USE OF THE SWARM IONOSPHERIC GRADIENT PRODUCT TO MODEL SCINTILLATION AT HIGH LATITUDES

Dmytro Vasylyev

LPS25 Vienna, Austria 24 June 2025

DLR Neustrelitz
Institute for Solar-Terrestrial Physics
Space WeatherImpact Department

Dmytro.Vasylyev@dlr.de

J. A. Cahuasqui, M. Hoque, M. Kriegel, J. Berdermann

Ionospheric irregularities

Navigation & communication

Augmentations

Ionospheric scintillation

D. Vasylyev

Phase screen model for estimation of scintillation strength

Transmitter

SCINTILLATION INDICES:

• Amplitude fluctuations δA :

$$S_4^2 = \frac{\langle |\delta A(0)|^4 \rangle - \langle |\delta A(0)|^2 \rangle^2}{\langle |\delta A(0)|^2 \rangle^2}$$

• Phase fluctuations δS :

$$\sigma_{\delta S} = \sqrt{\langle \delta S(0)^2 \rangle}$$

Phase screen realization:

$$\delta \varphi(\mathbf{r}_{\perp}) = -r_e \lambda \int \delta N_e(\mathbf{r}) dz = -r_e \lambda \, \, \delta N_{\mathrm{TEC}}(\mathbf{r}_{\perp})$$

Statistical properties of the screen are related to those of the electron density fluctuations. C. Rino, Radio Sci., 14, 6 (1979)

 $\delta \varphi \sim \delta N_{
m TEC}$ $\delta A \} \delta S$

Fresnel filtering

$$\delta A = \frac{ik}{2\pi z} \int A_0(\mathbf{r}'_{\perp}) \left(e^{-i\delta\varphi(\mathbf{r}'_{\perp})} - 1 \right) e^{-i\frac{k}{2z}|\mathbf{r}_{\perp} - \mathbf{r}'_{\perp}|^2} d^2 \mathbf{r}'_{\perp}$$

 $\delta S \approx \delta \varphi$

Receiver

Ordinary phase

Phase screen model for estimation of scintillation strength

Transmitter

SCINTILLATION INDICES:

• Amplitude fluctuations δA :

$$S_4^2 = \frac{\langle |\delta A(0)|^4 \rangle - \langle |\delta A(0)|^2 \rangle^2}{\langle |\delta A(0)|^2 \rangle^2}$$

• Phase fluctuations δS :

$$\sigma_{\delta S} = \sqrt{\langle \delta S(0)^2 \rangle}$$

Phase gradient screen realization:

$$\delta \varphi(\mathbf{r}_{\perp}) = -r_e \lambda \ \delta N_{\mathrm{TEC}} + r_e \lambda \ \delta \mathbf{r}_1 \cdot \nabla_{\perp} \delta N_{\mathrm{TEC}}$$

Statistical properties of the screen are related to those of the electron density fluctuations. D. Vasylyev et al., JSWSC, 14, 29 (2024)

 $\left. egin{array}{c} \delta A \\ \delta S \end{array} \right\}$

Receiver

Fresnel filtering

$$\delta A = \frac{ik}{2\pi z} \int A_0(\mathbf{r}'_{\perp}) \left(e^{-i\delta\varphi(\mathbf{r}'_{\perp})} - 1 \right) e^{-i\frac{k}{2z}|\mathbf{r}_{\perp} - \mathbf{r}'_{\perp}|^2} d^2\mathbf{r}'_{\perp}$$

 $\delta S \approx \delta \varphi$

 $(r'_\perp)^2 \mathrm{d}^2 r'_\perp$

 $\sim \delta r_1$

 $(\sim
abla_{\perp} \delta N_e)$

 $\nabla_{\perp}\delta N_{\mathrm{TEC}}$

 $\delta \varphi \sim \delta N_{\rm TEC}$

Physics behind the gradient dependent correction

Random Diffraction

Physics behind the gradient dependent correction

Random Diffraction

1st component: Total Electron Content gradient (related to ROTI)

$$ROTI = \sqrt{rac{\sum_{i}^{n}(ROT_{i})^{2}}{n} - \left(rac{\sum_{i}^{n}ROT_{i}}{n}
ight)^{2}}$$

$$ROT_i \equiv rac{TECigg(t+(i-n/2)\delta tigg)-TECigg(t+(i-n/2-1)\delta tigg)}{\delta t}$$

TEC gradient derived from ROTI:

$$\nabla TEC = \frac{\overline{V_{drift}}}{(\overline{V_{drift}})^2} \frac{ROTI}{},$$

where $\overline{V_{drift}}$ is the plasma drift velocity averaged over the time $n\delta t$.

Pi et al., Geophys. Rev. Lett. 24, 2283 (1997)

2nd component: Electron density gradient index NeGIX (SWARM)

Project:

Monitoring of Ionospheric Gradients At Swarm (MIGRAS)

J. A. Cahuasqui, et al., "New Swarm products NeGIX and TEGIX for monitoring ionospheric gradients", submitted to JSWSC

1st component: Model for TEC gradient/ROTI

Geophysical parameters: $F_{10.7}, K_p, IMF, ...$

$$ROTI = \sum_{i=1}^{4} \text{coefficients}_{i} \cdot \text{functions}_{i}$$

2nd component: Model for SWARM NeGIX

Empirical NeGIX_x (East-West component of gradient)

Model NeGIX_x

(negative & positive components)

High-latitude scintillation model for GISM

Empirical probability of occurrence of $\sigma_{\varphi} > 0.1$

Example of scintillation map realisation with $\sigma_{\varphi} > 0.1$

Prikryl et al., Ann. Geophys. 33, 531 (2015)

Diffractive scintillation

Diffractive+ refractive scintillation

High-latitude scintillation model for GISM

Empirical scintillation from CHAIN and DLR stations: points

Current model: colored area

Quite geomagnetic conditions

Date: 2024-01-03 07:30, Kp=1.0, sunspot=59, freq=1565 MHz

Phase scintillation index

Disturbed geomagnetic conditions

Conclusions and outlook

- Strong ionospheric gradients may cause intense refractive scintillation (primarily phase scintillation)
- Phase gradient screen approach is bale to incorporate such type of scintillation
- Electron density gradients derived from SWARM (NeGIX) productsalong with ROTI are valuable input for scintillation modeling
- Climatological model for NeGIX has been constructed by using empirical orthogonal function in similar footing as it was done for ROTI
- The resulting high-latitude scintillation model is capable to explain the enchanced scintillation activity at magnetic noon sector.