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r-LightBioCom Summary
Project summary and goals
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Topic:   HORIZON-CL4-2022-RESILIENCE-01-11 

Advanced lightweight materials for energy efficient structures

Type of action: Research and Innovation Action (RIA)

Partners: 15 partners

Coordinator: AITEX

Start date: 01/01/2023

End date: 30/06/2026

Project no.: 101076868

https://cordis.europa.eu/project/id/101091691
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r-LightBioCom Overview
New bio-based and sustainable Raw Materials enabling Circular Value Chains of High Performance 

Lightweight BioComposites 
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r-LightBioCom Concept
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Project Summary
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Validation of r-LightBioCom composites in use cases: Automotive, infrastructure, aeronautics

New fast curing technologies for r-LightBioCom’s HPC family

Development of new bio-based resins, 

additives, and formulations for HPC

Development of new recycling technologies for resin and fibre components
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New materials and technologies

Sustainable-by-design 

framework

Use case validation

Life cycle assessment (LCA)

New HPC components based on 

sustainable textile products and bio-resins



Research Group Overview
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Structural optimization and integrated safety
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Structural optimization
Integrated safety

Laboratory for automated 

material card calibration

New Optimization algorithms

Integrated safety
Material descrption

New materials



Material Development

Bio-based nanomaterials

Bio-based resin

Bio-based Intermediates

Sustainable / recycled
fibres

Processing Technology

…

Material Data

Composition (bio-content)

Mechanical
Characterization

Physical Characterization

Chemical 
Characterization

Environmental Durability

Flammability

…

Material Databank

Material Data

Production Data

Characterization Data

Ecological Footprint

Production Costs

Coupled Ecological 
Optimization (CEO) 
Framework

Numerical Material 
representation

Automated Processes

Use-case (application) 
description

Material Databank

R-LightBioCom: Methods and Tools
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Creation of CEO, an optimization framework for composite modelling , sustainability and validation
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METHODS & TOOLS

for a standardised, holistic

sustainable high-performance

composite design, modelling and

systematic optimization
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Methods and Tools
Characterisation Process
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Methods and Tools: Automated Material Characterization Process
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Process Chain
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Simulation Optimization

Test results

Coupon tests Pendulum

Experimental material characterization Automated material card calibration

LS-DYNA© 
Pam-Crash©

Conditioning

Quasi-static 

coupon tests 

Automated Material card 

generation  depending on 

conditioning

• (Fiber Reinforced) Plastics 

• Lightweight Metals 

• Foam - / Core Materials

• … 

Materials



Export material card and validation report

Validation Simulation

Run surrogate optimisation method

Sampling DOE Meta-model generation
Optimisation: FE-Solver response 

to Test-response

Generate Parameter Model for response curve

4a Foam Model for main characteristics Johnson-Cook Strain rate dependency

Import compression data

Quasi-Static and Dynamic

Methods and Tools: Automated Material Characterization Process

Andrew Harrison, andrew.harrison@dlr.de

General Process flow for Foam
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4a engineering foam model

Johnson-Cook Rate Dependency

Experiment

Simulation

*MAT_083

(FU_CHANG_FOAM)



Methods and Tools: Automated Material Characterization Process
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Material Implementation into automated process: LS-DYNA availability
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MAT063: Crushable Foam

• Model for foams which undergo large 

deformations

• Multiple different yield surface formulations

• Non-reversable deformation

• No strain-rate behavior

MAT163: Modified Crushable Foam

▪ This material is an extension of MAT063, 
with the addition of strain-rate behavior 

▪ Definition of tables of yield stress vs 
volumetric strain curves

▪ Non-reversable deformation

▪ Based on yield surface formulation

MAT057: Low Density Foam

▪ Model for highly compressible low density 

foams. Mainly applied in seat cushions and 

Side Impact Dummies. Could possibly be 

applied to foams like aerogels.

▪ Rate effects are optional and are defined 

through a relaxation function. This model also 

includes hysteretic unloading.

MAT026: Honeycomb

▪ Model dedicated to modeling honeycomb and 

foam materials with anisotropic behavior. This is 

done by defining elastoplastic behavior for all 

normal and shear stresses, which are fully 

uncoupled.

▪ Optional rate effects defined through a load 

curve.



Methods and Tools: Automated Material Characterization Process
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Material Implementation into automated process: via VALIMAT (4a engineering) - User-Defined Material Card
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Encoding information

Comments

XML Schema Definition

Variables for the whole material card

Specific case definition

User defined case variables

What is written into the material.inp file

Damage specific cases & variables

What is written into the material.inp file

Generates input for Parameter Optimization
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Mechanical Testing
Set-up and Input to Paramter Model
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Mechanical Testing
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Specimen and Test set-up
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Compression Specimen

• Length: 20mm

• Width: 20mm

• Thickness: 20mm

3-Point bending Specimen

• Length: 20mm

• Width: 60mm

• Thickness: 20mm

W

L

T

W L

T

Bio-Epoxy Foam (developed by IVW in r-LightBioCom)

Test Type Speed(s) 

(m/s)

Fin radius

(mm)

Support 

Radius 

(mm)

Support 

Distance

(mm)

Compression 9.9E-6, 1, 

2.5, 3

- - -

3-Point Bending 3.3E-6, 0.5, 

1, 1.5 

QS: 10

DYN: 5

QS: 5 

DYN: 2

50

Provided by:



Mechanical Testing
Results Overview: Dynamic

14
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3-Point Bending Test (IMPETUS)

Compression Test (IMPETUS)

1 m/s 2.5 m/s 3 m/s

0.5 m/s 1 m/s 1.5 m/s



Mechanical Testing
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Results Overview
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Quasistatic compression
Compression (varying rates)

Dynamic 

(pendulum) 

response

Quasistatic 

(UPM) 

response

Quasistatic 3-pt Bending 3-pt Bending (varying rates)

Dynamic 

(pendulum) 

response

post-testPre-test

post-testPre-test
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Numerical Calibration
Bio-Epoxy Foam using MAT_163
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Numerical Calibration
Calibration process for compression and 3-point bending
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Finite Element Input:

• 3mm Solid element

• ELFORM = 2

• Fully Integrated solid 
element

• Initial velocity (𝑉0) for
dynamic tests

• Pescribed motion (𝑉) for
quasistatic tests

• Simplified Test 
representation

• Time-scaling (quasistatic
only)

Parameter identification 
stages:

• Quasistatic compression 
curve only, using 4a Foam 
Model

• Integrate dynamic
compression curves for
rate effects (Johnson-
Cook)

• Use design variables with
small variance for tensile
failure criterion with
Bending cases

• Failure and damage
parameters for
compression

• Validation simulation

Optimization Model

Impactor

Specimen

Support



Numerical Calibration
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Classical Calibration process loop in LS-OPT
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Numerical Calibration
Calibration Results: LS-DYNA
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Tension failure 

(*MAT_ADD_EROSION), 

Criteria: 

• maximum principal 

stress

• plastic strain failure 

criteria.

1 m/s 2.5 m/s

1.5 m/s



Bio Epoxy Foam (MAT_063)

Numerical Calibration
Calibration Results: LS-DYNA
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Optimisation: (MAT_163) rate curve Optimisation: (MAT_163) σ vs. ε

Optimisation: example rate loading curve



Numerical Calibration Examples
Calibration Results: LS-DYNA
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MAT063

MAT163 MAT057

MAT026

2.5mps Compression Test - Covestro



Numerical Calibration Examples
Calibration Results: VPS - PAMCRASH
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MATER45 MATER35

2.5mps Compression Test - Covestro
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Test specimens

Dynamic compression tests

Paper
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Automated Numerical Calibration
Outlook and Next steps

• Exploring methods to ascertain key properties of core 

materials with less number/demanding tests

• Validating further properties of automated material 

calibration (e.g. Honeycomb failure)

• Generating numerical representation of r-LightBioCom

core materials (Balsa, Hemp, rCF…)

• Improving robustness of ROM approach (element 

regularization)

* 

• Good alignment between test and numerical results in each 

solver (LS-DYNA, PAMCRASH)

• Material selection vital

• Simplified Characterisation approach provided enough data 

for key mechanical properties in crash use-cases

• Implementation of failure/erosion laws (erosion and DIEM)

* 

Outlook

Next Steps:

Balsa

Metals Plastics
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Project website LinkedIn Twitter
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Thank you for your attention

Project Coordinator Technical Manager Dissemination Manager 

Aitex Eduardo Fages Dorothea Weber

Info-r-LightBioCom@dlr.de efages@aitex.es dorothea.weber@dlr.de
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Visit us Follow us

http://www.r-lightbiocom.eu/
https://www.linkedin.com/company/rlightbiocom/
https://www.linkedin.com/company/rlightbiocom/
https://twitter.com/rLightBioCom
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