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Abstract
Pollination is essential for maintaining biodiversity and ensuring food security, and in
Europe it is primarily mediated by four insect orders (Coleoptera, Diptera, Hymenoptera,
Lepidoptera). However, traditional monitoring methods are costly and time consuming.
Although recent automation efforts have focused on butterflies and bees, flies, a diverse
and ecologically important group of pollinators, have received comparatively little atten-
tion, likely due to the challenges posed by their subtle morphological differences. In
this study, we investigate the application of Convolutional Neural Networks (CNNs) for
classifying 15 European pollinating fly families and quantifying the associated classifi-
cation uncertainty. In curating our dataset, we ensured that the images of Diptera cap-
tured diverse visual characteristics relevant for classification, including wing morphol-
ogy and general body habitus. We evaluated the performance of three CNNs, ResNet18,
MobileNetV3, and EfficientNetB4 and estimated the prediction confidence using Monte
Carlo methods, combining test-time augmentation and dropout to approximate both
aleatoric and epistemic uncertainty. We demonstrate the effectiveness of these mod-
els in accurately distinguishing fly families. We achieved an overall accuracy of up to
95.61%, with a mean relative increase in accuracy of 5.58% when comparing uncropped
to cropped images. Furthermore, cropping images to the Diptera bounding boxes not
only improved classification performance across all models but also increased mean pre-
diction confidence by 8.56%, effectively reducing misclassifications among families. This
approach represents a significant advance in automated pollinator monitoring and has
promising implications for both scientific research and practical applications.

Introduction
Globally, insects are the most important animal pollinators, and therefore monitoring and
understanding insect pollination is critical to biodiversity conservation and food security
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[1–3]. Current insect monitoring methods are expensive, labor-intensive, and slow, under-
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scoring the need for efficient and automated approaches. Recent automation efforts have pre-
dominantly targeted butterflies and bees [4,5]. However, fly pollinators provide substantial
pollination services to wild and crop plants [6]. In Europe, 15 fly families are known to con-
tribute to pollination, representing over 5000 species [7]. Classifying flies from images poses
challenges due to morphological similarities across some families [8]. The limited availability
of images for flies, compared to more charismatic taxa of pollinators, makes it difficult to cre-
ate a comprehensive dataset, which is essential for successfully training Convolutional Neural
Networks (CNNs) [9,10]. CNNs are a class of deep learning models particularly well-suited
for image recognition tasks due to their ability to automatically learn hierarchical spatial
features from raw pixels [11,12].

Recent years have witnessed the widespread adoption of deep learning models for image
classification, significantly advancing various fields, such as medicine [13], urban studies [14–
16], and agricultural sciences [17,18]. Furthermore, deep learning methods have increasingly
become a key tool in the field of ecology and biodiversity, offering new avenues for research
and conservation.

One of the most significant contributions of deep learning is in species identification
and monitoring. The development of deep learning tools for the classification of arthropods
initially focused on specific taxa (e.g., 16 species of mosquitoes) and the identification of
museum species with uniform image backgrounds [19]. For example, images of arthropod
wings taken in controlled settings, such as under a microscope, have been used to identify
various groups of bees [20], butterflies [21,22], and syrphid flies [23]. The use of CNNs for
the identification of arthropods has expanded from a few taxa to multiple taxa, utilizing an
increasing number of images. Examples include the identification of nine genera of tiger bee-
tles with 380 images [24], eight groups of arthropods with nearly 20,000 images [25], and 36
species of bumblebee with nearly 90,000 images [26].

However, pollinating flies have not yet been systematically addressed in this line of
research, despite being the world’s second most important and abundant pollinators after bees
[6,27]. Flies, particularly syrphids and other Diptera, make vital contributions to both natural
ecosystems and agricultural systems, especially in high-latitude or high-altitude environments
where bee populations decline or shift [28,29]. Long-term studies have shown shifts in polli-
nator communities over time, with flies playing an increasingly central role in many regions
[29]. Given their ecological importance and diversity, it is crucial that future deep learning
models are developed to reliably identify pollinating flies, at least to the family level, to ensure
more comprehensive monitoring, support biodiversity assessments, and inform conservation
strategies.

Using image classification techniques for pollinator identification often lacks insight into
the confidence levels in its predictions. This is particularly relevant in challenging cases where
image quality or species similarity can impact accuracy [19,30]. Ensuring trustworthiness
is critical and uncertainties play a crucial role in this case. This study delves into integrating
uncertainty estimation methods within deep learning models to enhance predictive trustwor-
thiness by explicitly addressing aleatoric and epistemic uncertainties. We further clarify how
these uncertainty estimates compare to previous approaches in ecological deep learning stud-
ies and demonstrate their specific value for insect classification, where limited training data
and ambiguous visual cues are common [31,32].

The uncertainty estimation goes beyond traditional predictions, providing insight into the
confidence and reliability of the model [33]. Incorporating these uncertainty estimation meth-
ods is crucial in real-world applications where decision-making about pollination abundance
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counts is based on accurate and reliable predictions. By transparently quantifying uncertain-
ties, the models not only improve interpretability, but also provide a measure of confidence
in their predictions [34]. This study outlines the methodologies used to capture and quantify
uncertainties, contributing to the broader goal of establishing trust in deep learning models
for image classification. Specifically, we use a combination of Test-Time Augmentation (TTA)
and Test-Time Dropout (TTD), leveraging Monte Carlo sampling to approximate predictive
uncertainty, as proposed by Gal and Ghahramani [35]. One key research question is whether
CNNs can effectively differentiate between the 15 families of pollinating flies, including a
comparison of the impact of provided images versus cropping on classification accuracy.

This research focuses on the classification of a diverse range of Diptera families, employ-
ing a methodology that emphasizes both image refinement and robust confidence estima-
tion. A key aspect involves comparing the performance of classification models when working
with two distinct image datasets: The first dataset retains the original images sourced from the
Global Biodiversity Information Facility (GBIF), while the second dataset relies on the same
images but cropped to expert-defined bounding boxes that focus on the full specimen. To
thoroughly evaluate these strategies, the approach compares three state-of-the-art CNN archi-
tectures ResNet18, MobileNetV3, and EfficientNetB4 across both image sets. Using a focus on
the targeted areas, this approach aims to highlight defining features and reduce visual noise,
ultimately guiding the classifier to more pertinent details.

To ensure that the classification framework remains transparent and interpretable, the
research integrates uncertainty quantification methods. These techniques generate meaningful
confidence values that reflect the level of certainty of the model, allowing researchers to better
understand the quality and reliability of the predictions [36–38]. Such insights are particularly
important for closely related Diptera families, where subtle differences in morphology may
lead to misclassifications [8]. By examining groups with overlapping characteristics, specif-
ically families such as Fannidae, Muscidae, and Tachinidae, the research attempts to refine
classification boundaries and improve discriminative abilities.

Materials and methods
Describing 15 Diptera families
This research focuses on a set of 15 fly families selected not only for their distinctive morpho-
logical and phylogenetic traits, but also because they are known to provide pollination ser-
vices throughout Europe [7]. A visual example fo each of the 15 families can be seen in Fig 1.
These particular families embody a diverse array of species richness and ecological func-
tions, providing a testbed for exploring classification challenges. The variation in the number
of species across these families is notable; for example, while Sepsidae comprises around 48
known species in Europe, Tachinidae includes approximately 877 known species [7]. Such dis-
parities in species richness can introduce significant variability in the visual characteristics of
the specimens, influencing classification difficulty and the subsequent performance of CNN
models.

The dataset includes fly families selected to represent a range of morphological differences
and evolutionary relationships, providing visual characteristics relevant for training and val-
idating the classification models. For each family the number of total images and the unique
species and genus within each family within the dataset are seen in Table 1. Ultimately, under-
standing these nuances is critical to improving the accuracy, reliability, and interpretability
of automated identification systems. Further morphological cues, particularly wing venation,
provide crucial identification features in Diptera. For example, Syrphidae possess the vena
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Table 1. For each family the number of total images and the unique species and genus within each family within
the dataset are shown.
Family Images Species Genera
Anthomyiidae 1488 132 31
Bombyliidae 2239 151 40
Calliphoridae 1840 37 13
Conopidae 2356 57 10
Empididae 1632 144 14
Fanniidae 521 36 2
Hybotidae 1739 93 17
Muscidae 2163 212 41
Sarcophagidae 1346 77 22
Scathophagidae 2044 64 24
Sepsidae 2363 32 10
Stratiomyidae 2538 115 29
Syrphidae 2321 485 82
Tabanidae 2360 97 12
Tachinidae 2325 370 190

https://doi.org/10.1371/journal.pone.0323984.t001

spuria, a vein nearly exclusive to this family, while Empididae also display distinctive vena-
tion patterns. Calyptrate and acalyptrate flies may share similar wing venation, but calyptrates
can be further distinguished by the presence of vibrissae bristles above the mouth. Additional
traits such as body hair (e.g., hypopleural bristles), scutellum shape, and bristle positioning
on the thorax and legs also aid in family-level classification. Despite the subtlety of these fea-
tures, many experienced taxonomists can identify families such as Bombyliidae, Empididae,
and Syrphidae by general habitus alone, even from limited image quality, a useful analogy for
the capability of CNNs to learn from complex but non-explicit visual cues.

Image acquisition
The images were obtained from GBIF with a focus on Europe, to maximize species rich-
ness. For families with abundant images, a random selection was applied to ensure a diverse
dataset. Although it was not possible to automatically filter specifically for images of insects
on flowers, efforts were made to remove images from museum collections, laboratory set-
tings, fossils, duplicates, and other irrelevant sources or life stages. Due to varying levels of
public interest, some species have a disproportionately large number of URLs available for
image download, while others have significantly fewer resources. This results in a long-tail
distribution of available images across the taxonomic spectrum of species and families. To
address this imbalance, URLs were sampled as uniformly as possible across species within
each family. Subsequently, a manual review was conducted to remove unwanted images, such
as those depicting insect parts under magnification or misidentified specimens, thus ensuring
a comprehensive and accurate dataset across species.

Expert-defined bounding boxes were created to enhance image accuracy by focusing on
relevant features and reducing background noise. This approach is intended to improve the
performance of CNN models in classifying the various families of pollinating flies.

Data sampling
The dataset, comprising a total of 29,374 images, is partitioned into three distinct subsets,
namely the training, validation, and testing datasets. To ensure a well-balanced and repre-
sentative distribution across the 15 Diptera families, a stratified approach is employed. Each
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family contributes 60% of its images to the training set, allowing the models to learn from a
wide and diverse range of examples. Subsequently, 20% of the images from each family are
assigned to both the testing and validation sets as seen in Table 2. This strategic distribution
guarantees that each Diptera family is adequately represented in all datasets, thus creating a
comprehensive understanding of the nuances within the characteristics of each family. This
data partitioning forms a critical aspect of model training and evaluation, facilitating robust
and reliable performance assessments across diverse taxonomic groups.

Selection of CNNs
In this study, we used three distinct CNNs to compare their performance on our dataset.
MobileNetV3 Large, ResNet18, and EfficientNetB4. Each network was chosen based on spe-
cific attributes that align with our research goals.

1. MobileNetV3 Large [39] is designed to be both fast and efficient, making it particularly
suitable for deployment in environments with limited computational resources. This
model has approximately 5.4 million parameters, striking a balance between perfor-
mance and efficiency. We selected MobileNetV3 Large to deliver high-speed inference
without compromising accuracy significantly.

2. ResNet18 [41], a member of the Residual Networks family, is well-regarded for its
robust performance across various scientific fields. With approximately 11.7 million
parameters, ResNet18 is relatively lightweight, yet highly effective, thanks to its residual
learning framework that eases the training of deep networks. This model was chosen for
its proven efficacy in handling complex and diverse datasets.

3. EfficientNetB4 [42] is the largest of the three models in terms of parameters, with
approximately 19 million parameters. It uses a compound scaling method that uni-
formly scales network dimensions, resulting in improved performance without the
corresponding increase in computational cost. EfficientNetB4 is used to deliver high
accuracy due to its larger size and advanced architectural design.

Table 2. Number of images in the Training (60%), Validation (20%), and Testing (20%) dataset.
Family Training Validation Testing
Anthomyiidae 892 298 298
Bombyliidae 1343 448 448
Calliphoridae 1104 368 368
Conopidae 1413 471 472
Empididae 979 326 327
Fanniidae 312 104 105
Hybotidae 1043 348 348
Muscidae 1297 433 433
Sarcophagidae 807 269 270
Scathophagidae 1226 409 409
Sepsidae 1417 473 473
Stratiomyidae 1522 508 508
Syrphidae 1392 464 465
Tabanidae 1416 472 472
Tachinidae 1395 465 465
Total 17558 5856 5861

https://doi.org/10.1371/journal.pone.0323984.t002
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Uncertainty quantification
Understanding and quantifying uncertainties in predictions are crucial for robust model
deployment. We addressed two distinct forms of uncertainty, aleatoric and epistemic, through
the application of Monte Carlo uncertainty approximations, whereby multiple classification
outputs are averaged to derive confidence values.

Aleatoric uncertainty arises from inherent variability and randomness within the data itself
[36]. Our model was designed to capture and quantify this type of uncertainty using test-time
augmentations (TTA). This allows us to account for situations where the input data exhibit
ambiguity or contain inherent noise. Aleatoric uncertainty might manifest itself in scenarios
with subtle or ambiguous visual features.

We provide a random set of image augmentations during both the training phase and
when the model is applied to the test dataset. This TTA approach ensures that the model
encounters a diverse range of augmented inputs during training and testing, facilitating its
ability to generalize and accurately assess uncertainty in real-world scenarios [43,44]. The aug-
mentations were grouped into four categories as presented in Table 3: (i) basic augmentations
(horizontal flip and 90° rotation, both with (p=1.00); (ii) color augmentations (jitter, chan-
nel shuffle, Gaussian noise, blur, and sharpness, each with (p=0.1); (iii) geometric distortions
(thin plate spline, random cropping, and erasing, each with (p=0.1); and (iv) mixing-based
augmentation using CutMixV2 (p=0.1). All augmentations were applied stochastically across
the ensemble predictions and averaged to obtain final probabilities, following established
practices for test-time uncertainty estimation [43].

Epistemic uncertainty, on the other hand, is rooted in the limitations of the model’s knowl-
edge [36]. It reflects uncertainty arising from a lack of understanding or exposure to various
data during training. We addressed epistemic uncertainty by incorporating test-time dropout
(TTD). This helps the model recognize when faced with unfamiliar patterns not encoun-
tered during training, reducing the uncertainty associated with knowledge gaps [45]. For the
dropout method we use the same value of 0.3 as shown in [14].

Expanding on using Monte Carlo samples generated by TTD for uncertainty estimation
[14,43], our method extends the uncertainty estimation technique. We utilize Monte Carlo
samples from TTA as well as from TTD. Our goal is to characterize the distribution, specifi-
cally the predictive posterior distribution of ̄y. This is achieved by training the neural network
as if it were a standard network, incorporating dropout layers after each layer with weight
parameters and conducting T predictions.

Table 3.Overview of data augmentation techniques used during test-time augmentation (TTA) and the
percentage value if it is applied (p).
Group Techniques p
Basic Horizontal Flip 1.0

Rotation 90° 1.0
Color Color Jitter 0.1

Channel Shuffle 0.1
Gaussian Noise 0.1
Median Blur 0.1
Sharpness 0.1

Geom. Thin Plate Spline 0.1
Crop (2×2) 0.1
Random Erasing 0.1

Mix CutMix V2 0.1

https://doi.org/10.1371/journal.pone.0323984.t003
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Unlike the conventional classification scenario where a single prediction y(t) is obtained,
the combination of TTA and TTD techniques enables us to model a predictive distribution.
This novel approach involves training the network as a typical neural network, but with slight
modifications to the process.

y(t) = argmax
k

f(t)𝜃 (x̃), for t = 1,… ,T (1)

̂y =mode ({y(1), y(2),… , y(T)}) (2)

Mean Confidence( ̂y) = 1
T

T
∑
t=1
𝕀[y(t) = ̂y] (3)

Eqs (1) to (3) describe how we estimate prediction confidence using multiple stochastic
forward passes through the model. In Eq (1), we apply random image augmentations and
enable dropout during test time to generate diverse predictions y(t) for the same input image.
This process is repeated T times to simulate uncertainty due to both data variability and
model limitations [36]. In Eq (2), we identify the most frequently predicted class across all T
iterations, known as the mode, which becomes the final predicted label ̂y. Eq (3) then calcu-
lates the confidence score as the proportion of predictions that agree with this final class. This
gives a simple but effective estimate of how certain the model is in its prediction the higher
the confidence, the more consistent the model’s predictions were under different random
conditions [43].

Experimental setup
In Fig 1, our methodological approach is illustrated in detail. Initially, bounding boxes are
created for 29,374 images to crop them, ensuring that only the entire body of the Diptera is
visible while removing any background as seen in Fig 1(A). Bounding Boxes were first gen-
erated using a pre-trained object detection model from [25] and then manually corrected by
two expert ecologists using the open-source tool LabelImg in a Python environment. This
preprocessing step is crucial to focus the data set on the relevant features. Subsequently, three
CNNs are trained using both the cropped and uncropped image datasets to assess the impact
of background removal on classification performance as seen in Fig 1(B). Following this, we
quantify the confidence of our predictions by approximating uncertainty estimates using TTA
and TTD, with 100 Monte Carlo iterations providing robust statistical analysis. Finally, we
compare the classification results, including confidence values, between the uncropped and
cropped images, allowing a comprehensive evaluation of our methodological approach as
seen in Fig 1(C).

The preprocessing pipeline for the images uses a z-score normalization for the images
using the statistical parameters specific to the ImageNet dataset. This normalization ensures
that the input images maintain consistency with the pre-training dataset, aligning their distri-
bution with the expectations of the pre-trained model [41,46].

Moreover, z-score normalization serves as a pivotal data preprocessing step due to its abil-
ity to standardize the input data, mitigating the impact of varying scales and intensities within
the image data [47]. This is particularly crucial when working with diverse datasets that may
exhibit significant variations in illumination conditions or imaging equipment. This improves
the adaptability of the models to the unique features present in the Diptera image dataset, ulti-
mately fostering their ability to capture and learn meaningful patterns during the training
process.
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Fig 1. Uncertainty quantification approach. (A) Creation of bounding boxes around Diptera specimens to generate both cropped and uncropped
versions of the dataset. (B) Training of CNNs using both image variants to evaluate the effect of cropping on classification performance. (C) Con-
fidence estimation using test-time augmentation (TTA) and test-time dropout (TTD) with Monte Carlo sampling to assess the model confidence.
While this figure shows an example for one Family, Fannidae, the uncertainty quantification was applied across all families in the dataset.

https://doi.org/10.1371/journal.pone.0323984.g001

Each CNN undergoes training for a consistent duration of 100 epochs. To ensure a robust
evaluation, we present all metrics and results based on the model saved with the best valida-
tion score. In this context, the optimal model is determined by achieving the lowest valida-
tion score for the cross-entropy loss, employing label smoothing. This approach guarantees
that the reported results reflect CNN’s performance at its peak during the training process,
providing a comprehensive and accurate assessment of its capabilities.

In this study, we systematically evaluated the tradeoff between the per-epoch training
speed of a CNN and the total time required to reach optimal validation performance. Specifi-
cally, we investigated how various training settings affect convergence and generalization. Our
experiments used 8-bit RGB images resized to 640×640 pixels and normalized using z-score
normalization based on ImageNet statistics. The models were trained for a maximum of 100
epochs using early stopping, with cross-entropy loss incorporating label smoothing (0.1) and
the AdamW optimizer. A fixed learning rate of 0.001 was combined with a CosineAnnealing-
WarmRestarts scheduler to allow for dynamic adjustment during training. By keeping these
settings consistent, we aimed to strike a balance between fast per-epoch training and reliable
generalization to unseen data, while minimizing the risk of overfitting.

In addition, this evaluation was conducted with an emphasis on energy efficiency and envi-
ronmental considerations, reflecting the principles of Green AI [48]. Specifically, we incor-
porated resource usage measurements and computational cost analyzes into our training
protocols to ensure that performance gains did not come at the expense of excessive energy
consumption [15]. Taking into account both training speed and environmental impact, this
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approach supports more responsible model development practices, aligning model optimiza-
tion strategies with sustainability goals.

The code used to collect and process the data is publicly available on our GitHub repos-
itory. You can access both the data collection code and the data processing code here
stark-t/PAI_diptera.

Results
Comparative analysis of CNNs
Table 4 compares three CNNs in terms of accuracy and efficiency, detailing their number of
parameters, overall accuracy (OA), Kappa score, mean confidence, training epochs, time per
epoch, test time for 100 Monte Carlo iterations, and whether the image was cropped to its
bounding box. OA and Kappa are calculated as shown in Eqs (4) and (5), where the Kappa
score incorporates the expected agreement by chance (Eq (6)) to provide a more robust eval-
uation for imbalanced datasets, mean confidence is calculated using Eq (3).

OA = TP + TN
TP + TN + FP + FN

(4)

𝜅 = po – pe
1 – pe

(5)

where po =Accuracy is the observed agreement, and pe is the expected agreement by chance,
defined as:

pe =
(TP + FP)(TP + FN) + (FN + TN)(FP + TN)

(TP + TN + FP + FN)2
(6)

Overall, we see very high accuracies in the high 80% range for all model architectures and
images or image sections, and in some cases well over 90%. Basically, we can therefore state
that the 15 families can be classified very well. The overall accuracy (OA) for MobileNetV3
Large using the original images is 88.78%, while ResNet-18 and EfficientNetB4 achieve
88.58% and 90.35%, respectively.

The number of parameters for each model correlates with these results. MobileNetV3
Large, with 5.4 million parameters, shows lower OA compared to more complex models.
ResNet-18, having 11.3 million parameters, performs similar to MobileNetV3 Large but

Table 4. Comparison of three CNNs in terms of accuracy and efficiency.The table includes the number of parame-
ters, overall accuracy (OA), Kappa score, mean confidence, training epochs, time per epoch, test time for 100 Monte
Carlo iterations, and if the image was cropped to its bounding box
Model Parameters OA Kappa Mean

Confidence
Epochs Epoch

Time
Test Time Bounding

Box Crop
MobileNetV3
Large

5.4m 88.78% .8887 78.49% 47/100 00:05:16 01:53:27 X

ResNet-18 11.3m 88.58% .8895 79.17% 95/100 00:04:57 01:55:57 X
EfficientNetB4 17.6m 90.35% .9044 79.27% 46/100 00:11:34 02:22:32 X
MobileNetV3
Large

5.4m 93.87% .9401 85.85% 94/100 00:05:23 01:46:30 ✓

ResNet-18 11.3m 93.16% .9384 83.98% 54/100 00:04:46 01:49:16 ✓
EfficientNetB4 17.6m 95.61% .9590 87.38% 70/100 00:11:23 02:29:24 ✓

https://doi.org/10.1371/journal.pone.0323984.t004
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slightly better. EfficientNetB4, which has the highest number of parameters at 17.6 million,
consistently shows superior OA in both sets of experiments.

When images are cropped to their bounding box, the results generally show a significant
improvement. For MobileNetV3 Large, the OA increases from 88.78% to 93.87%, which is
an improvement of approximately 5.09. ResNet-18’s OA rises from 88.58% to 93.16%, an
enhancement of about 4.58. EfficientNetB4 also benefits significantly, with its OA increasing
from 90.35% to 95.61%, reflecting an improvement of approximately 5.26. In general, crop-
ping images to their bounding box results in increased accuracies across the models, high-
lighting the importance of expert-defined bounding box image cropping in boosting model
performance.

A similar pattern is observed in the Kappa scores, which provide a more robust measure
by accounting for chance agreement. MobileNetV3 Large improves from a Kappa of 0.8887
(uncropped) to 0.9401 (cropped). ResNet-18 increases from 0.8895 to 0.9384, and Efficient-
NetB4 from 0.9044 to 0.9590. These high Kappa values further confirm that the classification
performance is not only accurate but also consistent across the different models and image
configurations.

Examining the mean confidence, MobileNetV3 Large has a mean confidence of 78.49% for
the original images and 85.85% when cropping the images in its bounding box. ResNet-18
records 79.17% and 83.98%, while EfficientNetB4 demonstrates 79.27% and 87.38%, respec-
tively.

Averaging across the three CNN architectures, the use of cropped images leads to a clear
improvement in all performance metrics. The mean overall accuracy increases from 89.24%
(uncropped) to 94.21% (cropped). Similarly, the mean Kappa score rises from 0.8942 to
0.9458, indicating improved agreement beyond chance. The mean confidence also shows a
substantial boost, increasing from 78.98% to 85.74%. These results highlight that cropping
images to their bounding boxes not only improves classification accuracy but also enhances
model certainty and reliability.

Class confusion between Diptera families with and without Bounding Box
Cropping
Fig 2 compares the confusion matrices for the EfficientNetB4 model, highlighting the clas-
sification performance across 15 Diptera families under two different conditions: (a) images
cropped to their bounding box and (b) images not cropped.

From the matrices, it is evident that cropping images to their bounding box significantly
enhances the model’s classification accuracy. This is reflected in higher true positive rates and
reduced misclassification rates. For example, the Anthomyiidae family shows an accuracy of
89.9% with cropped images, compared to 86.6% with uncropped images. Similarly, for the
Muscidae family, the accuracy is 92.4% when images are cropped, whereas it drops to 76.2%
for uncropped images.

Moreover, the confusion within classes is noticeably higher when images are not cropped.
This increased confusion is visible in the higher percentages of misclassification in several
families. For example, in the Muscidae family, we observe that 7.2% of the samples are mis-
classified as Anthomyiidae, 4.6% as Calliphoridae and 3.5% as Tachinidae when the images
are not cropped. In contrast, when the images are cropped, these misclassification rates drop
significantly, showcasing more accurate predictions.

Similar patterns are observed in other families. For instance, the Sarcophagidae family,
when images are uncropped, has misclassifications of 7.0% into Tachinidae and 3.7% into
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Fig 2. Confusion matrix comparing EfficientNetb4 results: (a) training with images cropped to the bounding box and (b) training with uncropped images.

https://doi.org/10.1371/journal.pone.0323984.g002

Calliphoridae. However, when cropped, the misclassification rates are significantly reduced,
leading to more precise classification.

Overall, the results indicate that preprocessing images by cropping them to their bounding
box substantially reduces confusion and improves the EfficientNetB4 model’s accuracy and
reliability in classifying the 15 Diptera families.

The uncertainty within the Diptera families
Fig 3 presents a boxplot illustrating the confidence values of the EfficientNetB4 model for all
15 Diptera families, comparing the results for the original images and the images cropped to
their bounding box. This graph highlights the confidence levels for the correctly predicted
images.

We sorted the families by the magnitude of improvement in their confidence scores, that
is, the difference between the cropped image confidence and the original image confidence.
Families with an increase of 6% or more are categorized as having large improvements and
are listed first in descending order, while those with less than 6% improvement are grouped as
small improvements, also in descending order.

In the group of large improvements, Stratiomyidae experiences the largest increase, with
confidence increasing from 84% to 94% (a 10% improvement). Muscidae and Fanniidae fol-
low with significant increases of 9% each, with Muscidae improving from 80% to 89% and
Fanniidae from 78% to 87%. Both Calliphoridae and Sarcophagidae show a 6% improvement,
with Calliphoridae moving from 82% to 88% and Sarcophagidae from 81% to 87%.
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Fig 3. Confidence values for EfficientNetB4 for all 15 Diptera families for correct classification results with and
without cropping its Bounding Boxes.

https://doi.org/10.1371/journal.pone.0323984.g003

In the small improvements group, Syrphidae’s confidence increases from 85% to 90% (a
5% improvement). Sepsidae improve from 86% to 90% (a 4% increase), as do Empididae
and Scathophagidae, each increasing from 84% to 88% (a 4% improvement). Tachinidae
also shows a 4% increase, moving from 85% to 89%. Hybotidae experiences a 3% improve-
ment, going from 86% to 89%, and Tabanidae likewise improves by 3%, rising from 84% to
87%. Bombyliidae sees a modest 2% increase from 87% to 89%, while Conopidae remains
unchanged at 88%.

Anthomyiidae is the only family that shows a decrease in median confidence, falling from
91% to 87%.

Visual results for all 15 families
The visual results of the analysis of the 15 Diptera families highlight significant differences
between the two training approaches using the best performing model EfficientNetB4. Specif-
ically, we compared the performance when the model was trained on images cropped to the
Diptera bounding box versus images that were not cropped. Fig 4 presents two images from
the test dataset for each Diptera family, highlighting both the highest and lowest confidence
differences between the images cropped to its bounding box and the uncropped ones. More-
over, these images were automatically selected rather than hand-picked, ensuring an unbiased
and representative illustration of the model’s performance. Generally, as illustrated in Fig 3,
the model trained on cropped images consistently achieves better results.

Discussion
Fig 4 presents a comprehensive comparison of models trained with and without cropping
to the Diptera’s bounding box across the 15 families. For enhanced visual clarity, the species

PLOS One https://doi.org/10.1371/journal.pone.0323984 September 10, 2025 12/ 19

https://doi.org/10.1371/journal.pone.0323984.g003
https://doi.org/10.1371/journal.pone.0323984


ID: pone.0323984 — 2025/9/6 — page 13 — #13

PLOS One Utilizing CNNs for classification and uncertainty quantification for 15 families of European fly pollinators

Fig 4. Comparison of EfficientNetB4 confidence values on 15 Diptera families.The figure highlights confidence differences between models trained
on images cropped to the Diptera’s bounding box (red bounding box) versus those using (full) images . For each Diptera family, two examples are
shown: one representing the smallest difference and one representing the largest difference in confidence values of the test dataset.

https://doi.org/10.1371/journal.pone.0323984.g004

for each family are displayed solely in this figure. Note that this information was not used in
the classification process but is provided only to offer additional context for interpreting the
results.

Creating bounding boxes manually is an extremely time-consuming process. For the
29,374 images used in this study, bounding boxes had to be created by experts, following a
consistent workflow to ensure that each specimen is cropped uniformly. This task requires not
only significant time but also specialized expertise to accurately delineate the objects of inter-
est. While the manual annotation process is undeniably labor-intensive, our results highlight
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a critical trade-off: the substantial effort required for cropping is justified by notable improve-
ments in overall accuracy and mean confidence, suggesting that such manual intervention can
significantly enhance model performance. Also semi-automated labeling tools, could further
support and streamline this process. It would be very interesting to explore the use of object
detection algorithms to automatically crop images similar to the methods used in [49] and
[25]. Moreover, comparing the performance of models trained on manually cropped images
with those cropped automatically could provide valuable insights into both the feasibility and
efficiency of automated cropping.

In most cases, cropping improves performance by focusing the model on the relevant fea-
tures of the Diptera, thereby reducing background noise. This improvement is likely due to
the model’s increased focus on Diptera features, which minimizes background noise and facil-
itates more effective feature extraction, which ultimately leads to greater overall precision
[50]. For example, within the Calliphoridae family, the Phormia specimen occupies only a
small fraction of the full image, resulting in a dramatic increase in the predicted confidence,
from 40% without cropping to 90% with cropping. In contrast, for Calliphoridae Calliphora,
where the diptera fills almost the entire image, the confidence values are much closer (91%
with cropping vs. 85% without cropping). This trend of improved performance with cropping
is evident in several families.

However, there are some notable outliers. In cases such as Conopidae Sicus, the second
example of Fanniidae Fannia, Hybotidae Ocydromia, Muscidae Achanthiptera, and Taban-
idae Pangonius, the bounding box is only slightly smaller than the original image, yet the dif-
ferences between the cropped and non-cropped models are pronounced. In many of these
cases, the uniform laboratory environment in the background could significantly influence
the model’s training. In addition, challenging scenarios are observed in Sarcophagidae Sar-
cophaga, where the Diptera closely resembles the background, and in Scathophagidae Cleigas-
tra, where the specimen is imaged on a highly reflective surface, both cases that test the
model’s adaptability under varying conditions.

Challenges in Diptera classification
Distinguishing between these 15 Diptera families from images is a challenging task, because
many families share numerous morphological features, and certain distinguishing charac-
teristics might not be visible in images. Fig 5 illustrates these challenges by comparing the
results of three morphologically similar Diptera families. In such scenarios, even a trained
expert struggles to confidently separate closely related groups by manual-visual interpretation,
leading to potential misclassification when relying on visual cues alone. Despite these chal-
lenges, our models demonstrate robust performance. However, overfitting remains a concern
in many deep learning algorithms. Models may exploit subtle cues that are not directly linked
to the underlying taxonomy, and dataset sampling biases can also contribute to overfitting.
This possibility underscores the critical need for our uncertainty estimation approach, which
integrates extensive image augmentations and dropout to mitigate these effects.

By incorporating 100 Monte Carlo iterations, we gain a quantitative window into the con-
fidence scores of the model, enabling us to confirm that the impressive precision is neither
coincidental nor artificially inflated. Instead, these analyzes demonstrate that the model’s
capabilities extend beyond pattern matching and that it genuinely understands the underlying
structure of the data. In fact, this examination reveals that the model can consistently identify
subtle class distinctions, even in fuzzy feature spaces where related classes share overlapping
traits. The combination of strong performance and transparent uncertainty quantification
offers both confidence and credibility.
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Fig 5. Confidence values for three Diptera families with morphological similarities. Predicted and actual labels for selected examples classified
by EfficientNetB4 using images cropped to their bounding boxes. The model’s predicted class, corresponding ground truth label, and prediction
confidence are shown for each image.

https://doi.org/10.1371/journal.pone.0323984.g005

As observed in [49], cropping images to the insect’s bounding box has a significant effect
on enhancing model performance. This improvement is expected since the models do not
need to process excessive background information, which can be distracting. Distracting
backgrounds can have a substantial impact on model accuracy.

The results of our study highlight the effectiveness of different CNN architectures in classi-
fying Diptera families. Although earlier generation models such as ResNet-18 provide accept-
able accuracy, more recent models, such as EfficientNet-B4, demonstrate better performance,
offering higher confidence and fewer misclassifications. For scenarios where speed and porta-
bility are critical, lightweight models such as MobileNetv3 deliver strong results, enabling on-
device classification without significantly compromising accuracy. In this way, we see a clear
progression in model capabilities, from established architectures to cutting-edge networks,
each offering specific advantages that can be leveraged according to the demands of the task.

Confusion between Diptera families
Four families were most often confused with each other: Anthomyiidae, Fanniidae, Muscidae,
and Tachinidae, all of which belong to the same superfamily, Muscoidea. Their morphologi-
cal similarities often complicate accurate identification. In particular, wing venation patterns
serve as a critical feature to distinguish these families, but it is challenging to capture clear and
properly angled images to visualize the entire wing. Despite these difficulties, it is rewarding
to see that the models perform as well as they did.

To illustrate this performance, we present confidence values for a subset of these morpho-
logically similar Diptera families seen in Fig 5. Family names in bold indicate the true labels,
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while underlined family names represent the model’s predictions. These confidence scores,
obtained using an EfficientNetB4 model with bounding box cropped images, underscore the
model’s capability to differentiate among closely related taxa.

From the confusion matrix in Fig 2a, we observe that of the 105 Fannidae images in our
test dataset, seven are misclassified as Muscidae. One such misclassification is shown in Fig 5,
where EfficientNet exhibits low confidence (49%) in its classification. In contrast, correctly
classified Fannidae images have higher confidence scores of 85% and 89%. Overall, the mean
confidence for Fannidae predictions is 0.78.

For the Muscidae family, five of 433 test images are misclassified as Fannidae and two as
Tachinidae. A misclassification of Tachinidae is depicted in Fig 5, with a low confidence of
52%. Correct classifications for Muscidae have higher confidence scores of 87% and 91%. The
mean confidence for Muscidae predictions is slightly higher at 0.89. This difference in mean
confidence could be partially attributed to class imbalance, as the Fannidae family has sig-
nificantly fewer training examples than Muscidae, potentially limiting the model’s ability to
generalize confidently.

In the Tachinidae family, one out of 465 test images is misclassified as Fannidae, and 18 as
Muscidae. The single misclassification as Fannidae is shown in Fig 5, with a very low confi-
dence score of 32%. The correct classifications of Tachinidae have confidence scores of 85%
and 91%. Thus, in general, for the purposes of ecological studies, when confidence scores are
85% or higher, it is reasonable to identify the fly in the image to the family taxonomic level.
However, when the confidence level is less than 50%, it is advisable to keep the identification
at the order level (Diptera).

The few misclassifications observed are informative as well. They highlight the areas where
the model can be further refined, and they provide insight into the limits of current image
recognition technology in dealing with highly similar morphological features. This approach
is a significant step forward in the field of automated species identification and has the poten-
tial to contribute meaningfully to various scientific and practical applications.

The next step in this line of research is to delve deeper into the taxonomic hierarchy. The
ability to classify pollinating insects at the species levels automatically from images would
be highly beneficial to ecological monitoring [26]. This progression will test the limits of our
current methodologies and may necessitate the development of new approaches. Although
our existing models have proven effective at higher taxonomic levels, the increased speci-
ficity required at the species levels could demand more sophisticated architectures, such as
transformers, as well as larger and more well sampled datasets. We anticipate that this new
challenge will be complex, yet we remain optimistic about our ability to overcome potential
obstacles. Adapting and refining our methods to achieve fine-scale classification will not only
advance our understanding of pollinator diversity but also contribute to broader ecological
and conservation efforts.

Conclusion
In conclusion, our study demonstrates that automated pollinator monitoring using CNNs can
overcome many of the limitations of traditional methods, offering a cost-effective and efficient
alternative resulting in high classification accuracies. By focusing on 15 European pollinating
fly families, a group that has traditionally been challenging due to subtle morphological dif-
ferences, we showed that CNN architectures such as ResNet18, MobileNetV3, and especially
EfficientNetB4, can achieve high classification accuracy (from 88.58% to 95.61%). A key find-
ing was that cropping images to the Diptera’s bounding boxes not only improved accuracy but
also enhanced prediction certainty, effectively reducing misclassifications among families.
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Visual analyses further corroborate these results. In most cases, especially when the fly
occupies only a small portion of the image, cropping significantly increased the predicted
confidence, thereby reinforcing the benefits of focusing on the relevant features. Although
some outliers were observed, possibly due to uniform lab environments or challenging imag-
ing conditions, the overall trend supports the use of bounding-box cropping as a robust
method for improving model performance.

This work not only advances the field of automated pollinator monitoring, but also pro-
vides a foundation for future applications in ecological research and practical conservation
efforts, ensuring that critical pollination services are better understood and protected.
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