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Abstract Advanced global navigation satellite system receivers typically report intensity scintillation
indices, phase scintillation indices, and rate of total electron content change indices (ROTI). Extensive regional
measurements are being accumulated and made available as diagnostic resources. Although each parameter is
derived independently from measured intensity and phase time series, to the extent that ionospheric structure is
the source of the scintillation manifestations, more definitive scintillation diagnostics can be predicted for
structure characterized by a two‐component inverse power law spectral density function. This paper derives
theoretical predictions of main statistical characteristics of signal amplitude and phase that has been randomly
modulated while propagating through two‐dimensional random phase screens. An irregularity parameter
estimation procedure is developed that generates maximum likelihood parameter estimates. It is shown that
the estimated parameters reconcile theoretical prediction with reasonable accuracy. Phase‐screen
simulations are used to verify the theoretical predictions. The scintillation model is embedded in a generic signal
model with additive noise, which allows direct application to appropriately detrended intensity and phase
measurements.

Plain Language Summary Intensity, phase, and total electron content scintillation measures are
collected routinely by global navigation satellite receivers and made available as diagnostic resources. This
paper summarizes and demonstrates a phase‐screen‐model that connects the independent measures to a unified
parametric model. The results provide a complete parametric characterization of the ionospheric structure that
causes the scintillation.

1. Introduction
Positioning, navigation, and time synchronization (PNT) applications of global navigation satellite systems
(GNSS) signals proceed from intensity, phase, and pseudo‐range time series together with auxiliary information
such as orbital elements. Additionally, diagnostic measurements of intensity scintillation, phase scintillation, and
total electron content (TEC) structure have been made available for ionospheric phenomenology studies. To the
extent that the scintillation manifestations are caused by irregularities in the earth's ionosphere, more complete
diagnostic measurements can be characterized by propagation models. Vasylyev et al. (2022) have categorized
models currently in use by methodology. Space weather models predict the occurrence and severity of propa-
gation disturbances for example, Secan et al. (1995). Performance models predict system performance degra-
dation, for example, Xu et al. (2019). Diagnostic models characterize ionospheric structure, ultimately seeking
connections to the physical processes that generate the structure, for example, Rino and Carrano (2018) This
paper reviews a two‐dimensional phase‐screen model and theoretical relations that support quantitative iono-
spheric structure characterization and diagnostic measurements.

The remainder of Section 1 introduces a generic intensity and phase structure model followed by a description of
preprocessing operations that isolate scintillation modulation embedded in additive noise. The model excludes
multi‐path and interference, which can be incorporated for directed studies. Section 2 reviews two‐dimensional
phase‐screen theory with emphasis on theoretical relations that connect observable measurements with param-
eterized ionospheric structure characterizations. Section 3 introduces spectral density functions, mutual coher-
ence functions, and structure functions, which are the primary diagnostic measurements. A phase‐screen model
connects path‐integrated phase structure to the diagnostic propagation measurements. Analytic results for a
parametric two‐component inverse‐power‐law characterization of the path‐integrated phase structure are sum-
marized. The results define expectation values of the intensity index, S4, the phase index, σϕ, and the rate of TEC
index, ROTI.

RESEARCH ARTICLE
10.1029/2024RS008204

Key Points:
• Scintillation intensity, phase, and total

electron content indices are incomplete
diagnostics

• A two‐dimensional phase‐screen the-
ory fully characterizes complete di-
agnostics for a two‐component power
law ionospheric structure model

• Irregularity parameter estimation
generates estimates that reconcile
phase‐screen theoretical predictions
with diagnostic measurements

Correspondence to:
C. Rino,
crino@comcast.net

Citation:
Rino, C., Carrano, C., Vasylyev, D.,
Beach, T., Breitsch, B., Morton, Y., &
Groves, K. (2025). On phase screen
models for scintillation diagnostics. Radio
Science, 60, e2024RS008204. https://doi.
org/10.1029/2024RS008204

Received 20 DEC 2024
Accepted 6 AUG 2025

Author Contributions:
Conceptualization: Charles Rino,
Charles Carrano, Dmytro Vasylyev,
Theodore Beach, Yu Morton,
Keith Groves
Formal analysis: Charles Rino,
Charles Carrano, Dmytro Vasylyev
Funding acquisition: Yu Morton
Investigation: Theodore Beach
Project administration: Keith Groves
Validation: Charles Rino,
Charles Carrano, Dmytro Vasylyev,
Brian Breitsch
Writing – review & editing:
Charles Rino, Dmytro Vasylyev,
Brian Breitsch, Yu Morton

© 2025. The Author(s).
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

RINO ET AL. 1 of 17

https://orcid.org/0000-0003-2560-0478
https://orcid.org/0000-0003-1317-2453
https://orcid.org/0000-0002-9119-1724
https://orcid.org/0000-0002-2067-1579
mailto:crino@comcast.net
https://doi.org/10.1029/2024RS008204
https://doi.org/10.1029/2024RS008204
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2024RS008204&domain=pdf&date_stamp=2025-08-17


Section 3 uses phase‐screen realizations to demonstrate theoretical relations that predict structure diagnostics,
their intrinsic uncertainty, and the limitations imposed by noise. For example, Equation 41 predicts the noise bias
of S4 as a function of the signal‐to‐noise ratio (SNR). If SNR is known or can be estimated, the S4 noise bias can
be corrected. Moreover, GNSS processors typically incorporate coherent integration and noise cancellation to
improve the SNR. We demonstrate in Section 3 that the measured SNR captures the processor enhancements.
Section 4 reviews the applications of irregularity parameter estimation (IPE), which formally reconciles theo-
retical predictions with structure diagnostics. Scintillation degrades diagnostic structure measurements in the
same way that it degrades system performance. For diagnostic measurements back‐propagation removes the
scintillation induced by free propagation. Our results show that IPE applied to phase structure extracted from back
propagation appears to be the most efficient and robust procedure for diagnostic structure analysis. Potential
limitations are discussed in Section 5.

1.1. A Generic Signal Model

For diagnostic measurements and performance evaluation, the scintillation model is embedded in a signal model
that accommodates detection, demodulation, and pulse‐compression operations. At the phase center of the sat-
ellite transmitting antenna the complex signal is represented as

vc(t) =
̅̅̅
P

√
M(t)exp{2πifct} (1)

where P is the transmitted power, M(t) is the complex modulation, and fc represents the carrier frequency. The
signal at the phase center of a receiving antenna is a delayed replica of the transmitted signal with propagation loss
and a complex modulation imparted by structure in the earth's ionosphere (The earth's atmosphere introduces an
additional modulation, which is smaller and neglected in this study). Allowing for frequency translation, gains,
and losses, the detected complex signal can be represented as

vr(t) = A(r(t),u(t))M(t − r(t)/c)h( t; fc) exp{2πiK ⋅TEC(t)/fc}

× exp{2πifc(t − r(t)/c)} + ϵ(t)/
̅̅̅̅̅̅̅̅̅̅̅
SNRr

√
,

(2)

where A(r(t),u(t)) represents the signal amplitude variation as a function of range, r(t), and the line‐of‐sight
direction, u(t). The TEC conversion factor K is defined as

K = rec/(2π) × 1016 = 1.345 × 109m2/s (3)

where re is the classical electron radius and c is the vacuum velocity of light.

Scintillation is incorporated as a frequency‐dependent complex modulation, h(t; f ). Total electron content (TEC)
is incorporated separately as a slowly varying contribution to the signal phase. Additive unity variance white
noise, ϵ(t), is introduced with an a priori unknown scale factor, SNRr, which is adjusted as described in Section 1.2
to represent the average signal to average noise power ratio.

Signal processing performed by GNSS receivers removes the modulation, establishes a phase reference, and
enhances the signal intensity relative to the noise level at the point of detection. Section 3 of Kintner et al. (2007)
presents a concise summary of GNSS processing. However, irrespective of the implementation details, the
demodulated complex signal at the processor output, vd(t), can be represented as follows:

vd(t) = Ad(t)h( t; fc) exp{2πiK ⋅ TEC(t)/fc + ϕξ(t)}

× exp{2πifct ṙ/c)} + ϵ(t)/
̅̅̅̅̅̅̅̅̅̅̅
SNRd

√
.

(4)

The amplitude, Ad(t), includes all gains and losses from transmission to reception. Evaluating h(t; f ) at f = fc
assumes that the scintillation is invariant over the modulation bandwidth. The constant range rate over the
demodulation processing interval, ṙ, imposes a Doppler shift, fc ṙ/c, which the receiver must accommodate. The
term ϕξ(t) represents errors specific to signal phase extraction. The difference between SNRr and SNRd reflects
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gains realized by detection and subsequent processing operations. Effectively, there are two unknowns in the
model aside from scintillation and errors, namely Ad(t) and SNRd. Separate detrending and noise estimation
operations are used to estimate the parameters as describe in the next section. From Equation 4 the sampled
intensity is

Id(nΔt) = |vd(nΔt)|2

= |Ad(nΔt)|2
⃒
⃒h(nΔt; fc)

⃒
⃒2 + |ϵ(nΔt)|2/SNRd

+ 2
Ad(nΔt)
̅̅̅̅̅̅̅̅̅̅̅
SNRd

√ Re[h(nΔt; fc)ϵ∗(nΔt)

× exp{[2πiK TEC(nΔt)/fc + ϕξ(nΔt) + 2πifcnΔt ṙ/c}],

(5)

where Δt. The sampled signal phase is

ϕd(nΔt) = 2πfc(ṙ/c) nΔt + 2πK ⋅TEC(nΔt)/fc +

ϕs (nΔt, fc) + ϕξ(nΔt) + 2πM,
(6)

where ϕs ( t, fc) is the phase of the scintillation modulation, h(nΔt; fc). The 2πM ambiguity is resolved by
comparing phase in wavelengths to pseudo range, which is measured and reported separately. Extracting phase
from Equation 4 requires resolution of intrinsic 2π ambiguities to construct a measurement free from 2π dis-
continuities referred to as cycle slips.

It follows from Equation 6 that the phase at two separated, f1 and f2, can be combined to generate the TEC
variation:

ΔTEC(nΔt) =
ϕ(2)d (nΔt)/f2 − ϕ

(1)
d (nΔt)/f1

2πK(1/f 22 − 1/f
2
1 )

+
ϕ(2)s (nΔt)/f2 − ϕ

(1)
s (nΔt)/f1

2πK(1/f 22 − 1/f
2
1 ).

+⋯

(7)

The omitted term in Equation 7 is the scintillation phase error, which is usually negligibly small for PNT ap-
plications, although it can be disruptive under highly disturbed conditions Breitsch et al. (2020).

1.2. Diagnostic Processing

Diagnostic processing starts with the demodulated signal Equation 4. The sampled intensity versus time repre-
sented by Equation 5 has a slow amplitude variation represented by Ad(nΔt), a more rapid random variation
caused by h(nΔt; fc), and an uncorrelated variation caused by noise. If the sampling is adequate to isolate the noise
in the frequency domain, the noise contribution can be measured and subtracted from the signal‐plus‐noise in-
tensity isolated at lower frequencies. An SNRd estimate is obtained by subtracting the noise estimate and inte-
grating the corrected signal contribution. The mean intensity, estimated by a curve‐fitting or low‐pass filtering
operation, isolates the low‐frequency component. Normalizing the signal to the mean intensity estimate generates
a result that can be written as

vd(t) = s(t) + ϵ(t)/
̅̅̅̅̅̅̅̅̅̅̅
SNRd

√
. (8)

The detrending operation just described imposes the constraint 〈|vd|2〉 = 1 over the detrending interval. The
signal contribution, s(t), is a narrow band process. Noting that

〈|h( t; fc)|2〉 = 1, (9)
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it follows that

s(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − 1/SNRd)

√
h( t; fc) exp{2πiK ⋅ TEC(t)/fc + ϕξ(t)}. (10)

The angle brackets denote time averaging. It is convenient to re‐normalize the detrended signal so that
〈|vd|2〉 = SNRd. With either normalization the detrended signal has the form of a narrow‐band locally homo-
geneous stochastic process, s(t), in a background of additive zero‐mean, unit‐variance, Gaussian noise. The model
supports probability‐based moment estimates and error bounds Tian et al. (2020). However, realizations of the
detrended signal can be processed to evaluate estimates derived from Equations 5 and 6 or vd(nΔt) directly
without further constraining assumptions.

We assume that the time variation comes from translation of the propagation path through the structured iono-
sphere. If the structure is stationary over the period of measurement, an effective scan velocity, veff , converts the
time variation to a projected spatial variation. The translation procedure, which depends on the scan and magnetic
field directions at a central location of the structure, is described in Rino et al. (2018). The diagnostic frequency
dependence, f , is measured relative to the carrier frequency fc, which is effectively a Doppler shift. We will use the
notation fDop = f − fc.

2. Phase Screen Theory
2.1. Background

Scintillation theory follows from a characterization of the propagation of electromagnetic (EM) waves in
structured inhomogeneous media. However, because the high mobility of charged particles along magnetic field
lines, stochastic variation is confined to planes that cut across field lines Rino and Fremouw (1977). With the
exception of propagation in the meridian plane, two‐dimensional propagation characterizes the structure imparted
to fields. The defining phase structure is formally a geometric projection of the field structure along the prop-
agation path. The interaction of EM fields with the ionosphere is polarization dependent. However, following the
development in Rino and Carrano (2021), the propagation calculation reduces to solving scalar wave equations of
the form

∇2ψ(x,y) + k2[1 + X(x,y)]ψ(x,y) = 0, (11)

where k = 2πf/c, and X is the perturbation part of the square of the medium refractive index n, that
is, X = n2 − 1.

If X(x,y) = 0, the following solution to the homogeneous equation advances the field forward from x to x + Δx

ψ(x + Δx,y) =∫ ψ̂(x; κ)exp{− ik2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (κ/k)2
√

ρ2F} exp {iκy}
dκ
2π
, (12)

ψ̂(x; κ) =∫ψ(x,y)exp {− iκy}dy, (13)

Where κ is the spatial wavenumber in radians per meter, y is the spatial coordinate transverse to the propagation
direction, and the Fresnel scale,

ρF =
̅̅̅̅̅̅̅̅̅̅
Δx/k

√
, (14)

is introduced to facilitate the narrow‐propagation‐angle (paraxial) approximation. By setting
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (κ/k)2
√

≈ 1 − (κ/k)2/2 one can approximate Equation 12 as

ψ(x + Δx,y)≃ exp {− ikΔx}∫ ψ̂(x; κ)exp{i( κρF)
2
/2} exp {iκy}

dκ
2π

. (15)
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The paraxial approximation applies when |κ|/k≪ 1. Aside from the phase factor, which translates the phase
reference to the point of measurement, paraxial free propagation is characterized completely by ρF.

The scalar wave equation makes no distinction between vertical and horizontal complex field components,
whereby ψ(x,y) is formally the component of the total field projected onto the y axis. The two‐dimensional wave
vector

k/k = [

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (κ/k)2
√

,κ/k] (16)

defines the propagation direction of the plane‐wave component with complex amplitude ψ̂(x; κ). In other words,
the components of the vector Equation 16 are the cosine and sine of the propagation angle relative to the x‐axis. If
the field has a well defined peak, the vertical and horizontal components can be resolved. A two‐dimensional
medium supports horizontal fields or transverse electric fields confined to the xy plane. Surface boundary con-
ditions are supported by uncoupled transverse and in‐plane fields as reviewed in Rino and Carrano (2021).

The free propagation of the field initiated by a stochastic phase‐screen is exact and can be evaluated efficiently
with discrete Fourier transforms. Moreover, fields initiated by power‐law processes have been studied in their
own right Berry (1979). However, characterizing propagation in unrestricted inhomogeneous media is surpris-
ingly demanding. Executing formally exact algorithms requires hours of computation for real‐world problems,
whereas under the paraxial approximation multiple phase‐screen (MPS) calculations can be executed in minutes
Knepp (1983, 2004). Phase screen equivalence replaces extended ionospheric regions with a path‐integrated
phase‐screen located at the center of the structured region. Phase screen equivalence was demonstrated in
Rino, Carrano, and Groves (2019). The remainder of this paper will review and demonstrate diagnostic appli-
cations of an equivalent two‐dimensional phase‐screen model.

A phase‐screen realization is initiated with a realization of ϕ(y). As a statistically homogeneous random process
ϕ(y) is characterized by a spectral density function (SDF), which is formally the expectation of the spatial Fourier
transform intensity. A realization of the stochastic process is typically generated as

ϕ( y) =∫

̅̅̅̅̅̅̅̅̅̅̅̅

Φϕ(κ)
√

exp {iκy}ξ(κ)
dκ
2π
, (17)

where Φϕ(κ) is the SDF and ξ(κ) is a zero‐mean unit‐variance complex gaussian process with the white noise
property

〈ξ(κ)ξ∗ (κʹ)〉 = 2πδ(κ − κʹ). (18)

The angle brackets denote the averaging over an ensemble of the random process realizations. The delta function
is zero unless κ = κʹ , where it is interpreted as an integrable singularity. These formal properties establish that
〈|ϕ̂(κ)|2〉 = Φϕ(κ) is the SDF of ϕ(y). The initiating field

ψ0(y) = exp {iϕ(y)}, (19)

upon transformation using Equation 13 and propagation using Equation 12 generates a phase‐screen realization.
To characterize the structure formally requires results from the statistical theory reviewed in the next Section.
Here, we summarize critical theoretical results that depend only on the phase‐screen structure as defined by the
phase‐screen realization and its subsequent free‐space propagation.

The phase SDF, Φϕ(κ), characterizes the statistical structure that initiates observable complex fields. The defining
statistical structure must be inferred from measurements of intensity and phase or the complex signal itself.
Starting with the complex field, if the phase realization is a Gaussian process there is a well‐known relation that
connects the mutual coherence function (MCF) and the phase structure function (SFN):
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MCFψ(Δy) = ⟨ψ0(y)ψ∗
0 (yʹ)⟩

= exp {− SFNϕ(Δy)/2}
(20)

where

SFNϕ(Δy) = ⟨|ϕ(y) − ϕ(yʹ)|2⟩. (21)

The SDF of a complex time series is generally referred to as a power spectral density. The term will be retained to
indicate a complex field source irrespective of the time or space dependence. There is a general Fourier transform
relation connecting the MCFψ(Δy) and the power spectral density PSDψ (κ):

MCFψ(Δy) =∫PSDψ(κ)exp {iκΔy}
dκ
2π

. (22)

Because free propagation of the complex field modifies only the phase of the spatial Fourier transform, the
MCFψ(Δy) and PSDψ (κ) are propagation invariant. The intensity and phase scintillation development is entirely
the result of a structure exchange between the complex field components. This property and the associated
reversibility of free propagation are well know and can be exploited.

2.2. Statistical Theory

Applying the MPS theory to a static three dimensional medium creates point samples of a two‐dimensional field
generated by a path integration along the direction of propagation. Formally,

ϕ(r⊥) = − rec∫Ne(r)dx/fc, (23)

where Ne(r), r = (x,y, z), represents the electron density in a region of interest intercepted by a path along the x
direction, fc is the carrier frequency, re is the classical electron radius, c is the vacuum velocity of light, and
r⊥ = (y, z) is the spatial coordinate transverse to the propagation direction. We let

Ne(r) = Ne(r) + ΔNe(r), (24)

where Ne(r) represents a deterministic mean and ΔNe(r) represents a stochastic residual. As has been mentioned
above, due to the strong anisotropy of ionospheric structure we will ignore the dependence of Ne and hence of ϕ
on z. Under such convention, the reference coordinate y represents the trace of the ionospheric penetration point
through the structure. It is convenient to specify the deterministic component in per kilometer TEC units as
follows:

NTEC(y) =∫Ne(y,η)dη × 10− 16 (25)

The phase variation in radians is written as

ϕ(y) = − 2πKNTEC(y)/fc + ϕs(y) (26)

where ϕs represents the path integrated contribution of the stochastic ionospheric structure. The phase‐screen
model characterizes the stochastic ionospheric structure with an anisotropic SDF specified over a prescribed
spatial wavenumber range. From the linear path‐integral relation Equation 23 it can be shown that ϕ(y) has a
complementary one‐dimensional form. The relations are developed in Rino et al. (2018) and cited references.

For diagnostic applications the stochastic component of the phase‐screen model is characterized by a two‐
component inverse power‐law model defined by the four structure parameters, Cp, p1, p2, κ0 as follows:
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Φϕ(κ) = Cp{
κ− p1 ,κ≤ κ0

(κ0p2 − p1 )κ− p2 ,κ> κ0
(27)

The following spectral domain relation can be constructed from the defining relation of the structure function:

SFNϕ(Δy) = 4∫
∞

0

[1 − cos(κΔy)]Φϕ(κ)
dκ
2π

(28)

substituting from Equation 27

SFNϕ(Δy) =
2
π
Cp∫

κ0

0

κ− p1 [1 − cos(κΔy)] dκ

+
2
π
Cpκ

p2 − p1
0 ∫

∞

κ0

κ− p2 [1 − cos(κΔy)] dκ.

(29)

The integrations can be evaluated analytically, whereby

SFNϕ(Δy) =
2
π
Cpκ

1− p1
0 { 1

1 − p1
F1 +

1
p2 − 1

F2

−
π3/2

2 cos (πp2/2)
1

Γ (
p2
2
)Γ(

1 + p2
2

)

(
κ0Δy
2

)

p2 − 1
⎫⎪⎪⎬

⎪⎪⎭

(30)

where

Fi = 1− 1 F2(
1 − pi
2

;
1
2
,1 +

1 − pi
2

; − (
κ0Δy
2

)

2

), i = 1,2. (31)

and 1F2(a; b,c; x) is the hypergeometric function.

A complete development of the 2D phase‐screen theory is presented in Carrano and Rino (2016) where it is shown
that

ΦI (μ; ρF,Cp,p1,p2,μ0)/ρF =∫

∞

0
exp {− γ(η,μ)} exp {− iημ} dη, (32)

where

γ(η,μ) = ρp1 − 1F Cp16∫
μ0

0
χ− p1 sin2 (χη/2) sin2 (χμ/2) dχ/(2π)

+ ρp1 − 1F Cpμ
p2 − p1
0 16∫

∞

μ0
χ− p2 sin2 (χη/2) sin2 (χμ/2) dχ/(2π).

(33)

Scale‐free spatial frequency and distance variables are defined as μ = κρF and η = y/ρF, with μ0 = κ0ρF. It was
found further that intensity scintillation severity is ordered by the universal strength parameter
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U = ρp1 − 1F Cp{
1, μ0 ≤ 1

μp2 − p10 , μ0 > 1
(34)

which is equivalent to Φϕ (μρF)/ρF at the Fresnel frequency μ = 1. Although
Equations 32 and 33 comprise an analytic specification, evaluation is very
demanding. A numerical integration scheme has been developed for computer
evaluation. Scintillation models assume loss‐free propagation, whereby
〈I〉 = 1 sustained by a singularity in the intensity SDF at the origin. With this
singularity removed,

S24 =∫

∞

0
ΦI (μ; ρF,Cp,p1,p2,μ0) dμ/(πρF) (35)

Similarly, Equation 21 defines the phase structure function. Formally, the
phase structure function defines an ROTI measure for each separation be-
tween two points of interest. However, the conditions under which the phase
structure function approximates ROTI derived from TEC are impacted by
scintillation. Similarly, an estimate of σϕs can be derived from Equation 27

σ2ϕs = 2∫
κmax

Δκ
Φϕ(κ)dκ/(2π), (36)

subject to similar caveats.

To summarize the scintillation range predicted by the phase‐screen model with p1, p2, and, μ0 fixed, Figures 1 and
2 show color displays of S4 as functions of Cp and ρF. The fixed parameters are listed in the figure titles. The
overlaid white curves show the S4 maximum (greater than one), which identifies a region of strong focusing. As
ρF increases S4 converges to a saturation value, which can be larger than one. From multi‐frequency S4 mea-
surements alone it would be difficult to distinguish different power‐law structure. Defining structure parameter
estimation will be described in Section 4.

3. Diagnostic Measurements
The theoretical relations up to this point related theoretical expectation cal-
culations of spectral density functions and periodogram measurements.
Diagnostic measurements are interpreted as being applied to sampled re-
alizations of random processes. The simplest diagnostic measurements are
sample moments of m‐th order as

Mm(I) =
1
N
∑
N

n=1
Im(nΔt). (37)

Where I(nΔt) is a sample of a stochastic process, which includes noise. The
number of samples used reduces the intrinsic uncertainty and the uncertainty
due to additive noise. The number of samples, N, is limited by statistical
uniformity, meaning realizations with the same number of samples produce
the same expectation result. Because moments grow rapidly as the order in-
creases, fractional moments,

Mm(I)/M1(I)
m, (38)

are preferred for diagnostic analysis. The measured scintillation index is
defined as

Figure 1. Display of phase‐screen S4 versus Cp and ρF for structure
parameters representative of low latitude scintillation. White overlaid curve
is S4 maximum.

Figure 2. Display of phase‐screen S4 versus Cp and ρF for single power‐law
structure parameters typically used for scintillation models. White overlaid
curve is S4 maximum.
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Ŝ4 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

M2(I)/M1(I)
2
− 1

√

. (39)

Expectation follows from a statistical model. For example, if the intensity has
an exponential distribution

〈Mm(I)〉/〈M1(I)
m〉 = m!, (40)

whereby 〈Ŝ4〉 = 1.

Additive noise affects and ultimately dominates moment measurements. In
Appendix A we show that the measured noise bias of the measured scintil-
lation index, denoted SI, can be calculate if the SNR is known as follows:

SI2 =
S42 + 2/SNR + 1/SNR2

1 + 2/SNR + 1/SNR2
, (41)

where SI is the expectation of the scintillation index derived from a signal
embedded in additive uncorrelated noise.

Figure 3, which is constructed using Equation 41, shows the expected tran-
sition from noise domination where SI ∼ 1 to high SNR (>20 dB) where

SI ∼ S4. If SNR is known, measured SI estimates can be corrected by inverting Equation 41, subject to un-
certainty in the measurement of SI and SNR.

In the introduction we argued that the generic signal model represented by Equation 4 captures the effects of the
processing details shown, for example, in Figure 14.17 in Morton et al. (2011). The carrier‐to‐noise‐ratio (C/N0)
introduced in Chapter 6.7 of J. Spilker (1977) is a processor‐specific figure of merit that accommodates pro-
cessing gain. However, extrapolating or simulating processor performance requires explicit knowledge of
effective noise level. The relation between SNRd and C/N0 is described in detail Sharawi et al. (2007). Formally,

C/N0 = SNRd BW, (42)

where BW is a waveform‐dependent bandwidth measure with frequency units. Equations 7 and 8 in Sharawi
et al. (2007), when written in complex form with additive noise are functionally identical to Equation 4. The
power ratio method described in this reference contains an SNR estimation procedure identical to the procedure
described our Section 2.

To demonstrate model applications for interpreting processor‐independent diagnostic measurements we focus our
attention on the signals from Global Positioning System (GPS). To this end, the generic L1, L2, and L5 GPS
simulations were generated at one kHz for one‐hour periods. To simulate multi‐frequency signals passing through
identical structure one reference phase realization is used. Subsequent realizations are generated with the
extrapolated frequency‐dependentU, μ0, and ρF parameters. The sample rate is representative of Equation 4 at the
correlator output prior to coherent noise suppression. To provide a range of propagation disturbance levels, the
phase‐screen U parameter was varied for each one‐minute segment. The segment sampling is sufficient to
accommodate varying N values or coherent noise suppression with representativeM sampling. The left frames in
Figure 4 show, respectively, the L1, L2, and L5 realizations. The 10 dB SNR is a low value for an operational
system. The red circles in the right frames are the true S4 values for each segment. Intensity moments were
estimated over 15 s intervals and averaged. The blue curves in the right frames are the SI estimates derived from
the signal moments at 4 estimates per minute. The variation is dominated by the intrinsic random‐process un-
certainty. However, SI estimates are also biased by the noise contribution. The green lines in the left frames are
estimates of the SNR derived from the intensity spectrum over the segment interval. The green points in the right
frames are corrected SI estimates derived by inverting Equation 41. Within the intrinsic measurement uncertainty
the bias is completely removed, which verifies Equation 41 and its utility for scintillation bias correction.

Figure 3. Display of SI versus SNR showing transition from noise
domination (SNR< 0 dB) to signal domination (SNR> 20 dB).
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The S4 noise bias estimates shown in Figure 4 are significantly larger than noise biases observed with data from
commercial GPS processors. The S4 noise bias is rarely significant. In the early development of GPS processors
Van Dierendonck et al. (1993) proposed an intensity estimate derived from the difference between coherent
(narrow band, NBP) and incoherent (wideband, WBP) intensity averages. Formally

ID = NBP − WBP (43)

where

WBP =∑
M

0
|vm|2 (44)

NBP =

⃒
⃒
⃒
⃒
⃒
∑
M

0
vm

⃒
⃒
⃒
⃒
⃒

2

(45)

An estimate of the S4 noise bias similar to Equation 41 was derived using the GPS‐specific C/N0 measure. The
Van Direndonck correction was demonstrated in Zhang et al. (2010).

To simulate the Van Direndonck scheme, representative ID realizations were generated with M = 20, which
produces intensity samples at 50 Hz, a commonly reported sample rate for high‐end diagnostic GPS receivers.
The left frames in Figure 5 show the IS intensity with the measured L1 SNRd indicated. The blue points in the right
frames are SI estimates derived over full segment intervals. The results are in good agreement with the true S4
values. The measured SNRd values indicate more than 8 dB of processing gain is realized with the Van

Figure 4. Left frames show intensity realizations at 1‐kHz with the average SNR (10 dB) overlaid. The right frames show, as
indicated, the true S4 (red), measured SI over 15‐s intervals (blue), and the corrected SI (green).

Radio Science 10.1029/2024RS008204

RINO ET AL. 10 of 17

 1944799x, 2025, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024R

S008204 by D
tsch Z

entrum
 F. L

uft-U
. R

aum
 Fahrt In D

. H
elm

holtz G
em

ein., W
iley O

nline L
ibrary on [10/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Dierendonk scheme. The bias correction at the higher SNRd level is small, which is consistent with the analysis
reported by Zhang et al. (2010). Using the measured SNRd in Equation 41 will correct the noise bias irrespective
of coherent noise cancellation. However, we note that independent of the noise bias the level changes between 20
and 40 min indicate sensitivity of the Van Direndonck scheme to discontinuous intensity changes.

3.1. Structure Parameter Estimation

Parameter estimation starts with establishing a parameterized structure model. Phase screen realizations are
defined by five structure parameters, namely Cp, p1, κ0, p2 and the Fresnel scale ρF. The phase‐screen statistical
theory summarized in Section 2.2 connects the parameterized structure model to diagnostic structure measures.
Irregularity parameter estimation is a maximum likelihood estimation procedure that reconciles statistical theory
predictions with diagnostic measurements. The left frames in Figure 6 show L1, L2, and L5 realizations presented
in spatial units, which relate more directly to the structure characteristics. The structure parameters are repre-
sentative of developed equatorial scintillation. The red curves in the right frame show the initiating phase ϕ(y), cf.
Equation 26, for each realization. The blue curves show the phase reconstructed from the complex signal. Because
model realization phase is a derived quantity, there is no phase truth as such. Sampling can affect the recon-
struction Rino et al. (2020).

The left frames in Figure 7 show the measured realization intensity SDFs (red) with the theoretical predictions
overlaid (green). The right frames in 7 show the measured complex realization PSDs (red) with the theoretical
predictions overlaid. Although the results are not shown because of the very good agreement between the
measured diagnostics (red), and the theoretical predictions (green) IPE recovers the parameters used to generate
the realizations. As discussed in Rino and Carrano (2018) the minimization procedure exploits the known limiting
statistics of periodograms to form maximum‐likelihood estimates. The effectiveness of IPE applied to measured
diagnostics depends on the complexity of the theoretical models and the number of parameters being estimated as
well as measurement errors and noise. The most demanding is IPE applied to the intensity SDF

Figure 5. The left frames show IS at 50 Hz (M = 20). The right frames show, as indicated, the true S4, measured SI over
1‐min intervals, and the corrected SI.

Radio Science 10.1029/2024RS008204

RINO ET AL. 11 of 17

 1944799x, 2025, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024R

S008204 by D
tsch Z

entrum
 F. L

uft-U
. R

aum
 Fahrt In D

. H
elm

holtz G
em

ein., W
iley O

nline L
ibrary on [10/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ΦI (μ; ρF,Cp,p1,p2,μ0)/ρF as defined by Equations 32 and 33, which has been used effectively by Carrano
et al. (2017) and Xu et al. (2019). However, the computational and procedural details are too demanding for
routine applications.

Insofar as we know, no attempts have been made to apply IPE to measured PSDs, nor to structure functions
derived from MCF estimates, which are theoretically connected by Equation 21. However, Carrano et al. (2019)
exploited the ROTI MCF relation under weak scatter conditions to demonstrate and exploit an ROTI S4 relation.
Similarly, under weak‐scatter conditions TEC structure can be interpreted as a direct measure of path‐integrated
irregularity structure Rino, Morton, et al. (2019).

To demonstrate PSD, SDF, and SFN relations, Figure 8 shows the simulated L1 PSD from Figure 7 (blue) with the
theoretical PSD overlaid (red). The middle frame shows the MCF, which is the inverse Fourier transform of the
PSD. The lower frame shows the structure function derived from the relation SFN = − 2 log(MCF) with the
analytic form Equation 30 overlaid. The computation of the MCF using the analytic relation
MCF = exp(− SFN/2) is also overlaid. The structure function at each separation can be identified with a cor-
responding ROTI measure upon conversion to time separation. Alternatively, the complete SFN could be used as
a diagnostic measure. An unconstrained power‐law SDF is singular at the zero frequency limit, although the
structure function is well defined for a range of power‐law index values. The asymptotic behavior of the structure
function as the separation approaches zero is used to define a structure constant in turbulence theory. This is
illustrated in the lower frame in 8. The overlaid green curve is a power‐law fit. The complementary power‐law
behavior between the SDF and the structure function is well know in turbulence theory.

Figure 6. Left frames show Global Positioning System phase‐screen simulations for L1, L2, and L5 frequencies. The reported
scintillation index is measured. Right frames show the initiating phase (red) and the reconstructed phase from the complex
scintillation (blue).
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3.2. Back Propagation

A direct estimate of the defining phase structure can be obtained by exploiting the fact that free‐propagation is
reversible. From the two‐dimensional theory a measured field admits the exact representation

ψ(x,y = t veff ) = ∫ ψ̂(x; κ)exp{− ik2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (κ/k)2
√

ρ2F}

× exp {iκ t veff } dκ/(2π).
(46)

The intensity of a back‐propagated field generates a well‐defined minimum of intensity variation (quantified by
e.g. S4) that can be determined efficiently with standard minimization algorithms. The spatial domain propagator
has been converted to time‐domain units for time‐series applications. The scaled propagation distance is a
parameter that can be converted to true distance from the known propagation geometry. Evaluating the propa-
gation integral at an arbitrary distance generates a starting intensity.

Figure 9 shows the result of applying back propagation to the simulation summarized in Figure 6. The green
curves overlaid in the left frames show back‐propagated intensity, which is very near one (or zero dB). The blue
curves in the right frames show the reconstructed phase from the back propagated field. In the absence of intensity
variation phase unwrapping generally produces no phase jumps. This is illustrated in Figure 9, which shows that
the initiating phase ϕ(y) is recovered. Breitsch and Morton Breitsch and Morton (2023) exploited this property to
correct measured phase jumps. The back propagation concept is described in Wagen and Yeh (1985). Appli-
cations for one‐ and two‐way propagation are described in Carrano et al. (2012). For occultation geometries back
propagation is used to estimate a central location of the structure along an extended path Ludwig‐Barbosa

Figure 7. Left frames show measured (red) and predicted intensity SDFs (green). Right frames show measured (red) and
predicted complex signal PSDs (green).
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et al. (2023). Limitations imposed by fields that are not highly anisotropic and noise are discussed in the cited
references. Insofar as we know, there has been no attempt to recover the equivalent phase for structure analysis.

4. Summary and Conclusions
We have reviewed a two‐dimensional phase‐screen model embedded in a generic signal model. The model ap-
plications include simulations for processor performance evaluation and interpreting diagnostic measurements.
The defining relations represented by Equations 4–7 are applicable to any digitally reported satellite signals after
demodulation. Detrending and SNR estimation translate the data for direct comparisons with phase‐screen
simulations or interpretation using theoretical predictions. Path‐integrated structure is characterized with a
two‐component inverse power‐law model Equation 27. The objective of diagnostic measurements is to estimate
the defining structure parameters and the propagation distance. IPE as summarized in Section 4 can be applied to
estimate parameters that reconcile theoretical predictions with measurements.

Our objective was to demonstrate unifying quantitative diagnostic structure measurements with simulations that
include additive noise and SNR improvements commonly realized by post‐detection coherent processing as well
as resolution sensitivity trades. Whereas, first‐order scintillation diagnostics are routinely used for morphological
studies, few attempts have been made to identify systematic structure changes that might otherwise be over-
looked. It is also important to recognize that the defining phase‐screen structure is an abstract measure unique to
the equivalent phase screen model. Validation of the procedures requires demonstrated consistency with real data,
which is the planned next phase of development.

In this regard we have suggested the use of back propagation for improving structure diagnostics. Back propa-
gation was introduced as a means of removing diffraction and thereby isolating the defining phase structure. In
Section 3.2 we verified that back propagation will perfectly recover the defining SDF with no prior knowledge of
the propagation distance. Back propagation has been used extensively, but mainly to localize propagation dis-
turbances in occultation measurements. Limitations are imposed by the largest intervals that generate measurable
intensity structure. In effect, diffraction‐free TEC structure is the upper limit of back propagation and a working
definition of the intermediate scale upper limit.

Figure 8. The top frame is a repeat from Figure 7, right panel, of the measured PSD (blue) and the theoretical result for L1
signal. The middle frame shows the defining portion of the MCF. The lower frame is the derived structure function (red) with
a power‐law fit (green). The red solid lines in the middle and lower frames represent the theoretical MCF and SFN functions.
The green dashed lines represent a power‐law fit with η = 0.5. The blue dotted lines are obtained from Equation 30.
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The issues include detrending and data segmentation, which identifies homogeneous segments that are amenable
to statistical measurement. Phase is particularly challenging because it must be reconstructed from a complex
signal dominated by large‐scale range change and imposed TEC structure. No phase structure diagnostics have
been introduced largely because there is no theory that predicts phase structure under highly disturbed conditions.
However, to the extent that simulations accurately predict the complex fields, analysis procedures can be eval-
uated. This is the general approach taken to evaluate TEC measurement accuracy Breitsch et al. (2020).

Appendix A

A1. S4 Bias Correction

From Equation 8 the signal model consists of two additive uncorrelated stochastic processes. If we assume further
that the underlying stochastic processes are homogeneous, the moments defined by Equation 37 can be computed
directly as follows.

v = s + n (A1)

I = |v|2 (A2)

⟨I2⟩ = ⟨
⃒
⃒s|4⟩ + 4⟨

⃒
⃒s|2⟩⟨

⃒
⃒n|2⟩ + ⟨

⃒
⃒n|4⟩ (A3)

〈I〉2 = ⟨
⃒
⃒s|2⟩2 + 2⟨

⃒
⃒s|2⟩⟨

⃒
⃒n|2⟩ + ⟨

⃒
⃒n|2⟩2, (A4)

Figure 9. Left frames repeat Global Positioning System intensities from realizations shown in left panels of Figure 6. Green
overlaid curves show back propagated field intensities. Right frames show initiating phase (red, covered by the blue curve)
with phase derived from back propagated signals (blue). Plotted differences are imperceptible.
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It follows that the intensity variance can be written as

( ⟨I2⟩ − 〈I〉2) = (⟨
⃒
⃒s|4⟩ − ⟨

⃒
⃒s|2⟩2) + 2⟨

⃒
⃒s|2⟩⟨

⃒
⃒n|2⟩ + ⟨

⃒
⃒n|4⟩ − ⟨

⃒
⃒n|2⟩2. (A5)

If the noise intensity, n2, is exponentially distributed, then:

⟨n4⟩ − ⟨n2⟩2 = ⟨n2⟩2. (A6)

The result simplifies to:

⟨I2⟩ − 〈I〉2 = S42⟨s2⟩
2
+ 2⟨s2⟩ ⟨n2⟩ + ⟨n2⟩2. (A7)

Normalizing to the average noise intensity replaces the average signal intensity with one and the average noise
intensity with 1/SNR, whereby.

⟨I2⟩ − 〈I〉2 = S42 + 2/SNR + 1/SNR2 (A8)

〈I〉2 = 1 + 2/SNR + 1/SNR2 (A9)

Forming the ratio leads to the desired result:

SI = (S42 + 2/SNR + 1/SNR2)
1/2
/ (1 + 2/SNR + 1/SNR2)

1/2
. (A10)

Data Availability Statement
No data were used in the paper. All the results can be reconstructed as described in the paper.
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