

Numerical Calibration of Tensile and Compressive Failure of Bio-Epoxy Foam Core for Explicit Analysis using a Simplified Testing Approach

Research conducted within the EU funded project: r-LightBioCom

Andrew Harrison / 08.07.2025

German Aerospace Center (DLR) - Institute of Vehicle Concepts (FK)

r-LightBioCom Summary

Project summary and goals

r-LightBioCom Overview

New bio-based and sustainable <u>Raw Materials enabling Circular Value Chains of High Performance Light</u>weight <u>BioCom</u>posites

Topic: HORIZON-CL4-2022-RESILIENCE-01-11

Advanced lightweight materials for energy efficient structures

Type of action: Research and Innovation Action (RIA)

Partners: 15 partners

Coordinator: AITEX

Start date: 01/01/2023

End date: 30/06/2026

Project no.: 101076868

https://cordis.europa.eu/project/id/101091691

r-LightBioCom Concept

Project Summary

Research Group Overview

Structural optimization and integrated safety

Integrated safety

Material descrption

New materials

Structural optimization Integrated safety

New Optimization algorithms

Laboratory for automated material card calibration

R-LightBioCom: Methods and Tools

Creation of CEO, an optimization framework for composite modelling, sustainability and validation

Bio-based nanomaterials Bio-based resin Bio-based Intermediates Sustainable / recycled fibres Processing Technology ...

Material Data

Composition (bio-content)
Mechanical
Characterization
Physical Characterization
Chemical
Characterization
Environmental Durability
Flammability

Material Databank

Material Data
Production Data
Characterization Data
Ecological Footprint
Production Costs

Coupled Ecological Optimization (CEO) Framework

Numerical Material representation
Automated Processes
Use-case (application) description
Material Databank

METHODS & TOOLS

for a standardised, holistic sustainable high-performance composite design, modelling and systematic optimization

Methods and Tools

Characterisation Process

Process Chain

Experimental material characterization

Materials

- (Fiber Reinforced) Plastics
- Lightweight Metals

LS-DYNA[©] Pam-Crash[©]

- Foam / Core Materials
-

Automated Material card generation depending on conditioning

Simulation Optimization

Automated material card calibration

General Process flow for Foam

Material Implementation into automated process: LS-DYNA availability

MAT063: Crushable Foam

- Model for foams which undergo large deformations
- Multiple different yield surface formulations
- Non-reversable deformation
- No strain-rate behavior

MAT057: Low Density Foam

- Model for highly compressible low density foams. Mainly applied in seat cushions and Side Impact Dummies. Could possibly be applied to foams like aerogels.
- Rate effects are optional and are defined through a relaxation function. This model also includes hysteretic unloading.

MAT163: Modified Crushable Foam

- This material is an extension of MAT063, with the addition of strain-rate behavior
- Definition of tables of yield stress vs volumetric strain curves
- Non-reversable deformation
- Based on yield surface formulation

MAT026: Honeycomb

- Model dedicated to modeling honeycomb and foam materials with anisotropic behavior. This is done by defining elastoplastic behavior for all normal and shear stresses, which are fully uncoupled.
- Optional rate effects defined through a load curve.

Material Implementation into automated process: via VALIMAT (4a engineering) - User-Defined Material Card

Set-up and Input to Paramter Model

Specimen and Test set-up

Bio-Epoxy Foam (developed by IVW in r-LightBioCom)

Compression Specimen

Length: 20mmWidth: 20mm

Thickness: 20mm

3-Point bending Specimen

• Length: 20mm

Provided by:

• Width: 60mm

Thickness: 20mm

Test Type	Speed(s) (m/s)	Fin radius (mm)	Support Radius (mm)	Support Distance (mm)
Compression	9.9E-6, 1, 2.5, 3	-	-	-
3-Point Bending	3.3E-6, 0.5, 1, 1.5	QS: 10 DYN: 5	QS: 5 DYN: 2	50

Results Overview: Dynamic

3-Point Bending Test (IMPETUS)

0.5 m/s 1 m/s 1.5 m/s

Compression Test (IMPETUS)

1 m/s 2.5 m/s 3 m/s

Bio-Epoxy Foam using MAT_163

Calibration process for compression and 3-point bending

Finite Element Input:

- 3mm Solid element
- ELFORM = 2
 - Fully Integrated solid element
- Initial velocity (V₀) for dynamic tests
- Pescribed motion (V) for quasistatic tests
- Simplified Test representation
- Time-scaling (quasistatic only)

Optimization Model

Parameter identification stages:

- Quasistatic compression curve only, using 4a Foam Model
- Integrate dynamic compression curves for rate effects (Johnson-Cook)
- Use design variables with small variance for tensile failure criterion with Bending cases
- Failure and damage parameters for compression
- Validation simulation

Classical Calibration process loop in LS-OPT

Calibration Results: LS-DYNA

Tension failure (*MAT_ADD_EROSION), Criteria:

- maximum principal stress
- plastic strain failure criteria.

1.5 m/s

Calibration Results: LS-DYNA

Optimisation: (MAT_163) rate curve

Optimisation: (MAT_163) σ vs. ϵ

Andrew Harrison, andrew.harrison@dlr.de

Numerical Calibration Examples

Calibration Results: LS-DYNA

2.5mps Compression Test - Covestro

Numerical Calibration Examples

Calibration Results: VPS - PAMCRASH

2.5mps Compression Test - Covestro

Automated Numerical Calibration

Outlook and Next steps

Outlook

- Good alignment between test and numerical results in each solver (LS-DYNA, PAMCRASH)
 - Material selection vital
- Simplified Characterisation approach provided enough data for key mechanical properties in crash use-cases
- Implementation of failure/erosion laws (erosion and DIEM)
 Next Steps:
- Exploring methods to ascertain key properties of core materials with less number/demanding tests
- Validating further properties of automated material calibration (e.g. Honeycomb failure)
- Generating numerical representation of r-LightBioComcore materials (Balsa, Hemp, rCF...)
- Improving robustness of ROM approach (element regularization)

Test specimens

Dynamic compression tests

Thank you for your attention

Project Coordinator

Aitex

Info-r-LightBioCom@dlr.de

Technical Manager

Eduardo Fages

efages@aitex.es

Dissemination Manager

Dorothea Weber

dorothea.weber@dlr.de

Visit us

Project website

www.r-LightBioCom.eu

Follow us

LinkedIn

https://www.linkedin.com/company/rlightbiocom/

Twitter

https://twitter.com/rLightBioCom

Andrew Harrison, andrew.harrison@dlr.de

