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Abstract

Parabolic Trough Collectors (PTC) are the most proven concentrating solar power
(CSP) technology. The part of a PTC that is typically the first to fail is the rotation
and expansion performing assembly (REPA), which is a flexible pipe connection be-
tween the movable receiver tube and the stationary field tubing. The combination of
high temperatures, pressures and mechanical loads due to the movement makes this
component prone to failure. A malfunction of the REPA can lead to a leakage of the
hot heat transfer fluid, potentially causing fires and shut downs of the collector row or
the whole power plant.

The aim of this work is to develop a predictive maintenance strategy based on the
vibrations that occur in the REPAs. A previous work investigated the change in the vi-
bration patterns over the life cycle of REPAs in PTCs for condition monitoring [1]. This
thesis expands on this idea by using the change in vibrations to predict the REPAs
future malfunctions.

To distinguish between the vibrations of a normally functioning REPA and a REPA
shortly before a leak occurs, a convolutional neural network is trained for classification.
The vibration data used for training is collected in an accelerated life cycle test cam-
paign and analyzed using short time Fourier transform. Two kinds of REPA are tested,
first a rotary flex hose assembly and later a ball joint assembly.

By employing a machine learning classification model, REPA malfunctions were pre-
dicted at least 1000 cycles before they occurred, which translates to more than 2.5
years of operation. This proves, that installing vibration sensors in PTC power plants

can help making the operation safer and more cost effective.
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1 Introduction

In 2016, 196 countries signed the Paris agreement. Its goal is, to limit the global av-
erage temperature to 1.5°C above the pre-industrials levels [2]. In order to achieve
this, the global greenhouse gas emissions need to be cut by 50% by 2030 and reach
net zero by 2050. With 13,800 million tonnes of CO2 being released in 2024, the en-
ergy sector has the highest contribution to global emissions out of all of the emissions
sectors [3]. Simultaneously, the global power demand is rising, with electricity con-
sumption rising by 4.3% in 2024 and an expected growth of 3.9% per year until 2027
[3].

These factors stress the need for low-emission energy sources to uphold the Paris
agreement and to avoid severe impacts of the climate change, such as droughts, heat-
waves and floods due to extreme rainfalls. Solar photovoltaic was the fastest growing
low-emission energy source in 2024 and is predicted to become the largest renewable
energy source by 2029 [4]. However, the availability of solar energy is intermittent due
to day/night cycles and varying weather conditions.

Concentrating solar power (CSP) offers an alternative technology to transfer solar en-
ergy to electrical energy with the possibility of energy storage in the form of molten
salts, allowing for electricity generation at night. The most common CSP technology is
the parabolic trough collector (PTC), where parabolic mirrors are used to concentrate
the direct solar irradiation onto a receiver tube that contains a heat transfer fluid (HTF).
The hot HTF is used to drive a heat engine to generate electricity.

The part of a PTC that is typically the first to fail is the rotation and expansion perform-
ing assembly (REPA), which is a flexible pipe connection between the movable receiver
tube and the stationary field tubing. The combination of high temperatures, pressures
and mechanical loads due to the movement makes this component prone to failure. A
malfunction of the REPA can lead to a leakage of the hot heat transfer fluid, causing
shut down of the plant partly or fully or potentially even fires.

The aim of this work is to develop a predictive maintenance strategy based on the vibra-
tions that occur in the REPAs. A previous work investigated the change in the vibration
patterns over the life cycle of REPAs in PTCs for condition monitoring [1]. This thesis
expands on this idea by using the change in vibrations to predict the REPAs future

malfunctions. Similar approaches have been employed for predictive maintenance of
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several different components, e.g. wind turbines or the journal bearings in hydropower
plants [9] [6].

To establish a predictive maintenance strategy, vibration data of an entire REPA life cy-
cle is required. Since a REPA is usually replaced after 25 to 30 years, it is no practical
to collect the vibration data on a real PTC. Instead, a test rig is used to perform accel-
erated rotation cycles. Here, it is possible to perform around 570 rotation cycles per
day, making it possible to reach 10,000 cycles in under three weeks. Two REPAs are
tested simultaneously. The test rig simulates the conditions the REPAs would be ex-
posed to, such as high temperatures and pressure. It is located at the Platforma Solar
de Almeria (PSA) in Spain. It is owned by the Spanish research institution Centro de
Investigaciones Energéticas, Medioambientales y Tecnologicas (CIEMAT). The PSA
is the largest research center for concentrated solar power research, providing state-
of-the-art testing facilities for both components and systems in solar thermal energy.
Its research spans several critical areas, including the enhancement of heat storage
systems, the creation of new collector technologies, and the examination of material
performance under harsh operational conditions.

The vibration data obtained by the accelerated life cycle tests is analyzed using Fourier
transform techniques to calculate spectrograms of the vibrations occuring during each
vibration cycle. Afterwards, a machine learning model is trained to classify between
spectrograms of cycles that happened close to a malfunction of one of the REPAs and
ones where the REPAs functioned normally. This model could later be used to ana-
lyze vibrations while the REPA is still in service to plan maintenance. This would in-
crease the reliability of PTC power plants and reduce their operation and maintenance

costs.



2 State of the Art in Science and Technology

As the global demand for clean, reliable energy grows, concentrating solar power
(CSP) grows in importance for the energy mix [7]. Unlike photovoltaic systems, CSP
systems can directly integrate thermal energy storage, allowing them to supply power
even when the sun is not shining. This makes CSP valuable for stabilizing energy grids
and supporting the transition away from fossil fuels. The working principle of CSP tech-
niques and parabolic trough collectors in particular will be discussed in Chapter [2.1]

The goal of this work is to develop a predictive maintenance strategy for the flexible
pipe connectors in parabolic trough collectors by analyzing the vibrations occurring in
them. The fundamentals of predictive maintenance are the topic of Chapter[2.2] while
Chapter delves into the working principle of the sensors capturing the vibration
data. In Chapter[2.4]the techniques used in vibration analysis will be discussed. Chap-
ter[2.5 delves into machine learning for classification tasks, which is used for predictive

maintenance.

2.1 Concentrating Solar Power

CSP systems use the irradiation of the sun to generate electrical energy. They use
optical systems such as mirrors or lenses to concentrate solar rays onto a receiver,
where the solar energy is converted into heat, which can then be used to drive a ther-
mal engine. CSP systems generally consist of five steps: concentration, absorption,
transfer, storage and generation [8].

In the first step, the solar irradiation of a large area is concentrated onto a smaller re-
ceiver. The concentrated light is absorbed by the receiver and turned into heat. The
larger the ratio of the collection area to the area of the receiver surface is, the higher the
achieved temperature in the receiver becomes. This is also called the concentration
ratio of the CSP system. A heat-transfer fluid (HTF) is used to transfer the heat away
from the absorber. It is possible to store the heat in a thermal energy storage to use it
at a later time. While this step is optional, the potential for energy storage results in a
significant advantage over other renewable energy sources such as photovoltaic[7]. In

the last step, a heat engine is used to generate electricity [8].
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Since the sun is not in a fixed position but moves across the sky, the CSP system
has to be moved to track the sun’'s movement. The progression of the sun can be
divided into a daily east-west movement and a north-south movement that happens
both daily and seasonally. There are two subsets of CSP technologies: point-focusing
and line-focusing systems. Point-focusing systems employ a two-axis tracking system
that tracks both the east-west and the north-south movement. This results in a higher
concentration ratio, however the solar tracking is more complex and therefore more
expensive to implement. Line-focusing systems only track in the east-west direction,
since most of the daily sun’s progression happens on this axis. The one-axis tracking
allows for a simpler implementation, thus making it cheaper. The achieved concen-
tration ratios are lower than thise in the point-focusing systems, making line-focusing
systems less efficient [8].

The collecting surface of the CSP system can either be continuous or consist of sev-
eral discrete facets. The continuous systems have the advantage, that there is no loss
of sunlight in between the mirror surfaces which results in higher concentration ratios.
However, the size of the receiver is limited since it has to be mounted with the collector
and follow the same tracking motion. Discrete systems on the other hand lose some
sunlight in the gaps between the mirrors but allow for a larger receiver that can be sta-
tionary.

The distinction between point-focusing and line-focusing and the distinction between
continuous and discrete systems allow for four different types of CSP systems, of which
Figure shows an overview: continuous line-focusing (parabolic trough collectors),
discrete line-focusing (linear Fresnel reflectors), continuous point-focusing (parabolic

dish reflectors) and discrete point-focusing (heliostat fields). [8]

Continuous Discrete

- \
focussing @ D D\)

|Parabalic Trough Collector] Linear Fresnel Reflector

. i

Point- 7
TR

focussing /
Parabolic Dish Reflector Heliostat Field

Figure 2.1: Overview of the different CSP technologies, red: receiver, blue: mirror panels
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In contrast to photovoltaic panels, CSP systems can only efficiently use the direct ir-
radiation of the sun. This means, that CSP is only suitable for regions with low cloud
coverage. The direct normal irradiation (DNI) quantifies the solar normal irradiance on
the surface of the earth excluding radiation that has been scattered or reflected. The
amount of scattered radiation is dependent on the elevation angle of the sun, cloud
coverage, humidity of the air and other particles in the air. Figure shows a map of
the DNI in different parts of the world. The red areas in the map are more suitable for
electricity generation with CSP [9].

SOLAR RESOURCE MAP

DIRECT NORMAL IRRADIATION @ worosmerovr  ESMAP  (EIIIED)

l 135°W W 105°W ) w 4y 3 v s §0°E 5°E 60°E 5°E 90°E 5°E E 135°F 50°F 1
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%

¥ v -

Long-term average of direct normal irradiation (DNI)

Daily totals: 10 20 30 40 50 6.0 70 80 90 100
I | KWh/m?
Yearlytotals: 365 730 1095 1461 1826 2191 2556 2922 3287 3652

This map is published by the World Bank Group. funded by ESMAP, and prepared by Solargis. For more information and terms of use, please visit http://globalsolaratlas.info.

Figure 2.2: DNI map of the world [9]

2.1.1 Parabolic Trough Collectors

The CSP technology considered in this work is the Parabolic Trough Collector (PTC).
The assembly of a PTC is shown schematically in Figure [2.3]

The concentrators used in PTCs are parabolic shaped reflectors which are made of
aluminum or silvered-glass mirrors. The receiver is a tube containing the heat transfer
liquid which is placed in the focal axis of the concentrator, absorbing the reflected radi-
ation. In order to minimize heat loss, the receiver tube is encapsulated in an evacuated
glass cover which has a non-reflective coating that results in a very high transmissivity

of the cover. The connection of the tube and the glass cover is realized by metallic bel-
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lows, which achieve the vacuum-tight enclosure and also compensate the differences

in thermal expansion between both components. [10]

Sun Rays

Receiver Tube

Reflector

Reflected Sun Rays

Field Piping

Figure 2.3: Assembly of a parabolic trough collector

To maximize the energy collected by the system, the concentrators are rotated
along a single axis during the day to follow the track of the sun. [11] The collectors can
be aligned along the north-south axis or along the east-west axis. If the north-south
axis is chosen, the sun has to be tracked along the east-west axis, whereas a PTC that
is aligned with the east-west axis tracks the sun along the north-south direction.
Figure [2.4] shows the rotation movement that is daily performed by the collector. When
the sun does not shine at night, the PTCs rests at ay..,. Before the sun rises, the
collector is moved to a.,+ in @ quick and continuous motion. After the sun rises, the
collector tracks is movement from ag,,. to the sunset position a.,q. This movement
does not happen continuous but in small increments every 20 to 40 seconds. To deter-
mine the current position of the sun, approximating algorithms are used. At the end of
the day, the collector is moved back to a,.,. This movement is again fast and continu-

ous. [11]
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////

///

Tend

Xstart

Figure 2.4: Daily sun-tracking movement of the PTC(green: slow, incremental motion, blue: fast, con-
tinuous motion)

An important aspect in the design of a PTC system is the choice of heat transfer
fluid. It determines the operational temperature that can be achieved in the PTC and
the maximum power cycle efficiency that can be achieved [12]. There are several dif-
ferent HTF available for usage in PTC power plants.

Synthetic oil are the most widely used HTFs in parabolic trough systems. Synthetic
oils, such as Therminol VP-1 and Helisol, have high thermal stability and are able to
operate at high temperatures up to around 400°C. They offer good heat transfer prop-
erties and are relatively easy to handle, making them a popular choice in commercial
solar power plants. [12]

Molten Salts, a mixture of sodium nitrate and potassium nitrate, is often used in high-
temperature systems. Molten salt is advantageous because it can store thermal energy
efficiently, making it ideal for systems requiring thermal storage. It operates at temper-
atures up to 565°C and can retain heat for extended periods, allowing solar plants to
produce electricity even when sunlight is not available. However, they can be highly
corrosive, damaging the receiver tubes. Additionally, if there are cold spots in the re-
ceiver (e.g. due to clouds), there is the danger of the salt solidifying.[12]

In some applications, water or steam can be used as an HTF, particularly in lower-
temperature systems. Water is abundant and inexpensive, but it requires higher pres-
sure to operate at elevated temperatures and is limited in the temperature range it can
effectively handle (up to about 300°C). [12]

Although less common, air can also serve as an HTF, especially in systems designed



2 State of the Art in Science and Technology 8

for lower temperatures. It is non-toxic, inexpensive, and readily available, but its heat

transfer properties are less effective than those of liquids like oils or molten salts. [12]

2.1.2 Rotation and Expansion Performing Assemblies

Since the collector surface of a PTC is rotated to track the movement of the sun, the
receiver tube has to be moved in order to stay in the focal line of the receiver. This
movable part of the tube has to be connected to the field piping with a flexible pipe
connector. Additionally, the thermal expansion of the receiver tube results in a trans-
lational movement that has to be absorbed by the pipe connector. The translational
movement follows a daily pattern, where the tube expands in the morning when the
temperature of the HTF rises and contracts again in the evening when the temperature
falls. The pipe connectors that compensate for these two movements are known as
rotation and expansion performing assemblies (REPAs).

Per PTC, two REPAs are required, one on each side of the collector. The REPAs have
to withstand cyclic loads in addition to temperatures of about 400°C and pressures of
up to 35 bar, making the REPAs prone to failure. They have an estimated lifetime of
10,000 cycles, which corresponds to 25-30 years with one cycle per day. [13]

Failure of the REPAs can result in leakage of the HTF, which can lead to fires due to
the high temperature of the fluid. Furthermore, after a failure maintenance is required
resulting in unplanned downtime for the PTC power plant. [13]

There are two main types of REPAs that are used in PTC power plants: rotary flex hose
assemblies and ball joint assemblies. They will be presented in the following sections.
[14]

Rotary Flex Hose Assemblies

Rotary flex hose assemblies (RFHASs) consist of a flexible metal hose, a swivel joint and
a torque transmitter, also known as a torque sword. Figure shows the schematic
layout of a RFHA.

The flexibility of the metal hose is provided by its corrugated structure along its length.

Additionally, it has a thermal insulation to reduce heat loss. The metal hose compen-
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sates the translational movement caused by the thermal expansion of the receiver tube,
while the swivel joint compensates for the rotational movement. The swivel joint has
one rotational degree of freedom and connects the fixed pipe to the metal hose. The
torque sword transmits the rotational movement and connects the PTC to the swivel
joint.[15]

Translational Movement

—
/ Absorber Tube

Flexible Hose

Swivel Joint

Fixed Header Pipe

Torque Sword

Figure 2.5: Schematic layout of a REPA

Ball Joint Assemblies

A ball joint assembly (BJA) is made up of three ball joints. Figure shows the
schematic layout of one ball joint. A ball joint consists of a ball, which is a pipe with
a spherical end, and a housing for this ball. Two compression seals keep this setup
in place. Through a fill coupling in the housing, a sealant can be injected. Graphite
is often used as a sealant. Since the sealant can be refilled the joint is serviceable,
making the BJA more popular in commercial plants than RFHAs. [14]

Each ball joint has three rotational degrees of freedom, making it possible for the ar-
rangement to compensate for both the rotational and the translational movement. The
first ball joint is attached to the receiver tube and another is attached to the fixed field
tubing. The third ball joint is placed between the other two. The joints are connected

by pipe sections. [14]
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Transition

Screw

Injectable seal

%

Compression Seal

Ball

Figure 2.6: Schematic layout of a ball joint

2.2 Maintenance Strategies

Maintenance is a critical aspect of any operation, particularly in industries relying on
machinery and equipment to function efficiently. There are several maintenance strate-
gies that can be adopted to ensure that systems operate normally. The goal is to
minimize downtime and repair costs while also ensuring a safe operation. Common
strategies are run to failure (R2F), preventive maintenance (PvM), and predictive main-
tenance (PdM) [16]. Each strategy has its advantages and disadvantages, but in recent
years, predictive maintenance has gained significant attention, since anticipating fail-
ure before it occurs can minimize the systems downtime needed for repair and makes
prior planning of the repairs possible [17].

The Run to Failure strategy is the simplest but also the least effective one. In this
strategy, equipment is allowed to operate until it breaks down. There are no scheduled
maintenance activities or efforts to prevent failures before they occur. Once equipment
fails, it is repaired or replaced. This method is typically employed in low-risk situations
where the cost of downtime is negligible or the consequences of failure are minimal.
However, the major downside of R2F is the potential for costly unplanned downtime,
expensive repairs, and the unexpected consequences of a failure. It is often consid-
ered inefficient for high-value assets, as it does not maximize equipment lifespan or
operational efficiency [16].

Preventive Maintenance aims to prevent equipment failures by scheduling regular in-
spections, servicing, and repairs. This strategy is either based on a fixed time interval,

such as performing maintenance tasks every month, quarter, or year, regardless of the
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equipment’s actual condition, or on a set number of process iterations. The key benefit
of PvM is that it helps avoid the worst-case scenario of unexpected breakdowns, and it
can extend the lifespan of equipment through consistent care. However, it also results
in downtime of the system that might not be necessary which can be costly. Addi-
tionally, PvM does not provide insight into the actual health of the equipment, meaning
some components may undergo unnecessary maintenance, while others could fail pre-
maturely due to insufficient attention.[16][17]

Predictive Maintenance represents a more advanced and data-driven approach to
maintaining equipment. It focuses on monitoring the actual condition of equipment in
real-time, often using sensors and non-destructive testing technologies, such as vibra-
tion analysis, infrared thermography, and oil analysis. PdM predicts potential failures
before they occur, allowing maintenance activities to be planned just in time, reduc-
ing unplanned downtime and avoiding unnecessary repairs. This method stands in
contrast to PvM, where maintenance may occur regardless of the equipment’s actual
condition.[16]

The predictive aspect of PdM stems from its ability to forecast the future condition of
equipment, using statistical process control principles to determine when maintenance
should take place. This ensures that interventions are both cost-effective and timely,
avoiding both premature maintenance and unexpected breakdowns. Additionally, PdM
minimizes system disruptions by enabling maintenance to be performed while equip-
ment remains in service, thus reducing the operational impact.[17]

One of the key benefits of PdM is its ability to integrate with computerized maintenance
management systems. This integration allows for efficient scheduling and execution of
maintenance tasks based on the condition data collected, ensuring that the right ac-
tions are taken at the right time. For large-scale facilities, this system integration is
critical, as it helps manage the maintenance of thousands of pieces of equipment with-
out overwhelming the workforce.[16]

The adoption of PdM leads to substantial cost savings and improved system reliability.
For example, industries like energy production benefit not only from reduced downtime
and lower repair costs but also from avoiding fines related to non-delivery. By forecast-
ing equipment failures before they disrupt operations, PdM improves profitability and
operational continuity, contributing to long-term financial and operational benefits.[17]
One of the main advantages of PdM is that it optimizes the maintenance process by

reducing the frequency of unnecessary maintenance tasks. Since maintenance is
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only performed when required, resources are used more effectively, and equipment
operates more efficiently. Additionally, the ability to predict failures before they hap-
pen leads to reduced downtime, increased productivity, and lower overall maintenance
costs. However, implementing a predictive maintenance program can be resource-
intensive initially. It requires an upfront investment in sensors, data analytics platforms,
and possibly a change in organizational practices to collect and interpret data prop-
erly. Nevertheless, for industries where equipment reliability is critical, such as manu-
facturing, energy production, and transportation, the long-term savings and improved

operational efficiency often outweigh these initial costs.[17]

2.3 Vibration Sensors

The aim of this work is to develop a predictive maintenance strategy based on the vi-
brations occurring in the REPAs of PTCs. In order to do this, vibration measurements
of the REPA’s lifecycles are needed. The vibrations are recorded using accelerome-
ters.

Accelerometers measure an object’s proper acceleration. This is the acceleration rela-
tive to an observer that is in free fall [18]. In contrast to coordinate acceleration, which
is relative to a coordinate system, this is not dependent on the observer’s choice. Thus,
an accelerometer that does not move relative to the earth’s surface will measure an ac-
celeration of 1g upwards, which must be subtracted from the accelerometer’s measure-
ments. This is due to Einstein’s equivalence principle, stating that gravitation causes
the same effects on an object as an acceleration and the two can therefore not be
distinguished [19]. In free fall, the accelerometer will not measure any acceleration, as
the observer is also in free fall.

There are several types of mechanical accelerometers, for example electrical, capaci-
tive or piezoelectric accelerometers [20]. In this work, piezoelectric accelerometers are
used, which will be explained in the following paragraphs.

Piezoelectric accelerometers use the piezoelectric effect to measure acceleration by
employing piezoelectric materials. Their advantages include a high sensitivity at high
frequencies and a good resistance to high temperatures. Additionally, they can be pro-
duced to be light and small making them suitable for many applications.

The piezoelectric effect refers to the phenomenon, where mechanical stress causes
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accumulation of the electric charge in a crystal, resulting in an electric field [21]. This
effect is reversible, meaning that an electric field leads to a change in the dimension of
the piezoelectric crystal, known as the converse piezoelectric effect [22].

The effect is caused by electric dipole moments that occur in solids. The dipole mo-
ments can either be induced or can be carried by dipolar molecule groups. Each dipole
can be denoted as a vector. The dipole density P describes all dipoles in a material.
In a piezoelectric materials, external stress results in a re-orientation of the dipoles,
either by changing the dipole-inducing surrounding or the orientation of the molecules
carrying the dipoles. The change in the orientation of dipoles leads to a change in P,
either in its strength or its orientation or both. From the outside, a change in P can be
observed as a change in the surface charge density on the crystal faces, resulting in a
changed electric field. [22]

Piezoelectric behavior can be observed in crystalline materials without an inversion
axis, for example quartz. Ceramic materials with randomly oriented grains also need
to exhibit ferroelectricity in order to have piezoelectric properties. The most common
ceramic piezoelectric material is lead zirconate titanate, also known as PZT. Single
crystals have a long life span in which the sensitivity remains high, however their sen-
sitivity is generally lower than that of ceramic piezoelectric materials. While ceramics
offer a high sensitivity, it degrades over time, resulting in a shorter lifespan of piezo-
electric ceramics compared to single-crystal materials. [22]

Piezoelectric materials have many applications, including portable lighters, scanning
probe microscopy and various sensors. The sensors have in common, that they use
the piezoelectric effect to turn a mechanical load into an electric signal. They can be
used to detect e.g. temperature, strain or pressure. In this work they are utilized as
accelerometers. [23]

A piezoelectric accelerometer typically consists of a sensing crystal, which is attached
to a seismic mass. To ensure linear behavior and to make a rigid structure, a preload
ring is placed around the sensing crystal. When the sensor is accelerated, the seismic
mass puts stress on the sensing crystal, causing an electrical output by the piezoelec-
tric effect. The electrical output is collected on electrodes and further transmitted by

wires. Figure [2.7] shows the typical layout of an accelerometer. [24] [23]
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Figure 2.7: Typical layout of an accelerometer

2.4 Vibration Analysis

In order to analyze the vibrations occurring in the flexible pipe connectors it is help-
ful to examine which frequencies are present in the signal and which energies they
have. This Chapter introduces frequency-domain methods used in vibration analy-
sis, beginning with the Fourier transform in section |2.4.1, which provides a frequency
spectrum for time-dependent signals. In the following section [2.4.2)the discrete Fourier
transform, a practical approach for analyzing sampled data, is introduced. Finally, this
Chapter covers the short-time Fourier transform in section [2.4.3] which extends the

discrete Fourier transform by providing time-resolved frequency information.

2.4.1 Fourier Transform

The Fourier Transform is a technique that allows for the representation of a time-
dependent function in the frequency domain. It was first proposed by Fourier in 1822,
who found that it is possible to expand any function into a series of sines [25].

The general definition of the Fourier transform is given by Equation 2.1, where f de-
notes the frequency and t represents the time. The original time-dependent signal is
given by s(t) and is transformed into the frequency spectrum S(f). The transformation

can be inversed by applying Equation [2.2) which turns the frequency spectrum into the
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time-dependent signal. [26]

S(f) = / T s re TG WfeR (2.1)

s(t) = h S(f) * e ftd ¥, Vt € R (2.2)

A simple example of a Fourier transform is given in Figure 2.8] The left side of the
Figure shows a time-dependent signal s(t) = 2 * sin(27 * 4t) + 5 * sin(27 * 2t) + 3 *
sin(27 % 0.5t). The signal only consists of three different components, however the plot
already looks complex. On the right side of the Figure the Fourier transform of the
signal is shown. It shows the three frequencies that can be found in the signal s(t) and
the amplitude at which these frequencies appear. The result of the transform is called

the spectrum of the signal.
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Figure 2.8: Left: A simple example signal, Right: Fourier transform of the signal

The length of the analyzed signal influences the quality of the Fourier transform.
If the signal length is not an integer multiple of the period length of the sinus waves,
the Fourier transform recognizes frequency components that are not actually present
in the signal. If there are frequencies in the spectrum that do not appear in the original
signal this is call spectal leakage [27]. To illustrate the effect this has on the quality of
the spectrum, Figure [2.9] shows the result of the Fourier transform of the above signal
with a signal length of 12.3s.
More broadly, spectral leakage can be viewed as an effect of windowing, which is the
convolution of the signal with a window function. The finite signal length can then
be interpreted as the result of the multiplication of the signal with a rectangular win-
dow.[27]
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Figure 2.9: Fourier transform of 12.3 seconds of the signal in Figure (left) showing spectral leakage

2.4.2 Discrete Fourier Transform

Since in the application of vibration analysis, the signal is not continuous but consists
of discrete data points, the approach explained in section has to be modified. The
solution for this problem is called the discrete Fourier transform. It is defined by Equa-
tion where {z,} = x¢, z1,...,z, and {X,,} = Xo, X1, ..., Xy_1 are two sequences of
N complex numbers. The inverse transformation is given by Equation 2.4] [28]

The frequency at which the discrete data points are measured is called the sampling
frequency f,. The highest frequency that can be resolved by the Fourier transform is
fs/2, also known as the Nyquist frequency. If there are frequencies above the Nyquist
frequency, they appear as a lower frequency in the Fourier spectrum. This effect is
known as aliasing. [28][27]

To avoid aliasing, two main strategies are used. The first one is two increase the sam-
pling rate so that it is more than twice the highest frequency present in the signal.
This ensures that all frequency components are below the Nyquist limit. The second
strategy is to apply an anti-aliasing filter before sampling, which is a low-pass filter that
removes all frequency components above the Nyquist frequency, This guarantees, that

no out-of-range frequencies are present when the signal is digitized. [27]

N-1
Xp= a,xe2mn (2.3)
n=0
1 = !
Ty = N Z Xk * eiZWWn (24)

k=0
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2.4.3 Short Time Fourier Transform

The Fourier transforms that were discussed so far hold no information about the times
at which frequencies appear. They only indicate that a frequency is present in a signal
but not the times at which it appears. However, in a signal that changes over time,
this results in information being lost. As an example, the left side of Figure [2.10] shows
a signal that changes over time which is given in Equation 2.5/ The right side of the
Figure shows the Fourier transform of that signal. While it correctly shows the three
different frequencies that appear in the signal, there is no information on the times at

which they are present.

2 % sin(2m * 4t) + 5 x sin(2w « 2t) < 10
s(t) = (2.5)
3 sin (27 * 3t) x> 10
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Figure 2.10: Left: A simple changing signal, Right: Fourier transform of the signal

A solution to this problem is the Short Time Fourier Transform (STFT). Here, the
signal is split into shorter segments for which separate Fourier spectra are calculated.
From this information a spectrogram can be plotted, which shows the intensity of the
frequencies for each time segment. [29]

In practice, this is performed by multiplying a window function which is non-zero for a
small interval with the signal. At each step, the window is slid further over the data to
analyze every interval separately. Usually the intervals which are calculated are over-
lapping to reduce artifacts at the edges of the windows. [29]

There are several different window functions. One basic example is the rectangular
window, which applies no tapering to the signal segment. While it provides the best

frequency resolution, it also leads to the highest spectral leakage due to its abrupt
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edges. This makes it suitable only for ideal or theoretical signals where leakage is not
a concern. [27]

A more effective window function for practical applications is the Hann window. lts
mathematical form is a raised cosine curve, pictured on the left side of Figure[2.11] The
Hann window smoothly tapers to zero at both ends, which helps reduce spectral leak-
age significantly compared to the rectangular window. While it slightly compromises
frequency resolution due to a wider main lobe, it strikes a good balance between res-
olution and leakage. This makes it especially useful in time-frequency analysis tasks
such as audio and speech processing. [27]

The right side of Figure shows the result of the multiplication of the signal shown
in the left side of Figure [2.10] with the Hann window. The resulting signal only shows
a small part of the original. If a Fourier transform is performed for every step of the
window, this allows for a time resolution in addition to the frequency resolution that is

present in the regular Fourier transform.
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Figure 2.11: Left: Hann window with a length of 10s, Right: Signal of Figure (left) multiplied with
the Hann window

The result of the STFT is called a spectrogram. Figure[2.12shows the spectrogram
of the signal in the left side of Figure 2.10] It was calculated with a Hann window
of 10s with an overlap of 5s. The x-axis shows the time, while the y-axis shows the
frequencies that are present at that time. The colorbar gives information on the intensity
of the frequencies. The intensity is given as the power spectral density, which is the
square of the amplitude. Its unit is the decibel, which is defined on a logarithmic scale.
[29]

The smallest frequency that can be resolved with the STFT is called the Rayleigh
frequency, which is defined a %Hz, where T is the window length. As in the regular

Fourier transform, the highest resolvable frequency is the Nyquist frequency fn = %S
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where fg is the sampling frequency [27].
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Figure 2.12: spectrogram of the signal in Figure (left) created with STFT with a windowsize of 10s
and overlap of 5s

The length of the windows has to be chosen carefully, as a shorter window leads
to a high time-resolution but a low frequency-resolution. The left side of Figure
shows the spectrogram of the above signal calculated with a very short Hann window
of 2s and an overlap of 1s. On the other hand, a longer window results in a high
frequency-resolution but more time data gets lost. This can be observed on the right
side of Figure [2.13] where the same signal as in the left side of the Figure was ana-
lyzed with a Hann window of 20s and an overlap of 10s. The effect, that a heightened
frequency-resolution comes at the cost of a low time-resolution and vice versa is called

the uncertainty principle. [27]
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Figure 2.13: Left: spectrogram of the signal in Figure (left) calculated with a windowsize of 2s and
overlap of 1s, Right: spectrogram of the signal in Figure (left) calculated with a windowsize of
20s and overlap of 10s
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2.5 Machine Learning for Classification tasks

This thesis aims to apply classification algorithms to recognize vibration patterns that
occur before a REPA malfunctions. For the task of classifying data, machine learn-
ing, a subclass of artificial intelligence is well suited. Machine learning algorithms are
algorithms that can perform tasks without being specifically instructed on the needed
steps. They can learn to generalize from training data to make predictions on unseen
data [30]. Usually, the training is divided into three approaches: supervised learning,
unsupervised learning and reinforcement training.

Supervised learning algorithms are trained with labeled data. The training data is given
as input and output pairs from which the model is supposed to learn how to map the
input to the output. The goal is to learn a general rule to predict the output. [31]
Unsupervised learning does not require labeled input data. The algorithm is supposed
to find structure on its own without any given outputs. Common tasks for unsupervised
learning algorithms include clustering and dimensionality reduction. One challenge
in unsupervised learning is the difficulty of quantifying the quality of the model out-
puts. There are also algorithms that employ a mixture of supervised and unsupervised
training, where only part of the data is labeled. These are called semi-supervised al-
gorithms. [32][31]

In reinforcement learning, the goal is for the model to learn how to interact with a
changing environment. The learner reacts to the environment and receives rewards for
every action with the objective of maximizing the reward. A key point of reinforcement
learning is the exploration vs exploitation dilemma, where a balance between exploring
unknown actions to maximize knowledge and exploiting the already gained knowledge
must be found. Examples where reinforcement training is used include automated driv-
ing, optimizing energy storage and game engines such as chess engines [33][34][35].
[31]

Supervised learning can be further divided into regression and classification tasks.
Regression is used to predict continuous labels. The goal is to find a function that
maps the input x to the continuous labels y. Classification is used for data with discrete
training labels in order to divide the data into output classes. Algorithms that perform
these tasks are also called classifiers. A subclass of classification is the probabilistic
classification, where not only the most likely class label is given by the classifier but

for every output class a probability is given. This can for example be helpful when
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two classes have similar probabilities. This work will only focus on binary classification
algorithms which distinguish between two classes. The performance of these models
can be quantified by the metrics explained in Chapter

Popular algorithms used to perform classification tasks include Support Vector Ma-
chine, Random Forest, Kernel estimation and Artificial Neural Networks
[40]. The latter will be further explained in Chapter[2.5.2,

2.5.1 Performance Metrics for Binary Classification Models

The performance of classification models can be quantified by several different metrics.
The first is the accuracy, which measures how well the predicted labels match the
labels given by the training set. It is defined by the number of correctly classified
objects divided by the total number of objects [41]. While this metric is the easiest to
intuitively understand, in unbalanced datasets where one class is underrepresented or
classes have different error costs, this metric can be lacking.

A more detailed evaluation of the models’ performance can be achieved by calculating
the confusion matrix. The predictions are divided into true positive (TP), false negative
(FN), false positive (FP) and true negative (TN). This is illustrated in Figure [2.14] The
relation of these values to the accuracy is defined by Equation [2.6][42]

Predicted
Positive Negative
Positive TH.J?
) Positive
Reality
: True
BRI Negative

Figure 2.14: lllustration of the confusion matrix

TP+TN
TP+ FP+TN+ FN

(2.6)



2 State of the Art in Science and Technology 22

If there is a different cost of false positive and false negative it is beneficial to also
calculate the precision and recall of the model. The former quantifies the amount of
correct predictions of the positive class (Equation while the latter measures how
many of the positive instances in the dataset were found (Equation [41]. If false
negative is the costlier error, the recall should be maximized, while the precision should
be maximized when false positive has the higher cost. A high precision is achieved by
a model that is not generating many false positives, however this can also mean, that
the model is not generating many positive predictions overall. A model that is always
predicting the negative class would have a precision of 1. On the other hand, a high
recall means, that the model has few false negatives and can thus correctly identify

most positive instances. [42]

TP

Precision — _
recision TP+ TP (2.7)
TP
Recall = ——— .
A= TP FN (28)

Precision and recall can be connected into a singular metric by calculating the F71
score, which is the harmonic mean of precision and recall (Equation [41]. Since
it takes into account both false positive and false negative errors it is well suited for
imbalanced datasets. If the cost of false negative and false positive are different the F1
score can be weighted by introducing the weight factor 3, which represents the factor
by which the recall is more relevant than the precision (2.10). This weighted F1 score

is sometimes referred to as the F2 score. [42]

2 x (Precision = Recall)

Precision + Recall
Precision x Recall
Fls = (1+ 82 « *

(32 * Precision + Recall

Fl=
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2.5.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are modeled after the neuron structure of the human
brain. They belong to the deep learning algorithms which are a subset of machine
learning algorithms. Similarly to the human brain, ANNs consist of many simple neu-
rons which are connected to form a complex network[43]. In ANNSs the biological model
of a neuron has to be abstracted as a mathematical function. The first version of the
artificial neuron was proposed by Warren McCulloch et al. in 1943 [44].

A neuron consists of a net value function £ and an activation function ¢ which are used
to transform a set of inputs x into an output o [45]. Before being processed by the neu-
ron, the inputs are multiplied by a set of weights w. The net value function then adds
the weighted inputs. The result of this function is processed by the activation function
which limits the amplitude of the neurons output. Before applying the activation func-
tion an external bias b might be added to the functions input. The neuron k can be
described by equations [2.11]and [2.12| Equation describes the net value function
with m denoting the size of the input vector x. Equation describes the neurons

output which is calculated by the activation function ¢ with added weight b. [46]

up =Y wpy * (2.11)
j=0
Yr = ¢(ug + by) (2.12)

While a single neuron is mathematically simple, the complexity of an ANN comes from
the connection of many neurons. The most common version is the feed-forward net-
work, which consists of several layers of neurons. The output of each layer is used as
the input of the next layer, with the exception of the last layer. The output of the last
layer is the networks output. Accordingly, this layer is also referred to as the networks
output layer. The first layer is also called the input layer, since the networks input serves
as the input of all of the layers neurons. The behavior of the layers in between the input
and the output layer cannot be directly accessed from outside of the network, which is
why they are referred to as hidden layers. If every neuron is connected to every neuron
of the next layer, the network is called fully connected. Figure[2.15 shows a simple fully
connected artificial neural network with one hidden layer. The amount of hidden layers
is described by the depth of the network, which is why this field of machine learning is

also called deep learning.[45][47]



2 State of the Art in Science and Technology 24

Input Layer

Hidden Layer

Output Layer

Figure 2.15: lllustration of a fully connected artificial network with one hidden layer

Training of Artificial Neural Networks

In the training process of a neural network, the goal is to teach the network to approx-
imate a function that maps inputs to outputs in a way that minimizes the difference
between the predicted and actual outputs. This is done by adapting the weights of
the connections between the neurons over time. The networks ability to approximate
increasingly complex functions is related to its depth, meaning that deeper networks
can model more intricate relationships within the data. The training is usually done by
using an algorithm which consists of two phases: the forward phase and the backward
phase [47].

In the forward phase, training data is passed into the network, starting at the input layer
and propagating through each hidden layer until it reaches the output layer. Each layer
in the network applies a mathematical transformation to the input data it receives. The
output generated by the final layer is the networks prediction for that particular input.
This prediction is then compared to the actual label of the input data. The difference
between the predicted output and the true output is called the loss of the network. [47]
Once the loss has been calculated, the network enters the backward phase, where the
goal is to update the weights of the network in such a way that the loss is minimized.
This is done by applying a backpropagation algorithm. Backpropagation works by com-
puting the gradient of the loss function with respect to each weight in the network. The
gradient tells us how much a small change in each weight will affect the overall loss.
[48]

The learning rate \ controls, how big the update steps of the weights are. The training

process is done in multiple epochs. In each epoch, all of the training data is propa-
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gated through the network. Usually, the data is passed through the network in batches
of several training examples for which the loss is calculated cumulatively. The amount
of examples per batch is characterized by the batch size and has an important influ-
ence on the success of the training. [48]

The success of the networks training is dependent on the loss function, the activation
function and the optimizer. In the following sections their most important examples
for binary classification will be discussed. There are also several problems that might

occur during training, some of which will also be covered in the following.

Loss Functions for Artificial Neural Networks

There are several different possible functions to calculate the loss of the network. The
loss function has to be chosen carefully, as it heavily influences the models training.

One loss function that can be used for binary classification, although it is more com-
monly applied in regression tasks, is the Mean Squared Error (MSE). MSE calculates
the square of the difference between the predicted probability and the actual label.
Equation [2.13| shows, how the MSE loss is calculated, where N is the number of sam-
ples, y; is the true value of the i** sample and p; is the predicted value of the i** sample
[49]. It treats the binary classification problem as a regression problem, where the out-
put is treated as a continuous value. An output of 0 indicates a perfect fit. Since the
MSE is a quadratic function is places a larger emphasis on larger errors than smaller
ones, which makes it sensitive to outliers. While MSE is simple and differentiable, it is
not optimal for classification tasks, as it does not penalize miss-classifications as ef-
fectively as other loss functions designed specifically for classification, and it does not
capture the probabilistic nature of binary classification as well as other loss functions,

which will be discussed in the following paragraphs. [42]

N
_ 1 2
Luse = ;(yz Di) (2.13)

A much more common and effective loss function for binary classification is Binary
Cross-Entropy Loss (BCE Loss), also known as Log Loss. BCE is derived from the
likelihood of a Bernoulli distribution and measures the dissimilarity between the pre-

dicted probability and the actual label [50]. The definition of this loss function is given
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in Equation [2.74] where y is the true class label and p is the predicted probability,
that the sample belongs to the positive class. This loss function is particularly use-
ful when the model’s output is a probability, which is common in binary classification
tasks. BCE penalizes the model more when its predicted probability is far from the true
class label, making it a natural fit for binary classification problems. For datasets with
a class-imbalance, the BCE loss can be modified by adding weights to the samples. If
samples of an under-represented class get assigned a higher weight, the model may
pay more attention to these samples, balancing out the under-sampling. This modified

version of BCE loss is called the Weighted Binary Cross Entropy Loss (WBCE). [42]

Lpce = —(yilog(p:) + (1 — y;) log(1 — pi)) (2.14)

Another loss function that can be used in binary classification, although less common
in deep learning, is Hinge Loss, which is typically associated with Support Vector Ma-
chines [51]. The calculation of Hinge loss is given in Equation [2.15 where y is the
true label of the instance and f(z) is the predicted output for z. Hinge loss is used in
margin-based approaches, where the goal is to maximize the margin between classes.
It encourages the model to output a value that is further away from the decision bound-
ary, ensuring that positive examples are classified as +1 and negative examples as
-1 with a margin of at least 1. Though not as widely used in deep learning as Binary
Cross-Entropy, Hinge Loss can still be employed when margin-based learning is the
focus. [42]

Luinge = max(0,1 —y; * f(x;)) (2.15)

For situations where a dataset is heavily imbalanced, Focal Loss is a modification of
Binary Cross-Entropy that can help the model focus more on the hard-to-classify exam-
ples [52]. It is defined by Equation where p; is the predicted probability, that the
sample belongs to the true class, «; is a weighing factor that controls the importance
of the sample and ~ is a focusing parameter that controls, how fast the easy samples
are down-weighted. Focal Loss down-weights the loss for well-classified examples and
places more emphasis on misclassified or harder examples. It is particularly useful for

imbalanced datasets, where the model may otherwise bias its predictions toward the
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majority class. [42]

LFocal - —Oé(]. - pt)7 * log(pt) (21 6)

Another useful loss function, especially in cases where the model outputs a probability
distribution over the classes, is the Kullback-Leibler Divergence (KL Divergence) [53].
The definition of the KL divergence is given in Equation [2.17, where p(z;) is the true
probability of the class z; and ¢(z;) is the predicted probability of class x;. KL Diver-
gence measures how one probability distribution diverges from another, and it can be
used in binary classification when the model predicts a distribution rather than a single
probability. KL Divergence is useful when optimizing a model for probabilistic outputs
and ensuring that the predicted distribution closely matches the true distribution of the
labels. [42]

Lipllo) = 3t *1og<(")> 2.17)

The quantification of the models performance after training can be done by cross-
validation. In this technique, the set of training data is split into two subsets. The first is
used to train the model while the second is used as a testing dataset. After the training
subset is passed through the network, estimations are done on the testing subset.
This way, the testing is done on data the network has not seen before, which makes

the validation more accurate. [54]

Problems in the Training of Artificial Neural Networks

There are several problems that may occur in the training process that lead to a bad
performance of the network. In the following paragraphs, overfitting, underfitting, van-
ishing or exploding gradients and class imbalance will be discussed.

Overfitting occurs when a machine learning model learns not only the underlying pat-

terns in the training data but also the noise and details specific to that data. This results
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in a model that performs well on the training set but poorly on unseen data, as it fails to
generalize to new, unseen examples. The model becomes too complex and captures
irrelevant information, leading to poor generalization. [55] Underfitting on the other
hand occurs, when the model is too simple to capture the patterns in the data. The
model fails to generalize well because it does not adequately represent the relation-
ships in the data.

To overcome overfitting, techniques such as dropout and early stopping can be em-
ployed to prevent the model from becoming too complex. Cross-validation can also be
used to ensure the model performs well on unseen data. Dropout prevents overfitting
by randomly setting a fraction of the neurons’ activations to zero during training [56].
This forces the model to rely on different subsets of neurons in each training iteration,
promoting more robust learning. By preventing the model from becoming overly reliant
on specific neurons, dropout encourages generalization and improves performance on
unseen data. When using early stopping, training is stopped when the models perfor-
mance on a validation set stops improving, preventing overfitting [57]. This helps avoid
training the model too long, allowing it to generalize better by stopping at the point
where it has learned enough without memorizing the training data. Additionally, the
chosen batch size during training can impact overfitting. A small batch size reduces
overfitting by introducing more noise into the gradient updates during training. This
noise helps prevent the model from memorizing the training data too precisely, allow-
ing it to explore a broader range of solutions. As a result, the model is less likely to
overfit to the specific patterns or noise in the training set, leading to better generaliza-
tion on unseen data. [48]

Underfitting can be solved by using a more complex network or switching to a different
network architecture or introducing more layers. However, this has to be done carefully
because a network that is too complex might result in overfitting. [48]

Vanishing gradients happen when the gradients of a neural network become very small
during backpropagation, making it difficult for the model to learn, especially in deep net-
works. This is due to the gradients shrinking as they are propagated back through the
layers, effectively preventing weight updates in earlier layers. Exploding gradients, on
the other hand, happen when the gradients become excessively large, causing insta-
bility in the learning process and potentially leading to overflow or divergence in the
models weights. [43]

One possibility to avoid vanishing or exploding gradients is proper weight initialization,
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which helps prevent gradients from vanishing or exploding by setting weights appropri-
ately. This means, that the initial values of the networks weights have to be set in a way
that ensures stable gradient flow during training. Methods like He initialization or Xavier
initialization adjust the weights based on the number of input and output units in each
layer, preventing gradients from vanishing or exploding. The weight initialization has to
be chosen in accordance to the used activation function. Gradient clipping can also be
applied to limit the size of gradients during backpropagation, preventing them from be-
coming too large. Here, the gradients are scaled when they reach a certain threshold.
This ensures, that the gradients during backpropagation remain within a manageable
range, improving model stability, especially in deep networks or when training with long
sequences. Batch normalization further stabilizes training by normalizing the output of
each layer, ensuring a consistent distribution of activations and reducing the risk of gra-
dient issues. Finally, employing smaller learning rates helps control gradient updates,
preventing large steps that could cause exploding gradients. [43][48]

Class imbalance occurs when the classes in a dataset are not represented equally,
with one class having significantly more examples than the others. This imbalance
can lead to biased model training, where the model tends to predict the majority class
more often, neglecting the minority class. As a result, the model may have poor perfor-
mance on the underrepresented class, which can be particularly problematic in tasks
like fraud detection or medical diagnosis, where the minority class is often the more
important one to predict accurately. One approach to solve this is resampling, where
you either oversample the minority class or undersample the majority class to balance
the dataset. Another method is to use class weights during training, which gives more
importance to the minority class by assigning a higher weight to it in the loss function.
Additionally, data augmentation can help increase the size of the minority class, and
anomaly detection techniques can be applied when the imbalance is extreme. Finally,
ensemble methods like random forests or boosting can also help by incorporating mul-
tiple models to improve performance on imbalanced data. [48]

These challenges in the training of ANNs can also be adressed by adjusting the activa-
tion function and the optimizer. In the following sections, common activation functions

and optimizers will be introduced.
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Activation Functions for Artificial Neural Networks

For a successful training, the correct choice of activation functions is important.There
are several different activation functions that can be used in a neuron, including the
Rectified Linear Unit Function (ReLU), hyperbolic tangent and the sigmoid function.
All activation functions have in common, that they map the input on a limited output
space.

The ReLU-function, which can be seen in Equation 2.8} equals the identity function for
positive values and zero for negative values. The linear behavior of the function offers
many advantages for training. While the first order derivatives are large and consistent
for positive values, the second derivative is zero. The absence of second-order effects
makes the gradient direction more useful for training. The activation function also al-
lows for sparse activation, as only 50% of the hidden units are activated in a randomly
initialized network. However, since the outputs are not centered around zero and al-
ways non-negative, the learning in backpropagation might be harder. This problem can
be addressed by applying batch normalization. ReLU can also lead to dying neurons,
where they become inactive and output zero for almost all inputs. When this happens,
no gradients flow backwards during backpropagation and the neuron dies. [48]
Several different variants of ReLU address the dying neurons problem, for example
leaky RelLu, which applies a positive gradient « smaller than one for values lower than
zero, commonly between 0.01 and 0.3 [58]. Another variant is parametric ReLU, where
the gradient « is learnable by the model [59]. [48]

If a normalization of the model output is needed, using the sigmoid activation function
(Equation might be reasonable, as this function maps the input to the interval
[0, 1]. However, since the function is only highly sensitive to a change in the input if the
input is close to 0 and has otherwise very small gradients, gradient-based training can
be very difficult.

While the hyperbolic tangent function is similar to the sigmoid function, it can be bet-
ter suited for training. This is due to the function being centered around zero and
not around % as the sigmoid function. This leads to a higher similarity to the identity

function for inputs close to zero. [48]
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Optimizers for Artificial Neural Networks

Another important factor in the training process is the optimizer choice. The optimizers
task is to adjust the models weights to minimize the loss function. They use the gra-
dients computed during backpropagation to update the weights in a way that improves
the models predictions. Popular optimizers like Stochastic Gradient Descent (SGD),
Momentum, Adaptive Moment Estimation (Adam), and Root Mean Square Propagation
(RMSprop) employ different strategies to adjust the weights and handle challenges like
vanishing gradients or slow convergence.[60]

The SGD optimizer is an optimization algorithm that updates the models weights based
on the gradient of the loss function with respect to the weights [40]. Unlike traditional
batch gradient descent, which computes the gradient using the entire dataset, SGD
updates the weights after processing each individual training example, making it more
computationally efficient for large datasets. While this leads to noisier updates, it can
help escape local minima and converge faster, especially when combined with tech-
niques like momentum or learning rate schedules. [61]

If there are areas in the loss landscape, where the surface curves much more steeply
in one dimension than in the other, SGD can not be the optimal choice. These areas
often occur close to local minima. The Momentum optimizer addresses this weakness
by a fraction of the update vector of the past time step to the current update vector. Thsi
results in faster convergence and a reduced oscillation. [60] RMSprop is an adaptive
learning rate optimizer that adjusts the learning rate for each parameter based on the
average of recent squared gradients. It helps to address the issue of learning rates
being too large or too small by dividing the learning rate by a moving average of the
squared gradients, which smooths out oscillations in the parameter updates. This op-

timizer is particularly effective for training models on non-stationary objectives, such
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as recurrent neural networks, and is known for its stability in scenarios with noisy or
sparse gradients. [60] The Adam optimizer combines the advantages of the optimizers
Momentum and RMSProp to improve the efficiency and performance of the learning
process. It works by maintaining two moving averages for each parameter during train-
ing. The first moment is the exponentially weighted average of the gradients, while
the second moment is the exponentially weighted average of the squared gradients.
These averages help adapt the learning rate for each parameter, allowing the algo-
rithm to update weights more effectively and with greater stability. One of Adam’s key
features is its ability to adjust the learning rate for each parameter individually, which
helps the model converge faster and reduces the need for manual tuning of learning
rates. Additionally, Adam includes bias correction to account for the initial biases in the
moving averages, particularly in the early stages of training when the averages are still

being initialized. [62]

2.5.3 Convolutional Neural Networks

For the task of handwritten letter recognition, LeCun et al. proposed a neural network
containing convolutional layers and pooling layers in 1989 [63] called convolutional
neural networks (CNN). They are well suited to process data in the form of multiple
arrays, such as 2D arrays for images or spectrograms created by STFT. CNNs work by
exploiting the fact, that in array data values are usually highly correlated to neighboring
values, forming so-called motifs. Motifs are made up of distinct features which can vary
in their relative position to each other. A CNN trained to recognize animals for example
might learn that the motif cat contains the features tail, head and paws which can
appear in different relative positions. The CNN detects the motif by coarse-graining the
position of each feature, which makes the recoginiton invariant to shifts in the relative
position. CNNs are generally made up of convolutional layers, pooling layers and fully
connected layers. [64]

The working principle of a convolutional layer is illustrated in Figure [2.76] An example
of a two-dimensional input array can be seen in the middle of the Figure. To reduce
the spacial dimensions of the input, a matrix, called kernel is slid over the input. A

simple example kernel is shown on the left side of the Figure. At each position, the
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dot product of the kernel and the covered area is calculated as seen on the right side
of the Figure. The output array contains all multiplication results. During training, the
model finds an optimal kernel. The convolution operation is defined by the size of the
kernel, in the case of the example this is four, and the stride. The stride determines how
many pixels further the kernel is shifted at each step. The higher the stride, the smaller
the overlap is between the convolution operations and thus the smaller the output. To
reduce border effects a padding can be added around the input. This prevents border
effects, as otherwise the data on the edges and corners would have less impact than
the data in the middle of the input which appears in more convolution operations. In the
Figure the padding is shown in gray. There are several different padding techniques
available, such as zero padding, which is shown in the picture. The padding in the
picture has the size one, since there is one layer of zeros added around the input. In
praxis there can also be added more layers, especially if a large kernel size is used.
The output of a convolutional layer is called feature map. Since each neuron in the
output is only connected to a small region of neurons in the input, the convolutional
layer focusses on local patterns. The receptive field of a neuron quantifies the size of
the neurons input. [63] [65]
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Figure 2.16: lllustration of a convolutional layer

In each layer, the convolution operation is repeated with multiple kernels, each op-
timized to detect a specific feature. The output of the layer consists of all feature maps
that are produced by the convolution operations. The different maps are also called the
channels of the output. A colored image for example consists of three channels, each
channel giving a RGB value for a single pixel.

The spatial dimensions of the output of a convolutional layer are dependent on the
input size D;,, the kernel size K, the padding P and the stride of the kernel S. The

relationship between these parameters is shown in Equation [2.21]



2 State of the Art in Science and Technology 34

Din — K +2P
Doy = — o0 (2.21)

Convolutional layers are usually followed by pooling layers, which further reduce
the spacial dimensions of the input. Figure shows an illustration of the working
principle of a pooling layer. The input is divided into smaller regions, which are then
clustered into a single value. Max pooling, which is shown in the Figure, uses the
highest value that can be found in the cluster. Another popular pooling strategy is

called average pooling, here the average value in the cluster is calculated. [65]
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Figure 2.17: lllustration of max pooling

In most CNNs used for classification tasks, the convolutional and pooling layers are
followed by one or multiple fully connected layers. The amount of neurons in the first
fully connected layer usually equals the number of channels after the last convolutional

layer. Each neuron is connected to each neuron of the previous layer. [64]
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3 Experimental Setup

In order to develop a predictive maintenance strategy for the REPAs, first the entire life
cycle needs to be understood. Since in a regular PTC that performs on rotation cycle
per day, a life cycle takes about 25 years, an accelerated test has to be performed. For
this, the REPA test rig was designed [66].

In this Chapter, the general assembly of the test rig will be explained, followed by
a detailed description of the installation of the vibration sensors that collect the data

analyzed in this thesis.

3.1 REPA Test Rig

The REPA test rig, which is located at the Plataforma Solar de Almeria in Spain, was
designed to analyze the life cycle of REPAs in a shorter time span. The test rig can
simulate up to 570 rotation cycles per day, which means that the estimated lifespan of
10,000 cycles can be achieved in under 20 days. Two REPAs are tested simultane-
ously, which is compareable to a real PTC where there is a REPA on each side of the
Collector. [66]

To provide conditions that are as similar as possible to a real PTC, the REPAs are
rotated and moved translationally at the same time, with the translational movement
simulating the expansion of the receiver tubes. Additionally, the REPAs are part of a
HTF cycle providing hot fluid of 390°C and 30bar.[66]

Figure[3.1]shows an overview over the REPA test rig. The test rig consists of three main
components: the main assembly, the HTF cylce and the supervisory control and data
acquisition system (SCADA). The former contains the kinematics unit, which performs
the rotational and translational movements to simulate the daily movements occurring
in a PTC. The HTF cycle is responsible for keeping the HTF at the correct tempera-
ture, pressure and mass flow. Lastly, the SCADA system is used to collect data and
to monitor and control the test rig. In the following sections, these components will be

explained in detail.
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Figure 3.1: Assembly of the REPA test rig [67]

3.1.1 Main Assembly

The main assembly of the REPA test rig includes the kinematic unit, the traverse and
two fixtures for the REPAs. Figure [3.2 shows the components of the main assembly
with RFHAs installed as REPAs.

The kinematic unit is a hydraulic system consisting of a hydraulic unit and four hydraulic
cylinders. It also includes a drive pylon. Two of the cylinders, which are located in the
center of the drive pylon, generate the rotational movement, while the other two cylin-
ders are placed on top of the drive pylon and perform the translational movement. The
traverse is connected to the kinematic unit by two drive pylon arms.

The two REPAs are connected on their upper ends by the traverse, which simulates
the thermal expansion of the receiver tube in a real PTC. The traverse movement is ex-
ecuted in the east-west direction. The motion is performed by the two hydraulic trans-
lational cylinders which rotate the drive pylon. Thus, the translational motion is actually
a rotation which is measured by the translation angle ¢. Since only 500-600mm of heat
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dilation have to be simulated, only small values are chosen for 6, meaning that the
small angle approximation is valid in this case. Therefore, a linear relation between 6
and the absorber pipe temperature can be assumed. The maximum translation angle
in the west direction is #; = —5° while in the east direction it is 6, = 12° (see Figure
[3.2). This corresponds to a translational movement of 500mm. [66]

The hydraulic cylinders that are responsible for the rotational movement move the tra-
verse around the rotational axis, which is denoted in red in the Figure. It allows for a
rotation from -23°, which is the stow position, to the end position of 186°. In the Figure
these are the angles a5 and a4. The start angle, which would be the angle that the
PTC has at sunrise, is as. In the REPA test rig, the rotation is performed in a fast,
continuous motion as opposed to a real PTC where the movement from the start angle
to the end angle is slow and incremental.

On both sides of the traverse a REPA is attached. When the traverse is moved, the
movement translates to a movement of the REPAs. The other ends of the REPAs are
welded to the feed-in and feed-out pipes of the HTF cycle. In the first test campaign
that is analyzed in this work, RFHAs are used as the REPAs. It was completed before
this work begun. The swivel joint is attached to the table of the main assembly. The
torque sword is welded directly to the pipe segment extending from the swivel joint.
Both components are aligned along the test rigs rotational axis. To reduce heat loss,
both the corrugated flex hose and the swivel joint are insulated. The left side of Figure
3.3 shows the installed RFHA with insulation.

The second test campaign examines BJAs. It consists of three individual ball joints with
pipe connections between them. The translational angle is influenced by the length of
the connection between the traverse and the upper ball joint. The highest forces ap-
pear in the lowest ball joint, making it the critical point where failure occurs first. In

Figure [3.3]the BJA in the test rig is shown without insulation. [67]

3.1.2 Heat Transfer Fluid Cycle

The HTF cycle is the second component of the REPA test rig. It is a pipe system
consisting of a pump, an expansion vessel and ten electric heaters. The pump controls
the mass flow rate rmyrr and the pressure pyrr. The former can range from 6"‘73 to

60”‘73 while the latter can be up to 40bar. In case of failure, the pump can be separated



3 Experimental Setup 38

Drive Pylon Arm Translation Cylinders Outer Swivel Arms West REPA
South

East REPA Rotation Cylinders ~ Drive Pylon  Hydraulic Unit

Figure 3.2: Main Assembly of the REPA test rig featuring the kinematic unit, the traverse and two RFHAs,
Red: Rotational axis («;: start angle, as: end angle, as: stow angle), Green: Transversal axis (6;:
cold angle, 6,: hot angle), adapted from

from the main assembly, ensuring the safety of the system. For this, a bypass around
the main assembly is installed in the pipe system.

Since the HTF expands when it is heated up, the expansion has to be compensated to
regulate the pressure. For this, an expansion vessel is connected to the pipe system.
It works by pumping or evacuating nitrogen into the vessel, making it possible to adjust
the pressure from 1 to 40 bar.

The temperature of the HTF is provided by ten high-performance electric band heaters.
Each heater has an output of 3500W. They are installed on the pipe directly before the
feed-in leading to the main assembly. For minimum heat loss, all pipes are surrounded
by a insulation with a thickness of 120mm. The maximum temperature that can be
achieved by this setup is 450 °C.

The HTF that was used in the test campaigns analyzed in this work is Therminol ®VP-1
oil. It has a maximum permissible temperature of 400°C.
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Figure 3.3: Left: RFHA with insulation in REPA test rig, Right: BJA in REPA test rig

3.1.3 SCADA system

The SCADA system is responsible for monitoring and controlling the entire test rig,
which includes both the kinematic unit and the HTF cycle. Central to this setup is
the Siemens SIMATIC S7-300 Programmable Logic Controller (PLC), which links all
sensors and actuators through various interfaces, either analog or digital. This PLC
regulates the HTF pump speed, collects measurement data, and sends control com-
mands to the servo controller. The servo controller is responsible for managing the
hydraulic system’s motor speeds and controlling the motion of the cycles.

A crucial part of the system is the Open Platform Communications (OPC) server, which
allows for the reading and writing of PLC variables. It connects to a Graphical User In-
terface built in LabVIEW, enabling remote control of the test rig. Cameras linked via

Ethernet also allow for visual monitoring. The servo drive handles the system’s ro-
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tational movement, while an inverter drive controls the translational motion. The 4/3
directional control valves manage the movement direction of the traverse system, de-
termining whether the cylinder pistons are extended or retracted. The traverse speed
slows down at the changeover points near 35° and 133° when a piston shifts from
pushing to pulling, or vice versa.

In December of 2024, before the second test campaign was carried out, the existing
PLC system was upgraded to incorporate new load cells, and this extension also al-
lows for the addition of more sensors, such as extra load cells or cameras, to support
the monitoring of REPA test campaigns. The second cabinet connects to the PLC sys-
tem via a module connector located in the center of the cabinet. The power supply
unit, a SITOP PSU100S, is installed in the top section of the cabinet, while the two
new load cells are connected at the bottom. These individual analog inputs are then

incorporated into the existing PLC system. [67]

3.2 Vibration Measurements

The data that is analyzed in this work is collected by two uniaxial accelerometers, one
on each REPA of the test rig. The vibration sensors are of the model PCB-(M)320C52
by PCB Piezotronics. They allow for measurements with a maximum sample rate of
10,000Hz and a sensitivity of 1.02%. They can endure temperatures of up to 163°C.
The power supply is realized by USB connection to the measurement laptop, which
also transfers the collected data to the laptop. [68]

The first analyzed test campaign was performed before this thesis was started. The
setup of the vibration data acquisition of this campaign is outlined in Chapter[3.2.1] The
second test campaign, which featured ball joint assemblies, was set up and performed

in 2025. The installation of the vibration sensors was part of this thesis.

3.2.1 Rotary Flex Hose Assembly Test Campaign

For the RFHA test campaign, the sensors were installed on the bottom of the metal
flex hose, in between the the torque sword and the swivel joint. There, the sensor is

close enough to the swivel joint to pick up the vibrations occurring there. The gap in the
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isolation in this spot provides the space needed to screw the sensor onto the assembly.

Figure [3.4] shows the west REPA with the vibration sensor installed.

Figure 3.4: RFHA with installed vibration sensor (marked with red square)

3.2.2 Ball Joint Test Campaign

Since the lowest ball joint is usually the one where failure occurs, they are chosen
for the installation of the vibration sensors in the ball joint test campaign. To avoid
overheating of the sensors, they are installed on an attachment. The attachment is
made of aluminum and long enough to go through the isolation that is placed around
the ball joint. It also features three grooves to improve the heat exchange with the
environment. The attachment is fastened to the screw of the ball joint. It has a hole at
the end, where the vibration sensor can be screwed into. Figure [3.5)shows the lowest
ball joint of the west REPA with the attachment for the vibration sensor with and without
the isolation.
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Figure 3.5: Left: Lowest ball joint with attachment for the vibration sensor and the vibration sensor
installed, Right: Lowest ball joint with attachment for the vibration sensor and isolation installed
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4 Implementation of the computational Methods

This work has the objective to find patterns in the vibrations that occur in the REPAs
of the test rig indicating future failures. This enables predictive maintenance of the
flexible pipe connectors, which could prevent fires that occur due to leakage of the hot
HTF and save cost due to unpredicted down-times. To find patterns, the raw data first
needs to be transferred to a format that is suitable for a machine learning model. This
process is described in Chapter[4.1] For the recognition of patterns indicating problems
in the REPAs, a machine learning model is trained, which is discussed in Chapter [4.2]

Python is used as the programming language for the entire thesis.

4.1 Data Preparation

Figure shows an overview over the steps of the data preparation process. If
not stated otherwise, the calculations described in this Chapter are performed using
the SciPy library which offers useful functions for data analytics [69]. The handling

and processing of the data is done using the Python packages Pandas and NumPy
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Figure 4.1: Overview of the data preparation process

Firstly, the raw data collected by the vibration sensors needs to be split into the
individual rotation cycles that the REPA test rig performs. The rotation data is collected
by the SCADA system and saved in a csv file. The system saves the current rotation

angle of the test rig every five seconds. Thus, the start and end of each cycle can only
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be determined with an accuracy of five seconds. A rotation cycle is defined to start
when the rotation angle leaves the minimum value and to end when the angle reaches
the minimum value again. In between, the rotation angle has to reach the maximum
angle for the cycle to be counted. Since the minimum and maximum angles might not
be measured due to the measuring rate of 5s, a margin is added to these values in
which the values still count as reached. Some of the cycles are completed at lower
temperatures. These are not part of the analysis, since the lower temperature might
impact the vibrations.

Once the timestamps of the start and end of each rotation cycle are found, the vibration
data recorded during each cycle is analyzed to create spectrograms of the cycles. For
this, a Wiener filter is first applied to the data. This is done, because the data con-
tains very high frequencies with high intensities that obscure the underlying patterns.
Since the measurement is performed at a sampling rate of 10,000Hz the STFT can
only detect frequencies below 5000Hz, with the frequencies above this threshold being
aliased as lower frequencies. The Wiener filter flattens the data, removing these very
high frequencies and making the underlying patterns visible.

Afterwards, the spectrograms of the cycles are calculated using the STFT-function im-
plemented in SciPy. Since there is a vibration sensor on each of the two REPAs, there
are two spectrograms for each rotation cycle. The chosen windowlength for the STFT
is 1s. Since the sampling rate equals 10,000Hz, each window contains 10,000 mea-
suring points. The overlap of the windows is half the window size, resulting in a time
resolution of 0.5s and a frequency resolution of 1Hz.

Since the cycles differ in their length, their spacial dimensions are reduced to create
data of equal sizes. By using average pooling, the sizes of all spectrograms are set to
256x256. The kernel size of the average pooling filter is calculated dynamically based
on the original length of the cycles.

For the recognition of failures that will occur soon in the REPAs, the variations that
naturally occur in the vibrations due to environmental factors such as wind or different
temperatures need to be differentiated from the variations that occur due to malfunction
of the pipe connectors. There are two REPAs per PTC, one on each side. Both REPAs
are exposed to similar conditions since they are close to each other and perform their
movements simultaneously. Thus, it is likely, that in both REPAs similar vibrations oc-
cur as long as both function regularly. A malfunction in one of the REPAs would result

in a change of the vibrations that can not be explained by environmental factors and
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thus does not occur in the other REPA.

Following this thought process, the spectrograms of the vibrations occurring in each of
the REPAs are compared for every cycle. To quantify the similarity of the spectrograms,
the structural similarity index metric (SSIM) is used, which was proposed by Wang et
al. in 2004 [73]. It is used to score the similarity of two images on a scale from 0 to 1,
where 0 is given to two images that are completely different and 1 is given to identical
images. It is calculated by comparing statistical properties of small windows of the
images to each other. The SSIM of the small windows z and y is calculated by using
Equation [4.1, where p,,, is the pixel sample mean of the windows, o/, is the pixel
sample variance and o, is the pixel sample covariance. c¢; and ¢, are used to stabilize

the division and are calculated from the dynamic range of the pixel values. [73]
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After the SSIM is calculated for every window of the spectrograms, the mean of the
values is calculated, resulting in the SSIM of the entire images. Additionally, a new
image can be created from the scores of each window, showing the areas with high
similarity between the two spectrograms. This is calculated for every cycle of the test
campaigns. The calculation is done using the image processing library scikit-image
[74]. The comparison images are used later to train the neural network.

Since there are more cycles performed where both REPAs function normally than
where a REPA malfunctions, class imbalance needs to be avoided. Firstly, under-
sampling is used to create classes with an equal amount of samples. Thus, the model
is not trained on every cycle with REPAs that function normally but only a selection.
Additionally, the loss function can be adjusted in the training to put a bigger weight on

the second class, which indicates a failure occurring soon.

4.2 Failure Prediction with Machine Learning

To detect patterns in the vibration data that indicate a REPA malfunction, a Convolu-
tional Neural Network (CNN) is trained. As explained in Chapter [4.1] the CNN is not
trained on the actual vibration data but on the comparison pictures of the spectrograms

of the vibration data recorded by each sensor. This has the advantage, that variations
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that are caused by the environment and not by a REPA malfunction do not appear in the
final data, since they influence both REPAs at the same time. Furthermore, this method
allows for a more generalized failure prediction. Since for each type of REPA there is
only one test campaign available as training data, it is not possible to identify which
patterns in the vibrations appear before every failure and which are specific to this test
campaign. By only giving the CNN the information on the similarities and differences
between the data recorded by the two sensors, the specific patterns are obscured to
allow for a more general training. By not using the SSIM score, but the comparison
images of the spectrograms, the model can also analyze where in the spectrogram the
differences or similarities occur.

Another measure taken to avoid local variations impacting the performance of the CNN
is to not use singular cycles as training data but to stack the comparison pictures of
several cycles that happen after each other. The chosen amount of stacked cycles is
64. This enables an evaluation of the vibrations that occurred in roughly two months in
areal PTC. Thus, the CNN is trained on 3D data of the shape (64, 256, 256). The input
of the CNN has the shape (n, 1,64, 256, 256), where n is the amount of samples that
are presented to the network simultaneously, known as the batch size. The second
dimension is the amount of channels, in this case one.

The CNN is used for binary classification, where 0 means, that in the analyzed cycles
the REPAs function normally, while 1 indicates a malfunction of one of the REPAs oc-
curring soon.

The implementation of the CNN is done in PyTorch, a Python library for building Al
models [75]. In the course of this work, different CNN architectures were tested. This
chapter only contains the details of the architecture that proved to be the most suc-
cessful. Table gives an overview of the layers that the CNN consists of. There are
four convolution layers, each followed by a pooling layer. After the last convolution an
additional pooling layer is used to reduce the size to a scalar value. The last three
layers are fully connected layers. After each convolution a dropout and a batch nor-
malization is performed. Every layer except for the fully connected layer is followed by
a leaky Relu activation. The activation used after the last layer is the sigmoid function

to convert the output to a value between 0 and 1 for the binary classification.

The convolution layers have a kernel size of (3x3x3) with a stride of (1x2x2) and a

padding of one. By using a different stride for the first dimension, only the second and
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Table 4.1: Overview of the layers in the CNN

Layer | input channels | output channels | input shape | output shape
Convolution 1 16 64x256x256 | 64x128x128
MaxPool 16 16 64x128x128 32x64x64
Convolution 16 32 32x64x64 32x32x32
MaxPool 32 32 32x32x32 16x16x16
Convolution 32 64 16x16x16 16x8x8
MaxPool 64 64 16x8x8 8x4x4
Convolution 64 128 8x4x4 8x2x2
MaxPool 128 128 8x2x2 4x1x1
MaxPool 128 128 4x1x1 2x1x1
MaxPool 128 128 2x1x1 1x1x1
Fully Connected 128 64 1x1x1 1x1x1
Fully Connected 64 32 1x1x1 1x1x1
Fully Connected 32 1 1x1x1 1x1x1

third dimension are downsampled in the convolution layers. This is needed, because
the first dimension has a smaller size from the beginning and thus needs to be down-
sampled less often. The first convolution layer has one input channel and 64 output
channels. Every following convolution doubles the amount of channels, resulting in 512
output channels in the last convolution layer.

The pooling layers use symmetrical kernels of size (2x2x2) with a stride of (2x2x2).
This results in the size being divided by two in each dimension. An exception is the
last pooling layer, where the size of the last two dimensions is already reduced to one
and only the first dimension needs to be downsampled further. In this layer, a kernel of
size (2x1x1) and stride (2x1x1) is used, which has no effect on the last two dimensions.
Pooling layers have no effect on the amount of channels.

The last layers are three fully connected layers. They gradually reduce the number of
channels to one. Thus, the shape of the CNNs output is (n,1,1,1,1), where n is the
number of samples that were passed through the network simultaneously.

The training of the network is performed in multiple epochs. In each epoch, all sam-
ples are passed through the network in several batches. The first training step for
each batch, is to calculate the models predictions for the samples in the batch. Those
predictions are then compared to the labels given to the samples. The loss function
calculates the distance between the predicted and the actual labels. For binary classi-
fication the binary cross entropy function is suitable. PyTorch offers a loss function that
connects the BCE loss with the sigmoid activation, meaning that the activation of the

last layer in the network can be dropped. By combining the two steps in one function,
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the operation becomes more numerically stable. BCE loss also allows for weights to
be assigned to the classes. Before this loss can be passed backwards through the
network to adjust the weights, the gradients of all optimized tensors need to be reset.
Otherwise, the gradients would accumulate and add up with the current batch, leading
to incorrect weight updates. After the loss is backwards passing of the loss is finished
the models parameters are updated. The updating is done by the optimizer. For this
work, Adam was chosen as the optimizer. After this is repeated for each batch the
epoch is finished.

The trainings success is influenced by the chosen hyper parameters. These include
the learning rate of the optimizer, the batch size, the number of epochs, the dropout
rate and the weight assigned to the positive class. The optimal parameters for train-
ing are determined by a parameter analysis. The best results were achieved by the

following parameter combination:

* Learning Rate: 0.00001

* Number of Epochs: 30

Batch Size: 8

Dropout Rate: 0.3

Weight of Positive Class: 1.3

After the training is done, the model is evaluated. For this, the model calculates pre-
dictions for samples it was not trained on. These predictions are then compared to the
actual labels of the samples and several performance metrics are determined. To get
a detailed estimation of the performance, the calculated metrics are: accuracy, preci-
sion, recall, F1 score and the confusion matrix. In the case of predictive maintenance, a
false negative would mean, that a malfunction is not predicted and can therefore not be
fixed before the component breaks. This can potentially be expensive and dangerous,

making it the more severe error. Thus, the objective is to maximize the recall.
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5 Results

This Chapter delves into the results of the two test campaigns and the subsequent
vibration analysis. Firstly, section[5.1]covers the measurement results of two test cam-
paigns and the incidents that occurred during them. In the second section [5.2, the

results of the vibration analysis and the machine learning model are explained.

5.1 Measurement Results of the Test Campaigns

Over the course of this work, the vibrations during the life cycles of two different types
of REPAs were analyzed. The data was obtained during two test campaigns. The first
test campaign featured RFHA as pipe connectors and was performed in 2024 before
this thesis was started. Section covers the vibration measurements that were
performed during this campaign.

The second test campaign, which features BJAs was performed in 2025 during the
course of this work. The measurements and incidents of this experiment are topic of
sectionb.1.2

5.1.1 Rotary Flex Hose Assembly Test Campaign

During the RFHA test campaign, 13,723 cycles were completed at the cycling tem-
perature of 389°C. After 4,381 cycles, a problem with the traverse movement of the
test rig occurred. While this is not due to a malfunction of the REPAs, it needs to be
noted as it can also influence the vibrations that are measured by the sensors. After
the problem was fixed, cycling continued until a small oil leakage was detected in the
west swivel after 11,700 cycles. After 13,681 cycles, another leakage occurred in the
west swivel which was accompanied by smoke. Cycling was continued for another 52
cycles and then stopped. Between the 500th and the 2204th cycle, no vibration data
was collected.

Over the course of the test campaign, the vibration patterns changed. Figure[5.1|shows

the spectrograms of the vibration data recorded during the 50th cycle in the beginning
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of the test campaign in the east swivel. Figure [5.2]shows the spectrogram of the same

cycle recorded in the west swivel. The x-axis of the plots contains the time elapsed
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Figure 5.1: Spectrogram of the vibrations recorded on the east swivel during the 50th cycle
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Figure 5.2: Spectrogram of the vibrations recorded in the west swivel during the 50th cycle
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since the current cycle started in seconds, while the y-axis shows the frequency in
Hz. Since the sampling frequency of the vibration measurement was 10,000 Hz, the
Fourier transform can detect frequencies up to 5,000 Hz. The color bar shows the
power spectral density in decibel. Since decibel are defined on a logarithmic scale, the
color bar shows values below zero even though the power spectral density is always
positive.

The spectrograms of the data collected by the two sensors include similar patterns.
Both have a window of higher power spectral densities between 10 and 90 seconds.
In both cases this window starts and ends with a peak of the power spectral density.
Furthermore, the spectrograms show higher power spectral densities for lower frequen-
cies up to about 2,500 Hz and lower power spectral densities for frequencies above this
threshold.

Figure and show the spectrograms of the vibration data recorded during the
6000th cycle in the east and the west swivel. This cycle happened after the problem
with the traverse was fixed. After this cycle the REPAs show no sign of malfunction for
another 5,700 cycles and thus belong to the class of cycles that do not point to a failure
that is about to happen.

The patterns in these spectrograms differ from the ones shown in Figures andb.2|
that were recorded 5,950 cycles earlier. They include two windows with elevated power
spectral densities. In the spectrogram of the data recorded on the east swivel, these
windows occur between the 20th and the 58th and the 83rd and the 138th second.

In the data recorded by the sensor on the west swivel, similar patterns can be ob-
served. However, they occur at slightly different times. Here, the windows of higher
power spectral densities are between the 22nd and the 47th and the 97th and the
132nd second. Additionally, at very low frequencies elevated power spectral densities
appear before the second window from the 79th second onward. The spectrogram of
the data recorded on the east swivel features higher power spectral density peaks than
the one of the data recorded on the west swivel.

Overall, the power spectral density does not vary as strongly over the frequencies as
compared to the spectrograms of the 50th cycle. Additionally, there are big regions
with very low spectral power densities between the windows mentioned above that do
not appear in the spectrograms of the 50th cycle. The link between higher frequencies
and higher power spectral densities that was present in the spectrograms in Figures
5.1]and [5.2) can still be observed in these spectrograms.
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Figure 5.3: Spectrogram of the vibrations recorded on the east swivel during the 6000th cycle
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Figure 5.4: Spectrogram of the vibrations recorded in the west swivel during the 6000th cycle
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In conclusion, the spectrograms of the 6,000th cycle look quite different to the ones
of the 50th cycle. However, they all belong to the negative class. While there are some
differences between the spectrograms of the data recorded by the two sensors in the
6,000th cycle, similar patterns can be observed in both.

In Figures and the spectrograms of the data recorded during the 13,500 rota-
tion cycle are pictured. Figure shows the data of the east swivel, while shows
the data recorded in the west swivel. About 200 cycles after this, the leakage occurred
in the west swivel and the test campaign was stopped. Thus, these cycles are part of
the positive class.

In the spectrogram in Figure [5.5] similar patterns as in the spectrograms in Figure 5.3
can be observed. The first window of higher spectral densities featured in Figure
is now split into two peaks at 19 and at 30 seconds that last for about one second.
Between these peaks, the power spectral density is very low. At the end of the cycle, a
window of elevated power spectral densities is present at a similar spot as in the data of
the 6000th cycle. In the other regions the power spectral density is constantly very low.
In this spectrogram it starts at the 87th second and ends at the 135th second. Overall,
this spectrogram also shows higher spectral power densities in lower frequencies.

The spectrogram of the data recorded in the west swivel (figure does not feature
this pattern of low power spectral densities with peaks and windows of higher values in

between. Here, the power spectral density is constant over all frequencies and times.

This big difference between the spectrograms of the data recorded by the two sen-
sors of the same cycle can only be observed for the cycles in the positive class, which is
the class of cycles leading up to a malfunction. The spectrograms of the data recorded
in different cycles are not always similar even though they belong to the same class.
An example of this are the spectrograms shown in the Figures and which are
both recorded in the east swivel. While they both belong to the negative class they do
not include similar patterns.

To explore this tendency further, the SSIM of the two spectrograms was calculated for
every cycle, as explained in section [4.1] The result of this is pictured in Figure
where the SSIM comparing the two spectrograms of each cycle is plotted. The x-axis
shows the cycle number, while the y-axis shows the SSIM on a scale from 0 to 1. A
score of 0 would mean, that the two spectrograms are completely different, while a

score of 1 is given to identical spectrograms. The Figure also includes the cycle num-
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Figure 5.5: Spectrogram of the vibrations recorded on the east swivel during the 13,500th cycle
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Figure 5.6: Spectrogram of the vibrations recorded in the west swivel during the 13,500th cycle
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ber of the three incidents that happened during the test campaign. This is shown in
red. Between the 500th and the 2200th cycle there is a gap, as no data was recorded.
In the ares where no incident is close, very high similarity scores of nearly one were
calculated. In the first few cycles the score is slightly lower which can be explained
by the higher variation of spectral power densities in the spectrograms of these cycles.
This can be seen in Figures and In later cycles, for example in the cycles
pictured in Figures [5.3]and [5.4] there are larger areas with no variation which leads to
higher similarity scores. Before a malfunction occurs, a strong drop of the similarity
score can be observed.

Before the problem with the traverse happened, the similarity score was low for 2190
cycles. During this period, no cycle with a high similarity score was measured.

The second and third incident, which were both problems with the west swivel, were led
by a drop in the similarity score that lasted for about 1,000 cycles. In a real PTC which
performs one rotation cycle per day, this translates to a little over 2.5 years. However,
in the 1000 cycles leading up to the incidents, not every cycle showed a low similarity
score. Especially before the final malfunction happened the similarity score went back

to almost 1 for a few cycles before dropping again.
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Figure 5.7: SSIM score comparing the spectrograms of the vibration data collected by sensors on each
RFHA for every cycle, Red: Incidents happening during the test campaign
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5.1.2 Ball Joint Assembly Tets Campaign

The second test campaign, which featured BJAs, was interrupted by a nationwide
power outage after 2700 cycles were completed. Unfortunately, this caused the data
that was collected up to this point to be lost. After the power supply was stable enough
to start heating up again, outgassing was observed in five out of the six ball joints. To
stop the smoking of the ball joints, the seals were refilled with graphite. However, more
graphite than expected was needed to stop the outgassing. Additionally, the screws
of several of the ball joints were damaged. The delays in the maintenance caused the
test campaign to not be finished during this thesis.

After the power outage several test cycles were done to asses the need for mainte-
nance and to investigate the change in the angles of the pipes between the ball joints.
During these cycles, vibration data was collected. However, these cycles were done
with a reduced rotation speed and with varying temperatures and pressures. Since no
data of the well functioning ball joints is available, it is not possible to investigate which
changes in the vibrations are due to the malfunctions and which are due to the changes
in temperature, pressure and rotation speed. The varying rotation speed causes the
differences in the length of the spectrograms shown in this section, as the cycles are
longer if the REPA is rotated more slowly. The cycle length was varied from 125s to
295s.

The spectrogram of the vibrations collected on the lower ball joint of the west REPA is
pictured in Figure [5.8] It shows similarities to the spectrograms collected in the RFHA
test campaign, e.g. the ones in figures and [5.4] This suggests, that some of the
collected vibrations originated in the hydraulic system.

Other cycles of the west BJA, as for example the one shown in Figure [5.9] lack these
patterns. This spectrogram includes no areas of higher spectral densities and instead
shows constant energies over all frequencies and times. This behavior was previously
encountered in the west swivel in the RFHA test campaign before the outgassing was
observed. However, to determine if these patterns occurred again due to the malfunc-
tion of the ball joint, more data of the well functioning ball joint is needed.

Examples of the spectrograms collected on the eastern BJA are shown in Figures
and The first pictured spectrogram features windows of higher power spectral
densities, most notably between the 150th and the 200th second of the cycle. The sec-

ond spectrogram is similar to the second spectrograms that was shown of the western
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BJA with constant power spectral densities over all times and frequencies.
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Figure 5.8: Spectrogram of the vibrations recorded on the lower western ball joint during a slow test
cycle after the first 2,700 cycles were completed
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Figure 5.9: Spectrogram of the vibrations recorded on the lower western ball joint during a fast test cycle
after the first 2,700 cycles were completed
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Figure 5.10: Spectrogram of the vibrations recorded on the lower eastern ball joint during a slow

cycle after the first 2,700 cycles were completed
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Figure 5.11: Spectrogram of the vibrations recorded on the lower eastern ball joint during a fast test

cycle after the first 2,700 cycles were completed



5 Results 59

5.2 Results of the Machine Learning Methods

As described in section[4.2, a CNN was trained to recognize comparison spectrograms
of cycles that precedented a malfunction of the REPAs. The model was trained on the
data collected in the RFHA test campaign, since the data collected in the BJA test
campaign was not large enough to perform training.

Figure shows the failure probability over the entire life cycle of the RFHAs calcu-
lated by the trained model. The Figure includes the time at which each of the three
problems of the test campaign occurred. It should be noted, that in this case the model
was trained on the data that was recorded before the second malfunction occurred.
Thus, the performance of the model can only be correctly estimated based on the pre-
dictions made for the data after the second problem. This was used as the testing

dataset for the model.
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Figure 5.12: Failure Probability over the life cycle of the RFHA, Red: Incidents happening during the
test campaign

The figure shows, that before a failure happens the predicted failure probability also
rises. Before the two leakages (failure two and three), the time frame in which an in-
creased failure probability is predicted is similar. In both cases the failure probability is

one for the first time 1000 cycles before the malfunction occurs.
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In the 1000 cycles before the second and third problem happened, the failure probabil-
ity does not stay at one but drops to zero again several times. This can be explained
by the variance that can be observed in the similarity score in these areas (compare
Figure [5.7). The method of calculating the probability for 64 cycles at once balances
out some of the variance, making the probability more stable than the similarity score.
In some areas however this is not enough to guarantee that the probability stays at one
for the entire period before the failure.

During the periods where no failure is about to happen the probability stays at zero.
This is due to the low variance in the similarity score in these areas.

To quantify the models performance, several performance metrics were calculated:

» Accuracy: 0.93

* Precision: 1

* Recall: 0.82

* F1 Score: 0.9

» True Negative Rate: 1

* True Positive Rate: 0.82

» False Negative Rate: 0.18

» False Positive Rate: 0

The precision of one can be explained by the low variance in the areas where no
malfunction is to be expected. The false negative rate corresponds to the drops in
the failure probability that occurs right before the second and third problem in Figure
512
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6 Discussion

As shown in chapter [5.1.1] a correlation between the SSIM score calculated of the
two spectrograms of each cycle and the closeness to a RFHA malfunction was found.
By using this method, a CNN was able to predict failures at least 1000 cycles before
they occurred. With one cycle lasting one day in a real power plant, this translates
to a failure prediction more than 2.5 years in advance, making predictive maintenance
possible. Predictive maintenance lowers the operation cost of the plants by minimizing
downtime and making the system more reliable. Additionally the system safety is im-
proved by the predictive maintenance, since leakage of the HTF can lead to fires in the
power plants.

However, there are several differences between the test rig and a real PTC power plant
that have to be considered in order to transfer the findings of this thesis to the real
application. Firstly, the rotation movement in the test rig is always done fast and con-
tinuous. In a PTC power plant, there are three different rotation movements: from the
stow position to the starting angle, from the starting angle to the end angle and from
the end angle back to the starting position. While the first and the last of these move-
ments are done continuously, the movement from the starting angle to the end angle
is slow and incremental. The lower speed and the starting and stopping might have an
impact on the vibrations that can not be analyzed from the data collected in this thesis.
Furthermore, the hydraulic system that is responsible for the rotation movement is in a
different position in the test rig as compared to a real PTC. The similarities between the
vibration patterns of the BJA and the RFHA test campaigns suggest, that the vibrations
of the hydraulic system were also measured by the sensors. These patterns might look
different in a real PTC power plant, since the kinematic systems are set up differently.

Another factor that has to be considered is the difference in the length of the life cycles.
While in the test rig 10,000 cycles can be completed in less than a month, in a real
PTC plant, the REPAs are expected to last for 25-30 years. In this time span environ-
mental factors can change, also influencing the vibrations. These environmental factor
include wind, temperature or sun intensity. Especially wind is important in this consider-
ation, since it can change rapidly, making even the comparison of cycles that happened
subsequently difficult. The proposed method of comparing the data collected in both

REPAs rather than comparing different cycles aims to prevent this effect. However, the
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extend to which the longer lifespan effects the development of the vibrations over one
life cycle has to be investigated in future research.

Additionally, in the test rig, the expansion of the receiver tube was simulated by adding
translational movement of the kinematic unit. This translational movement was kept
constant over the course of the test campaign. In a real plant however, the heat ex-
pansion of the receiver tube would not be the same in every cycle, since it depends
on the achieved HTF temperature. Since the sun exposure is not constant every day,
the HTF does not reach the maximal temperature in every cycle. The differences in
translational movement might also impact the recorded vibrations.

The temperature of the HTF and therefore also the expansion of the receiver tube is
additionally impacted by the chosen HTF. The maximum temperature is different for
every HTF, which has to be considered when interpreting the vibrations. Since some
HTFs are present in two different phases in the tubing system, the phase change might
impact the vibrations of the REPAs. The choice of HTF also impacts the required pres-
sure in the tubing system. In this thesis, only Therminol ®VP-1 oil was tested.

Since of each type of REPA only one life cycle was analyzed, it is not possible to de-
tect which part of the vibration patterns are generally applicable to all life cycles and
which are specific to this singular experiment. To extract the parts of the data that are
generally applicable, more data needs to be collected.

Due to the power outage and the following data loss, not enough data was collected of
the BJA to train a classification model. To investigate the applicability of the proposed
classification model for BJAs, more data needs to be acquired.

The thesis was successful in proving, that there are changes in the vibrations that indi-
cate REPA failure. A predictive maintenance strategy was proposed that predicts REPA
failure based on the similarity of the vibrations occurring in the REPAs on both sides of
a PTC. This prevents the influence of environmental effects such as wind and makes

the strategy more generally applicable.
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7 Conclusion

The objective of this work was to analyze the vibrations occurring in the REPAs of PTC
power plants to find patterns that point to a future failure. This could potentially be used
to implement a predictive maintenance strategy in the power plants. Since the REPAs
carry the hot HTF, unexpected failures can potentially lead to fires. Thus, a predictive
maintenance strategy can make the operation of the PTCs safer. Additionally, predic-
tive maintenance enables the efficient scheduling of maintenance and therefore of the
downtimes, saving the cost of long unexpected breaks in operation.

Two different kinds of REPAs were investigated. In the first test campaign, which was
performed before this thesis was started, rotary flex hose assemblies (RFHA) were
tested. The second test campaign featured ball joint assemblies (BJA). This test cam-
paign could not be completed before the end of this thesis.

Both test campaigns were performed at the REPA test rig at the Plataforma Solar de
Almeria in Spain. The test rig can be used to analyze the life cycle of REPAs in a
shorter time span by simulating up to 570 rotation cycles per day. Thus the estimated
lifespan of 10,000 cycles can be achieved in less than a month. Two REPAs are tested
simultaneously, which is compareable to a real PTC where there is a REPA on each
side of the collector. The test rig performs rotational and translational movement si-
multaneously. The translational movement imitates the heat expansion of the receiver
tube in a real PTC.

The vibrations of the REPAs were recorded using piezoelectric accelerometers. They
were analyzed using short time Fourier transform to create spectrograms of the fre-
quencies present in the signals. For each rotational cycle, two spectrograms were
created, one for each side of the test rig. To lower the impact of local variations and
to make the predictions more general, a comparison picture of the two spectrograms
recorded of each cycle was created using the structural similarity index metric [73].
The comparison pictures were used to train a CNN to distinguish between the vibra-
tions occurring in REPAs that functioned normally and the ones occurring in REPAs
that were about to fail.

During the first test campaign, 13,723 cycles were completed at the cycling temper-
ature of 389°C, before a HTF leakage in the west swivel caused the campaign to be

stopped. Three problems occurred over the course of the life cycle. Each of the prob-
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lems was led by a drop in the similarity score. An explanation for this is, that regularly
functioning REPAs will show similar vibrations when performing the same movement
simultaneously. However, if one REPA malfunctions, the vibrations change and differ
from the ones measured in the intact REPA. The CNN trained to detect the comparison
pictures of the spectrograms occurring shortly before a failure was able to predict the
failures 1,000 cycles in advance. With one rotation cycle happening every day, this
means, that failure could be predicted more than 2.5 years in advance in a real power
plant.

The second test campaign was interrupted by a nation wide power outage. When it
was resumed, outgassing could be observed in five out of the six ball joints. Before
the power outage, 2,700 cycles were already completed, which is equivalent to seven
years of operation in a real power plant. Since seven years is the typical time after
which maintenance in the form of regraphiting has to be done in a BJA, this was ex-
pected. However, as a result of the power outage, the vibration data collected up to that
point was lost. Since the time required for the maintenance of the ball joints was longer
than expected, the campaign could not be completed. The data that was analyzed of
this test campaign was collected during testing cycles that were done after the power
outage before maintenance was performed. In the spectrograms calculated from these
data similar patterns as in the RFHA test campaign could be observed, suggesting that
the hydraulic system influences the vibrations. The data collected in this campaign was
not large enough to be used in the training of a CNN.

Since there are many differences between the test rig and an actual PTC power plant,
further research has to be done on the vibration behavior of REPAs before the pre-
dictive maintenance strategy can be employed. These differences include different
movement speeds, life cycle length, environmental factors such as wind, and differ-
ences in the setup of the kinematic system. Furthermore, more data of the BJAs has
to be collected to verify, that the prediction method suggested for the RFHA can be
applied to the BJAs as well.

Due to these limitations, this work has to be understood as a proof of concept of using
vibration data for the predictive maintenance of REPAs in PTCs. It shows, that installing
vibration sensors in PTC power plants is beneficial for a safe and cost efficient opera-
tion.

In future works, more data could be collected, especially on the BJAs. When more

data is available, the classification model could be expanded to analyze where in the
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spectrogram comparison image the differences occur. This could be used to determine
what kind of failure will occur or how many functional cycles are left until the REPA will

malfunction.
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