required functions from Eq. (7). (Left) Illustration 
of the variance process 𝑉𝑡 using the data described in Section 3. (Right) Sub-
exponential and sub-gaussian 𝜓-functions 𝜓𝐸 and 𝜓𝑁 for different 𝜆 ∈ [0, 1).

For a negatively oriented scoring rule like the MAE, the hypothesis im-
plies that the forecast (𝑞𝑡) is not better than the forecast (𝑝𝑡) on average 
across all times 𝑡. Analogously, by switching the order of the forecasts, 
we get
0(𝑞, 𝑝) ∶ Δ𝑡 ≥ 0 ∀ times 𝑡 ≥ 1. (11)

The complete sequential test is then constructed by combining the two 
separate tests defined in (10) and (11), each with a significance level of 
𝛼∕2. In our approach, we utilize Theorem 3 from Choe and Ramdas[31] 
as the main result. Accordingly the 𝑒-process for testing 0(𝑝, 𝑞) is de-
fined as
𝐸𝜆(𝑡) ∶= exp

(

𝜆𝑡Δ̂𝑡 − 𝜓𝐸 (𝜆)𝑉𝑡
)

(12)

for 𝜆 ∈ [0, 1).

We write 𝐸∗
𝜆 (𝑡) as the 𝑒-process for testing 0(𝑞, 𝑝). Therefore the hy-

potheses 0(𝑝, 𝑞) or 0(𝑞, 𝑝) are rejected, if the corresponding 𝑒-
process passes the threshold of 2∕𝛼 (Eq. (2)) from below.

This construction of the 𝑒-process 𝐸𝜆(𝑡) comes with time-uniform 
confidence sequences for Δ𝑡, which provide coverage guarantees that 
hold uniformly over time, ensuring that the process remains within the 
confidence interval at all times. This allows us to reject the hypotheses 
if the entire confidence sequence lies completely above or below zero 
[31]. Rewriting Eq. (2) and using the 𝑒-process from Eq. (12), we obtain 
the uniform boundary

𝑢𝛼∕2 =
𝜓(𝜆)𝑉𝑡 − log(𝛼∕2)

𝜆
, (13)

which then leads to the symmetric (1 − 𝛼)-confidence sequence for Δ𝑡:

𝐶𝛼(𝑡) =
[

Δ̂𝑡 −
𝑢𝛼∕2
𝑡

; Δ̂𝑡 +
𝑢𝛼∕2
𝑡

]

, (14)

such that
ℙ(Δ𝑡 ∈ 𝐶𝛼(𝑡)) ≥ 1 − 𝛼 ∀ 𝑡 ≥ 1. (15)

This formulation ensures that the process Δ𝑡 remains within the confi-
dence sequence with a probability of at least 1 − 𝛼 simultaneously for 
all time steps 𝑡.

A plot of 𝛿𝑡 (or Δ̂𝑡) along with the confidence sequence 𝐶𝛼(𝑡) over 
time can be seen as a variant of a CUSUM-type control chart, allowing 
for similar interpretation. Specifically, crossings of the 𝐶𝛼(𝑡) bounds in-
dicate critical events. For easier interpretation, we backtransform the 
score differences and differentials, as well as the upper and lower con-
fidence bounds to the original MAE scale, which in our application is 
measured in Watts. An example of such a chart is shown in Fig. 7 (left).

2.6.  e-selection procedure

In this section, we outline the procedure for selecting the forecast-
ing method for future time steps using sequential tests, which we refer 
to as “𝑒-selection”. The goal is to construct a new prediction at each 

time step by combining two existing forecasting methods. The proce-
dure can be roughly divided into three steps, which are performed at 
every time step 𝑡. The starting point is the empirical score differentials 
𝛿𝑡 from Eq. (4), along with a predefined significance level 𝛼 ∈ (0, 1). The 
procedure involves calculating the 𝑒-processes, conducting the corre-
sponding sequential tests as a descriptive task, and combining the fore-
casting methods to generate a new prediction. The steps are summarized 
as follows:
1. Calculate 𝑒-Processes:
First, we need to select the hyperparameter 𝜆 and the additional pa-
rameter 𝜔, which represents the number of past observations to con-
sider. Instead of accounting for the entire time horizon of the fore-
casting methods, we focus only on the most recent 𝜔 observations to 
better capture the dynamic behavior. Therefore the expression Δ̂𝑡 in 
Eq. (5) is changed to rolling average

Δ̂𝑡,𝜔 = 1
𝜔

𝑡
∑

𝑖=𝑡−𝜔
𝛿𝑖 for 𝑡 ≥ 𝜔, (16)

and analogously 𝑉𝑡,𝜔 and 𝐸𝜆,𝜔(𝑡) with the 𝑒-process started at time 
step 𝑡 − 𝜔. By allowing optional stopping and continuation, the 𝑒-
processes remain valid under this approach [30]. 𝜔 - or a grid of 𝜔-
values on which to evaluate the procedure - should be chosen ex ante 
according to domain-specific needs, for (each) given (value of) 𝜔. 
Therefore, we recommend an offline hyperparameter optimization 
on a suitable representative dataset for 𝜆. For a specific dataset, this 
will be discussed in Section 4. To obtain bounded score differentials 
𝛿𝑡, we use the transformation described in Section 3.4. We then use 
the values 𝐸𝜆,𝜔 and 𝐸∗

𝜆,𝜔 at time step 𝑡 for the sequential test.
2. Sequential Test:
Having fixed 𝜔 and 𝜆, we can take our sequential decisions in real-
time i.e. for the test, we simply check whether the values 𝐸𝜆,𝜔 and 
𝐸∗
𝜆,𝜔 exceed the threshold of 2∕𝛼. We reject 0(𝑝, 𝑞), if 𝐸𝜆,𝜔 ≥ 2∕𝛼, 

which indicates that forecast (𝑞𝑡) outperforms forecast (𝑝𝑡) on aver-
age over this specific period. Similarly, we reject 0(𝑞, 𝑝), if 𝐸∗

𝜆,𝜔 ≥
2∕𝛼. In cases where neither hypothesis can be rejected, there is in-
sufficient evidence to favor one forecast over the other, and we will 
discuss the subsequent steps in the following section.

3. Generate Predictions by Combining Forecasting Methods (Forecast Fu-
sion):
Again real-time, based on the results of the sequential test, we want 
to generate a combined prediction (𝜃𝑡), termed forecast fusion [44]. 
While the test itself does not rely on distributional assumptions, we 
do need some assumptions regarding future performance [31]. A 
simple approach is to use a persistence model, where if forecast (𝑝𝑡)
outperformed (𝑞𝑡) on the previous day, we will also select forecast 
(𝑝𝑡) for the next day. This ensures that (𝜃𝑡) is selected based on infor-
mation available up to time 𝑡 − 96, assuming that the forecasts (𝑝𝑡)
and (𝑞𝑡) are also 𝑡−96-measurable. However, there are time steps 
where neither hypothesis can be rejected. For these cases, a differ-
ent selection approach is necessary. Formally, the prediction at time 
step 𝑡 can be expressed as:

𝜃𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑝𝑡 if 𝐸∗
𝜆,𝜔(𝑡 − 96) ≥ 2∕𝛼

𝑞𝑡 if 𝐸𝜆,𝜔(𝑡 − 96) ≥ 2∕𝛼
𝑧𝑡 else,

(17)

where 𝑧𝑡 is determined using one of the following three approaches:
i) Persistence: The simplest option is the persistence 𝑒-selection. 
Once a decision is made at a time step 𝑠 < 𝑡, an appropriate strat-
egy is to continue using that selected forecasting method as long 
as there is insufficient evidence to switch. In this case,
𝑧𝑡 = 𝜃𝑡−1. (18)

The advantage of this method is that it minimizes the number of 
switches between the possible predictions (𝑝𝑡) and (𝑞𝑡), leading to 
a more stable forecasting process.
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ii) Sampling: The second strategy involves randomly sampling the 
forecast methods based on the amount of evidence, as indicated 
by the corresponding 𝑒-value. In this approach, we calculate the 
weight that determines the probability of selecting each method. 
Therefore, we use Eq. (3) to transform the 𝑒-values into anytime-
valid 𝑝-values. We write:
𝔭𝑡 = min(1, 1∕𝐸𝜆,𝜔(𝑡))

𝔭∗𝑡 = min(1, 1∕𝐸∗
𝜆,𝜔(𝑡)),

which results in the sampling weight for the forecast (𝑝𝑡) as:

𝑤𝑝,𝑡 =
1 + 𝔭𝑡 − 𝔭∗𝑡

2
(19)

and similarly, the weight for the forecast (𝑞𝑡) is:

𝑤𝑞,𝑡 =
1 + 𝔭∗𝑡 − 𝔭𝑡

2
= 1 −𝑤𝑝,𝑡. (20)

In this case

𝑧𝑡 =

{

𝑝𝑡 with probability 𝑤𝑝,𝑡
𝑞𝑡 with probability 𝑤𝑞,𝑡.

(21)

When 𝐸𝜆,𝜔(𝑡) and 𝐸∗
𝜆,𝜔(𝑡) are both less than 1, indicating that there 

is insufficient evidence to reject either hypothesis, the weights 
reduce to 1/2 for each forecast. This results in a 50/50 chance of 
selecting either forecast 𝑝𝑡 or 𝑞𝑡.

iii) Weighted average (wAvg): The weighted average approach com-
bines the forecasts (𝑝𝑡) and (𝑞𝑡) based on the weight 𝑤𝑝,𝑡 and 𝑤𝑞,𝑡. 
Therefore

𝑧𝑡 = 𝑤𝑝,𝑡 ⋅ 𝑝𝑡 +𝑤𝑞,𝑡 ⋅ 𝑞𝑡. (22)

As is well-known and can be easily proven, the sampling strat-
egy ii) of selecting randomly among the forecasts is, in expec-
tation, equivalent to the weighted average approach iii). How-
ever, the variance of approach iii) is strictly lower than that of 
approach ii), unless either 𝑤𝑝,𝑡 ∈ {0, 1} or 𝑝𝑡 = 𝑞𝑡 with probabil-
ity 1. Therefore, when combining two forecasts at the same time 
𝑡, the weighted approach generally provides increased statistical 
power. Still, approach ii) will be advisable, if constraints such as 
budget limitations preclude approach iii), limiting the number of 
forecasters to be used per time to just one.

To illustrate the steps involved in our procedure, we provide a visual 
overview in the form of a flowchart in Fig. 2. The diagram summarizes 
the 𝑒-selection procedure (Box E) as introduced in Section 2.6, highlights 
the initial choice of hyperparameters 𝜆 and 𝜔 (Box H), and indicates that 
the selection can be performed online in real time due to the very low 
computational cost per time step.

3.  Data description and considered forecasting techniques

Having outlined our procedure for generating predictions by com-
bining two forecasting methods, we proceed to demonstrate its practical 
application.

Specifically, we apply our procedure to forecast electricity demand 
using time series data. In this section, we introduce the electricity de-
mand time series data and the forecasting techniques employed, which 
together form the basis of our application case.

While there are many promising forecasting models and algorithms 
in the literature, the focus of this paper is not on the forecasting method 
itself but on the process of dynamic real-time model selection among 
the given forecasts. The benefit of such a strategy becomes apparent in 
a situation where none of the competing forecasts is dominant in the 
sense that it is superior to its competitor(s) over the whole considered 
time period. This is the case for the study discussed in Brucke et al. [10], 
which was the starting point for this paper. In this paper, the authors 
compare and benchmark different recurrent network-based forecasting 
methodologies for household electricity demand. Their models result 

in forecasts with varying characteristics. More specifically, while the 
Long-Short-Term-Memory (LSTM) approach yields small MAEs with very 
smooth demand forecasts, the Next Generation Reservoir Computing (NG-
RC) approach is able to follow more closely the wiggly behavior of en-
ergy demands with slightly higher MAEs on average. These different 
characteristics are reflected by changing superiority of the forecasts over 
time, and, consequently, neither the LSTM nor the NG-RC approach is 
dominant over the whole considered time period. So instead of a single 
static ex-post decision on superiority, we carry out the continuous model 
selection procedure based on e-values as laid out in the previous section 
with a fixed 𝛼 guarantee level of 5%. The remainder of this section is 
organized as follows: Section 3.1 shortly describes the raw data that 
was used to obtain the forecasts. The NG-RC and the LSTM approaches 
are briefly introduced in Sections 3.2 and 3.3, respectively. We summa-
rize important statistical key features of all data sets and predictions in
Table 1. 

3.1.  Raw data

The electricity demand time series used for forecasting is derived 
from the EMS3 data set within the EMSIG data set [45]. This data set rep-
resents the energy data recorded by a decentralized household energy 
management system (EMS) from the DACH region, with a 15-minute 
resolution in Watts [W]. To take up our comment that data in build-
ing energy context as a rule are non-stationary, we fitted a generalized 
additive model (GAM) to our data using the gam function from the R 
package mgcv, Wood[46,47]. The model includes smooth terms for time 
of day and calendar day, and incorporates weekday as a categorical pre-
dictor with grouped levels. Applying the union bound, the probability 
of falsely rejecting at least one of these components does not have a lin-
ear effect that can be controlled at a level below 2 × 10−6, thus amply 
rejecting stationarity.

Day-ahead predictions are created for the sum of the active 
power of electricity consumption, which is denoted by the column
sum_consumption_active_power in the EMS3 data set. The models 
were trained and validated using the first 90% of the data set, covering 
the period from January 1, 2019, to October 20, 2020, 20:15. The test 
set, which will be used for real-time forecasting comparisons, consists 
of the remaining 10% of the data points, spanning from the evening of 
October 20, 2020, 20:30, to the evening of December 30, 2020, 22:45, 
and includes a total of 𝑁 = 6826 measured electricity demand data 
points [10].

3.2.  Next generation reservoir computing

Next Generation Reservoir Computing (NG-RC) is a machine learning 
algorithm that originates from nonlinear vector autoregression (NVAR), 
designed for analyzing dynamical chaotic systems using observed time-
series information [48,49]. Unlike traditional reservoir computing, NG-
RC constructs its feature vectors directly from unique polynomials of 
time-delayed input signals. This approach requires only a small amount 
of training data and yields computationally inexpensive optimization, 
which results in a highly efficient algorithm as is described in more 
detail in Brucke et al. [10].

3.3.  Long-Short-Term-Memory neural networks

Long Short-Term Memory neural networks (LSTM), introduced by 
Hochreiter and Schmidhuber, are a special form of recurrent neural net-
works (RNNs) designed to handle the vanishing gradient problem of 
conventional RNNs. LSTMs fit very well for processing sequential data 
as they effectively capture long-term dependencies while retaining the 
ability to recognise short-term patterns [50]. This ability results from 
three categories of gates for each memory cell: Input, output, and forget 
gates. These gates regulate the storage and discarding of information 
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Fig. 2. Flowchart of the methodology for the 𝑒-selection procedure (Box E) from Section 2.6. While the forecast selection- and thus the computation of the corre-
sponding 𝑒-values 𝐸𝜆,𝜔 and 𝐸∗

𝜆,𝜔 is performed at each time step, the hyperparameters 𝜆 and 𝜔 are selected initially (Box H), as described in Section 4, and remain 
fixed throughout the entire selection procedure. The term Online in this context indicates that the procedure can be performed in real time as new data becomes 
available, owing to the small computational cost of less than 2 milliseconds for a single time step, as described in more detail in Section 4.

Table 1 
Key statistical features of the measured load data set and the two forecasts 
based on NG-RC and LSTM. Oracle denotes the all-knowing forecaster select-
ing the best forecasting model at all times, which is the upper bound for the 
maximum forecast quality to be reached.
 Statistics ∕ Method  Actual Load  NG-RC  LSTM  Oracle
 Data shape 6826 × 1 6826 × 96 6826 × 96 6826 × 96
 Max. Load [W] 9346.00 6550.17 5001.01  /
 Min. Load [W] 0.00 −2.06 165.02  /
 Average Load [W] 757.91 725.73 546.35  /
 Average MAE [W]  / 476.07 444.38 425.59
 Max. absolute Error [W]  / 1116.99 1116.72 1116.72
 Min. absolute Error [W]  / 177.08 129.26 129.26

and ensure that relevant data is retained over long sequences. There-
fore, LSTMs are widely recognised as state-of-the-art for tasks such as 
time series prediction [10].

The actual electricity demand, along with the 96-step-ahead fore-
casts from the LSTM and NG-RC, is presented in Fig. 3 for the entire test 
set and two representative days. Additionally, Fig. 4 shows the corre-
sponding histograms for the test set. Note that NG-RC predictions cap-
ture the real power distribution better compared to the LSTM predic-
tions.

3.4.  Data preprocessing

Each model generates a prediction for every time step of the test 
set for the following 24 hours, resulting in a prediction matrix ̂𝑦 = (𝑦𝑡𝑘), 
where 𝑡 ∈ {1,… , 6826} denotes the time step and 𝑘 ∈ {1,… , 96} denotes 

𝑘-step-ahead prediction horizon. The real power consumption is denoted 
by 𝑦 = (𝑦𝑡𝑘) with the same dimension as 𝑦. Every row in 𝑦 contains the 
measured power consumption of the respective household from time 
step 𝑡 for the next 24 hours. Accordingly, from one row 𝑡 to the next 
row 𝑡 + 1, the data is shifted by one time step. We then use the MAE as 
a standard metric for evaluating load forecasts [51]. The MAE for each 
time step 𝑡 is calculated using the following equation:

MAE(𝑦𝑡, 𝑦𝑡) =
1
96

96
∑

𝑘=1
|𝑦𝑡𝑘 − 𝑦𝑡𝑘|, (23)

where 𝑦𝑡𝑘 denoting the true realized value at time 𝑡 + 𝑘. Let (𝑝𝑡𝑘) repre-
sent the prediction from NG-RC and (𝑞𝑡𝑘) the prediction from LSTM. We 
calculate the empirical score differences ̂𝛿𝑡 between NGRC and LSTM as 
follows:

𝛿𝑡 = MAE(𝑝𝑡, 𝑦𝑡) −MAE(𝑞𝑡, 𝑦𝑡).

Fig. 5 shows the histogram of the MAE scores for NG-RC (left) and LSTM 
(middle) along with the score differences 𝛿𝑡 on the right-hand side of 
the figure. The overall mean value is shown by a dashed vertical line in 
every histogram. The score differences can be approximated by a shifted 
normal distribution.

To apply the procedure from Section 2.6, we need bounded scores 
like in Eq. (6), which can be obtained using an appropriate transforma-
tion function 𝑓 (𝑥), which is chosen to be a sigmoid function in this work. 
More specifically, we require 𝑓 to satisfy the following near-to-canonical 
conditions:
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Fig. 3. Actual electricity demand (dotted line) and 96-step-ahead forecasts using LSTM (solid line) and NG-RC (dash-dotted line) in kilowatts. (Top) Full test set 
(6826 values) from October 20, 2020, 20:30 to December 30, 2020, 22:45. (Bottom) Detailed view of two days, from November 23, 2020, 00:00 to November 25, 
2020, 00:00.

Fig. 4. Histograms of the actual electricity demand (left), the 96-step-ahead LSTM forecasts (middle), and NG-RC forecasts (right), all in Watts. Dotted lines indicate 
the mean values. For improved visualization, the plots are truncated at 3000W.

Fig. 5. Histograms of the MAE of NG-RC (left), LSTM (middle), and the empirical score differences 𝛿𝑡 (right) with mean values (dotted line) in watts, and normal 
fit (solid line).
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Fig. 6. (Left) Empirical score differences ̂𝛿𝑡 for the entire period. The dotted line represents the first week, which is used to calculate the scale 𝜎. The remaining score 
differences are utilized for the selection procedure. (Right) Sigmoid function 𝑓 (𝑥) in the range of the score differences ̂𝛿𝑡. The horizontal lines (dotted) represent the 
bounds at −1∕2 and 1∕2. The color bar visualizes the quantity distribution density of the score differences ̂𝛿𝑡 along the x-axis. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

(i) To minimize squeezing effects, 𝑓 should be approximately linear 
in the central region where most of the probability mass is concen-
trated.

(ii) 𝑓 should exhibit odd symmetry, with 𝑓 (0) = 0.
(iii) To ensure boundedness, 𝑓 should be curved in the tails.

The actual choice of 𝑓 according to (i)–(iii) is of secondary impor-
tance, and different such choices will only lead to minor differences in 
the results. One possible such choice is
𝑓 (𝑥) = Φ(𝑥∕𝜎) − 1∕2, (24)

where Φ(𝑥) is the cumulative distribution function (CDF) of the standard 
normal distribution and 𝜎 is an appropriate scaling parameter.

The score differences 𝛿𝑡 for the entire data set are shown in Fig. 6 
(left). 𝜎 is calculated as the standard deviation of the first week of 𝛿𝑡
(dotted line in Fig. 6 (left)). The remaining 6154 score differences are 
used for the selection procedure.

By definition, the transformed score differences 𝛿𝑡 = 𝑓 (𝛿𝑡) fulfill the 
condition:

|𝛿𝑡| ≤
1
2
∀ timesteps t. (25)

Fig. 6 (right) represents the sigmoid function of Eq. (24). The dotted 
horizontal lines indicate the bounds at −1∕2 and 1∕2. The color grada-
tions visualize the quantity of score differences 𝛿𝑡 corresponding to the 
histogram on the right-hand side of Fig. 5. From this, we can visually 
verify that indeed 𝑓 satisfies conditions (i)–(iii): Most of the score dif-
ferences are centered around 0, with a slight rightward shift. This region 
is shaded dark green, indicating where the majority of score differences 
lie. Within this area, the sigmoid function is approximately linear as re-
quired. In contrast, outside this central region, represented by the lightly 
shaded green areas, the function exhibits strong curvature, approaching 
the limits of ±1∕2 at both ends.

We aim at comparing the selection using 𝑒-values in Section 4 with 
the performance of the individual models NG-RC and LSTM. Addition-
ally, we define an “oracle benchmark”, which always selects the method 
with the lower MAE. Since the oracle represents a perfect selection, it 
establishes a lower bound for the best possible score achievable by our 
𝑒-selection procedure. The average scores of the different benchmarks 
during the selection period (see Fig. 6 (left)) are presented in Table 1.

4.  Results

In this section, we present the results of applying the 𝑒-selection pro-
cedure outlined in Section 2.6 to the electricity demand time series data 
described in Section 3. Specifically, we use the transformed score differ-
entials 𝛿𝑡 of the electricity demand forecasts and the 𝑒-process method-
ology to select a forecast model for every point in time. Doing so, we 
create a combined forecast which is benchmarked against each of the 

individual forecasting methods and against the oracle, which represents 
the best possible combined prediction. Our analysis focuses on the per-
sistence 𝑒-selection method, including a hyperparameter optimization 
for 𝜆 and 𝜔. Additionally, we report the computational time required 
for the selection processes.

Starting with the transformed score differentials 𝛿𝑡, we first present 
exemplary results for a specific parameter combination of 𝜆 and 𝜔. 
Specifically, we set 𝜆 = 0.1 and consider the data from the previous 7 
days, corresponding to 𝜔 = 672. Fig. 7 (left) displays the processes 𝛿𝑡
(solid line) and Δ̃𝑡,𝜔 (dotted line), along with the corresponding confi-
dence intervals 𝐶𝛼 for Δ𝑡,𝜔 calculated according to Eq. (14), at signifi-
cance level of 𝛼 = 0.05 and 𝜆 = 0.1. The results are shown for two time 
periods of the data set: The days 7 to 14 of the data set are shown in 
the graphs at the top of Fig. 7 while the graphs at the bottom depict the 
days 62 to 69. The left y-axis in Fig. 7 (left) refers to the transformed 
scores, while the second y-axis reverts the scale of the bounded scores 
to the actual scores in Watts, indicating a linear transformation around 
zero, with higher absolute score deviations being compressed. The score 
differentials 𝛿𝑡 exhibit significant variability, while the average score 
differentials Δ̃𝑡 seem to converge for each time period. The width of 
the confidence intervals decreases over time, eventually leading to the 
entire interval lying either above or below zero.

In Fig. 7 (right), the 𝑒-processes 𝐸𝜆,𝜔(𝑡) for the same time periods are 
plotted with the threshold value 2∕𝛼 on a logarithmic scale. In the first 
time period, the process exceeds the threshold at time step 852, indicat-
ing the rejection of the hypothesis 0(𝑝, 𝑞). This suggests that the fore-
casting method LSTM outperforms NG-RC during this time period. The 
same interpretation is supported by the confidence interval, which re-
mains entirely above zero after this time. For the second time period, the 
𝑒-process remains below the threshold and becomes very small. There-
fore, we cannot reject the hypothesis 0(𝑝, 𝑞). To assess whether NG-RC 
outperforms LSTM, we should examine the process 𝐸∗

𝜆,𝜔(𝑡) or consider 
the confidence interval, which remains entirely below zero after time 
step 6433. This indicates that NG-RC indeed outperforms LSTM during 
this period.

Applying the procedure to the entire dataset of 6154 prediction 
points results in an 𝑒-selection forecast 𝜃𝑡 for 𝑡 ∈ {1,… , 6154}. Fig. 8 
illustrates the MAE of the NG-RC (dotted line) and LSTM (dashed dot-
ted line) forecasts over the entire time period and depicts three differ-
ent 𝑒-selection processes with varying 𝜔 and 𝜆. The background area 
style in all three sub-figures indicates which model is selected by the 
𝑒-process in that specific time period. Areas with diagonal lines repre-
sent the selection of NG-RC, while the dotted area indicates the selec-
tion of LSTM. Areas shaded with squares indicate time steps where no 
forecasting method is preferred, requiring the application of one of the 
approaches outlined in Section 2.6. Note that the first week is excluded 
from the predictions, as it is used to calculate the scale parameter 𝜎 for 
the transformation function 𝑓 (𝑥) (Eq. (24)). In every plot, LSTM is the 
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Fig. 7. Comparison of different processes for two time periods: days 7 to 14 (upper plot) and days 62 to 69 (lower plot). Confidence sequence and threshold at 
significance level 𝛼 = 0.05. (Left) Transformed score differentials ̃𝛿𝑡 (solid line) and average transformed score differentials ̃Δ𝑡,𝜔 (dashed dotted line), along with the 
corresponding confidence sequence 𝐶𝛼 (shaded area). The second y-axis represents the rescaled values from the first y-axis in Watts, showing a linear relationship 
around zero and a compression of higher deviations. The horizontal dashed line represents the value zero. (Right) 𝑒-process 𝐸𝜆,𝜔(𝑡) (solid line) with the threshold 
value 2∕𝛼 (dashed line) on a logarithmic scale. The horizontal solid line represents the starting value of one. Exceeding the threshold indicates that LSTM outperforms 
NG-RC during this period.

Table 2 
Runtime of the different selection methods for 
various 𝜔 for the whole dataset.

 runtime 𝑒-selection [s]
𝜔 [days]  Persistence  Sampling  wAvg
 1  2.46  6.36  2.46
 7  7.70  7.79  7.80
 14  12.50  12.72  13.12

most frequently selected model. However, NG-RC is primarily chosen 
towards the end of the time series for each plot. Notably, smaller rolling 
windows 𝜔 and higher risk tolerances 𝜆 result in more frequent and 
faster switches between models. Conversely, a larger rolling window of 
14 days typically leads to only a single switch, occurring at the end of 
the time series.

To consider the computational cost, the runtime for each approach 
for the entire dataset is presented in Table 2 across various window sizes 
𝜔. All computations were performed on a Windows Server 2019 machine 
equipped with an Intel Xeon E5-2630v4 CPU and 256 GB DDR4-2400 
RAM. The code was executed with Python 3.10, running on a single 
core without utilizing multiprocessing. Larger windows result in longer 
runtimes due to the increased computational demand of summing over 
more time steps. For instance, with 𝜔 = 7, the 𝑒-selection procedure for 
a single time step requires less than 2 milliseconds.

Due to the relatively low computational costs of applying 𝑒-processes 
for model selection, we perform a hyperparameter optimization consid-
ering 𝜔 and 𝜆. This optimization is carried out using both a simple grid 
search and the Python module optuna [52]. The parameter ranges con-
sidered are:

• 𝜔 ∈ {1h, 2h, 1d, 2d,… , 14d}, where h denotes the hours and d de-
notes the days,

• 𝜆 ∈ {0.01,… , 0.99}.

For each combination, the overall average score across the entire 
prediction period is calculated for each of the three 𝑒-selection meth-
ods. Combinations where no conclusion could be reached after the first 
time step of the first week were excluded from consideration to main-
tain consistency in comparison with the persistence method. Selected 
results for 𝜔 ∈ {1d, 4d, 7d, 14d} and 𝜆 ∈ {0.1, 0.5, 0.9} are presented 
in Table 3. For comparison, we benchmark these scores against the av-
erage scores of NG-RC and LSTM in Table 1. Scores that are lower than 
those of NG-RC and LSTM are highlighted in the table in bold font. 
The best achieved score was 441.31W using the persistence method 
with 𝜔 = 7 days and 𝜆 = 0.07. Although a deviation of 3.07W from the 
LSTM model may seem minor, this actually represents a 16.3% improve-
ment compared to the LSTM’s deviation from the best possible score of 
425.59W (oracle). With this parameter configuration, the 𝑒-selection 
method chooses the better forecasting model in 70.91% of the time
steps.

To examine all combinations, Fig. 9 shows a heatmap represent-
ing the deviation of the 𝑒-selection persistence method compared to 
the LSTM method across various parameter combinations. Combina-
tions with window sizes of one and two hours were excluded from the 
heatmap because they couldn’t select a method at the first time step. 
Cells marked with a,+“ indicate an improvement of the combined fore-
cast using the 𝑒-selection method. Choosing window sizes larger than 
five days consistently results in an improvement regardless of the choice 
of 𝜆. The worst performance occurred with 𝜆 = 0.09 and 𝜔 = 1d, showing 
a worsening of the forecast performance of -11.67W. Overall, in 74.24% 
of the cases, we get an improvement using the proposed 𝑒-selection per-
sistence method. We conclude that 𝜔 needs to be larger than a minimal 
threshold – in our case 4 days in order to outperform LSTM. But the ben-
efits of the hybrid procedure again become less pronounced for larger 
values of 𝜔 – in our case 𝜔 > 10 days. At the same time, the choice of 𝜆 is 
largely insensitive, so –at least in our example– one could recur to other 
criteria, e.g. choosing 𝜆 such that in a pay-per-use regime with lower 
prices for NG-RC than for LSTM, one would use NG-RC more often.
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Fig. 8. MAEs for NG-RC (dashed line) and LSTM (dashed dotted line) over 6154 prediction points, excluding the first week of data. Shaded areas indicate model 
selection by the 𝑒-selection method for different hyperparameters 𝜔 and 𝜆: diagonal lines for NG-RC, dotted for LSTM. Squares show periods where no clear preference 
is given.

Table 3 
Average scores in Watts for the three 𝑒-selection ap-
proaches from Section 2.6 across various parameter 
combinations. Scores lower than those of NG-RC and 
LSTM in Table 1 are highlighted.
 Hyperparameters  Average score [W]
𝜔 [days] 𝜆  Persistence  Sampling  wAvg
 1  0.1  449.30  450.90  451.01

 0.5  449.35  448.96  449.17
 0.9  449.21  448.96  449.19

 4  0.1  441.81  446.66  446.73
 0.5  445.56  446.50  446.54
 0.9  445.41  446.39  446.54

 7  0.1  441.48  442.12  442.26
 0.5  441.74  442.44  442.41
 0.9  441.67  443.01  442.96

 10  0.1  442.83  442.44  442.47
 0.5  442.53  442.45  442.50
 0.9  442.64  442.48  442.51

 14  0.1  443.96  443.27  443.30
 0.5  444.04  443.20  443.28
 0.9  443.97  443.03  443.20

For the sampling method, we observe that 64.94% of the cases re-
sult in an improvement, with the best performance achieving a score 
of 441.42W and a deviation of 2.96W. The worst performance for this 
method results in a score of 450.94W, leading to a deviation of -6.56W. 
For the weighted average method, 64.87% of the cases show an im-
provement, with the best deviation at 2.91W and the worst deviation 
at -6.92W. Although these methods show a slightly lower percentage 
of improvements compared to the persistence method, they also show 
significantly better worst-case performances.

5.  Discussion

Our results from the previous section suggest that the 𝑒-selection 
procedure, particularly the persistence approach in our application, can 
outperform a fixed choice of a forecasting technique (one time for all). 
Even in the worst-case scenario, it provides an improvement over con-
sistently choosing the NG-RC forecast. While the parameters 𝜆 and 𝜔
control the frequency of model switching, for our data, the 𝑒-selection’s 
performance seems to indicate a stronger dependence on the window 
length 𝜔 than on the value of the risk aversion parameter 𝜆. Given that 
residential load profiles often exhibit daily and weekly patterns, it is 
plausible that the past 𝜔 = 7 days represents the most critical time win-
dow for energy forecasting [53]. Notably, setting 𝜔 = 1 step and 𝜆 ≈ 1
closely approximates a true day-ahead persistence model. Rather than 
dividing the data into a separate validation set, our study demonstrates 
the application of 𝑒-values in a continuous time setting, which enables 
real-time model selection, including guarantees and known decision risk 
in the energy context. This is highly relevant to the building energy 
context since it enables individual online decisions only with the infor-
mation available at that point in time. Individual here is two-folded. 
On the one hand, it refers to individual decisions for each time step in 
one building or a closed unit within a building. This is important since 
different forecasting models can have different performances through-
out the day or seasons, as can be seen in Fig. 3. On the other hand, 
individual decisions can be taken with respect to different buildings re-
flecting the unique characteristics of energy demands, which could fa-
vor different forecasting models that are better at capturing the unique
behaviors.

Although computational time is not the main focus of this work, 
it remains crucial for real-time applications. Even though the selec-
tion procedure itself is computationally efficient and can potentially 
be improved, generating two forecasts at each time step can be expen-
sive, particularly when using computationally intensive methods like 
LSTM [10]. In the building context, where the time intervals for energy
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Fig. 9. Deviation of LSTM and the 𝑒-selection persistence method of the average scores across combinations of the hyperparameters 𝜔 and 𝜆. Cells marked with a 
“+” indicates an improvement of the performance using 𝑒-selection.

management mostly are between 5 min and 15 min depending on the 
respective electricity market, the runtime of the model selection will not 
be a limiting factor as the runtime of one single e-selection process takes 
less than 2 milliseconds. The runtime for conducting the actual forecasts 
will be the main limiting factor for real-time applications in the build-
ing energy context. However, there are also smaller time intervals to 
be considered in the energy domain in general, e.g., when looking into 
frequency reserve.

Regarding the different 𝑒-selection approaches, our example does 
not provide conclusive evidence favoring one method over another. For 
𝜔 ≥ 7, where our model consistently outperforms both LSTM and NG-
RC, the average scores remain extremely close, varying by less than 
4.7% in comparison to the optimal score. Instead, one may focus on 
interpretational aspects. The persistence approach leads to longer peri-
ods using a single forecast, while the sampling and weighted average 
methods combine both predictions to enhance forecast accuracy. In this 
context, the weights 𝑤𝑝,𝑡 can be interpreted as Bayes factors [54]. If 
a linear combination of the forecasts is allowed, the weighted average 
procedure is applicable. Otherwise, if a clear decision between 𝑝𝑡 and 𝑞𝑡
must be made at each step, the sampling approach is appropriate.

Despite LSTM outperforming NG-RC in the long term with respect 
to MAE on this dataset, NG-RC achieves a lower root mean squared er-
ror (RMSE), indicating that the selection outcome is highly dependent 
on the chosen scoring function [10]. This emphasizes the importance of 
carefully choosing a suitable error measure for each application, dataset, 
or building, respectively. On the other hand, this also shows the flexibil-
ity of the approach, enabling tailored solutions for the individual appli-
cations. We already discussed the possible effects and the importance of 
the chosen score in detail in our methodology in Section 2.4.2. A key ad-
vantage of using 𝑒-values is their ability to control the familywise error 
rate in sequentially dependent data, providing guarantees for the statis-
tical decisions. In our study, we test Δ̃𝑡,𝜔 at each time step 𝑡, offering a 
weaker guarantee than testing the score differentials 𝛿𝑡 across the entire 
dataset, hence is able to significantly reject the hypotheses more often 
(maintaining level-𝛼-control). However, this guarantee applies strictly 
to the statistical test, not to the overall prediction, which requires ad-
ditional assumptions. Consequently, it is challenging to verify whether 
the confidence level 1 − 𝛼 is actually achieved [31].

Limitations: While our approach is extremely general with no as-
sumptions at all on stationarity, ergodicity, range of the forecast values 
(which is a clear breakthrough as to probability guarantees), one could 
consider it a limitation that the number of transitions/switches from 
one procedure to the other one does not enter the decision rules. In 
principle, if switching involves expensive conversion steps, the result-
ing procedures introduced in this paper could end up with too many 

such transitions and end up suboptimal as to costs. However, this is no 
knock-off drawback, as such conversion costs could be integrated as a 
penalty into the loss function. The modified procedure would only re-
quire transitions if the induced conversion costs are amortized by the 
benefits of the transition. Another limitation of our approach lies in the 
fact that we issue streams of superiority decisions, each of them only 
valid locally in time. On the one hand, this local validity adds flexibility 
when one is allowed to decide to use forecaster A in this period and 
forecaster B in the other period. But these local decisions will, in gen-
eral, be of limited help for investment decisions, whether one should 
buy forecaster A or forecaster B. For such purposes, a global superiority 
criterion would be needed, so the local decisions would need to be ag-
gregated in a suitable way; discussion of such aggregation mechanisms 
would be a topic for another paper. Finally, our setting so far only con-
siders the selection between two competing forecasting techniques. A 
natural generalization would enlarge the set of competing techniques 
to 𝑘 ≥ 2 competitors. Remarkably, the structure of the decisions in this 
more general setting will remain the same as the ones discussed in this 
paper, but two adaptations will need to be made: (a) Refined simultane-
ous confidence bounds will be needed, which take into account that the 
best procedure must be better than 𝑘 − 1 instead of 1 competitor[s], and 
(b) the off-diagonal terms in the respective confusion matrix gathering 
the occurrence probabilities of each false pairwise ordering in case of 
𝑘 competitors will have to be aggregated and weighted with respective 
costs in a suitable way. In fact, in the framework of classical sequential 
decision problems, this amounts to passing from the two-armed bandit 
problem (the analogue of which was the subject of this paper) to the 𝑘-
armed bandit problem. The 𝑒-value approach has already come up with 
solutions for such problems, see Ramdas et al. [28, Section 7]. In partic-
ular, Kaufmann and Koolen[55] proposes solutions for (a) and (b) in the 
𝑘-armed-bandit problem, albeit in the much narrower world of decisions 
for processes with distributions in an exponential family. Moreover, with 
additional notational and computational complexity, one could even al-
low for a time-varying number of competitors, i.e., 𝑘 depending on 𝑡
in a stochastic, “prequential”  way in the sense of Dawid[56]. Still, the 
mathematics behind these generalizations would clearly go beyond the 
scope of this paper, and we instead refer to future papers.

From the building energy perspective, there are only very few limita-
tions due to the high flexibility towards the forecasting models, the error 
measures, and the fast computational time of e-values. However, two 
points remain noteworthy. Firstly, we only choose the forecast model 
for the next time step and are not able to make statements on the supe-
riority of different forecast models over all, thus on a global level or for 
greater time horizons. Instead, the proposed approach based on e-values 
provides a continuous stream of decisions for the very next time step 
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based on currently available information. For global decision-making, 
well-established ex-post model comparison methods can be used. Sec-
ondly, the proposed methodology only conducts relative comparisons 
of forecasting models and makes no statements on the absolute quality 
of the predictions themselves. If the e-values favor one model A over 
another B, that does not imply that A is automatically a good forecast-
ing model. However, it can be assumed that the forecasting models that 
are taken into account for comparison are carefully chosen based on 
expert knowledge for the specific application or building. For absolute 
statements on the forecast quality, respective error measures have to be 
evaluated directly.

6.  Conclusion and outlook

In this work, we successfully transfer and translate the 𝑒-value-based 
approach for time-continuous forecast model selection from Henzi and 
Ziegel [30], Choe and Ramdas[31] from binary outcome prediction to 
the energy domain. We apply the approach to residential building elec-
tricity demand forecasts. We extend this forecast model selection ap-
proach to forecast fusion/combination by specifying a combination of 
the two forecasts into a new, better one. Our study demonstrates that 
the 𝑒-selection method provides competitive results with minimal addi-
tional computational costs while offering a statistical guarantee. How-
ever, it’s important to note that this guarantee does not imply that the 
sequential test will make the correct decision at every time step with an 
error rate of 𝛼, because this would involve information on the outcome 
distribution unknown to the decision process. Instead, it controls the 
average score differentials with a significance level of 1 − 𝛼 [31]. The 
passage from the binary outcome setting of Henzi and Ziegel [30], Choe 
and Ramdas[31] to the continuous outcome setting of energy demand 
also requires the usage of scores adapted to this scale. To this end, we 
replace the Brier scores used in Henzi and Ziegel [30], Choe and Ram-
das[31] with the MAE, which is a well-established error measure in 
the energy context. To achieve this, we suitably transform the MAE 
scores in an order-preserving manner. For interpretability, in our deci-
sion plots, we back-transform the results and confidence bounds to the 
original MAE scale.  Even though we use the MAE exemplarily in this 
work, our proposed method on dynamic model selection works with 
many other error metrics as long as they are quasi-convex. Addition-
ally, any forecasting techniques are possible for the model evaluation 
procedure since 𝑒-values are “method-blind”. This makes the model se-
lection approach based on e-values highly relevant and applicable to the 
energy context and especially the building domain, where unique char-
acteristics apply in each building. On the real data example of a time 
series of residential electricity demand, these tests are shown to have 
enough power to obtain a clear ordering of the considered forecasters 
most of the time, which, in addition, is supported by a probabilistic
guarantee. 

Open Ends: As indicated, the probabilistic guarantees do not neces-
sarily extend to a retrospective backtesting perspective, so future work 
should focus on properly backtesting the results presented in this study. 
The model-free and 𝑒-process-based backtesting procedure introduced 
in Wang et al. [57,58] offers a promising direction for such a validation. 
Additionally, further studies are needed to evaluate the performance 
and robustness of our 𝑒-selection method across different datasets and 
scoring rules. This includes validation of the hyperparameters involved. 
Moreover, the selection procedure should account for the varying com-
putational costs associated with different forecasting methods. Passing 
from point forecasts to probabilistic forecasts, it is clear that one could 
easily proceed in the same way as in this work, simply replacing the 
MAE score function with the terms of a continuous ranking probability 
score (CRPS) as discussed in Gneiting and Katzfuss[59]. To this point, 
our proposed model selection framework based on 𝑒-values is limited 
to 𝑘 = 2 forecasters but could be extended to 𝑘 > 2 in future work as 
outlined in our discussion section. Currently, the number of transitions 
between forecasting models is not limited, but one could incorporate 

the associated “costs” of switching forecasting models easily into the 
penalty function. This could be covered by future work.
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