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ABSTRACT9

Artificial Intelligence systems often operate as “black boxes”, creating challenges for
trust and collaboration in human-AI teaming environments. Particularly for Unmanned
Aerial Systems swarm operations. This paper proposes an explainable decision
support framework that integrates fuzzy-logic with reinforcement learning to enhance
transparency, while maintaining adaptability. The framework processes uncertain
inputs through linguistic variables and interpretable rules, generating natural
language explanations alongside mission recommendations. Reinforcement learning
optimizes system parameters within constraints, ensuring the decision-making
process remains transparent while performance improves over time. This approach
addresses key challenges in unmanned aircraft systems swarm coordination,
particularly for dynamic task allocation when assets fail or environmental conditions
change. By preserving explainability throughout the optimization process, the system
enables operators to understand not only what decisions are made but why they are
made, which is a crucial factor for establishing trust in human-autonomous teaming.
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INTRODUCTION26

The integration of Artificial Intelligence (AI) into decision-making systems27

has significantly advanced the capabilities of autonomous systems. However,28

the “black-box” nature of many AI models often raises concerns about29

transparency, interpretability and trustworthiness. These criteria’s are30

especially important in safety-critical domains and the concerns are31

particularly pronounced in human-AI teaming, where trust plays a pivotal32

role ensuring effective collaboration and adoption of AI technologies.33

Human-AI teaming refers to the collaborative work between humans and34

AI systems in which both entities contribute complementary capabilities to35

achieve a shared goal. In this context humans typically provide contextual36

understanding and ethical judgement, while AI systems offer compu-tational37
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power and data processing capabilities (Li et al., 2024; Thiebes et al., 2021;38

Seeber et al., 2018). Trust in AI systems is influenced by factors such as system39

reliability, transparency and the ability to provide meaningful explanations40

for decisions (Li et al., 2024; Mehrotra et al., 2023). Addressing these41

challenges is crucial to unlock the full potential of AI in the context of42

Unmanned Aerial Systems (UAS) swarms.43

The simultaneous operation of multiple UAS, either independently or44

organized in coordinated swarms have emerged as an important technology45

in domains ranging from disaster response to surveillance and defence.46

The ResponDrone project demonstrates how drone-swarms can significantly47

enhance situational awareness and response capabilities in emergency48

scenarios (Polka et al., 2017; Erdelj et al., 2017). Their ability to operate49

collaboratively and adaptively offers unparalleled efficiency and scalability50

(Tahir et al., 2019). However, coordinating such a swarm involves complex51

decision-making under uncertainty. This requires a robust system, that52

can dynamically allocate tasks, manage resources and adapt to changing53

conditions (Yan et al., 2023; Lamont et al., 2007). It is important54

to note that current UAS-swarm technologies predominantly operate55

with a Human-In-The-Loop approach, rather than fully autonomy. The56

human operator remains essential for high-level decision-making, mission57

oversight and intervention in complex situations which automated systems58

cannot adequately handle alone. This human-machine interaction ensures59

appropriate ethical considerations and accountability while leveraging the60

computational advantages of automation (Endsley, 2016). Traditional AI61

approaches often struggle with the dual demands of high performance62

and explainability in these contexts (Wu and Xu, 2021). This limitation63

shows the need for an innovative framework, that balance adaptability with64

interpretability.65

In this context, Fuzzy-Logic offers a compelling solution to this challenge66

by providing an inherently interpretable decision-making framework. Unlike67

classical AI methods that rely on non-transparent, statistical models, Fuzzy-68

Logic operates through intuitive linguistic rules and degrees of truth.69

Which makes it well-suited for modelling human-like reasoning in uncertain70

environments (Wu and Xu, 2021; Improta et al., 2019). For example,71

instead of rigid thresholds like “flight speed > 25 m/s”, Fuzzy-Logic employs72

terms such as “pretty fast” or “very fast”, which align more closely with73

human perception (Improta et al., 2019). This characteristic makes fuzzy74

logic particularly valuable in Human-Machine Interface (HMI) design, where75

promoting trust and collaboration is essential (Crandall and Cummings,76

2007). Especially for mission management of multiple UAS or a UAS-77

swarm, studies have shown that trust is one of the most crucial human78

factors that need to be considered in the design of the HMIs (Friedrich,79

2021). Current research in mission planning systems for UAVs confirm that80

establishing trust between operators and autonomous systems remains a81

significant challenge, that must be addressed through transparent interfaces82

and explainable decision processes (Huttner and Friedrich, 2023).83

Building on these principles, this paper proposes a framework for an84

explainable decision support system for mission planning of UAS swarms.85

The approach proposes to integrate Fuzzy-Logic with Reinforcement86

Learning (RL) to optimize performance, while maintaining transparency.87
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Fuzzy-Logic serves as the foundation for modelling uncertainty and88

generating interpretable outputs, while RL enhances adaptability by fine-89

tuning the system parameters based on feedback from simulations (Melin and90

Castillo, 2013; Berenji and Khedkar, 1992; Kober et al., 2013). This hybrid91

approach ensures that the systems remains explainable even as it learns and92

evolves over time (Zander et al., 2023).93

BACKGROUND AND RELATED WORK94

Fuzzy-Logic in Decision Support Systems95

Fuzzy-Logic has emerged as a powerful tool for decision-making in uncertain96

and complex environments. Unlike classical, binary logic, which operates in97

discrete true or false values, Fuzzy-Logic allows for reasoning with degrees98

of truth. This enables more of a human-like decision-making process. This99

flexibility makes it particularly well-suited for applications where data is100

incomplete, imprecise or ambiguous (Wu and Xu, 2021).101

Fuzzy Decision Support Systems (FDSS) leverage linguistic variables, e.g.102

“high risk” or “moderate priority”, and an intuitive rule-based framework103

to model human reasoning. These systems are inherently interpretable due to104

their reliance on transparent “if-then” rules, that align closely with human105

cognitive processes (Wu and Xu, 2021; Zander et al., 2023). For example,106

a Fuzzy-Rule might state: “If resource availability is low and task priority is107

high, then allocate additional resources”.108

However, challenges remain in subjective definition of membership109

functions and rules, as well as in integrating Fuzzy-Logic with data-driven110

approaches, like machine learning. Recent advancements have explored111

hybrid models combining Fuzzy-Logic with RL to address these limitations112

while maintaining system inter-pretability (Zander et al., 2023).113

UAS-Swarms and Mission Planning114

UAS swarms represent a significant advancement in autonomous115

systems, offering scalability, redundancy and adaptability in dynamic116

environments (Tahir et al., 2019). These swarms are increasingly deployed117

in applications such as disaster response, surveillance and precision118

agriculture (Karampelia et al., 2023). However, coordinating multiple UAS119

introduces new challenges related to task allocation, resource management120

and real-time decision-making under uncertainty.121

Dynamic task allocation is a critical component of swarm mission122

planning. Algorithms such as Ant Colony Optimization (ACO), Genetic123

Algorithms (GA) and Binary Wolf Pack Algorithms (BWPA) have been124

employed to optimize task distribution among UAVs. These strategies are125

based on factors like task priority, resource constraints and environmental126

conditions (Peng et al., 2021; 2022).127

In addition to task allocation, UAS swarm coordination relies on robust128

communication protocols and formation control strategies to ensure efficient129

operation. Distributed control methods have proven superior to centralized130

approaches in enhancing swarm scalability and resilience to communication131

failures (Karampelia et al., 2023). Despite these advancements, the132

integration of explainable decision-making frame-works for UAS swarm133
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coordination remains an underexplored topic. To assess the research134

landscape in this area, a literature review using the following terms:135

“explainable AI” and “UAS swarm” and “coordination” in the Scopus136

database has been done. The search was limited to publications from137

2018 to 2025. From initial 127 results, only 14 paper addresses both138

UAS-swarm coordination and explainability aspects. Furthermore only 8139

publications specifically examined explainable decision-making frameworks140

in the context of UAS-swarm operations. This confirms the significant141

research gap in integrating explainability into UAS-swarm coordination142

systems. Particularly those designed to support human operators.143

Explainable AI144

XAI aims to bridge the gap between AI’s computational power and human145

trust by making AI systems more transparent and interpretable. The National146

Institute of Standards and Technology (NIST) identifies four core principles147

for XAI, which are listed below and are essential for fostering trust in AI148

systems deployed in safety-critical environments (Phillips et al., 2021).149

• Transparency150

• Interpretability151

• Accuracy of explanations152

• Knowledge limits153

Human-centred XAI approaches emphasize tailoring explanations to the154

needs of specific user groups. For example, declarative explanations may155

suffice for engineers seeking technical details about system operations, while156

interactive or visual explanations may be more effective for non-technical157

users (Liao and Varshney, 2022). Studies have demonstrated that well-158

designed explanations can enhance user trust by providing clear justifications159

for AI decisions while reducing the need for constant monitoring (Ferrario160

and Loi, 2022; Friedrich et al., 2023).161

In robotics and autonomous systems, XAI methods, such as decision trees162

have been employed to make AI-driven decisions more understandable to163

operators. These methods are particularly relevant for UAS swarms operating164

in dynamic environments, where real-time interpretability is crucial for165

effective human-machine collaboration (Ferrario and Loi, 2022).166

Integration of Reinforcement Learning With Fuzzy-Logic167

RL has shown promise in optimizing decision-making systems by enabling168

adaptive learning from interactions with the environment (Kober et al.,169

2013; Sutton and Barto, 2018). However, traditional RL methods often lack170

transparency due to their reliance on complex neural network architectures.171

Integrating RL with Fuzzy-Logic offers a solution by combining the172

adaptability of RL with the interpretability of Fuzzy inference systems.173

Takagi-Sugeno-Kang (TSK) Fuzzy-Systems optimized via RL have174

demonstrated success in various domains by fine-tuning membership175

functions and rule parameters without compromising system176

transparency (Zander et al., 2023; Berenji and Khedkar, 1998). For instance,177
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RL can adjust Fuzzy-Rules dynamically based on feedback from simulation178

environments or real-world operations while ensuring that the underlying179

rule structure remains interpretable (Zander et al., 2023).180

This hybrid approach has been applied to problems, such as mobile181

robot navigation and safety-critical decision-making in autonomous driving182

(Zander et al., 2023). By containing RL optimization within the bounds183

defined by the Fuzzy-Rules, it is possible to achieve a balance between184

performance improvement and explainability, which is a key requirement for185

trustworthy AI systems deployed in high-stakes environments.186

PROPOSED FRAMEWORK187

System Architecture188

The in this paper proposed framework integrates the Fuzzy-Logic, RL and189

AI principles to create a decision support system for mission planning of190

UAS swarms. The architecture is designed to address two primary objectives.191

Firstly, the systems needs to ensure the interpretability and transparency192

through the use of Fuzzy-Logic and secondly it needs to be able to enhance193

the adaptability and performance via RL while maintaining explainability.194

The system consists of three core components, which can be seen in195

Figure 1 and are described in the following section. The Fuzzy-Logic196

module defines linguistic variables, membership functions and rule-based197

inference systems to model human-like reasoning. It processes uncertain198

inputs and generates interpretable outputs in natural language. The RL199

module optimizes the parameters of the Fuzzy-Logic system, such as200

membership functions thresholds and rule weights. The optimization process201

is constrained to preserve the structure and interpretability of the fuzzy202

rules. The mission planning engine is the last core component, which203

integrates the outputs from the Fuzzy-Logic module with real-time data204

from UAS swarm operations to dynamically allocate tasks, manage resources205

and adapt to changes. The overall architecture ensures that decision-206

making remains transparent while leveraging adaptive learning capabilities207

to improve performance over time.208

Figure 1: Three component architecture for explainable decision support UAS-swarm
operations.

Fuzzy-Logic Framework209

In this framework, the linguistic variables are defined to represent key aspects210

of mission planning, such as risk level or resource availability. Each variable211
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is associated with membership functions that map quantitative inputs, for212

example numerical sensor data, to qualitative terms, that are understandable213

by humans. These membership functions determine the degree to which an214

input value belongs to a specific linguistic category. For example, the extent215

to which a 70% battery level represents “sufficient” or “limited” resource216

availability.217

A set of “if-then” rules forms the knowledge base for the decision-making218

process. For example, one of the Fuzzy-Rules could be defined as “If the risk219

level is high and the task priority is low, then postpone the current task”.220

Using these rules, which are designed in collaboration with domain experts,221

ensures the alignment with operational requirements and human reasoning222

patterns.223

The Fuzzy-Logic framework employs amulti-step process. First is the input224

fuzzification, which converts precise numerical values into fuzzy-values.225

Then a rule evaluation in which each relevant rule is applied, is performed.226

After that an aggregation combines the output of all rules. And finally,227

defuzzification converts the aggregated fuzzy output into a clear, actionable228

decision or recommendation. This comprehensive process allows the system229

to handle uncertainties, while maintaining explainability throughout the230

decision process.231

This approach differs from traditional AI systems as it preserves the232

reasoning process in a human-readable format, enabling operators to233

understand not only what decision was made, but also why it was made.234

Reinforcement Learning Integration235

The RL component of the framework plays a crucial role in optimizing the236

fuzzy-logic system, while preserving the explainable nature. RL enhances237

the adaptability of the fuzzy-logic system by optimizing parameters based238

on feedback from simulations or real-world operations. It is then used to239

adjust the membership function boundaries to better reflect observed data240

distributions or it fine tunes the rule weights to prioritize certain actions241

under specific conditions.242

To support transparency, the RL optimization is constrained with243

predefined boundaries. Therefore, RL cannot modify the structure or logic244

of the fuzzy-rules, but can adjust numerical parameters. This constraint-245

based approach implements a so called “cooperative neuro-fuzzy system”,246

where learning algorithms improve performance without sacrificing the247

interpretability advantages of the original fuzzy-system (Berenji and Khedkar,248

1992). This hybrid approach ensures that the system remains interpretable249

while benefiting from adaptive learning capabilities.250

The reward function needs to be carefully designed to balance performance251

metrics, such as mission completion time and resource efficiency, with252

explainable metrics, such as rule consistency and linguistic coherency. During253

the learning process, parameter changes are gradually introduced to allow for254

both system stability and human oversight of the adaptation process.255
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Discussion: Human-Interpretable Re-Planning in Dynamic256

Environments257

To evaluate the effectiveness of the proposed framework, simulation studies258

will be conducted using realistic mission scenarios, such as search and rescue259

operations in disaster areas involving UAS-swarms. The primary focus will260

be on examining how the system handles dynamic environmental changes,261

sensor failures and unexpected obstacles, which would typically require262

mission re-planning.263

A critical aspect of the evaluation will focus on human interpretability.264

It will be evaluated, whether the operator better understands decision265

rationales from the fuzzy-logic enhanced system compared to traditional266

RL approaches. This comparative assessment builds on the fundaments of267

explainable AI, which includes interpretability metrics for AI system used in268

critical decision-making context (Arrieta et al., 2019).269

The system’s ability to re-plan missions when faced with environmental270

changes or asset failures represents a key evaluation topic, i.e. whether271

human operators can readily understand why re-planning occurred through272

the natural language explanations generated by the fuzzy-logic system.273

This human-centred evaluation approach aligns with current research274

on XAI, which emphasizes that the explanations must be adapted to275

human cognitive pat-terns rather than merely exposing technical processes276

(Miller, 2017).277

By combining fuzzy-logic’s inherent interpretability with RLs adaptability,278

it is expected to achieve a balance that maintains system transparency,279

while enabling performance optimization. Allowing operators to develop280

appropriate trust in the system’s decision-making capabilities even as281

conditions change during mission execution.282

Discussion: A promising Approach and Way Forward283

The integration of fuzzy-logic with RL for mission planning of UAS-swarms284

present a promising approach to address the critical challenges of maintaining285

human trust in increasingly autonomous systems. The following section286

discusses the anticipated benefits, evaluation approaches, challenges and287

broader implications of the proposed framework.288

The primary advantage of the hybrid approach lies in its ability to balance289

adaptability with explainability, which is a crucial aspect in safety-critical290

environments. By preserving the interpretable structure of fuzzy-logic, while291

leveraging the optimization capabilities of RL, the system can evolve and292

improve without becoming opaque to human operators. This transparency293

is expected to foster appropriate trust from the operator.294

Furthermore, the natural language explanations generated by the fuzzy-295

logic system offers justifications for decision that align with human cognitive296

patterns. Unlike black-box approaches that may provide no reasonable297

explanations, which do not accurately reflect the actual decision process,298

the proposed framework works with explanations which are directly299

emerged from the same rules to make decisions. This congruence between300

explanation and decision mechanism addresses a significant limitation in301
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current explainable AI implementation for autonomous systems (Liao and302

Varshney, 2022; Arrieta et al., 2019).303

The validation of the framework will follow a multi-phase approach304

focusing on both, system performance and human factors. Initial evaluation305

will occur though a simulation environment, which replicates challenging306

mission scenarios involving environmental changes, resource limitations and307

asset failures. These simulations will assess the system’s ability to re-plan308

missions effectively while maintaining explainability. The evaluation will309

involve UAS operators with varying levels of experience to ensure the system’s310

explanations are accessible across different expertise levels.311

We hypothesize, that operators will demonstrate improved situation312

awareness, increased trust and more effective decision making when working313

with the explainable system compared to non-explainable alternatives. This314

human-centred evaluation approach acknowledges that the measurement of315

success for decision support systems is their ability to enhance human-AI316

collaboration rather than merely autonomous performance.317

Furthermore, several challenges must be addressed during the318

implementation and evaluation of the proposed framework. First, the319

subjective nature of fuzzy-rule definition introduces potential inconsistencies320

or biases from domain experts. To mitigate this, it is planned to incorporate321

knowledge from multiple experts and refine rules though iterative validation.322

Second, balancing the preservation of explainability with optimization323

through RL significantly presents a fundamental tension. If RL alters324

membership functions or rule weights, the resulting system may become less325

intuitive despite formal preservation of the rule structure. This needs to be326

addresses, to carefully constrain optimization spaces and ongoing evaluation327

of explanation quality throughout the learning process.328

Lastly, the dynamic environments of disaster response scenarios present329

unpredictable challenges that may fall outside the anticipated parameters of330

the system. To address this limitation, the framework includes mechanisms331

for identifying situations, where confidence in recommendations should be332

reduced, explicitly communicating uncertainty to operators in these cases.333

Beyond UAS-swarm operations, this research contributes to the growing334

field of human-AI teaming in complex environments. The principles335

and methodologies developed here may extend to other domains where336

explainable decision-making is critical, such as autonomous vehicles.337

The approach represents a shift from viewing AI systems as either fully338

autonomous or merely tools, towards conceptualizing them as teammates339

with complementary capability to human operators. This perspective340

emphasizes the importance of mutual predictability, shared understanding341

and appropriate trust. This all is facilitated by the explainable AI framework.342

As autonomous systems become increasingly prevalent in safety-critical343

domains, the ability to provide transparent justifications for decisions344

will likely become a regulatory requirement rather than merely a design345

preference. This framework anticipates such a development by demonstrating346

how explainability can be preserved even as systems learn and adapt over347

time.348
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