Supported by:

on the basis of a decision by the German Bundestag

Simulating market competition of heterogeneous flexibility options

Christoph Schimeczek, Felix Nitsch, Johannes Kochems, Kristina Nienhaus 11th September 2025

MotivationMarket modelling

Transformation of energy systems

- · Rising shares of fluctuating renewables
- More and more investments in energy storages
- But: Will these investments be recovered?
- → Bottom-up modelling of long-term electricity prices!

Complexity of price dynamics

- Strategic bidding
- Actor uncertainty, e.g. from competition
- · Market distortions, e.g. from policies
- → Consider that & vary dozens of other parameters!

Requirement

A bottom-up model of complex market decisions, with dozens of competing actors, that delivers 1000 simulations a day.

AMIRIS

Agent-Based Market Model for the Investigation of Renewable and Integrated Energy Systems

Agent-based model for power markets

Models **business-oriented** dispatch decisions under different regulatory framework conditions

Focus on renewable energy sources and flexibility options

Developed open source without copyleft

AMIRIS

Agent-Based Market Model for the Investigation of Renewable and Integrated Energy Systems

Simulates trading of supply and demand

Considers uncertainty and market distortions

Resolution: hourly (temporal) – market zones (spatial)

Runs yearly simulations on laptops in less than a minute

AMIRIS Input & Output

Input

- Power plant park
 - Efficiencies
 - Availabilities
 - Feed-in potential
- Demand
- Fuel prices
- CO₂ prices

Output

- Electricity prices
- Plant dispatch
- Market values
- CO₂ emissions
- System costs
- Costs for support instruments

Market	Power Plant	Flexibility Provider	Policy Provider	—— Money ——>
Demand	Supply Trader	Information Provider		Energy ——— Information ——•

Markets

• Determine prices

CO₂ Certificate Market

Fuels Market

Day-Ahead Market

Markets

• Determine prices

Traders

• Fulfil marketing strategies

Conventional Trader

Renewable Traders

Markets

• Determine prices

Traders

• Fulfil marketing strategies

Plant operators

Control power plants

Conventional Power Plant Operators

Renewable Power Plant Operators

Markets

• Determine prices

Traders

• Fulfil marketing strategies

Plant operators

Control power plants

Flexibility providers

Optimise dispatch

Market Coupling

Electrolysis

Storage

Heat Pump

Load Shifting

Markets

• Determine prices

Traders

• Fulfil marketing strategies

Plant operators

Control power plants

Flexibility providers

Optimise dispatch

Information provider

Create forecasts

Market	Power Plant	Flexibility Provider	Policy Provider	Money>
Demand	Supply Trader	Information Provider		—— Energy —— —— Information ——●

Forecaster

Markets

• Determine prices

Traders

Fulfil marketing strategies

Plant operators

Control power plants

Flexibility providers

Optimise dispatch

Information provider

Create forecasts

Policy

Provide support

Support Policy

DLR

Markets

Determine prices

Traders

Fulfil marketing strategies

Plant operators

· Control power plants

Flexibility providers

Optimise dispatch

Information provider

Create forecasts

Policy

Provide support

The Question

To charge or to discharge...

The Question

To charge or to discharge...

→ Use electricity price forecast, maximise profits with *dynamic programming*

The Question

To charge or to discharge...

→ Use electricity price forecast, maximise profits with *dynamic programming*

No Storage

The Question

To charge or to discharge...

→ Use electricity price forecast, maximise profits with *dynamic programming*

The Question

To charge or to discharge...

→ Use electricity price forecast, maximise profits with *dynamic programming*

Idea

Use Merit Order in Forecast

Idea

→ Account for price changes due to storage dispatch

Idea

→ Account for price changes due to storage dispatch

Observe Dispatch

→ Compare own dispatch to that of competitors

Observe Dispatch

- → Compare own dispatch to that of competitors
- → Represent as "multiplier" relative to own dispatch

— Moving Average

Apply Multiplier

→ Account for price changes of all flexibilities

Apply Multiplier

→ Account for price changes of all flexibilities

→ Avoids Avalanches

Backtesting: 18 Competing Storages

Storage Dispatch

→ Accurate storage dispatch simulation

Pearson Correlation	0.86
MAE	1.02 GW

Backtesting: 18 Competing Storages

Electricity prices

→ Accurate electricity price simulation

Pearson Correlation	0.85
MAE	5.37 € /MWh

Summary

AMIRIS agent-based model for power markets

1 year with 18 competing units takes ~30s

convincing backtesting performance

Open Apache 2.0

Fast

Accurate

Easy setup We owe you a 📦 if you can't get it to run in 15 minutes

Imprint

Topic Simulating market competition of

heterogeneous flexibility options

Date 2025-09-11

Authors Christoph Schimeczek, Felix Nitsch,

Johannes Kochems, Kristina Nienhaus

Contact <u>amiris@dlr.de</u>

Institute German Aerospace Center

Institute of Networked Energy Systems

Licenses DLR (CC BY 4.0), except

DLR Logo and background image © DLR

BMWK Logo © BMWK

European Flag © European Union

CETP Logo © CETP